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Replicating the benefits of Deutschian closed timelike curves
without breaking causality
Xiao Yuan1, Syed M Assad2, Jayne Thompson3, Jing Yan Haw2, Vlatko Vedral3,4, Timothy C Ralph5, Ping Koy Lam2,
Christian Weedbrook6 and Mile Gu1,3

In general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level,
they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At the quantum
level such problems can be resolved through the Deutschian formalism, however this induces radical benefits—from cloning
unknown quantum states to solving problems intractable to quantum computers. Instinctively, one expects these benefits to vanish
if causality is respected. Here we show that in harnessing entanglement, we can efficiently solve NP-complete problems and clone
arbitrary quantum states—even when all time-travelling systems are completely isolated from the past. Thus, the many defining
benefits of Deutschian closed timelike curves can still be harnessed, even when causality is preserved. Our results unveil a subtle
interplay between entanglement and general relativity, and significantly improve the potential of probing the radical effects that
may exist at the interface between relativity and quantum theory.

npj Quantum Information (2015) 1, 15007; doi:10.1038/npjqi.2015.7; published online 24 November 2015

INTRODUCTION
Causality aligns with our natural sense of reality. We expect there
to be a natural chronology to our reality—two events should not
be simultaneous causes for each other. The breaking of causality
defies classical logic, resulting in causal paradoxes with no simple
solution—the iconic example being the case where a man travels
back in time to kill his own grandfather. Thus, physical predictions
that break causality face intense scrutiny—often considered to be
theoretical artifacts that are likely suppressed once we gain a
more complete understanding of reality—motivating various
chronology protection conjectures.1

Nevertheless, causality breaking theories are consistent with
current scientific knowledge. Closed timelike curves (CTCs) are
valid solutions of Einstein’s equations in general relativity.2–4

Meanwhile, Deutsch put forward a model of CTCs, such that in the
quantum regime, the resulting causal paradoxes always have self-
consistent solutions.5 This resolution, however, has radical
operational consequences. Many foundational constraints of
quantum theory break. Non-orthogonal quantum states can be
perfectly distinguished, the uncertainty principle can be violated,
and arbitrary unknown quantum states can be cloned to any fixed
fidelity.6–8 In harnessing these effects, many problems thought to
be intractable for standard quantum computers now field efficient
solutions.9–12 Though radical, these effects seem somewhat
rationalized in the context of requiring broken causality—the
sentiment being that they are curiosities that will vanish once
causality is imposed.
What happens, however, if causality is not strictly broken? In

this context, Pienaar et al. considered a special case of Deutschian
CTCs known as open timelike curves13 (OTCs). Consider a particle
that travels back in time with respect to a chronology-respecting

observer, but is completely isolated from anything that can affect
its own causal past during the time-traveling process (See
Figure 1). While the time-traveling particle has the potential to
break causality, its complete isolation ensures that causality never
actually breaks. Nevertheless, such OTCs can violate uncertainty
principles between position and momentum. This opens a
remarkable possibility—could the many other radical effects of
CTCs stand independent from the breaking of causality?
Here, we demonstrate that OTCs are remarkably powerful, and

can replicate many defining operational benefits of Deutschian
CTCs. In sending a particle back in time—even when it interacts
with nothing in its causal past—we can clone arbitrary quantum
states to any fixed accuracy, and thus violate any uncertainty
principle. Meanwhile, they also grant quantum processors
additional computational power, allowing efficient solution of
NP-complete problems. Our results hint that the remarkable
power of Deutschian CTCs may survive the censorship of
chronology protection. This drastically improves the potential of
harnessing such power via alternative effects—such as certain
models of gravitational time dilation.13 Thus, we open the
possibility of testing the many radical protocols that harness
CTCs in significantly less controversial settings.

RESULTS
Framework
In general relativity, causality can be violated due to the presence
of spacetime wormholes that facilitate closed timelike curves (See
Figure 1). This can lead to physical processes where a system A,
starting out in a state ρ(in), interacts with a second system A0 in
state ρCTC via a unitary U. System A then enters the wormhole and
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becomes system A0. The Deutschian model, resolves potential
paradoxes by enforcing temporal self-consistency conditions.5,14

ρCTC ¼ Tr≠A UðρðinÞ � ρCTCÞUy
h i

; ð1Þ

where Tr≠A represents tracing over everything apart from system
A. Given a solution for ρCTC, the final output of the process is
given by

ρðoutÞ ¼ TrA UðρðinÞ � ρCTCÞUy
h i

: ð2Þ
The many radical effects of CTCs rely on using specific self-
interactions U to break causality in different ways.6,7,9–11

Note that since the effects of CTCs are non-linear, many
conventional assumptions of linear quantum mechanics break.
One consequence is that different unravellings of a density
operator give different predictions, and therefore must be
treated very carefully. While the above analysis does not assume
ρ(in) is pure, these conditions only apply to mixed inputs if ρ(in)

represents one partition of a larger composite system that is pure.
In cases where the input state is deterministically prepared in a
pure state, shot-by-shot, but the particular state may change shot-
by-shot, there remains some ambiguity. The conventional view is
taken by Bacon,10 Brun et al.6 and Pienaar et al.13—that sub-
ensembles of identical input states should be treated as pure.
Others argue that if this sequence is truly random, then the
randomness must always be treated as if it arose from the
purification of an entangled quantum state.15 The former view,
which we adopt here, is supported by studies of CTCs in the
context of information flow.14 Also note that if the sequence of
input states were chosen via a pseudo random number generator,
then both perspectives agree.
In OTCs, causality is preserved. The unitary U is the identity—

such that the time-travelling system does not interact with its
causal past. Any observer in the frame of reference of the time
travelling system can assign a valid chronology to all the events
they witness. Meanwhile, to any outside observer, all events
involving interactions with the time travelling system will occur in
causal sequence. From an operational standpoint, there is no
breaking of causality. If all information were classical, this entire
procedure would only have the effect of desynchronizing a time
traveller’s clock with that of an observer.

To observe non-trivial effects we must introduce an ancilla.
Suppose we have access to a bipartite system AB in
state ρAB, where only one bipartition is sent through the
OTC (see Figure 2). The self-consistency relations requires
ρCTC ¼ Tr≠A½ρðinÞAB � ρCTC � ¼ ρA, and as a consequence

ρðoutÞ ¼ Tr≠A½ρðinÞAB � � TrA½ρðinÞAB � ¼ ρA � ρB ð3Þ
Thus, the OTC acts as a universal decorrelator on A—in sending a
system A though an OTC, we erase all quantum correlations
between A and the rest of the universe (and in particular, B).
The resulting state, ρA⊗ρB fields identical local statistics with
respect to the input ρAB, but none of its bipartite correlations.
While this operation appears similar to trivial decoherence, it is
non-linear, and shown to be impossible to synthesize with
standard quantum dynamics.16 This decoherence ensures that
the Deutschian formalism remains consistent with special
relativity. If quantum correlations between A and B were
preserved, the capacity for OTCs to clone quantum states (as we
show in following sections) would allow for superluminal
signalling via Herbert’s protocol.17

One way to understand this effect is through the monogamy of
entanglement14—a particle and its past self cannot be simulta-
neously entangled with the same external ancilla. While OTCs
produce nontrivial dynamics when the input appears completely
classical (e.g., when ρ

ðinÞ
AB ¼ ð 00j i 00h j þ 11j i 11h jÞ=2), this only

occurs if this mixedness as being intrinsic—i.e., it arises from
entanglement with some other system. If the input is determinis-
tically prepared in either state 00j i or 11j i according to some
classical sequence, then the OTC will have no effect (for other
viewpoints, see Bennett et al.15).

OTC enhanced measurement
We first introduce OTC enhanced measurement, a procedure that
harnesses OTCs to measure an arbitrary observable Ô to any fixed
precision. Specifically, given an unknown qudit (d dimensional
quantum system) in state ρ, we can determine Ô

� � ¼ Tr½Ôρ� to
any desired accuracy δ40 with negligible failure probability. This
protocol functions as a building block for more sophisticated
applications of OTCs, such as the efficient solution of NP-complete
problems and cloning of unknown quantum states.

ttAtB

U

Figure 1. Deutschian timelike curves. (a) depicts a physical
visualization of a CTC, where an object entering one mouth of a
wormhole at some point tA may jump to a prior time tB (with respect
to an chronology respecting observer) and interact with its past self
via some unitary U. (b) In the special case where no interaction
occurs, we obtain an open timelike curve. This naturally occurs, for
example, in instances where the wormhole mouths are spatially
separated.
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Figure 2. CTCs and OTCs in presence of ancilla. A represents the
system to be sent through the spacetime wormhole, A0 represents
the same system after it passes through the spacetime wormhole, and
B some chronology-respecting system initially correlated with A. (a) In
general CTCs, temporal self-consistency demands that ρCTC satisfies
ρCTC ¼ Tr≠A½UðρðinÞAB � ρCTCÞUy�. (b) In the case of OTCs, this implies that

system A has state ρOTC ¼ Tr≠A ρ
ðinÞ
AB � ρOTC

h i
¼ ρA after application of

the protocol.
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The protocol is illustrated in Figure 3. Let jj i : j¼ 0; 1;¼ ; d - 1
denote a basis that diagonalizes Ô. On this basis, we introduce the
two qudit controlled addition operator, Cþ ij i jj i ¼ ij i j þ ij i , where
addition is done modulo d. We then

1. Prepare N identical ancillary states in an eigenstates of Ô,
say 0j i .

2. 2. Apply the C+ operations N times, each controlled on ρ and
targeting a fresh ancilla state. This correlates ρ with each of the
N ancillaries.

3. Pass each of the ancillaries through an OTC to destroy all
correlations in this N+1-partite system.

This results in N+1 uncorrelated qudits, each in state
ρdiag ¼ Pd

i¼1 ρii ij i ih j , where ρii are the diagonal elements of ρ in
the Ô basis. Thus, each qudit exhibits identical statistics to ρ when
measured in the Ô basis. In taking the mean of these
measurements, we obtain an estimate for Ô

� �
. By the central

limit theorem, the error of our estimate scales linearly with 1=
ffiffiffiffi
N

p
.

In particular, provided the eigenvalues of Ô are bounded,
Hoeffding’s bound implies we can estimate Ô to any desired
accuracy δ and error rate ϵ using O[1/δ2log(1/ϵ)] OTCs (see
methods for details).
We note this technique shares similarities with the proposal of

Brun et al. to use closed timelike curves to perform the same task.7

Both protocols operate by harnessing spacetime wormholes to
create many ‘clones’ of ρ with respect to the eigenbasis of
Ô—each of which is measured to give a statistically independent
estimate of Ô

� �
. The key difference is that in Brun et al., each of

these clones were trapped within a closed timelike curve, and
reading out information from them required direct interaction
with each clone. Our proposal shows that the use of CTCs is not
compulsory. A comparison between the two methods indicate the
use of OTCs incurs no overhead in the number of times a
spacetime wormhole is used (see methods). Hence OTCs—at least
for this purpose—are as powerful as CTCs.

Solving NP-complete problems
We take inspiration from Bacon,10 who devised an efficient
algorithm to solve the boolean satisfaction problem—a known
NP-complete problem—using CTCs. We modify this algorithm to
preserve causality—without losing efficiency. In the causality
breaking algorithm, the key role of CTCs is to implement the
non-linear map S that maps an input qubit in state ρ(nz)
to an output state ρðn2z Þ, where ρðnzÞ ¼ 1

2 I þ nzσzð Þ and
σz ¼ 0j i 0h j - 1j i 1h j denotes the Pauli Z matrix (see methods
for details).

This non-linear map can be replicated without breaking
causality (see Figure 4). Consider a special case of OTC enhanced
measurement, with σz as the observable of interest and a single
ancilla. For the input qubit ρ with matrix elements ρij, application
of the enhanced measurement protocol outputs two uncorrelated
qubits, each in state ρdiag ¼ ρ00 0j i 0h j þ ρ11 1j i 1h j . Instead of
measuring each in σz directly, we apply a further C+ gate
controlled on the ancilla. After discarding the ancilla, the input
qubit is now transformed to S(ρ) as required.
In generating S(ρ) using only OTCs, we can translate Bacon’s

algorithm into one that does not break causality. We note that as
each call of S(ρ) only takes one OTC, the translation from CTCs to
OTCs incurs no overhead on the number of times a particle needs
to be sent through a spacetime wormhole. Thus, for the purpose
of solving NP-complete problems, an OTC, together with one bit
of entanglement, is at least as powerful as a CTC.

Cloning with OTCs
Given an unknown input ρ, OTCs allow us to generate an unlimited
number of clones to arbitrary fidelity. Our approach harnesses OTC
enhanced measurements as a subroutine, which allows us to
accurately determine Tr[Miρ], for any observable Mi. First, observe
that this remains possible even if we are supplied with

ρ0 ¼ sρþ 1 - s
d

I; ð4Þ

a very noisy version of ρ. Here I is the d-dimensional identity
matrix, and s is some fixed parameter such that 0oso1.
This observation, together with an imperfect quantum cloner,

forms the basis of our OTC enhanced cloning protocol (Figure 5).
In conventional quantum theory, a unknown quantum state
ρ can be cloned if we are given sufficiently many copies to

Figure 3. Quantum circuit of OTC enhanced measurement. The
protocol first introduces N ancilla qudits, all of which are initialized
in the state ρE ¼ 0j i 0h j, where 0j i is an eigenstate of Ô. A sequence
of C+ gates then perfectly correlates each ancilla with ρ with respect to
Ô basis. The erasure of these correlations via OTCs, followed by Ô
measurements on each individual qudit, allows determination of
Tr½Ôρ� to a standard error that scales inversely with N2.

Figure 4. Solving NP-complete problems with OTCs. The key non-
linear gate S, that takes ρ(nz) to ρðn2z Þ, can be implemented via open
timelike curves. This is achieved by the use of a single OTC, applied
between two successive C+ gates.

Figure 5. OTC Assisted Cloning An arbitrary qudit ρ can be cloned to
any desired fidelity. The process involves (i) application of a standard
quantum cloner C to generate O(d2) imperfect copies, and (ii) use of
OTC enhanced measurements to measure different observables Mi
on each imperfect copy. We can choose Mi to be informationally-
complete, and OTCs ensure that we can determine Tr[Miρ] to any
desired precision. Thus this protocol can yield (to any fixed
precision) the classical description of ρ.
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perform accurate tomography.18 One way to do this, is to use a set
of O(d2) informationally-complete measurements {Mi}, whose
expectation values Tr[Miρ] have a one-to-one correspondence
with the classical matrix description of ρ. If there is only a single
copy of ρ, this option is no longer available. Recently, Brun et al.
demonstrated that closed timelike curves circumvent this restric-
tion, and allow the estimation of each Mih i to any desired
accuracy.7

OTC enhancement measurements can replicate this effect while
preserving causality. We use standard methods to construct O(d2)
imperfect clones in the form of equation (4), where s scales as 1/d
for an optimal cloner.19 Each clone is passed through an OTC to
remove all entanglement between clones. An OTC enhanced
measurement is then performed on each clone with respect to a
different Mi. The outcomes of these measurements determine the
density matrix of ρ. In methods, we show that by using
Oðd4=δ2c log 1=εcÞ OTCs, we can ensure that each Mih i is obtained
to an accuracy of δc with failure probability ϵc.

A simple example
We illustrate these ideas by cloning a qubit. Here, the Pauli
operators σk, k= x, y, z form an informationally-complete set—any
ρ is uniquely defined by the expectation values nk= Tr[σkρ]. To
determine nx, ny and nz, we first apply a universal 1-to-3 quantum
cloner20 to obtain three imperfect clones of ρ, each in state
ρ0 ¼ ðI þ s n!U σ!Þ=2 with s= 5/9. All quantum correlations
between these three imperfect clones may be erased by
applying OTCs.
An OTC enhanced measurement of σz is then performed on one

such imperfect clone. To do this, we first initialize N fresh ancilla
qubits in state 0j i , and apply a CNOT gate between each ancilla
and the imperfect clone (with the clone as the control qubit). In
erasing the resulting correlations by sending each ancilla through
an OTC, we obtain N+1 qubits, each in the state (I+snzσz)/2.
Provided N is sufficiently large, measurement of these qubits allows
nz to be determined to any desired accuracy with negligible error.
Repetition of this process with σx and σy on the two remaining
imperfect clones then yields complete information about ρ.

DISCUSSION
Here, we demonstrated that the many defining operational
benefits of Deutschian closed timelike curves can be retained—
without sacrificing causality. Our approach was to consider open
timelike curves, where physical systems may travel back in time,
but do not interact with themselves, or any other system in their
past light-cone. In harnessing these open timelike curves, we
developed methods to efficiently solve NP-complete problems,
and clone unknown quantum states to arbitrary fidelity. Other
radical effects commonly attributed to CTCs come as natural
consequences, such as distinguishing non-orthogonal states,6 the
capacity to communicate more than a bit of information in a
single qubit and the breaking of non-entanglement based
cryptographic schemes.8

More generally, our results imply that any non-linear quantum
map that makes use of CTCs can also be synthesized using only
open timelike curves. This follows from the reasoning of Brun
et al.,6 which argued that if any two quantum states can be
distinguished, then one can effectively implement any map
between two quantum states. Related to this is the question of
whether OTC enhanced computation has equal computational
power to their CTC counterparts. Indeed, while we have shown
OTCs can solve NP-complete problems, it remains an open
question whether they can mimic CTCs capacity to efficiently solve
problems in PSPACE.11

The preservation of causality can also significantly increase the
likelihood for us to test theories of quantum gravity motivated by

the Deutschian formalism. For instance, from the perspective of a
chronology-respecting observer, a particle sent through an OTC
exhibits nothing more than time delay. Thus, in order to reconcile
quantum field theory with non-hyperbolic spacetimes, gravita-
tional time-dilation has been conjectured to share similar
operational effects as OTCs.21 If true, this suggests that some
operational consequences of Deutschian CTCs may be observable
without the need for spacetime wormholes, and the exotic
benefits of quantum processing in the general relativistic regime
may be tested much sooner than previously expected.
Beyond the Deutschian framework, the present results also

impact our understanding of general non-linear quantum theory.
All protocols discussed require only a single non-linear operator—
the universal decorrelator that erases the correlations between two
quantum systems while leaving local statistics of each unchanged.
Provided a non-linear quantum theory can realize this operation, all
of our results and the corresponding consequences apply. For
example, it immediately follows that such a theory can also clone
unknown quantum states—and thus behaves more like a classical
probability theory where different density operators correspond to
different points in the state space, and every point is perfectly
distinguishable.6 There already exist models of gravitational
decoherence that satisfy these conditions,21 and it would be
exciting to see if this is true for other attempts to reconcile
quantum theory with time travel,22–24 or more general non-linear
candidate theories of quantum gravity.25,26

METHODS
Scaling analysis
Execution of the OTC-enhanced measurement with N ancillaries (and
therefore N uses of the OTC) to estimate Ô

� �
gives an output

Oest ¼
P

kOk=ðN þ 1Þ. We define the measurement as being successful if
the estimate achieves a desired accuracy of δ (i.e., 9Oest - Ô9<δ).
Application of Hoeffding’s inequality27 gives failure probability pf that
obeys

pf �2exp
- 2ðN þ 1Þδ2
ðOmax -OminÞ2

" #
: ð5Þ

Here Omax and Omin are the respective maximum and minimum
eigenvalues of Ô. Therefore,

N4
ðOmax -OminÞ2

2δ2
log

2
ε
; ð6Þ

OTC applications ensures a failure probability of no more than ϵ. Provided
Ô is bounded, this scales as O[1/δ2log(1/ϵ)].
Brun et al.7 previously showed that one can also estimate Ô

� �
to

arbitrary accuracy with CTCs. In his protocol, one also creates N+1 copies of
ρdiag with N uses of the CTC system. Comparing between these two
protocols, we note that the classical information retrieved from measure-
ments are statistically identical to our protocol. Thus, to achieve the same
level of accuracy, the numbers of spacetime wormholes required by the
two protocols coincide.
In OTC assisted cloning, we need to make d2 informationally complete

measurements, each to a desired accuracy δ40 with negligible failure
probability ϵ40. Recall this is achieved via a 1→ d2 universal cloner, whose
imperfect copies are to be decorrelated via the use of OTCs (Figure 5). For
each of the d2 copies, we apply an OTC enhanced measurement. To ensure
this measurement is within accuracy δ, an extra O(d2) overhead is required
to compensate for the noise within the imperfect copies. The total number
of OTCs required is then of order

N4O d4
1

2δ2
log

2
ε

� �� �
; ð7Þ

where Omax–Omin = 1 for members of the informationally complete basis.

Solving NP-complete problems
Here we outline explicitly how a non-linear map that takes ρ(nz)
to ρ n2z

	 

allows the efficient solution of NP-complete problems. Specifically

Replicating closed timelike curves without breaking causality
X Yuan et al

4

npj Quantum Information (2015) 15007 © 2015 University of New South Wales/Macmillan Publishers Limited



we study the satisfaction problem: Given a Boolean function f: {0, 1}n→{0, 1},
specified in conjunctive normal form, does there exist a satisfying
assignment (∃ b|f(b) = 1)? This problem is known to be NP-complete.
Bacon10 showed that this problem can be efficiently solved if

when given an input qubit ρ ¼ ðI þ n!U σ!Þ=2, we can synthesize a
quantum gate S such that SðρÞ ¼ 1

2 I þ n2zσz
	 


. Here n! denotes the Bloch
sphere vector, and σ! is a three-component vector of Pauli matrices. In
Figure 4 we demonstrated how this gate can be synthesized using OTCs.
With this established, the satisfaction problem is efficiently solved as
follows:

1. Prepare n ancillary qubits in the state 1=
ffiffiffiffiffi
2n

p P2n - 1
i¼0 ij i and a target

qubit in state 0j i .
2. Apply the unitary

Uf ¼
X2n - 1
i¼0

ij i ih j � σf ðiÞx ; ð8Þ

on this system (with the last qubit representing the target). Tracing out
the ancillary qubits leaves the target in

ρ ¼ 1
2

1þ 1 -
s

2n - 1

� �
σz

� �
; ð9Þ

where s is the number of x satisfying f(x) = 1.
3. Apply S to the target via the use of OTCs (Figure 4). Repeat this step p

times to get

ρp ¼
1
2

1þ 1 -
s

2n - 1

� �2p

σz

" #
; ð10Þ

Notice that, we could easily check the case of s=2n. Thus we only need to
distinguish between s= 0 and 0oso2n. With the limit of p→∞, the two
output states corresponding to the cases of s=0 and 0oso2n are
ρp ¼ 0j i 0h j and ρp→ I/2, respectively. By performing measurement in the
σz basis, one can distinguish the two types of output states 0j i 0h j and I/2,
that is, the case of s=0 and 0oso2n, with failure probability being 1/2.
By repeating these steps more times, say, q, the failing probability
exponentially decays. For finite p and q that are polynomial in n, the
probability of failure is given by10

Pfail ¼ 1
2q

1þ 1 -
s

2n- 1

� �2p
" #q

: ð11Þ
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