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The rapid development of single-cell sequencing technolo-
gies1–3 provides unprecedented opportunities for biologists 
to investigate cellular states. However, it also poses new 

challenges in the form of experimental noise not found in bulk 
sequencing data4,5, which might significantly decrease the accu-
racy of downstream bioinformatics analysis by introducing biases 
in the gene expression. To address these problems, recently, there 
has been great interest in applying deep learning models to filter 
the noise in single-cell transcriptome data by modeling the compli-
cated interaction patterns among the genes6,7. Inherently, the tran-
scriptome of a cell is governed by its gene regulation process in a 
cell-specific manner. Hence, we expect that the deep learning-based 
methods are able to model such gene interactions to reveal a more 
clear landscape of cell heterogeneity, capturing both transcriptomic 
similarities between cells of the same cell type and differences across 
different cell types8–10. However, so far, deep learning-based single-
cell analysis framework6,7,11–13 are usually black boxes and it is hard 
to evaluate to what extent gene regulatory network (GRN) structure 
or any other internal structure of the data is learned.

A number of computational models14–19 have attempted to incor-
porate GRN inference into their single-cell data analysis models. 
One class of these methods relies on side measurements such as sin-
gle-cell chromatin accessibility or transcription factor (TF) binding 
motifs19. However, these measurements often require more com-
plicated experimental designs and could also introduce additional 
noise as these data could come from different experiments. Current 
methods solely based on single-cell RNA sequencing (scRNA-seq) 
data also have explicit limitations. For example, it is common for 
GRN inference algorithms to use statistics algorithms that focus 
on the co-expression networks instead of decoding the casual rela-
tionships among TFs and their corresponding target genes15,20. In 
addition, most algorithms that incorporate gene interactions are 
linear models16,17 or tree-based models14,18 and it is generally hard 
to directly generalize these approaches to more comprehensive 

nonlinear frameworks and benefit from the computational power 
that the deep learning model brought to us.

To address the above problems, we present DeepSEM, a deep 
generative model that can jointly embed the gene expression data 
and simultaneously construct a GRN that reflects the inner struc-
ture of gene interactions in single cells without relying on any addi-
tional information such as TF binding motifs or single-cell ATAC 
sequencing (scATAC-seq) data. To implement such an idea, we took 
inspiration from the work of Yu et al.21, which generalized a popular 
approach, called the structural equation model (SEM), that infers 
the causality using a linear model. By adding proper mathematical 
constraints, part of the neural network architecture could be used 
to predict the GRN of the scRNA-seq data. A previous study by 
Lin et al.22 showed that more accurate cell representations could be 
achieved by guiding the neural network architecture with a GRN 
structure derived from the literature and databases. In this Article, 
we show that the neural network architecture can reflect GRN 
structure by properly designing the neural network layer without 
relying on any prior knowledge. The neural network architecture 
can be inferred jointly with the training of the weights of the neu-
ral network in an end-to-end manner. The overall framework of 
DeepSEM is a beta-variational autoencoder (beta-VAE)23 in which 
the weights of both the encoder and decoder functions represent 
the adjacency matrix of the GRN. Our model does not require 
any extra experimental data such as open chromatin information, 
ChIP sequencing (ChIP-seq) data or TF binding motifs to infer the 
GRN structure. The nonlinear neural networks in DeepSEM are 
employed to address the challenges in single-cell data analysis, such 
as experimental noise, high dimensionality and scalability. In addi-
tion, by explicitly modeling the GRN, DeepSEM is more ‘transpar-
ent’ than the conventional neural network models and can reduce 
the overfitting problem of deep learning models by greatly restrict-
ing the parameter space. By inspecting the architecture of the model 
that represents the inner workings of a cell, we can observe how 
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multiple genes interact with each other to determine the expression 
levels of individual genes.

We evaluate the performance of DeepSEM for various single-cell 
tasks such as GRN inference, scRNA-seq data visualization, cell-type 
identification and cell simulations on several benchmark datasets. 
We first show that DeepSEM is able to achieve better performance 
on the GRN inference task compared with the state-of-the-art 
algorithms on several popular benchmark datasets. We also apply 
DeepSEM to another single-cell dataset without the ground-truth 
GRN measured, and provide extensive evidence extracted from the 
single-cell DNA methylation and open chromatin data to demon-
strate the accuracy and efficiency of our algorithm. Moreover, we 
also evaluate the quality of the single-cell representation regularized 
by the GRN structure. We find that DeepSEM can achieve compa-
rable or better performance compared with current state-of-the-art 
methods on the tasks of visualization and cell-type identification on 
various benchmark datasets.

Another important functional component of DeepSEM is to 
simulate scRNA-seq data by perturbing the values of its hidden neu-
rons. In silico data simulations have already achieved tremendous 
success in computer vision for data augmentation, especially when 
the number of training samples is limited24. In single-cell biology, 
the same types of simulation algorithm have also been applied to 
scRNA-seq data to predict the single-cell perturbation response out 
of sample19,25, identify marker genes26 and augment the sparse cell 
populations to improve the accuracy of cell-type classification27. 
The state-of-the-art simulation algorithms27 aim to generate ‘real-
istic’ scRNA-seq data based on the generative adversarial networks 
(GANs) to make the low-dimensional projection of the simulated 
data indistinguishable from the data distributions of the real cells. 
In this Article, we show that DeepSEM is able to achieve more real-
istic simulations compared with other GAN-based models through 
guiding the information flow using the GRN layer and mirroring 
the in vivo generation process of RNA governed by multiple TFs. In 
addition, we propose another concept, called the GRN consistency, 
to measure the quality of the simulated single-cell data. In particular, 
the GRN consistency measures the difference of the predicted GRN 
between the simulated and real scRNA-seq data, which accesses 
how much the computational model captures both the marginal and 
conditional independence from the original distribution, and, more 
importantly, quantifies how likely it is that one method can gen-
erate realistic scRNA-seq data satisfying the biological constraints. 
Tests on several benchmark datasets show that DeepSEM is able to 
achieve realistic scRNA-seq profiles and higher GRN consistency 
compared with the state-of-the-art single-cell simulators.

Results
Overview of the DeepSEM framework. Given an scRNA-seq 
dataset as input, DeepSEM jointly models the GRN and the tran-
scriptome by generating the SEM with a beta-VAE framework (Fig. 
1). We designed two neural network layers, named the GRN layer 
and the inverse GRN layer, to explicitly model the GRN structure 
(Methods). Different from conventional deep learning models that 
embed the expressions of all the genes together into a latent space6,7, 
the encoder function of DeepSEM takes the expression of only one 
gene as the input feature of the neural network. The neural net-
works for different genes share their weights or it could be viewed as 
using one neural network to scan all the genes. At this step, there are 
no interactions among different genes in the model. Later, another 
two fully connected neural networks transform the output of these 
small neural networks to the posterior mean and standard devia-
tion of a multivariate Gaussian distribution. Decoupling the non-
linear operation and the gene interaction is the key for DeepSEM 
to achieve more robust and interpretable hidden representations at 
the same time. Next, a decoder function equipped with the inverse 
GRN layer transforms the hidden representations back to the gene 

expression values, which makes the entire framework an autoen-
coder (Fig. 2 and Methods). By jointly modeling GRN and single-
cell transcriptome data, DeepSEM acts as a multipurpose tool that 
could serve for various tasks in single-cell data analysis by analyzing 
different modules.

Performance of GRN inference. To evaluate the performance of 
DeepSEM on GRN inference, we followed the BEELINE frame-
work28, which collected four different kinds of ground-truth net-
work (Supplementary Table 1) and seven scRNA-seq datasets 
including five cell lines from mouse and two cell lines from human 
(Supplementary Table 2). For each dataset, as recommended by 
Pratapa et al.28, we considered only highly variable TFs and top N 
(N = 500 and 1,000) most-varying genes (details in Supplementary 
Section 1). The performance was evaluated by the early precision 
ratio (EPR) (Fig. 3) and area under the precision–recall curve ratio 
(AUPRC ratio) (Supplementary Fig. 1) as used in the BEELINE 
framework28, which are defined as the odds ratio of the true posi-
tives among the top K predicted edges and the AUPRC between the 
model and the random predictions. Here K denotes the number 
of edges in ground-truth GRN. We compared DeepSEM with six 
baseline algorithms, including GENIE314, PIDC15, GRNBoost218, 
SCODE16, ppcor20 and SINCERITIES17, which had been proved to 
achieve state-of-the-art performance on the benchmark datasets 
based on the evaluation of BEELINE28. To achieve stable predictions 
from deep learning models, we use the ensemble strategy to gener-
ate the final predictions (Methods). We provide a brief introduction 
of these baseline methods for their functionalities and their running 
details can be found in Supplementary Section 2.

Overall, DeepSEM outperforms all the other baseline methods 
on scRNA-seq datasets in terms of both EPR and AUPRC ratio met-
rics (Fig. 3 and Supplementary Fig. 1). DeepSEM achieves the best 
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Fig. 1 | Overview of DeepSEM. Left: DeepSEM is a generative model 
including two main modules: an encoder (bottom left) and a decoder 
(top left). Right: DeepSEM performs three major functions by leveraging 
different modules: (1) GRN prediction (bottom right), (2) scRNA-seq data 
embedding and visualization (middle right), and (3) scRNA-seq simulation 
(top right).
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prediction performance on 81.82% (36/44) of the benchmarks and 
at least 10% improvement compared with the second-best approach 
(GENIE3) on 54.54% (24/44) of the benchmarks when evaluated 
using EPR. When considering the AUPRC ratio metric, DeepSEM 
achieves the best prediction performance on 86.36% (38/44) of 
the benchmarks and at least 10% improvement compared with the 
second-best approach (PIDC) on at least 54.54% (24/44) of bench-
marks. In addition, DeepSEM substantially outperforms SCODE, 
ppcor and SINCERITIES on most benchmarks. In particular, among 
all the benchmarks, DeepSEM achieves an average of improvement 
of 12.46%, 14.38% and 20.70% compared with PIDC, GENIE3 and 
GRNBoost2, respectively, and performs equally or better than these 
approaches on 90.91% (40/44), 93.18% (41/44) and 95.45% (42/44) 
on all the benchmarks in both evaluation metrics.

Next, we investigate how the performance of DeepSEM is influ-
enced by the number of cells and whether DeepSEM could work 
with limited training data (Supplementary Fig. 2a,b). We first 
constructed five datasets by subsampling 400, 300, 200, 100 and 
50 single cells from the BEELINE benchmark28 and evaluated the 
accuracy of the GRN prediction of DeepSEM on these five datasets. 
First, we found that the performance was relatively stable between 
200 and 400 cells. The performance drops about 20% when only 
50 single cells are provided to our model (Supplementary Fig. 
2a). Second, we analyzed the performance with respect to differ-
ent kinds of ground truth. As shown in Supplementary Fig. 2b, the 
performance drops significantly on cell-type non-specific ground 
truth (STRING and cell-type non-specific ChIP-seq) with 31.47% 
(STRING) and 28.35% (cell-type non-specific ChIP-seq), respec-
tively, when only 50 cells are used as training data. In contrast, the 

performance drops only 3.39% when using cell-type specific ChIP-
seq as the ground truth. In the end, we found that the ensemble strat-
egy provided greater performance improvement when the training 
cell was extremely limited, as shown in Supplementary Fig. 2c. The 
ensemble strategy provides additional performance improvement 
in the range of 3.80% to 12.80% (on average) when the size of the 
data is extremely small. In addition to performance comparison, 
we also studied the scalability of DeepSEM for large-scale datasets 
(Supplementary Section 3 and Supplementary Figs. 3 and 4).

Validation of GRN using epigenetic data. DNA methylation 
and chromatin accessibility can affect the binding of transcrip-
tion factors to cis-regulatory elements and therefore influence the 
expression of downstream target genes29,30. To further explore the 
biological significance of the GRN identified by DeepSEM, we also 
examined the concordance between the gene regulations predicted 
by DeepSEM with the ones inferred from cell-type specific epigen-
etic data. Previous studies have reported that integrating TF bind-
ing motif information with epigenetic data can accurately predict 
TF binding sites in a cell-type-specific manner31,32. Therefore, we 
hypothesize that if one TF is regulating a gene in a given cell type, 
it should be more likely to associate the TF motifs with hypo CG 
methylation and open chromatins at the flanking regions of the tar-
get gene in the corresponding cell type.

To test this hypothesis, we applied the DeepSEM framework 
to an scRNA-seq dataset from the mouse cortex33, and compared 
the results with the single-nucleus methyl-cytosine sequencing 
(snmC-seq)34 and scATAC-seq data35. To search for epigenetic 
evidence supporting regulations of the marker genes, we used the  
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scATAC-seq peaks and differentially methylated regions (DMRs)34 
as potential regulatory elements for each cell-type-specific gene 
(±200 kb of transcription start sites), and then for each gene cal-
culated the proportion of its predicted regulators whose motifs are 
located in the regulatory elements near the gene. Consistent with 
our hypothesis, we found substantial enrichment of different types 
of regulatory region containing the motifs of predicted TFs (Fig. 4a 
and Supplementary Fig. 5), suggesting high accuracy of the GRN 
identified by DeepSEM from the epigenetic aspect. We provide the 
summary statistics for the predicted GRN in Supplementary Section 
4 and Supplementary Table 3.

More concretely, we examined the predictions related to Rorb, 
which is a gene encoding a nuclear hormone receptor highly 
expressed in L4 cells. We applied DeepSEM to predict the regula-
tors of Rorb in L4, and our model identified 12 putative upstream 
TFs regulating Rorb, including genes Mef2c, Nr2f1 and Pknox2 
(Supplementary Table 4). We found that the binding motifs of these 
TFs are located in the first intron of Rorb where the cytosines within 
the motifs were specifically hypomethylated in L4, indicating the 
cell-type-specific regulation relationship between these TFs and 
Rorb (Fig. 4b). As another example, Syt6 encodes a transmembrane 
protein that involves synaptic vesicle exocytosis, whose expression 
is restricted to L6 CT cells. We predicted that Syt6 could be reg-
ulated by Nf1a, Stat1 and Sp3 in L6 CT (Supplementary Table 4). 
Accordingly, by comparing with scATAC-seq data, we observed that 
the regions associated with the binding motifs of these TFs along 
the Syt6 gene body were specifically open in L6 CT cells (Fig. 4c). 

Notably, all these six upstream TFs were consistently expressed in 
both the target and non-target cell types (Fig. 4d). Together, these 
studies provide orthogonal evidence to support our predicted GRN 
and indicate the potential utility of DeepSEM to study the cell-
type-specific gene interaction networks, especially on the wide 
range of housekeeping TFs that have large functional impact on  
the cell dynamics.

Cell representation. Previous studies have indicated that more 
biologically meaningful representations for scRNA-seq could 
be generated by considering the interactions among different 
genes, such as protein–protein interaction networks36, GRNs37, 
co-expression networks from bulk RNA-seq data and annotated 
pathways38. In particular, linking regulatory relationships to 
gene expression has been proved to be able to effectively over-
come dropout and other technical variations in both single-cell 
and bulk sequencing experiments39,40. Since the cell representa-
tion of DeepSEM is a nonlinear mapping from the expression to 
GRN activities, we hypothesized that the hidden representation 
can also effectively define cell states and cell types by explicitly 
modeling the GRN structure. In the encoder function (Fig. 2 and 
Methods), the nonlinear function can be viewed as a denoising 
function to amplify or suppress the values of the expression of 
certain genes; whereas the GRN layer can be viewed as a scoring 
function of calculating the activity of each regulon. To evaluate 
the quality of these representations, we applied DeepSEM to iden-
tify different cell types on nine scRNA-seq datasets, including  
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a widely used mouse brain dataset (the Zeisel dataset41), a mouse 
embryo dataset42 and a mouse peripheral blood mononuclear cell 
(PBMC) dataset43. A complete list of these datasets can be found 

in Supplementary Table 5. To benchmark DeepSEM, we also 
compared its low-dimensional embeddings to four other meth-
ods: scVI6, DCA7, ZIFA44 and factor analysis (FA)45, following the 
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types related to the comparison are shown. d, UMAP plots of the six cell types used in our study (n = 6,456 cells) colored by expression levels of Rorb, Syt6 
or their predicted regulators in the corresponding cell types.
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Louvain algorithm46 to cluster all the single cells into the same 
number of clusters. We provide a brief introduction and running 
details of these baseline methods in Supplementary Section 5. To 
quantify the clustering accuracy based on the reference labels, 
we used the adjusted Rand index (ARI) and normalized mutual 
information (NMI), both of which range from 0 (random clusters) 
to 1 (identical clusters). In general, DeepSEM performs better 
than all the four baseline methods on five of the nine benchmark 
datasets including the Zeisel dataset41, which are used in scVI6, 
and also achieved comparable performance on the other datasets 
(within a range of 5% on average) (Fig. 5a and Supplementary Fig. 
6). We also showed that DeepSEM can maintain the hierarchical 
structure among different cell types by evaluating the clustering 
performance on the Zeisel dataset41 with the ground-truth hier-
archical structure provided by the origin study41 (Supplementary 
Fig. 6a). In particular, DeepSEM outperforms another probabilis-
tic scRNA-seq model scVI6, which is also based on the VAE, sug-
gesting the necessity of explicitly modeling the GRN structure.

Next, we evaluated to what extent the latent space generated by 
DeepSEM could reflect the biological variability among different 
cells on the Zeisel dataset41. Visualizing using the uniform manifold 
approximation and projection (UMAP)47, we found that DeepSEM 
was able to provide a more biologically meaningful representa-
tion. As shown in Fig. 5b, DeepSEM organizes oligodendrocytes 
and pyramidal CA1 cells into two clear clusters, while methods 
including scVI, ZIFA and FA failed to do so (highlight in the black 
circles). Quantitative comparison further highlights the advantage 
of DeepSEM. Membership weights (Supplementary Table 6) show 
that DeepSEM has an average closer distance between cell and cell-
type center. We further compare DeepSEM with the baseline meth-
ods on R, earth-mover’s distance (EMD) and K-nearest neighbor 
(KNN) preservation metrics48, which all measure the distribution 
difference between embedding data and origin data48. The results 
show that DeepSEM can maintain better KNN consistency com-
pared with scVI (Supplementary Table 7). Besides preserving good 
clustering, it had been expected that single cells typically follow a 
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temporal progression process, and are more apt to be represented 
with a continuous differentiation trajectory. We then embedded 
only the oligodendrocyte cells in a separate low-dimensional space 
and checked the consistency between the embeddings of cell sub-
types and the differentiation trajectory defined in Zeisel et al.41 
(Supplementary Fig. 7). DeepSEM, ZIFA and FA were able to pro-
duce tight cell clusters for subtypes Oligo 3. This finding indicated 
that Oligo 3 presents a distinct cellular state compared with other 

cell types, which was consistent with the finding in Zeisel et al.41. 
We also found that the embedding produced by DeepSEM can rep-
resent the same differentiation trajectory as defined in Zeisel et al.41, 
whereas methods including scVI and DCA failed to capture this 
information (Supplementary Fig. 7).

scRNA-seq simulation. In this study, we compared the simulation 
performance of DeepSEM with two other GAN-based approaches, 

0 0.2 0.4 0.6 0.8 1.0

False positive rate

0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
po

si
tiv

e 
ra

te

Louvain cluster 1 Louvain cluster 2

DeepSEM (AUC = 0.58 ± 0.01)

cscGAN (AUC = 0.58 ± 0.01)

scGAN (AUC = 0.77 ± 0.01)

Random (AUC = 0.50 ± 0.01)

0 0.2 0.4 0.6 0.8 1.0

False positive rate

0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
po

si
tiv

e 
ra

te

DeepSEM (AUC = 0.57 ± 0.01)

cscGAN (AUC = 0.56 ± 0.01)

scGAN (AUC = 0.71 ± 0.01)

Random (AUC = 0.50 ± 0.02)

G
R

N
 c

on
si

st
en

cy

scGAN
DeepSEM

cscGAN

0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.5 1.0 1.5 2.0 5.0

Top K% of GRN prediction

Louvain cluster 1

Top K% of GRN prediction

G
R

N
 c

on
si

st
en

cy

Louvain cluster 2

0.1 0.2 0.5 1.0 1.5 2.0 5.0
0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.5 1.0 1.5 2.0 5.0

0.2

0.4

0.6

0

0.3

0.5

0.7

0.1

CD4+/CD45RO+ memory

G
R

N
 c

on
si

st
en

cy

Top K% of GRN prediction

G
R

N
 c

on
si

st
en

cy

0.1 0.2 0.5 1.0 1.5 2.0 5.0

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9
CD14+ monocyte

Top K% of GRN prediction

DeepSEM (AUC = 0.57 ± 0.01)

cscGAN (AUC = 0.58 ± 0.04)

scGAN (AUC = 0.74 ± 0.03)

Random (AUC = 0.50 ± 0.04)

0 0.2 0.4 0.6 0.8 1.0

False positive rate

0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
po

si
tiv

e 
ra

te

CD4+/CD45RO+ memory

DeepSEM (AUC = 0.54 ± 0.02)
cscGAN (AUC = 0.60 ± 0.03)
scGAN (AUC = 0.74 ± 0.02)
Random (AUC = 0.54 ± 0.02)

0 0.2 0.4 0.6 0.8 1.0

False positive rate

0

0.2

0.4

0.6

0.8

1.0

T
ru

e 
po

si
tiv

e 
ra

te

CD14+ monocyte
b

c

U
M

A
P

2

U
M

A
P

2

UMAP1 UMAP1

Louvain cluster 1 Louvain cluster 2

Louvain cluster 1 Louvain cluster 2

UMAP1 UMAP1

U
M

A
P

2

U
M

A
P

2

U
M

A
P

2

U
M

A
P

2

Louvain cluster 1 Louvain cluster 2

UMAP1 UMAP1

DeepSEM

Raw data

cscGAN

Raw data

scGAN

Raw data

CD14+ monocyte CD4+/CD45RO+ memory

UMAP1 UMAP1

UMAP1 UMAP1

UMAP1 UMAP1

CD14+ monocyte CD4+/CD45RO+ memory

CD14+ monocyte CD4+/CD45RO+ memory

U
M

A
P

2

U
M

A
P

2
U

M
A

P
2

U
M

A
P

2

U
M

A
P

2
U

M
A

P
2

a

Fig. 6 | Simulation performance of DeepSEM compared with cscGAN and scGAN. a, The embedding plot layout was determined by UMAP visualization. 
b, Receiver operator characteristic (ROC) curves and area under the ROC Curve (AUC) scores (means ± s.d., lower is better) using RF to classify real and 
simulation cells. c, GRN consistency (means ± 95% CI, higher is better) between the simulated and real data.
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cscGAN and scGAN27, on the PBMC dataset43. A brief introduction of 
cscGAN and scGAN including their running details could be found in 
Supplementary Section 6. The original study27 classified cells through 
the Louvain algorithm46, but we found that the Louvain clusters were 
inconsistent with cell types identified by Zheng et al.43. For instance, 
47.0% of the CD56+ natural killer (NK) cells were misclustered to a 
CD8+ cytotoxic T cluster (Supplementary Fig. 8). Therefore, we used 
two different annotation strategies as introduced in Methods. We 
found that all three methods could generate almost indistinguishable 
low-dimensional embeddings as in the original data, when clustered 
using both computational approaches and cell types labeled by the 
experts (Fig. 6a and Supplementary Figs. 9 and 10). We trained a ran-
dom forest (RF) classifier to distinguish the simulated data from the 
real data for each Louvain cluster and each cell type that contains more 
than 2,500 cells. Our hypothesis is that the prediction performance of 
the RF model should be close to random if the simulated data genera-
tion was ‘realistic’. We observed that the classification performance of 
RF dropped with an average of 1.21% and 19.77% to distinguish simu-
lated data generated by DeepSEM from the real test data compared 
with cscGAN and scGAN, respectively (Fig. 6b and Supplementary 
Figs. 11 and 12). Note that the objective functions of cscGAN and 
scGAN are to train a generator function that can fool another dis-
criminator function, so it was expected that they perform well on this 
task. On the other side, DeepSEM achieved realistic simulation, sug-
gesting that integrating GRN may serve as a crucial step for modeling  
scRNA-seq data.

We also proposed another concept, called GRN consistency, 
to measure the quality of the simulated single cells. GRN con-
sistency measures the difference of the predicted GRN between 
the real and simulated scRNA-seq data, which quantifies how 
much the single-cell model captures both the marginal and con-
ditional independence in the original distribution. That is, if a 
scRNA-seq simulation is realistic, the GRN predictions obtained 
using the simulated dataset should match the predictions from 
the real dataset. Different from recent work49 that used marginal 
independence to measure the consistency, our GRN consistency 
considers the conditional independence between TF and target 
genes, which is harder to maintain for simulators. We found that 
DeepSEM was able to achieve much higher GRN consistency 
compared with cscGAN and scGAN (Fig. 6c and Supplementary 
Figs. 13 and 14). For instance, for the top 0.1% predicted GRN 
edges, there is only 61.68% and 32.04% (on average) predicted 
GRN edge overlap between the real data and the simulated one by 
cscGAN and scGAN, respectively. On the other hand, DeepSEM 
can improve the GRN consistency by 33.07% and 156.14% 
compared with cscGAN and scGAN, respectively (Fig. 6c and 
Supplementary Figs. 13 and 14). This result demonstrates that 
DeepSEM is able to generate more realistic scRNA-seq data satis-
fying biological constraints.

We further investigated how the simulated single-cell data could 
be used to improve the quality of the downstream cell-type classi-
fication task, when only a limited number of single cells were pro-
vided. To investigate this, we downsampled single-cell data from 
two clusters (Louvain cluster 2 and CD56+ NK), and trained an RF 
model to distinguish these cells from others. We observed that for 
the approaches to be compared, the performance could be improved 
by simply upsampling the downsampled clusters, which was equiva-
lent to putting higher weights on some samples to address the class 
imbalance problem for the RF model (Supplementary Fig. 15). 
The performances of DeepSEM and scGAN are about the same 
and only slightly lower than the performance of cscGAN by 1.02% 
(Supplementary Fig. 15).

Discussion
In this Article, we introduce a general computational framework 
that can jointly model the GRN and single-cell transcriptomic data. 

The structure of the GRN is explicitly modeled as special layers of 
the neural network, which act as biological constraints to restrict the 
parameter space. One of the limitations of our study is that the run-
ning time increases with the number of genes involved due to the 
‘inverse’ operation in the inverse GRN layer. Empirically, DeepSEM 
is relatively slower than other VAE models such as scVI6. To address 
the potential limitation during the training process, we recommend 
users to select highly variable genes instead of using the whole tran-
scriptome as input features.

Models like DeepSEM may have other potential applications in 
single-cell biology. For instance, since all cells share the identical 
genome, GRN can be shared among different modalities, such as 
transcriptomic and epigenomic data. Therefore, DeepSEM can be 
adopted to integrate different single-cell modalities by leveraging 
GRN as a ‘bridge’ to construct a common latent space. A second 
potential application is to use the DeepSEM framework to integrate 
other molecular interaction networks, such as a protein–protein 
interaction network, open chromatin data, DNA binding motifs and 
a genetic interaction network to further infer a GRN and achieve 
higher accuracy.

Methods
The DeepSEM framework. Structural equation modeling is a multivariate 
statistical model to analyze structural relationships among different random 
variables. The basic SEM was first developed to model the covariance matrix for 
random variables50. Later, the SEM was found to be very powerful in modeling the 
relationship between observed features and hidden latent variables and was widely 
used in econometrics and sociology for causal inference51,52. More importantly, 
the SEM can be adopted to detect the conditional dependency among random 
variables and therefore also used to predict the graph structure of Bayesian 
networks and Markov random fields53–56. DeepSEM generalizes the SEM, which 
models the conditional dependencies among random variables and is formulated 
as a self-regression problem

X = WTX + Z, (1)

we can modify equation (1) to the following form

X =
(

I − WT)−1 Z

Z =
(

I − WT)X,
(2)

where I ∈ R
m×m denotes the identity matrix, X ∈ R

n×m denotes the gene 
expression matrix with n cells and m genes, W ∈ R

m×m represents the adjacency 
matrix of the GRN that captures the conditional dependencies among different 
genes, and Z ∈ R

n×m stands for a noise matrix following a Gaussian distribution. 
Here we modify equation (2) to a nonlinear version of the SEM, which was 
originally proposed by Yu et al.21, as follows

X = f1((I − WT
)
−1Z), (3)

Z =
(

I − WT
)

f2(X), (4)

where f1 and f2 stand for multilayer neural networks. In particular, equation (3) can 
be decomposed into the following formulas:

HZ = (I − W)
−1 Z,

where the HZ can be further rewritten in column-wise vectors:

HZ = [h0;h1;…;hm] , hi ∈ R
n×1,

f1 (hi) = tanh
(

tanh
(

tanh
(

hiWT
1
)

WT
2
)

WT
3
)

,

X = [f1 (h0) ;f1 (h1) ;…;f1 (hm)] ,

W1 ∈ R
d×1,W2 ∈ R

d×d,W3 ∈ R
1×d,

(5)

where d denotes the number of hidden neurons for each layer and hi denotes to 
the hidden latent for gene i. Equation (5) can be viewed as a nonlinear decoder 
function from random variable Z. W1, W2 and W3 are linear weights of different 
layers of the neural network. Different from the conventional neural network 
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used in scRNA-seq modeling, f1 takes only one feature as input. We then define a 
corresponding encoder function with a similar form, that is

X = [x0;x1;…;xm] , xi ∈ R
n×1,

HX = [f2 (x0) ;f2 (x1) ;…;f2(xm)],

f2(xi) = tanh
(

tanh
(

tanh
(

xiWT
4
)

WT
5
)

WT
6
)

,

Z = Reparameter
((

I − WT)HX
)

,

W4 ∈ R
d×1,W5 ∈ R

d×d,W6 ∈ R
2×d,

(6)

where xi denotes the expression for gene i and f2 stands for another multilayer 
neural network to model the noise in X, which takes the expression of each gene 
as input feature and ‘Reparameter’ stands for the reparameterization trick57. W4, 
W5 and W6 are linear weights of different layers of the neural network. We name 
I − WT the GRN layer and (I − WT)−1 the inverse GRN layer. To integrate both 
equation (5) and equation (6), we use a beta-VAE model23 with an additional L1 
norm to regularize the adjacent matrix W. More specifically, the loss function of 
the DeepSEM is defined as follows

L = −Eq(X) [log p (X|Z)] + βKL(q(Z|X)||p(Z)) + α||W||1, (7)

where E denotes the expected value function, p and q denote the distribution of 
X and Z, KL denotes to KL-divergence function and α and β denote to hyper-
parameters.That is, instead of directly transforming X to Z, the beta-VAE 
framework models Z as a Gaussian distribution in which the mean and variance are 
the outputs of neural networks taking X as the input features.

Similar to other autoencoder models, beta-VAE also recovers the input X in  
a probabilistic model. For cell-type-specific tasks, such as GRN prediction, single-
cell embedding and simulation, we only considered the non-zero elements of X 
because it is typically hard to denoise (impute) all the non-zero values using only 
a limited number of samples for each cell type. For the prior distribution p(Z), we 
chose Gaussian distribution N(μ, σ2) in which the mean (μ) and variance (σ2) were 
also estimated by minimizing equation (7). A Gaussian distribution-based VAE 
model has been widely used in other domains such as images, videos and natural 
languages. Empirically, we also tried the Gaussian mixture model from one to five 
Gaussian components as the prior distribution but found that the performance 
did not significantly outperform the original Gaussian distribution with a single 
component (Supplementary Fig. 16). Note that f1 and f2 are multilayer perceptrons 
(MLPs) with unique architectures. For each cell, we used f2 to scan all the m genes 
and output m hidden variables. Similarly, f1 scans m hidden variables and outputs 
m recovered gene expression values. In this way, we made sure that all the genes 
can only interact at the GRN layer and Inverse GRN layer.

Optimization of DeepSEM. We adopted the gradient descent and the 
reparameterization trick57 to train our DeepSEM model. Different from 
conventional beta-VAE, there is an ‘inverse’ operation in equation (3), which 
makes the optimization problem harder because the inverse operation is generally 
sensitive to noise. We found that directly using the Adam algorithm58 sometimes 
yielded unstable results. Inspired by the coordinate descent in graphical lasso59 in 
which the matrix inverse is required, we optimized the weight matrix W in the 
GRN layer and the weights in the normal linear layers in an alternative way.  
More specifically, after using the RMSprop algorithm60 to optimize the weights  
of MLPs for one epoch, we then optimized W using the same optimization 
algorithm for another two epochs with different learning rates (details in 
Supplementary Table 8).

GRN inference. The core element of DeepSEM is its ability to infer the GRN 
structure through a probabilistic modeling of scRNA-seq data. In this study, similar 
to the causal inference in SEM, we take the adjacent matrix W defined in equation 
(3) to indicate the GRN learned by DeepSEM. The absolute value of each element 
of W is used to rank the possibility of the regulatory relationships between genes. 
To obtain stable prediction, we run the training process with ten different random 
initializations of the models. The final GRN prediction is the average of the 
absolute adjacent matrices W derived over the ten different models.

Simulation of scRNA-seq data. Another important component of DeepSEM is 
that it can simulate scRNA-seq data by perturbing the values of hidden neurons. 
DeepSEM simulates ‘realistic’ scRNA-seq in a unique manner by guiding the 
information flow through the GRN layer, which mirrors the in vivo generation 
process of messenger RNA dynamics governed by multiple TFs. In particular, 
DeepSEM first perturbs the hidden vector Z as defined in equation (3). Note that 
Z follows a Gaussian distribution in which mean and variance are calculated from 
two separate neural networks. Let n denote the white noise variable following 
N(0,I ), where I stands for the identity matrix. Then a perturbation Ẑ is defined 
as μ + nσ, where μ and σ stand for the mean and standard values of the posterior 
probability of Z. The simulated gene expression can be generated by decoding Ẑ 
by multiplying with the GRN layer. In this study, we only focus on simulating the 
expression of those non-zero input expression values.

Implementation of DeepSEM. In DeepSEM, the log-transformed scRNA-seq 
expression data after Z-normalizing is fed into the neural network. We initialized 
MLPs by using the ‘kaiming_uniform’61 and initialized W by setting the matrix 
diagonal as zeros and the others following a Gaussian distribution N(1/(m − 1), ε2), 
in which m stands for number of genes and ε denotes a small value to avoid being 
trapped in the local optimal. The values on the diagonal are fixed as zeroes in the 
whole training process to guarantee that W is able to learn the regulatory network 
between genes. We determined the key hyperparameters (α, β and number of 
epochs) using a grid search strategy and used common default values for others. 
We summarize all the hyperparameters used in this study in Supplementary Table 
8 and discuss the influence of the key hyperparameters in Supplementary Section 7 
and Supplementary Fig. 17.

Datasets and data processing. Datasets used to evaluate GRN inference. We 
evaluated the performance of GRN inference on seven datasets (Supplementary 
Table 2) as in the BEELINE framework28, where ground-truth GRNs are all 
available from: (1) mouse embryonic stem cells (mESC)62, (2) mouse dendritic 
cells (mDC)63, (3) three lineages of mouse hematopoietic stem cells64, including 
erythroid lineage (mHSC-E), granulocyte-macrophage lineage (mHSC-GM) and 
lymphoid lineage (mHSC-L), (4) human mature hepatocytes (hHep)65 and (5) 
human embryonic stem cells (hESC)66. To preprocess the raw gene expression data, 
we adopted the same strategy as in the BEELINE framework28 (Supplementary 
Section 1).

For each dataset, there are three kinds of ground-truth GRN according to their 
information sources: cell-type-specific ChIP-seq67–70, non-specific ChIP-seq71–73 
and functional interaction networks collected from the STRING database74. For the 
mouse embryonic stem cells (mESC), the loss-/gain-of-function data (LOF/GOF)70 
were also collected as a ground-truth GRN. Following Pratapa et al.28, we excluded 
all edges that were not outgoing from TFs in the prediction during the evaluation. 
In addition, we also included another mouse cortex dataset33 for which the GRN 
at the single-cell level was not measured. We focused on six major neuronal cell 
types from the primary visual cortex, including layer 2/3 (L2/3), L4, L5 and L6 
intra-telencephalic (IT) neurons, L5 pyramidal tract (PT) neurons and L6 cortical-
thalamic (CT) neurons. Following the same data-processing procedures as in 
the original data paper, we excluded those cells that annotated as low quality and 
those genes that expressed in less than 10% of cells. Then we normalized the count 
library sizes using count per million mapped reads (CPM). For each cell type, 
we selected 500 cell-type-specific genes using the ‘rank_genes_group’ function 
provided by the scanpy package75 and selected TF genes from the JASPAR 2018 
CORE vertebrates non-redundant motif database76. The motifs were scanned again 
with the mm10 genome using FIMO77 with P value thresholds of 1 × 10−5; after 
that, 487 TFs were under consideration in the following analysis. After removing 
duplicated genes, 2,762 genes including 487 TFs were considered in this study. 
We included the downloading addresses of the GRN data and the snmC-seq and 
scATAC-seq data for the mouse cortex dataset in Supplementary Table 1.

Datasets used to evaluate cell embeddings. We evaluated the single-cell embedding 
on the Zeisel dataset41, which was also used to assess the performance of scVI6. 
We also collected eight other datasets including the mouse embryo stem dataset42, 
human pancreas dataset78 and the PBMC dataset43, all with known cell types 
annotated. For each dataset, we discarded all cells without annotations and whose 
cell type contained less than 10 cells. We also discarded those genes that expressed 
in less than 1% of cells. For each dataset, only the top 1,000 highly variable genes 
were considered in evaluation. We present the summarized statistics for each 
dataset in Supplementary Table 5.

Datasets used to evaluate the performance of simulation. We evaluated the 
performance of scRNA-seq simulation following the experimental setting in 
Marouf et al.27. In particular, we trained and evaluated our model on a published 
human PBMC (healthy donor A) dataset43. Then we used two different strategies 
to annotate the cell types: (1) annotations from the original authors43, including 
11 different cell types (Supplementary Table 9) and (2) annotations derived from 
the Louvain algorithm with ‘resolution’ parameter 0.15 (Supplementary Table 10) 
following the same procedure as in Marouf et al.27. After discarding those genes 
that expressed in less than 1% of cells and cells that expressed less than 10 genes, 
we normalized the read counts to 20,000. We selected the top 1,000 variable genes 
based on the log-transformed normalized data and further normalized the gene 
expression using the ‘normalize_total’ function provided in the scanpy package75, 
with the input formats of cscGAN and scGAN27.

Latent representation visualization and clustering. For both DeepSEM and 
all other approaches to be evaluated, we first extracted the top 50 principal 
components (PCs) using principal component analysis if the size of hidden 
embeddings was larger than 50 and calculated the cell neighborhood graph by 
setting the ‘n_neighbors’ parameter as 30. Then we visualized the results of these 
datasets in two dimensions using the UMAP algorithm with default parameters. 
We used the Louvain algorithm46 to cluster cells and selected parameter 
‘resolution’ by binary search to generate the same number of clusters with cell-
type annotation.
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Visualization of simulated and real data. In this study, for each Louvain cluster 
and cell type containing more than 2,500 cells, we randomly selected 80% of cells 
as the training data and the remaining 20% of cells as the test data. DeepSEM and 
other baseline methods were trained on the training data, and for each method 
we simulated the same amount of data as the number of cells in the test data and 
used UMAP with default hyperparameters to visualize simulated and real test 
data. Following Marouf et al.27, we further trained an RF model with 1,000 trees 
to classify the real test data and the simulated data on the first 50 PCs. Fivefold 
cross-validation was performed to evaluate the prediction performance in terms of 
the averaged area under the receiver operator characteristic (ROC) curve. We also 
conducted a positive control by discriminating training data from test data. We also 
consider the membership weight of the clustering to quantitatively compare the 
visualization performance. Membership weight is calculated by the distribution of 
the inverse Euclidean distance between each cell and the centers of all the clusters

Membership weights = softmax
(

1
dist

(

xij, center(xi,:)
)

)

, (8)

where xij denotes the UMAP embedding of cell j in cell type i.

The GRN consistency between the simulated and real data. In this study, we 
investigated whether the generated scRNA-seq data have the same GRN with 
scRNA-seq from real cells. For each cluster or cell type that contains more than 
2,500 cells, we used DeepSEM, scGAN and cscGAN to generate n gene expression 
profiles, where n was equal to the number of cells. We used GRNBoost218 to 
infer the GRNs for both real and simulated single-cell data. Similar to the GRN 
inference benchmark BEELINE28, only GRNs outgoing from TFs were considered. 
For each cluster, we selected the top K = {0.1%, 0.2%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%} 
GRNs and used them to evaluate the consistency between the real and simulated 
cells. The GRN consistency is calculated as follows:

GRN consistency =

Number of overlap edges in top N predicted edges between real and simulated cells
N

(9)

where N = K% × number of predicted GRN in real cells. We reported the average 
GRN consistency within a ±95% confidence interval (CI).

Effects of data downsampling and augmentation on cell-type classification. In 
this study, we evaluated the data augmentation performance by discriminating cells 
annotated by the selected cluster or cell type from the other cells with limited training 
data. More specifically, we selected cells annotated as cluster 2 obtained from the 
Louvain algorithm46, also as in Marouf et al.27, and CD56+ NK cells annotated by 
Zheng et al.43. First, we randomly sampled 80% of the data as the training dataset and 
used the remaining 20% of the data as the test dataset. Then, the cells were randomly 
downsampled with eight different percentages {50%, 25%, 10%, 5%, 3%, 2%, 1%, 0.5%} 
on the training dataset. For each downsampling rate, we simulated 2,000 cells from 
the selected Louvain cluster or cell type by DeepSEM, cscGAN and scGAN. We also 
randomly sampled 2,000 cells with replacement from the selected Louvain cluster or 
cell type and annotated the above procedure as upsampling. An RF model with default 
hyperparameters was trained and the top 50 PCs of each cell were selected as features 
to discriminate cells from the others. We trained the RF model five times and reported 
the mean AUPR ± 95% CI.

Data availability
We provide all datasets generated or analyzed during this study. The gene 
experimental scRNA-seq datasets were downloaded from Gene Expression 
Omnibus with the accession numbers GSE81252 (hHEP dataset65), GSE75748 (hESC 
dataset66), GSE98664 (mESC dataset62), GSE48968 (mDC dataset63), GSE81682 
(mHSC dataset64), GSE115746 (mouse cortex dataset33), GSE60361 (Zeisel dataset41), 
GSE85241 (Muraro dataset78), GSE81861 (Li dataset79), and GSE45719 (Deng 
dataset80). The other experimental scRNA-seq dataset were downloaded from 
ArrayExpress with the accession number E-MTAB-5061 (Segerstolpe dataset81), NCBI 
Sequence Read Archive (SRA) with accession number SRP041736 (Pollen dataset42), 
GitHub repositories (https://github.com/LuyiTian/sc_mixology) (CellBench dataset82) 
and the website for x10genomics (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/) (PBMC dataset43). The scATAC-seq and snmC-seq for mouse 
cortex were downloaded from Gene Expression Omnibus with the accession numbers 
GSE126724 (scATAC-seq35) and GSE97179 (snmC-seq34). More information for these 
datasets could be found in Methods. We also summarize the accession and download 
links in Supplementary Tables 1, 2, 5 and 9. Source Data for Figs. 3–6 are available 
with this manuscript.

Code availability
The codes generated during this study are available on GitHub (https://github.com/
HantaoShu/DeepSEM) and in Zenodo83.
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