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Abstract

A protocol with the potential of beating the existing distance records for con-
ventional quantum key distribution (QKD) systems is proposed. It borrows ideas
from quantum repeaters by using memories in the middle of the link, and that of
measurement-device-independent QKD, which only requires optical source
equipment at the user’s end. For certain memories with short access times, our
scheme allows a higher repetition rate than that of quantum repeaters with
single-mode memories, thereby requiring lower coherence times. By accounting
for various sources of nonideality, such as memory decoherence, dark counts,
misalignment errors, and background noise, as well as timing issues with
memories, we develop a mathematical framework within which we can compare
QKD systems with and without memories. In particular, we show that with the
state-of-the-art technology for quantum memories, it is potentially possible to
devise memory-assisted QKD systems that, at certain distances of practical
interest, outperform current QKD implementations.
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1. Introduction

Despite all commercial [1] and experimental achievements in quantum key distribution (QKD)
[2-10], reaching arbitrarily long distances is still a remote objective. The fundamental solution
to this problem, i.e., quantum repeaters, has been known for over a decade. From early
proposals by Briegel ef al [11] to the latest no-memory versions [12—14], quantum repeaters,
typically, rely on highly efficient quantum gates comparable to what we may need for future
quantum computers. While the progress on that ground may take some time before such
systems become functional, another approach based on probabilistic gate operations was
proposed by Duan and co-workers [15], which could offer a simpler way of implementing
quantum repeaters for moderate distances of up to around 1000 km. The latter systems require
quantum memory (QM) modules with high coupling efficiencies to light and with coherence
times exceeding the transmission delays, which are yet to be achieved together. In this paper,
we propose a protocol that, although is not as scalable as quantum repeaters, for certain classes
of memories, relaxes, to some extent, the harsh requirements on memories’ coherence times,
thereby paving the way for the existing technologies to beat the highest distance records
achieved for no-memory QKD links [2]. The idea behind our protocol was presented in [16],
and independent work has also been reported in [17]. This work proposes additional practical
schemes and rigorously analyses them under realistic conditions.

Our protocol relies on concepts from quantum repeaters, on the one hand, and the recently
proposed measurement-device-independent QKD (MDI-QKD), on the other. The original MDI-
QKD [18] relies on sending encoded photons by the users to a middle site at which a Bell-state
measurement (BSM) is performed. One major practical advantage of MDI-QKD is that this
BSM can be done by an untrusted party, e.g., the service provider, which makes MDI-QKD
resilient to detector attacks, e.g., time-shift, remapping, and blinding attacks [19-26]. The
security is then guaranteed by the reverse EPR protocol [27]. Another practical advantage is that
this BSM does not need to be a perfect measurement, but even a partial imperfect BSM
implemented by linear optical elements can do the job. In our scheme, by using two QMs at the
middle site, we first store the state of the transmitted photons in the memories, and perform the
required BSM, only when both memories are loaded. In that sense, our memory-assisted MDI-
QKD is similar to a single-node quantum repeater, except that there is no memories at the user’s
end. This way, similar to quantum repeaters, we achieve a rate-versus-distance improvement as
compared to the MDI-QKD schemes proposed in [18, 28-30], or other conventional QKD
systems that do not use QMs.

There is an important distinction between our protocol and a conventional quantum
repeater system that relies on single-mode memories. In such a quantum repeater link, which
relies on initial entanglement distribution among neighbouring nodes, the repeat period for the
protocol is mainly dictated by the transmission delay for the shortest segment of the repeater
system [31, 32]. In our scheme, however, the repeat period is constrained by the writing time,
including the time needed for the herald/verification process, into memories. This implies that
using sufficiently fast memories, i.e., with short writing times, one can run our scheme at a
faster rate than that of a quantum repeater, thereby achieving higher key generation rates, as
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compared to conventional QKD links, and at lower coherence times, as compared to
probabilistic repeater systems. This increase in clock rate is what our proposal shares with the
recently proposed third generation of quantum repeaters, which use quantum error correction
codes to compensate for loss and errors, thus also being able to speed up the clock rate to local
processing times [12]. The need for long coherence times remains one of the key challenges in
implementing the first generations of quantum repeaters before the latest no-memory quantum
repeater proposals can be implemented.

The above two benefits would offer a midterm solution to the problem of long-distance
QKD. While our scheme is not scalable the same way that quantum repeaters are, it possibly
allows us to use the existing technology for QMs to improve the performance of QKD systems.
In the absence of fully operational quantum repeater systems, our setup can fill the gap between
theory and practice and will become one of the first applications of realistic QMs in quantum
communications.

It is worth mentioning that the setups we propose here are compatible with different
generations of hybrid quantum-classical (HQC) networks [33]. In such systems, home users are
not only able to use broadband data services, but they can also use quantum services such as
QKD. MDI-QKD offers a user-friendly approach to the access part of such networks as the end
users only require source equipment. Whereas, in the first generation of HQC networks, the
service provider may only facilitate routing services for quantum applications, in the future
generations, probabilistic, deterministic, and eventually no-memory quantum repeaters
constitute the quantum core of the network. In each of these cases, our setups are extensible
and compatible with forthcoming technologies for HQC networks.

The rest of the paper is structured as follows. In section 2, we describe our proposed
schemes and the modelling used for each component therein. Section 3 presents our key rate
analysis, followed by some numerical results in section 4. Section 5 concludes the paper.

2. System description

Our scheme relies on ‘loading’ QMs with certain, unknown, states of light. This loading process
needs to be heralding, that is, by the end of it, we should learn about its success. Within our
scheme, two types of memories can be employed, which we refer to by directly versus
indirectly heralding QMs. Some QMs can operate in both ways, while some others are more apt
to one than the other. By directly heralding memories we refer to the class of memories to which
we can directly transfer the state of a photon and we can verify—without revealing or
demolishing the quantum state—whether this writing process has been successful. An example
of such memories is a trapped atom in an optical cavity [34]. In the case of indirectly heralding
memories, a direct writing-verification scheme may not exist. Instead, we assume that we can
entangle a photonic state with the state of such QMs [15, 35-40], and later, by doing a
measurement on the photon, we can effectively achieve a heralded writing into the memory.
These two approaches of writing cover most relevant practical examples to our scheme.

The scheme for directly heralding memories works as follows [16, 17]; see figure 1(a). The
two communicating parties, Alice and Bob, send BB84 encoded pulses [41], by either single-
photon or weak laser sources, towards QM units located in the middle of the link. Each QM
stores a photon in a possibly probabilistic, but heralding, way. Once both memories are loaded,
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Figure 1. (a) Measurement-device-independent quantum key distribution (MDI-QKD)
with directly heralding quantum memories. Alice and Bob use the efficient BB84
protocol to encode and send pulses to their respective quantum memory (QM) in the
middle of the link. At each round, each QM attempts to store the incoming pulse. Once
they are both loaded, we retrieve the QMs’ states and perform a BSM on the resulting
photons. (b) MDI-QKD with indirectly heralding quantum memories. At each round, an
entangling process is applied to each QM, which would generate a photon entangled, in
polarization, with the QM. These photons interfere at the BSM modules next to the
QMs with incoming pulses from the encoders. As soon as one of these BSMs succeeds,
we stop the entangling process on the corresponding QM, and wait until both QMs are
ready for the middle BSM operation. In this case, QMs are not required to be heralding;
a trigger event is declared by the success of the BSM located between the QM and the
respective encoder. (c) The original MDI-QKD protocol [18]. (d) One possible energy-
level configuration for a QM suitable for polarization encoding.

we retrieve their states and perform a BSM on the corresponding photons. A successful BSM
indicates some form of correlation between the transmitted bits by Alice and Bob.

We can easily extend the above idea to the case of indirectly heralding memories. An
additional BSM, on each side, along with an entangling process between photons and QMs, can
replace the verification process needed for directly heralding memories. In this case, see
figure 1(b), a successful BSM between the transmitted photon by the users and the one
entangled with the QM, would effectively herald a successful loading process, that is, the state
of the QM is correlated with the quantum state sent by the users.

In order to entangle a QM with a photon, one can think of two standard ways. One
approach would be to generate a pair of entangled photons, e.g., by using spontaneous
parametric down-converters [42, 43], and then store one of the photons in the memory and use
the other one for interference with the incoming photon sent by the user. While this approach is
not fully heralding (because we cannot be sure of the absorption of the locally generated photon
by the memory), it is still a viable option for highly efficient writing procedures. Another
approach to entangle a photon with a memory, which this paper is mainly concerned with, is to
start from the memory and generate a photon entangled with the memory by driving certain



New J. Phys. 16 (2014) 043005 C Panayi et al

transitions in the memory [15, 40]. With entangling times as short as 300 ps reported in the
literature [44], high repetition rates are potentially achievable for indirectly heralding memories.

In either approach, it is possible to have multiple-excitation effects, which can cause errors
in our setup. In this paper, for readability reasons, we make the simplifying assumption of
having only single excitations in the memories, and address the multiple excitation effect in a
separate publication [45]. Furthermore, here we only consider the polarization entanglement.
The extension to other types of entanglement is straightforward and will be dealt with in
forthcoming publications.

Under all above assumptions, suppose once we entangle the memory A with a single
photon P, the joint state of the two is given by

%[|SH>A|H>P + Jsy) V3 | @.1)

where |H), and |V'),, respectively, represent horizontally and vertically polarized single photons,
and |s,), and [s,), are the corresponding memory states; see figure 1(d). In equation (2.1), the
conditional state of the photon, knowing the memory state, has the same form as in BB84. Each
leg of figure 1(b), from the user end to the respective QM, is then similar to an asymmetric setup
of the original MDI-QKD scheme as depicted in figure 1(c). The working of the system in
figure 1(b) will then follow that of the original MDI-QKD. We will use this similarity in our
analysis of the system in figure 1(b).

The main advantage of our scheme as compared to the original MDI-QKD, in figure 1(c),
is its higher resilience to channel loss and dark count. In the no-memory MDI-QKD, both
pulses, sent by Alice and Bob, should survive the path loss before a BSM can be performed.
The key generation rate then scales with the loss in the entire channel. In our scheme, each pulse
still needs to survive the path loss over half of the link, but this can happen in different rounds
for the signal sent by Alice as compared to that of Bob. We therefore achieve the quantum
repeater benefit in that the key generation rate, in the symmetric case, scales with the loss over
half of the total distance. Moreover, in the case of directly heralding memories, our scheme is
almost immune against dark counts [17]. This is because the measurement efficiency in the
BSM module is typically a few orders of magnitude higher than that of dark count rates. Dark
counts will then only sightly add to the error rate. In our scheme, memory decoherence errors
play a major role as we will explain in this and the following sections.

In the following, we describe the protocol and its components in more detail.

2.1. Protocol

In our protocol, Alice and Bob, at a rate Ry, send BB84 encoded pulses to the middle station
(dashed boxes in figure 1). At the QMs, for each incoming pulse, we either apply a loading
process by which we can store the state of the photons into memories and verify it, or use the
indirectly heralding scheme of figure 1(b). Once successful for a particular QM, we stop the
loading procedure on that QM, and wait until both memories are loaded, at which point, a BSM
is performed on the QMs. The BSM results are sent back to Alice and Bob, and the above
procedure is being repeated until a sufficient number of raw key bits is obtained. The rest of the
protocol is the same as that of MDI-QKD. Sifting and postprocessing will be performed on the
raw key to obtain a secret key. In this paper, we neglect the finite-size-key effects in our
analysis [29].
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2.2. Component modeling

In this section, we model each component of figure 1 including sources and encoders, the
channel, QMs, and the BSM module.

2.2.1. Sources and encoders. We consider two types of sources: ideal single-photon sources
and phase-randomized weak laser pulses. The latter will be used in the decoy-state [46] version
of the protocol. Each source, at both Alice’s and Bob’s sides, generates pulses at a rate R,. Each
pulse is polarization encoded in either the rectilinear (Z) or diagonal (X) basis. In the case of
ideal single photons, we, correspondingly, send states |H) and |V) in the Z basis, and

(IH) + |V))/</2 and (JH) — |V))//2 in the X basis. In each basis, the two employed states,
respectively, represent bits 1 and 0. In the case of the decoy-state protocol, the single-photon
states are replaced with weak phase-randomized coherent states of the same polarization. Here,
we use the efficient version of BB84 encoding, where the Z basis is used much more frequently
than the X basis [47]. The pulse duration is denoted by 7, and it is chosen in accordance with the

requirements of the memory system in use.

There are several sources of nonideality one may be concerned with at the encoder box.
For instance, in [48], one major source of error is in not generating fully orthogonal states in
each basis. Note that secure exchange of keys may still be possible, although at a possibly
reduced rate, by using even uncharacterized sources [49]. Another possible issue would be in
having multiple-photon components if one uses parametric down-converters to generate single
photons [50, 51]. Although all these issues, among others, are important in the overall
performance of the system, here we would rather focus on the memory side of the system,
which is newly introduced, and deal with the details of source imperfections, and their effects
on the secret key generation rate in a separate publication [45].

2.2.2. Channels. The distance between Alice (Bob) and the respective QM is denoted by L,
(Lp). The total distance between Alice and Bob is denoted by L = L, + L,. The transmission

coefficient for a channel with length / is given by
n,, (1) = exp (=1l/L,,), (2.2)

where L, is the attenuation length of the channel (roughly, 22 km for 0.2 dB per km of loss).
The channel is considered to have a background rate of y, . per polarization mode, which

results in an average p,., = 2y,.7, background photons per pulse. This can stem from stray light

or crosstalk from other channels, especially if classical signals are multiplexed with quantum
ones in a network setup [5, 6, 52-54].

We also consider setup misalignment in our analysis. We assume certain polarization
maintenance schemes are in place for the Alice’s and Bob’s channels, so that the reference
frames at the sources and memories are, on average, the same. We, nevertheless, consider a
setup misalignment error probability e, for K = A, B, to represent misalignment errors in each
channel.

2.2.3. Quantum memories. We use the following assumptions and terminologies for the
employed QMs. This list covers most relevant parameters in an experimental setup relying on
polarization encoding, whether the QM is operated in the directly or indirectly heralding mode.
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e In the case of a successful loading, each QM in figure 1 ideally stores a polarization qubit

corresponding to the polarization of the incoming pulse. We assume that such a squashing
operation occurs [55, 56] even if at the input of the QM there is a nonqubit state, e.g., a
phase-randomized coherent state. That is, if, for instance, two photons with horizontal
polarizations are at the input of the memory, the QM would only store the polarization
information, and ignores the photon-number information. In practice, the loading
efficiency would be a function of input photon numbers, but, for simplicity, here we
neglect this dependence. This is in line with our single-excitation assumption we have
adopted in this paper. One suitable energy level structure for such a memory is the double-
A configuration in figure 1(d), with a common ground state and two other metastable states
corresponding to two orthogonal polarizations. The excited states can then facilitate Raman
transitions from the ground state to each of the metastable states, using known optical
transition techniques [57, 58], in response to the input polarization state.
We assume that each QM only stores one spatio-temporal mode of light. Our protocol can
be extended to incorporate multimode QMs [59-62] or multiple QMs [31], in which case a
linear improvement in the rate is expected. In this work, we focus on the case of a single
logical memory per user and leave extensions to future work.

e For directly heralding memories, we denote the QM’s writing efficiency by #, . The writing

efficiency is the probability to store a qubit and herald success conditioned on having a
single-photon at the QM’s input. Note that 77 also includes the chance of failure for our

verification process. For indirectly heralding memories, we introduce an entangling
efficiency, n_, which is the probability of success for entangling a photon with our QM.

e We denote the QM’s reading efficiency by 7. That is the probability to retrieve a single

photon out of the QM conditioned on a successful loading in the past. The reading
efficiency is expected to decay over a time period ¢ as 7. (t) = n, exp [—#/T;], where T} is

the memory amplitude decay time and 7, is the reading efficiency right after loading. In

our example of a double-A-level memory of figure 1(d), such a decay corresponds to the
transition form one of the metastable states |s,,) or|s, ) to the ground state |g), in which case,
no photon will be retrieved from the memory.

e We denote the QM’s writing time by 7,. For directly heralding memories, it is the time

difference between the time that a pulse arrives (beginning of the pulse) at the QM and the
time that a successful/unsuccessful loading is declared. This is practically the fastest repeat
period one can run our protocol. In the case of indirectly heralding memories, 7, includes
the time for the entangling process as well as that of the side BSM operation. Accounting
for such timing parameters is essential in enabling us to have a fair comparison between
memory-assisted and no-memory QKD systems.
One must note that in a practical setup there will be time periods, e.g., for synchronization
purposes or memory refreshing, over which no raw key is exchanged. The total number of
key bits exchanged over a period of time must therefore exclude such periods once the total
key generation rate is calculated. In our work, we neglect all these overhead times, with the
understanding that one can easily modify our final result by considering the percentage of
the time spent on such processes within a specific practical setup.
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Figure 2. Bell-state measurement module for polarization states.

e We denote the QM’s reading time by 7. It is the time difference between the time that the
retrieval process is applied until a pulse (end of the pulse) is out.

e We denote the QM’s coherence (dephasing) time by 7,. For an initial state p (0) of the QM
at time zero, its state at a later time ¢ is given by [31]
p)=p®p©0) +[1-p»IZp0)Z, (2.3)

where p(t) = [1 + exp (—¢/T,)]/2. Note that dephasing would only occur if we are in a
superposition of Z eigenstates, e.g., the eigenstates of X. The above model of decoherence is
expected to have more relevance in some practical cases of interest [31, 34, 40] than the
model used in [17], in which the memory state switches suddenly from an intact one to a fully
randomized version after a certain time. We discuss the implications of each model in our
numerical result section. It is, however, beyond the scope of this paper to fully model every
possible decoherence mechanisms in QMs. Specific adjustments are needed if one uses a
memory that is not properly modelled by our 7, and 7, time constants.

2.2.4. BSM module. Figure 2 shows the schematic of the BSM module used in our analysis.
This module enables an incomplete BSM over photonic states. In order to use this module, in
our scheme, we first need to read out the QMs and convert their qubit states into polarization-
encoded photons. The BSM will then be successful if exactly two detectors click, one H-
labelled and one V-labelled. Depending on which detectors have clicked and what basis is in
use, Alice and Bob can identify what bits they ideally share [28].

We assume the BSM module is symmetric. We lump detector quantum efficiencies with
other possible sources of loss in the BSM module and denote it by 7, for each detector. We also

assume that each detector has a dark count rate of y, , which results in a probability p_ = y, 7, of
having a dark count per pulse. The implicit assumption here is that the retrieved and the writing

photons have the same pulse width. Finally, we assume that there is no additional misalignment
error in the BSM module.

3. Key rate analysis

In this section, we find the secret key generation rate for our proposed schemes in figures 1(a)
and (b). The common assumption in our predicting the relevant observed parameters in a QKD
experiment is that we work under the normal mode of operation, where there is no eavesdropper
present, and we are only affected by the imperfections of the system, behind which an
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eavesdropper can in principle hide. We later compare our results with two conventional QKD
schemes, namely, BB84, summarized in appendix A, and the original MDI-QKD in figure 1(c),
summarized in appendix B, that use no memories. In all cases, we consider both single-photon
and decoy-state sources. In all forthcoming sections, f denotes the inefficiency of the error
correction scheme, i.e., the ratio between the actual cost of error correction and its minimum
value obtained by the Shannon’s theorem, assumed to be constant, and we denote the binary
entropy function as i (p) = —p log,(p) — (1 — p)log (1 — p), for0 < p < 1.

3.1. Key rate for single-photon sources

With ideal single-photon sources, the secret key generation rate in the setups of figures 1(a) and
(b) is lower bounded by [63]

Ry = RSYI?M [1 —h (el?;l\)/[() — Jfh (61(12;]\;) ]’ (3.1

where efficient BB84 encoding is employed [47]. In the above equation, el?}\f( and el?;“;,

respectively, represent the quantum bit error rate (QBER) between Alice and Bob in the X and Z
basis, when single photons are used, and ¥, represents the probability that both memories are
loaded with single photons of the same basis and the middle BSM is successful.

To obtain the individual terms in equation (3.1), we can decompose the protocol into two
parts: the memory loading step and the measurement step, once both memories are loaded. The
first step is a probabilistic problem with two geometric random variables, N, and N,
corresponding, respectively, to the number of attempts until we load Alice and Bob’s memories
with single photons. The number of rounds that it takes to load both memories is then
max {N,, N;}. Once both memories are loaded, the rest of the protocol is similar to that of
original MDI-QKD in terms of rate analysis: the QMs replace the sources in figure 1(c) and the
total transmission-detection efficiency is replaced by the reading-measurement efficiency in the
BSM module. We can therefore use many of the relationships obtained for the original MDI-
QKD, summarized in appendix B, for the memory-assisted versions of figure 1.

For finite values of 7], the reading efficiency for the Alice’s QM could be different from
that of Bob. In fact, we can assume that, once both memories are loaded, one of the memories
(late) will be read immediately, while the other (early) IN, — N, rounds after its successful
loading. The effective measurement efficiency for the leg K, K = A, B, corresponding to the
path originating from memory K in the BSM module will then be given by

{ n, =1, if memory K is late
N =

. . (3.2)
n,n (= ‘Z\Q - NB‘ T), if memory K is early.

With the above setting, and considering the required time for reading from the QMs, we
obtain

1
N, n) + N,
1

= Y,(m,n), (3.3)
NG, n,) + N

YSM = E{ Y, (’7,,1A, 77,,13) ]
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where Y], is the corresponding yield term, given by equation (B.4), for the MDI-QKD protocol
and N, = E{max (N,, N;)} is given by equation (C.3). Here, E{ - } represents the expectation
value operator with respect to N, and N, and 5/ = 1,77, where 7. = 5 E{exp (=IN, — NJIT/T)) }
can be obtained from equation (C.4). In equation (3.3), N, represents the extra rounds lost due
to the nonzero reading times of QMs, once they are both loaded, and is given by

-+
NFP wa]_ I, 7,7,>0, 7, <T, (3.4)
where T = 1/Ry is the repetition period. The condition 7, < 7 is a matter of practicality as
sending photons faster than they can be stored is of no benefit. The fastest possible rate is then
obtained at 7' = 7.

In the case of directly heralding memories of figure 1(a), we have

’7]1( = 1 - (1 - nwr]ch (LK>)e_n“pBG’ K= A’ B’ (35)

as the probabilities of successful loading of Alice and Bob’s QMs with single-photon sources
(or background noise). In the case of indirectly heralding memories of figure 1(b), following our
discussion in (2) about the equivalence of each leg of figure 1(b) to an asymmetric MDI-QKD
system, we have

e = % (1 (L) np1,,): K = A B, (3.6)

where the above terms must be calculated at an effective dark count rate of y,_ + y,.1,/2.

We remark that, although obtained from different methods, the analysis in [17] also finds
similar expressions for the yield term. In [17], the analysis is only concerned with the symmetric
setup, and some of the parameters considered in our work take their ideal values. It can be
verified, however, that in the special case of 7, =T, 7, =0, y,, =0, L, = Ly, n, = 1, and
1, — oo, for directly heralding memories, equation (3.3) reduces to the same result obtained in
[17]. By accounting for additional relevant parameters, our analysis offers a better match to
realistic experimental scenarios.

Similarly, the error terms are given by

QM QM

ey = Blews (M €2 (0 n) |
= eng (nms €2 0 mp) ),
e = E{eny (M M €3 O m,)) |
e (1, 1 E{eR 0 m) } ) (3.7)

where, ¢,,., and ¢, ., given by equation (B.4), are the corresponding error terms for the original

Q

MDI-QKD. In addition to the typical sources of error, such as loss and dark count, the above
expressions are functions of misalignment parameters. This misalignment could be a statistical
error in the polarization stability of our setup, modelled by ¢, and e,, or an effective
misalignment because of memory dephasing [64] and/or background photons. Putting all these
effects together, as we have done in appendix D, we obtain

10
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e (n.m) = €. n)(1—ed (. n,))
+en () (1 - €8 (. m)). S=X.Z (3.8)

where ¢’ and e's, respectively, represent the misalignment probabilities for Alice’s and Bob’s

memories, for basis § = X, Z, at loading probabilities 7, and 7, and are given by equations

(D.2) and (D.5). The above equation accounts for the fact that if the state of both memories are
flipped, Alice and Bob will still share identical key bits. We assume that the BSM module is
balanced and does not have any setup misalignment.

Note that in equation (3.8), because of no dephasing errors for the Z eigenstates, ed%M is

independent of N, and N, whereas e is a function of them. The approximation in equation

(3.7) assumes E {e2" n,

) R E{ed" YE{n . .}, which is valid when 7} > T, to give a more

readable final result.

Equation (3.8) can also be used in the case of indirectly heralding QMs as explained in
appendix D. The main idea is to use the analogy of each leg in figure 1(b) with the original
MDI-QKD in figure 1(c).

3.2. Key rate for decoy states

Suppose Alice and Bob use a decoy-state scheme with average photon numbers u and v,
respectively, for the two main signal intensities, and infinitely many auxiliary decoy states. The
secret key generation rate, in the limit of infinitely long key, is then given by

Ron = Rs[ (1 - h(enx)) fQ,Eh; ( ’“’Z):I (3.9)

where
1

N, (n,m, nyB) + N,

is the rate at which both memories are loaded, by Alice (Bob) sending a coherent state in the Z
basis with u (v) average number of photons, and a successful BSM is achieved. In the case of
directly heralding memories,

7’]MA =1 = ¢ (La)m, =1, Ppg and }7”3 =1 — ¢ (Lg)n,v=n,Ppq (311)

Q;wZ = Yl] (”m’ 77”;) (310)

are the probabilities for successful loading of Alice and Bob’s QMs with coherent-state sources.
Similarly,

E;gz €1z (’7 M, ey (’YﬂA’ UDB)) (3.12)

is the QBER in the Z basis, and
= Qs s (3.13)

uA 'vB

is the contribution of single-photon states in the gain term of equation (3.10).

Similar to the treatment in the previous subsection, one can find or approximate the above
terms in the case of indirectly heralding memories as well. For the sake of brevity, we leave this
extension to the reader.

11
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Figure 3. Average required storage time, 7, versus distance, in our scheme, for
different repetition rates 1/z,. As compared to that of a probabilistic quantum repeater,

labelled by L/c, where ¢ = 2 x 10°ms™" is the speed of light in optical fibre, our
scheme requires lower coherence times up to a certain distance. The crossover distance
at 7, = 1pus is over 300km and at z,=1ns is nearly 700km. In all curves,

N, =1, =1, = Land py; = 0.

Apart from all additional parameters considered in our model as compared to [17], our
treatment of the decoy-state QKD is different from that of [17] in the way that QMs are
modelled. In our work, we assume QMs store qubits, which while is not necessarily an exact
model, it often serves a good first-order approximation to the reality. In [17], however, QMs are
assumed to be able to store number states. This assumption cannot be applied to certain QMs,
such as single trapped atoms or ions, that can only store one photon.

3.3. Storage time

To get some insight into the working of our system, in this section, we simulate the achievable
rates assuming L, = L, = L/2. The average number of trials to load both memories from

equation (C.3) is then given by [65]

-2
N (n,n) = S = 3 l, forn < 1, (3.14)
n2-mn

2 n
where 7 is the probability of successfully loading a QM at distance L/2, approximately, given
. . . 2
by Mom €XP (=(L/2)/L,,), where Mot = 1, for directly heralding memories, and Mot = Mond!ly for
indirectly heralding QMs. Similarly, the average required storage time, from equation (C.5), is
given by
20 -mT T
7;,=E{|]\Q—]\g‘}T=&z—,f0rn<<1, (3.15)
n2Z-m n
which is similar to the result reported in [17].
The secret key generation rate in equations (3.1) and (3.9) is proportional to the pulse
generation rate R, = 1/T at the encoder. To maximize R, we choose T = 7, throughout this
section and next, resulting in 7, & 7, /5. Figure 3 compares 7, with the required storage time in

multi-memory probabilistic quantum repeaters [31], L/c, where c is the speed of light in the
channel. It can be seen that our scheme offers lower required coherence times until a certain

12
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Figure 4. Secret key generation rate per pulse for the heralded scheme of figure 1(a) for
different values of 7,/T using single-photon sources. The dashed line represents the
ideal efficient BB84 case.