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Experimental unsupervised learning of non-Hermitian knotted
phases with solid-state spins
Yefei Yu1,4, Li-Wei Yu1,2,4, Wengang Zhang1,4, Huili Zhang 1, Xiaolong Ouyang1, Yanqing Liu1, Dong-Ling Deng 1,3✉ and
L.-M. Duan 1✉

Non-Hermiticity has widespread applications in quantum physics. It brings about distinct topological phases without Hermitian
counterparts, and gives rise to the fundamental challenge of phase classification. Here, we report an experimental demonstration of
unsupervised learning of non-Hermitian topological phases with the nitrogen-vacancy center platform. In particular, we implement
the non-Hermitian twister model, which hosts peculiar knotted topological phases, with a solid-state quantum simulator consisting
of an electron spin and a nearby 13C nuclear spin in a nitrogen-vacancy center in diamond. By tuning the microwave pulses, we
efficiently generate a set of experimental data without phase labels. Furthermore, based on the diffusion map method, we cluster
this set of experimental raw data into three different knotted phases in an unsupervised fashion without a priori knowledge of the
system, which is in sharp contrast to the previously implemented supervised learning phases of matter. Our results showcase the
intriguing potential for autonomous classification of exotic unknown topological phases with experimental raw data.
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INTRODUCTION
Non-Hermiticity naturally emerges in a broad range of scenar-
ios1–4, and has been extensively studied in open quantum
systems5–8, photonics systems with loss and gain9–13, and
quasiparticles with finite lifetimes14–18, etc. Recently, the interplay
between the non-Hermiticity and topological phases has attracted
considerable attentions17–62, giving rise to an emergent research
frontier of non-Hermitian topological phases of matter in both
theory and experiment. Non-Hermitian topological phases bear a
number of unique features without Hermitian analogs, including
the non-Hermitian skin effect38,40,42, unconventional bulk-
boundary correspondence40, and funneling of light62. To establish
the theory of non-Hermitian topological phase classification,
previous works have adopted the typical homotopy-based
approach akin to the Hermitian tenfold way, and classified the
non-Hermitian topological phases into 38 classes60. It was later
recognized that the non-Hermitian topological phases can be
further classified based on the knot or link structures of the
complex energy bands, which gave rise to the knotted topological
phases57–59. More recently, the braiding of such complex band
structure has been implemented in experiment56. Yet, hitherto it
remains an ongoing challenge to completely classify the non-
Hermitian topological phases from both theoretical and experi-
mental aspects58–65.
Machine learning methods provide an alternative and promis-

ing approach to classify phases of matter66. Within the vein of
learning topological phases, considerable strides have been made
from both theoretical67–82 and experimental83–88 aspects, despite
the fact that learning topological phases are more intricate than
learning the symmetry-breaking ones due to the lack of local
order parameters89. However, the above learning methods may
not be straightforwardly extended to the non-Hermitian scenario
owing to the skin effect90. This makes the machine learning

non-Hermitian topological phases an intriguing task and a number
of theoretical works, including both supervised and unsupervised
methods, have been proposed recently90–93. The supervised
learning methods require prior labeled samples, hence ruling
out the capability of learning unknown phases. While the
unsupervised learning can classify different topological phases
from unlabeled raw data, without any prior knowledge about the
underlying topological mechanism. Consequently, the unsuper-
vised learning methods are more powerful in detecting unknown
topological phases. One appealing unsupervised approach is
based on the diffusion map94–96, which has been theoretically
demonstrated effective in clustering both Hermitian72 and non-
Hermitian90 topological phases. However, to date the capability of
machine learning methods in classifying non-Hermitian topologi-
cal phases has not been demonstrated in experiment.
Here, we report the experimental demonstration of unsuper-

vised learning of non-Hermitian knotted phases with a NV center
in diamond. Specifically, we utilize the dilation method65,97 to
implement the desired non-Hermitian twister Hamiltonian with
the NV center platform, where the electron spin constitutes the
target system and a nearby 13C nuclear spin serves as an ancilla
(Fig. 1a). Based on the non-unitary dynamics of the Hamiltonian
with different parameters, we prepare an unlabeled data set
(including 37 samples) with high fidelity by carrying out 3552 non-
unitary evolutions. Then we exploit the diffusion map method to
cluster these experimental samples into different knotted
topological phases in an unsupervised manner. The learning
result matches precisely with the theoretical predictions, which
clearly showcases the the robustness of the diffusion map method
against the experimental imperfections. Besides, with the imple-
mented set of samples, we experimentally realize different knot
structures of the twister model, which can serve as the indices for
different non-Hermitian topological phases.
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RESULTS
The model
We consider the one dimensional (1D) non-Hermitian twister
model under the periodic boundary condition, with the Hamilto-
nian taking the form57,

HðkÞ ¼ dðkÞ � σ ¼ im1σz þm2T1 þ T2; (1)

where d(k)= (dx, dy, dz), σ= (σx, σy, σz) are the Pauli matrices, k
denotes the 1D momentum in the first Brillouin zone, m1 and m2

are tunable parameters (we set ℏ= 1 for simplicity), and

Tn ¼ 0 eink

1 0

� �
. This model hosts three distinct topological

phases with phase boundaries m2
1 þm2

2 ¼ 1 and m2= ±m1− 1.
In contrast to the typical homotopy-based approach for phase
classification, these phases can be efficiently classified by the knot
(link) structures of the complex-energy bands (braid homotopy),
where the knot structure is embedded in the space spanned by
ðReðEÞ; ImðEÞ; kÞ, with E denoting the complex energy. Concretely,
the three non-Hermitian topological phases of the twister model
are indexed by the Hopf link, the unlink, and the unknot,
respectively. The phase transition occurs when the knot structures
of the complex bands change across the exceptional points57. It is
worth noting that all of the three phases host the non-Hermitian

skin effect since the corresponding bands have the point gaps,
which indicate that the phase transition points are boundary
condition sensitive. A sketch of the phase diagram of the non-
Hermitian twister model is shown in Fig. 1b.

Experimental implementation
Experimentally simulating the non-Hermitian Hamiltonian is
challenging, since the dynamical evolution of closed systems is
usually governed by the Hermitian Hamiltonians. One fruitful
approach is to dilate the non-Hermitian Hamiltonian into
Hermitian ones in a larger Hilbert space. The dilation method
was theoretically proposed to simulate the PT –symmetric non-
Hermitian Hamiltonian98. Then it was applied in experiments to
study the PT –symmetry breaking and implement the non-unitary
dynamics of photons97,99. More recently, this method is exploited
for simulating the dynamics of non-Hermitian Su-Schrieffer-
Heeger band model with topological phases65.
Here, we utilize the dilation method (see Methods section and

Supplementary Note 1) to implement the twister Hamiltonian H(k).
With such a dilation method, the simulation of the non-Hermitian
He= H(k) for the electron spin is mapped to the simulation of a
Hermitian Hamiltonian He,n for the coupled electron and nuclear
spins. Figure 1c illustrates the quantum circuit for our experiment.

Fig. 1 Simulating the non-Hermitian twister Hamiltonian with knotted topological phases on the NV center platform. a Top: schematic
illustration of the NV center in diamond. The system is coherently controlled by the microwave (MW) and radio frequency (RF) pulses. The
NV electron spin (blue arrow) is coupled to a nearby 13C nuclear spin (yellow arrow). Below: energy level diagram of the electron-nuclear
spin system. MW controls the transitions between electron spin states { 0j i, �1j i}, and RF controls the transitions between nuclear spin states
{ "j i; #j i}. b Top: phase diagram of the non-Hermitian twister model. We experimentally simulate the twister Hamiltonian with the parameters
m1,2 along the green line (crossing the two theoretical phase boundaries). Below: band structures of the twister model in the space spanned
by ðReðEÞ; ImðEÞ; kÞ, the momentum k is in the first Brillouin zone. Gluing the k= 0 and k= 2π planes leads to different knotted band
structures, including the Hopf link (white square), the unknot (gray square), and the unlink (dark square). c Quantum circuit for simulating
the non-Hermitian Hamiltonian in our experiment. Here we take the electron (nuclear) spin as the target (ancillary) qubit.
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Through optical pumping, we first polarize the state to be 0j ie "j in.
By rotating along the x- and y-axes, we prepare the initial state
Ψð0Þj i ¼ �1j ie �j in þ ηð0Þ �1j ie þj in. We then apply two micro-
wave pulses MW1,2 to realize the dilated Hamiltonian He,n. The
parameters m1,2 and momentum k are tuned by controlling the
frequency, amplitude and phase of MW1,2. To measure the
expectation value of σx,y, we apply a unitary transform to the target
Hamiltonian65: fHe ¼ Uy

y;xHe;nUy;x . The subsequent nuclear spin π/2
rotation transforms the dilated state ΨðtÞj i ¼ ψðtÞj ie �j in þ
ηðtÞ ψðtÞj ie þj in into ΦðtÞj i ¼ ψðtÞj ie "j in þ ηðtÞ ψðtÞj ie #j in. Finally,
we project the nuclear spin into its "j in "h j subspace and obtain the
desired electron spin eigenstate of He=H(k) for a given momentum
k (see Supplementary Note 1).
Then based on the non-unitary dynamics governed by He in the

electron spin subsystem, we explore how the state evolves to the
desired eigenstate of H(k) by checking the electron spin
population on �1j ie (see Fig. 2a for a schematic demonstration).
Figure 2b displays our experimental results of the electron spin
population on the state �1j ie, and shows that the experimental
results coincide with the theoretical predictions very well, with
almost all of the data points being within the error bars. After long
time evolution (~1.2 μs), the electron spin state decays to the
targeted eigenstate of H(k). This shows that the dilation method is
effective and efficient in simulating the non-Hermitian twister
model.

Unsupervised clustering
Typically, the success of the diffusion map method relies crucially
on the data samples. To learn non-Hermitian topological phases in

an unsupervised fashion, one candidate data set is the bulk
Hamiltonian unit vectors90: X ¼ fxðlÞjxðlÞ ¼ f1N d̂ðkiÞ; jki ¼
2i�N�2

N π; i 2 ½1;N�gg with d̂ ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2xþd2yþd2z

p and N denotes the

number of unit cells of the system. To fit the experimentally
prepared data (the right eigenstates R1j i and R2j i) into the
diffusion map algorithm, we transform the states R1;2

�� �
into the

unit Hamiltonian vector:

d̂x;y;z ¼
1
2
Tr½ ð R1j i L1h j � R2j i L2h jÞ; σx;y;z

� �
�; (2)

where the curly brackets denote the anti-commutator, the left and
right eigenstates of the Hamiltonian obey the biorthogonal
relation 〈Lα∣Rβ〉= δαβ with α, β∈ {1, 2}, and δ denoting the
Kronecker delta function. Therefore, once we obtain the right
eigenvectors R1j i and R2j i of H(ki) in the experiment, we can
derive the other two eigenstates L1j i and L2j i. Then by varying the
discrete momentum ki in the first Brillouin zone with step-size π/8
while fixing m1 and m2, we can prepare one experimental data
sample. Consequently, we obtain the experimental data set of
37 samples by varying m1, with fixed m2= 0.6. From Fig. 2c, we
see that more than 97.2% of the 1184 prepared states have a
fidelity larger than 0.985, which indicates the high quality of our
prepared data and the accurate controllability of the system.
One can also probe the topological phase transition of the

non-Hermitian twister model by measuring 〈σx〉 and 〈σz〉
with respective to R1j i and R2j i, with k sweeping the first Brillouin
zone. Figure 2d displays the experimental results of the
trajectories of 〈σx〉 and 〈σz〉 with varying m1. The

Fig. 2 State preparation through non-unitary dynamics and observation of knot structures for different phases. a Decaying trajectory of
the electron spin state on the Bloch sphere under non-unitary dynamics. The green dot represents the target state. b Non-unitary time
evolution of the electron spin population Pz�1 ¼ Trðρe �1j ie �1h jÞ. The red dots with error bars are the experimental results. Error bars are
obtained via Monte Carlo simulation by assuming a Poisson distribution of the photon counts for 10,000 times. The orange solid line shows
the theoretical curve predicted by numerical simulation. The green dashed line indicates the ideal population of the target state assuming
infinite evolution time. For a, b the underlying Hamiltonian is− H(k) with the parameters m1= 0.9855,m2= 0.6, and k= 0.125π. c Pie chart
illustrates the percentage distribution for the fidelity (denoted as F) of the 1184 experimentally prepared eigenstates f R1j i; R2j ig with varying
m1 and k (see Supplementary Fig. 6). d Experimental results for〈σz〉 versus〈σx〉 as k sweeping the first Brillouin zone with different values
of m1, where the blue and purple parts denote the average values of σx,z with respect to R1j i and R2j i, respectively. The dots with error bars
represent the experimental data, whereas the solid lines denote the theoretical predictions. The red and orange dots denote the phase
transition values of m1, while fixing m2= 0.6.
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trajectories of 〈σx〉 and 〈σz〉 form three types of structures,
namely the two overlapping closed loops (m1 < 0.8), one closed
loop (0.8 <m1 < 1.6), and two separate closed loops (m1 > 1.6),
corresponding respectively to the Hopf link, unknot, and unlink
topological phases. This coincides exactly with the theoretical
prediction. Based on the experimental data, we can also calculate
the global biorthogonal Berry phases that are related to the
parity of band permutations57 (see Supplementary Table 1).
In Fig. 3, we show the unsupervised learning results for the

twister Hamiltonian based on both the numerically simulated and
experimental data sets, respectively. Here we generate both the
numerical and experimental sets of input samples by orderly
varying the parameter m1 of the twister Hamiltonian, for the
convenience of comparing the numerical results and the
experimental ones. In a more general context, we also carry out
the numerical simulation of unsupervised learning with the input
of randomly sampled data, and successfully cluster the samples
into three categories (see Supplementary Fig. 8).
Figure 3c shows the kernel value distribution with experimental

data samples, where the samples belonging to the same yellow
block can diffuse to each other with a sizable probability, and
hence can be clustered together based on the connectivity. As a
consequence, the experimental data samples are clustered into
three categories in the dimension-reduced space, see Fig. 3d.
Since the largest eigenvalues λi ≈ 1 are almost degenerate, the
outputs of the corresponding right eigenvectors in Fig. 3b, d
would be up to a non-singular linear transformation. In addition,
we can obtain the two phase boundaries from Fig. 3c, which agree
precisely with the theoretical prediction, as well as the boundaries
of phases indexed by the experimental trajectory results in Fig. 2d.

We note that the 29th sample with m1= 1.6015 is very close to
the phase transition point (m1= 1.6), which causes a large
deviation from its presumed category (see the gray circles in
Fig. 3b, d). Besides, by comparing our experimental result with the
numerical one in Fig. 3a, b, we obtain that the diffusion map
method is sufficiently robust against the experimental noises.

DISCUSSION
We emphasize that the applicability of the diffusion map method
in classifying non-Hermitian topological phases can be explained
from a physical perspective. On the one hand, it has been
rigorously proved that non-Hermitian samples divided by the
band crossing points cannot be clustered together via diffusion
maps90. On the other hand, a more general theory for the non-
Hermitian topological phase classification only assumes separable
bands30. For the twister model, we have experimentally observed
that the band crossing leads to a change of the knot structure (Fig.
2d), which indicates the transition between different topological
phases. Hence from the perspective of separable bands, the
diffusion map method matches naturally with the mathematical
protocol for classifying non-Hermitian topological phases in the
momentum space. We remark that when using the diffusion map
method for unsupervised learning of unknown phase diagrams,
one potential limitation is that the input data should be obtained
by densely sampling the configuration space of the target model.
Here, the diffusion map method provides a point of principle
study. A thorough study of the capabilities of diffusion map
method in learning unknown phases of matter remains an

Fig. 3 Unsupervised clustering results for the knotted topological phases with the numerically simulated and experimental data sets.
a Heatmap for Gaussian kernel value distribution between numerically simulated samples with varying m1. Samples belonging to the same
yellow block can diffuse to each other with non-zero probability, and hence are clustered together based on the connectivity. The dividing
points between the yellow blocks correspond to the phase boundaries. b Scatter diagram of the dimension-reduced experimental data
samples, obtained from the three right eigenvectors ψ0,2,3 of the diffusion matrix with the corresponding eigenvalues λ0,2,3 ≈ 1. The
numerically simulated data samples are clustered into three knotted topological phases, where the red squares, green circles, and blue
triangles denote the Hopf link, unknot, and unlink phases, respectively. c Heatmap for Gaussian kernel value distribution between
experimental samples. d Scatter diagram of the dimension-reduced experimental data samples, obtained from the three right eigenvectors
ψ0,1,3 of the diffusion matrix with the corresponding eigenvalues λ0,1,3 ≈ 1. The experimental data samples are clustered into three topological
phases, which agree precisely with the numerical simulation. The gray circles in b and d denote the 29th sample with m1= 1.6015, which is
very close to the theoretical phase transition point m1= 1.6. This leads to the pronounced deviation from its presumed category. Parameters
are chosen as: number of unit cells N= 16, the variance parameter ϵ= 0.08, m2= 0.6, the varying parameter mðlÞ

1 ¼ 0:4106þ l � 4=π4 for each
sample x(l), with l∈ [1, 37], the momentum k takes the discrete values fi�9

8 πji 2 ½1; 16�g.
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ongoing task. We leave this interesting and important problem for
future studies.
It is worthwhile to note that the non-Hermitian twister model

bears unconventional bulk-boundary correspondence, which
means that the phase boundaries are sensitive to the boundary
conditions. In the future, it would be interesting and important to
experimentally demonstrate the unsupervised learning of non-
Hermitian topological phases under the open boundary condition.
Achieving this requires meticulous and accurate engineering of
many spin interactions, which is still a notable challenge with the
current NV technologies.
To summarize, we have demonstrated unsupervised learning of

non-Hermitian topological phases, based on the non-unitary
dynamical evolution of the electron spin with the NV center platform.
In particular, we have generated a high-fidelity experimental data set
of the non-Hermitian twister model and successfully clustered these
experimental samples into different knotted phases in an unsuper-
vised fashion. Our work paves a way to use unsupervised machine
learning to identify undiscovered non-Hermitian topological phases
with the state-of-the-art experimental platforms.

METHODS
Diffusion map
The diffusion map95, as an unsupervised machine learning
method, provides a non-linear approach to cluster samples based
on the diffusion distance, which is related to the continuous
deformation of manifold. Thus, it is particularly suitable for
classifying topological objects. To measure the local similarity
between the two samples x(l) and xðl

0Þ , we introduce the Gaussian
kernel function with the variance ϵ(0 < ϵ≪ 1)

Kl;l0 ¼ exp �kxðlÞ � xðl
0Þk2L1

=ð2ϵÞ
	 


; (3)

where k�kL1
denotes the L1-norm distance, i.e., k A!kL1

¼
P

ijAij.
Then one can define the one-step diffusion probability from the

sample x(l) to xðl
0Þ by P l;l0 ¼

Kl;l0P
l0 Kl;l0

. After evolving 2t steps, the

diffusion distance between two samples x(j) and xðj
0Þ is

Dtðj; j0Þ ¼
P

k

ðPt
j;k�Pt

j0 ;kÞ
2P

l
Kk;l

¼
P

kλ
2t
k ½ðψkÞj � ðψkÞj0 �

2, with {ψk} denot-

ing the right eigenvectors of P and {λk} being their corresponding

eigenvalues. Then we clearly obtain from Dt that in the long-time
limit t→∞, only the few eigenvectors with largest ∣λ∣ ≈ 1 will
dominate, and these few eigenvectors can be utilized for
dimension reduction and classifying different non-Hermitian
topological phases90.

The diamond sample and experimental setup
Our experiments are performed on a 〈100〉-oriented single
crystal diamond (type IIa) produced by Element Six with a natural
abundance of carbon isotopes ([13C]=1.1%). We utilize a single NV
center with a neighboring 13C atom of 13.7 MHz hyperfine
strength. A solid immersion lens (SIL) is fabricated on top of the
preselected NV center to enhance the collection efficiency
(Fig. 4b). The photoluminescence rate of the NV center is about
460 kcps under 80 μW laser excitation.
The diamond sample is mounted on a confocal microscopy

system (see Fig. 4a). A 532 nm green laser is used for spin state
initialization and readout. The laser beam is then modulated by an
acoustic optical modulator (AOM, ISOMET 1250C-848) to generate
laser pulses. To avoid continuous polarization caused by the laser
leakage, the first-order diffracted beam generated by AOM is
reflected by a mirror, forming a double-pass structure to enhance
the on-off ratio to 105:1. The green laser is coupled to a single-mode
fiber, guided out by a collimator, reflected by a dichroic mirror (DM),
and then focused on our sample through an oil-immersion
objective lens. The fluorescence photons of the NV center are
collected via the same objective lens and pass through the DM
followed by a 637 nm long-pass filter. Then the photons are
coupled to a multi-mode fiber and detected by a single photon
detector module (SPDM). A homemade field-programmable gate
array (FPGA) board is applied to count the fluorescence photons.
In order to coherently manipulate the electron spin and nearby

nuclear spins, we use an arbitrary waveform generator (AWG,
Techtronix 5014C) to generate transistor-transistor logic (TTL) signals
and low frequency analog signals. One of the TTL signal controls the
on/off of AOM, namely the laser pulses. Another two TTL signals
provide gate signals for the FPGA board. For the manipulation of the
electron spin, the carrier MW signal generated by a MW source
(Keysight N5181B) is combined with two of the analog signals of
AWG through an IQ-mixer (Marki Microwave IQ1545LMP). For the
manipulation of the nuclear spin, another analog signal is used to
generate the RF signal. Both MW and RF signals are further amplified

π/2    π/2

τ

Fig. 4 The diamond sample and experimental setup. a Schematic diagram of our experimental setup. b Image of a solid immersion lens (SIL)
under scanning electron microscope (SEM). The SIL is fabricated by the focused ion beam (FIB). c We measure the dephasing time of the
electron spin via standard Ramsey interferometry. The experimental data (red circle) is fitted with f ðτÞ ¼ aþ b cosðδt þ φÞ expð�ðτ=T�2Þ

2Þ (solid
blue line), giving T�2 ¼ 3:0 μs.
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by amplifiers (Mini Circuits ZHL-30W-252-S+ for MW and Mini
Circuits LZY-22+ for RF). The MW signal is then delivered to the
diamond sample via a gold coplanar waveguide (CPW). The RF
signal is applied through a homemade copper coil.
All the experiments in this work are implemented at room

temperature. To polarize the nuclear spins via excited-state level
anticrossing (ESLAC)100, a static magnetic field of Bz ≈ 480 Gauss is
applied along the NV axis by a permanent magnet. To ensure that
the coherence time is sufficient for the time evolution process
(~1 μs) in our experiments, we perform a Ramsey interferometry
measurement (Fig. 4c). For the NV center used in this work, the
coherence time T�

2 is measured to be 3.0 μs.

Implementing the non-Hermitian Hamiltonian
Here we implement the twister Hamiltonian H(k) based on the
dilation method98,101 using the electron-nuclear spin system, with

the electron (nuclear) spin being the target (ancilla) system.
Concretely, we consider the quantum state ψðtÞj i in the target
system, which evolves under the Hamiltonian He with the
Schrödinger equation i ∂

∂t ψðtÞj i ¼ He ψðtÞj i. We then dilate the
state ψðtÞj i into ΨðtÞj i ¼ ψðtÞj i �j i þ ηðtÞ ψðtÞj i þj i governed by
the dilated Hermitian Hamiltonian He,n, where the states
�j i ¼ 1ffiffi

2
p ð "j i � i #j iÞ, þj i ¼ 1ffiffi

2
p ð #j i � i "j iÞ and η(t) denotes a

proper time-dependent linear operator. With this, the non-
unitary time evolution of ψðtÞj i governed by He can be obtained
by projecting the nuclear spin onto the �j i state. The quantum
circuit for implementing He in our experiment is shown in Fig. 1c.
Here, we omit the detailed parametrization of the dilated
Hamiltonian He,n for brevity, see Supplementary Fig. 1 for details.
In simulating the Hermitian topological phases in Bloch space, the

ground states with different momentums can be prepared with
the adiabatic passage approach. However, the adiabatic passage

Fig. 5 Trajectories of the eigenvectors on the Bloch sphere. Parameters: a m1= 0.5338, m2= 0.6 (the Hopf link phase); b m1= 1.2730,
m2= 0.6 (the unknot phase); and c m1= 1.8889, m2= 0.6 (the unlink phase). The purple and blue curves denote the theoretical trajectories of
the two eigenvectors R1ðkÞj i and R2ðkÞj i as k sweeps from 0 to 2π. The solid and dashed curves are achieved based on the evolution of H(k)
and− H(k) respectively. The purple and blue dots represent the experimental results.

Fig. 6 Non-Hermitian band structures of the twister Hamiltonian. Parameters: a,m1= 0.5338, m2= 0.6 (the Hopf link phase); b,m1= 1.2730,
m2= 0.6 (the unknot phase); and c, m1= 1.8889, m2= 0.6 (the unlink phase). a–c, Braiding patterns of the complex eigenenergy bands.
d–f, Projection of the 3D complex eigenenergy bands onto the 2D (ImðEÞ; k) plane. The purple and blue curves denote the theoretical
predictions of the two eigenenergy strings. The solid (dashed) curves denote the non-Hermitian bands with positive (negative) imaginary part
of eigenenergy. The corresponding experimental results are represented by the purple and blue dots with error bars.
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method for the Hermitian models cannot straightforwardly carry
over to the non-Hermitian scenario with complex eigenvalues. To
prepare the eigenstates of the twister model, here we utilize the
feature of non-unitary evolution governed by the non-Hermitian
Hamiltonian. Specifically, suppose the target system is initially at the
state ψð0Þj i ¼ c1 R1j i þ c2 R2j i, where R1;2

�� �
are the right eigenvec-

tors of the twister Hamiltonian with eigenvalues λ1,2. Suppose
Imðλ1Þ> Imðλ2Þ, then the system would decay to R1j i in the long
time limit. Hence, one can prepare the eigenstate R1j i of the twister
Hamiltonian based on the long time evolution of the system.
Similarly, one can prepare the other eigenstate R2j i by simply
changing H into−H. We remark that such progress relies crucially
on the imaginary part of the eigenvalues and is suitable for most
cases of the parameters (m1,m2, k). For those special cases with real
eigenvalues (k= π, 2π for the Hopf link phase; k= 2π for the unknot
phase), one can prepare the corresponding eigenstates through the
dynamical evolution of ± iH.

Trajectories of eigenstates on the Bloch sphere
Figure 5 shows the three different trajectories of the eigenvectors
on the Bloch sphere, with each trajectory corresponding to one
topological phase. In Fig. 5a, the two eigenstates R1;2ðkÞ

�� �
with k

sweeping the Brillouin zone give rise to two overlapping closed
loops, which correspond to the Hopf link phase. In Fig. 5b, the one
single closed loop corresponds to the unknot phase. Whereas in
Fig. 5c, the two separate closed loops correspond to the unlink
phase. The detailed experimental data and the error bars obtained
by Monte Carlo simulation are listed in Supplementary Tables 2–7.

Experimental knot band structures
With the experimentally prepared eigenstates R1;2ðkÞ

�� �
, we can

calculate the corresponding eigenenergies of the non-Hermitian
twister Hamiltonian H(k) based on

EnðkÞ ¼ Lnh jHðkÞ Rnj i; ðn ¼ 1; 2Þ:
Figure 6 illustrates the braided band structures of the twister
Hamiltonian in the first Brillouin zone. Figure 6a–c demonstrates
the 3D braiding structures of the complex bands, which are
equivalent to the knot (or link) structures by gluing the k= 0 and
k= 2π planes, including the Hopf link, the unknot, and the unlink.
As mentioned above, each knot (link) structure indexes one non-
Hermitian topological phase. Figure 6d–f illustrates the 2D
projection of the 3D braiding complex bands. We see from Fig.
6 that the experimental results (colored dots) match precisely with
the theoretical trajectories (solid and dashed lines) of the bands.
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