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Block sensitivity of weakly symmetric functions
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Abstract

Block sensitivity, which was introduced by Nisan [Noam Nisan, CREW PRAMs and decision trees, SIAM Journal on
Computing 20 (6) (1991) 999–1007. Earlier version in STOC’89], is one of the most useful measures of Boolean functions. In
this paper we investigate the block sensitivity of weakly symmetric functions (functions invariant under some transitive group
action). We prove a Ω(N 1/3) lower bound for the block sensitivity of weakly symmetric functions. We also construct a weakly
symmetric function which has block sensitivity Õ(N 3/7).
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1. Introduction

For a Boolean function f : {0, 1}
N

→ {0, 1}, the block sensitivity of f on input x is the maximum number b
such that there are pair-wise disjoint subsets B1, . . . , Bb of [N ] for which f (x) 6= f (x (Bi )); here x (Bi ) is the input
obtained by flipping all the bits x j that j ∈ Bi . We call each Bi a block. The block sensitivity of f , denoted by bs( f ),
is maxx bs( f, x).

Nisan [5] introduced the concept of block sensitivity and proved tight bounds for computing f on a CREW
PRAM in terms of bs( f ). It has been shown that block sensitivity is polynomially related to many other measures of
complexity, such as decision tree complexity [5], polynomial degree [6], and quantum query complexity [1]. The
relationship between block sensitivity and sensitivity complexity is still open. For more information about these
complexity measures, see [2] for an excellent survey.

A Boolean function f is called weakly symmetric (or transitive) if there exists a transitive group1 Γ ⊆ SN such that
for all σ ∈ Γ , f (x1 . . . xN ) = f (xσ(1) . . . fσ(N )). For example, symmetric functions, graph properties, and cyclically
invariant functions are all weakly symmetric functions.

Much research have been done on different complexity measures of weakly symmetric functions. It is known that
the certificate complexity C( f ) ≥

√
N (see [4] for example). Since the decision tree complexity D( f ) ≥ C( f ), so
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D( f ) = Ω(
√

N ), and this bound is tight. Turán [9] proved that for graph property the sensitivity s( f ) = Ω(
√

N ) and
he conjectured that it is also true for weakly symmetric functions. Recently Chakraborty [3] disproved this conjecture
by giving a certain class of cyclically invariant functions with sensitivity complexity Θ(N 1/3). Sun, Yao, and Zhang [8]
proved the quantum query complexity Q( f ) = Ω(N 1/4) for weakly symmetric functions. They also showed that this
bound is tight (up to log N factor).

Nisan [6] showed that bs( f ) = Ω(
√

C( f )); this combined with C( f ) ≥
√

N implies bs( f ) = Ω(N 1/4) for
weakly symmetric function. No better lower bound is known about block sensitivity. In this paper our main results are
the following theorems:

Theorem 1. For any nontrivial weakly symmetric function f , bs( f ) ≥ N 1/3.

Theorem 2. There exists a cyclically invariant function f such that bs( f ) = O(N 3/7 log N ).

2. Proof of Theorem 1

The following lemma [7] is used in the proof of Theorem 1. We denote by w(x) the number of 1’s in input x , and
by σ(x) the input xσ(1)xσ(2) · · · xσ(N ).

Lemma 1 (Rivest and Vuillemin [7]). If Γ ⊆ SN is transitive, then for any x ∈ {0, 1}
N and any i ∈ {1, . . . , N },

w(x) · |{σ(x) : σ ∈ Γ }| = N · |{σ(x) : σ ∈ Γ , σ (x)i = 1}|. (1)

In order to make the paper self-contained, we give a proof of Lemma 1 here.

Proof. Consider a |{σ(x) : σ ∈ Γ }| × N matrix; each row is an element in {σ(x)|σ ∈ Γ }. The left side of Eq. (1)
counts the number of 1’s in the matrix by rows. Since Γ is transitive, each column of the matrix contains the same
number of 1’s. Therefore, the right side of Eq. (1) counts the number of 1’s in the matrix by columns. Thus Eq. (1)
holds. �

Corollary 1. For any x, y ∈ {0, 1}
N , if w(x) · w(y) < N, then there exists a σ ∈ Γ , such that

{i ∈ [N ] : σ(x)i = 1} ∩ { j ∈ [N ] : y j = 1} = ∅.

Proof. Suppose that for any σ ∈ Γ ,

{i ∈ [N ] : σ(x)i = 1} ∩ { j ∈ [N ] : y j = 1} 6= ∅,

so

|{i ∈ [N ] : σ(x)i = 1} ∩ { j ∈ [N ] : y j = 1}| ≥ 1. (2)

Let Γ ′ be the minimum subgroup of Γ such that {σ(x) : σ ∈ Γ ′
} = {σ(x) : σ ∈ Γ }; then, summing up Eq. (2)

over all σ ∈ Γ ′, we have∑
σ∈Γ ′

|{i : σ(x)i = 1} ∩ { j : y j = 1}| ≥ |Γ ′
| = |{σ(x) : σ ∈ Γ }|. (3)

But on the other hand,∑
σ∈Γ ′

|{i : σ(x)i = 1} ∩ { j : y j = 1}| =

∑
i :yi =1

|{σ(x) : σ ∈ Γ ′, σ (x)i = 1}|

=

∑
i :yi =1

|{σ(x) : σ ∈ Γ , σ (x)i = 1}|

= w(y) · |{σ(x) : σ ∈ Γ , σ (x)i = 1}|. (4)

By Lemma 1 we know

|{σ(x) : σ ∈ Γ , σ (x)i = 1}| =
w(x) · |{σ(x) : σ ∈ Γ }|

N
,
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thus Eq. (4) implies that∑
σ∈Γ ′

|{i : σ(x)i = 1} ∩ { j : y j = 1}| = w(y) ·
w(x)|{σ(x) : σ ∈ Γ }|

N
. (5)

Combine inequality (3) with inequality (5), we obtain w(x)w(y) ≥ N , which contradicts the hypothesis. �

Now the proof of Theorem 1 is as follows:

Proof of Theorem 1. Let f be a nontrivial weakly symmetric function. The transitive permutation group is Γ . We
denote 0 = 00...0. Without loss of generality, we assume that f (0) = 0. Let B be a minimal subset such that
f (0(B)) = 1, i.e. for any proper subset B ′

⊂ B, we have f (0(B′)) = 0. Thus flipping any xi where i ∈ B changes the
value of f (0(B)). Therefore bs( f, 0(B)) ≥ |B|. If |B| ≥ N 1/3; it is done, since bs( f ) ≥ bs( f, 0(B)). In the following,
we assume that |B| < N 1/3.

Since w(0(B)) = |B| < N 1/3, w(0(B))w(0(B)) < N 2/3 < N , according to Corollary 1 there exists a σ ∈ Γ , that

{i ∈ [N ] : σ(0(B))i = 1} ∩ {i ∈ [N ] : (0(B))i = 1} = ∅.

i.e. σ(B) ∩ B = ∅, where σ(B) denotes the set {σ(b) : b ∈ B}. Let B1 = B, B2 = σ(B). Since

w(0(B1∪B2))w(0(B)) = 2|B| × |B| < 2N 2/3 < N ,

from Corollary 1 there exists a σ ′
∈ Γ , σ ′(B) ∩ (B1 ∪ B2) = ∅. Let B3 = σ ′(B), then B3 ∩ B1 = B3 ∩ B2 = ∅.

By repeating this argument, finally we can obtain B1, B2, . . . , BN 1/3 , such that for each Bi , there exists a σi ∈ Γ that
Bi = σi (B), and ∀i 6= j , Bi ∩ B j = ∅.

Now let us consider that bs( f, 0): {B1, . . . , BN 1/3} are pair-wise disjoint subsets, and for i = 1, . . . , N 1/3,

f (0(Bi )) = f (0(σi (B))) = f (σi (0(B))) = f (0(B)) 6= f (0),

the third “=” is due to the invariance of f under the group action of Γ , so bs( f, 0) ≥ N 1/3. Therefore bs( f ) ≥

N 1/3. �

3. Proof of Theorem 2

We firstly construct a partial assignment which has a nice property, and then use it as the 1-certificate to define the
Boolean function f .

Lemma 2. For any large k, there exists a partial assignment p : S → {0, 1}, S ⊆ [100k4 log k], |S| = O(k3 log k),
such that for any four distinct integers i1, i2, i3, i4 ∈ [k4

], there exist s1, s2, s3, s4 ∈ S such that
(1) s j1 − s j2 = i j1 − i j2 (∀ j1, j2 = 1, 2, 3, 4);
(2) the multiset {p(s1), p(s2), p(s3), p(s4)} contains two 0’s and two 1’s.

We meet the requirement (1) by a combinatorial design, and then use probabilistic arguments to show that we can
assign {0, 1} to the set to satisfy (2).

Proof. We represent numbers under base-k and use [d j , . . . , d0]k to denote the number d j k j
+ · · · + d1k + d0. Let

S4 = {s = [s3, s2, s1, 0]k : s2, s1 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},

S3 = {s = [s3, s2, 0/1, s0] : s2, s0 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},

S2 = {s = [s3, 0/1, s1, s0] : s1, s0 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},

S1 = {s = [0, s2, s1, s0] : s2, s1, s0 = 0, 1, . . . , k}.

The third bit of S1 and the second bit of S2 are 0 or 1; 1 will be used to handle the possible carrying of the addition.
Define S̃ = S1 ∪ S2 ∪ S3 ∪ S4, then S̃ ⊆ [2k4

] and |S̃| = O(k3). For any i1 < i2 < i3 < i4 ∈ [k4
], let a = i2 − i1,

b = i3 − i1, c = i4 − i1, then 1 ≤ a < b < c ≤ k4
−1. Write a, b, c under base-k: a = [a3a2a1a0]k , b = [b3b2b1b0]k ,

c = [c3c2c1c0]k , where 0 ≤ ai , bi , ci ≤ (k − 1), i = 1, 2, 3, 4. Now we pick s1 = [0, k − a2, k − b1, k − c0]k , by the
definition of Si , s1 ∈ S1, and it is easy to check that

s2 = s1 + a ∈ S2, s3 = s1 + b ∈ S3, and s4 = s1 + c ∈ S4.
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Thus

s1, s2, s3, s4 ∈ S̃, and s j1 − s j2 = i j1 − i j2 ( j1, j2 = 1, 2, 3, 4).

Now we define S = ∪
50 log k−1
j=0 ( j · 2k4

+ S̃), i.e. by repeating set S̃ 50 log k times. It is clear that S ⊆ [100k4 log k]

and |S| = O(k3 log k).
We claim that if we randomly assign {0, 1} to each s ∈ S, then with high probability it will satisfy (2): We call an

assignment “bad” if there exists i1, i2, i3, i4 ∈ [k4
] such that the assignment of the related elements s1, s2, s3, s4 ∈ S

is not {0, 0, 1, 1}. For any fixed {i1, i2, i3, i4}, the probability that a random assignment of S̃ is “bad” is 1−3/8 = 5/8.
Thus the probability that all the 50 log k copies of S̃ are “bad” is ( 5

8 )50 log k < 1
k25 . Therefore,

Pr(a random assignment of S is bad) ≤

(
k4

4

)
1

k25 � 1.

So there exists an assignment to satisfy (2). �

Proof of Theorem 2. By setting k = N 1/7 in Lemma 2 we obtain a partial assignment p : S → {0, 1},
S ∈ [100N 4/7 log N ] and |S| = O(N 3/7 log N ). For any x ∈ {0, 1}

N , define its j-shift SH j (x) =

(x j+1, . . . , xN , x1, . . . , x j ), j = 0, 1, . . . , N − 1. For a set B, we use SH j (B) to represent the set {b + j : b ∈ B},
here “+” is modular N .

Now we define our function f : {0, 1}
N

→ {0, 1},

f (x) = 1 ⇔ ∃ j, SH j (x) satisfies the partial assignment p, i.e. (SH j (x))i = p(i), ∀i ∈ S.

By the definition we know that f is cyclically invariant. Next, we prove that for any input x , bs( f, x) ≤

O(N 3/7 log N ). We separate the two cases f (x) = 1 or f (x) = 0:
(i) f (x) = 1. By definition there is a j0 that SH j0(x) satisfies the partial assignment p. With loss of generality,

we assume that j0 = 0 (because, for cyclically invariant functions, bs( f, x) = bs( f, SH j (x))), i.e. xi = p(i)
for any i ∈ S. Now let B1, . . . , Bbs( f,x) be the maximum pair-wise disjoint subsets that f (x) 6= f (x (Bl )),
l = 1, . . . , bs( f, x). Then each Bl must contain at least one bit in the partial assignment p, otherwise flipping the
block Bl will not change the value of f (x). Thus Bl ∩ S 6= ∅. But B1, . . . , Bbs( f,x) are pair-wise disjointed, therefore
bs( f, x) ≤ |S| = O(N 3/7 log N ).

(ii) f (x) = 0. Let B1, . . . , Bbs( f,x) be the maximum pair-wise disjoint subsets that f (x (Bl )) = 1, l =

1, . . . , bs( f, x). By the definition of function f , for each Bl , there must be a jl that SH jl (x (Bl )) satisfies partial
assignment p. Since SH jl (x (Bl )) = (SH jl (x))(SH jl (Bl )) and B1, . . . , Bbs( f,x) are pair-wise disjointed, j1, . . . , jbs( f,x)

must be distinct. With loss of generality, we assume that j1 < j2 < · · · < jbs( f,x). We claim that bs( f, x) ≤ 4N 3/7:
Suppose the opposite, i.e. bs( f, x) > 4N 3/7. Since jl ∈ [N ], there exists an interval with length N 4/7 which

contains at least four jl . With loss of generality, we assume that j1, j2, j3, j4 ∈ [c − N 4/7, c) for some c ∈ [N ]. Then
c − ji ∈ [N 4/7

], i = 1, 2, 3, 4. Now we use the property of S: there exists s1, s2, s3, s4 ∈ S,

s2 − s1 = (c − j2) − (c − j1), s3 − s1 = (c − j3) − (c − j1), s4 − s1 = (c − j4) − (c − j1),

i.e.

s1 + j1 = s2 + j2 = s3 + j3 = s4 + j4, (6)

and multiset {p(s1), p(s2), p(s3), p(s4)} = {0, 0, 1, 1}. Let t = s1 + j1. For i = 1, 2, 3, 4, SH ji (x (Bi )) satisfying
partial assignment p implies that

(SH ji (x (Bi )))si = p(si ),

i.e.

(x (Bi )) ji +si = p(si ), i = 1, 2, 3, 4. (7)

Combine Eq. (6) with (7) we obtain

(x (Bi ))t = p(si ), i = 1, 2, 3, 4.
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But {p(s1), p(s2), p(s3), p(s4)} contains two 0’s and two 1’s, and no matter what xt is, there must exist two blocks
Bi which contain the index t . This contradicts to the disjointness of Bi .

Combining (i) with (ii), we conclude that bs( f, x) = O(N 3/7 log N ). �
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