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ABSTRACT
We study the algorithmic complexity of the discrete fixed
point problem and develop an asymptotic matching bound
for a cube in any constantly bounded finite dimension. To
obtain our upper bound, we derive a new fixed point theo-
rem, based on a novel characterization of boundary condi-
tions for the existence of fixed points.

In addition, exploring a linkage with the approximation
problem of the continuous fixed point problem, we obtain
asymptotic matching bounds for complexity of the approxi-
mate Brouwer fixed point problem in the continuous case for
Lipschitz functions that close a previous exponential gap. It
settles a fifteen years old open problem of Hirsch, Papadim-
itriou and Vavasis by improving both the upper and lower
bounds.

Our new characterization for existence of a fixed point is
also applicable to functions defined on non-convex domain
and makes it a potentially useful tool for design and analysis
of algorithms for fixed points in general domain.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures, Geometrical problems and com-
putations, Sorting and searching
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1. INTRODUCTION
The Brouwer fixed point theorem and its variations have

had a profound influence in mathematical sciences and appli-
cations, including approximation theory [26], dynamical sys-
tems [31], game theory [28], and the most popularly known
of all, the theory of general equilibrium in Economics [2].
While fixed point theorems are applied to establish funda-
mental theories, fixed point algorithms are used to solve
important application problems, especially in many recent
works for network communication: TCP network calculus [1],
by Altman, Avrachenkov, and Barakat; network edge pric-
ing [7], by Cole, Dodis, and Roughgarden; multicast pric-
ing [25], by Mehta, Shenker, and Vazirani; and TCP queue
management [24], by Low. Fixed point theorems also have
other important applications in computer science, e.g., the
spectral analysis for numerical computation [41], by Spiel-
man and Teng.

The Brouwer fixed point theorem [4] can be stated suc-
cinctly as follows: any continuous function F mapping D =
[0, 1]d to itself has a fixed point: F(x) = x (x ∈ D). In
various levels of generalities, it can be extended to different
relaxed requirements on the function F and the domain D.
A mathematical structural characterization of the Brouwer’s
theorem is the Sperner’s lemma. It ensures that a certain
labelling rule on vertices of a simplicial partitioning of a sim-
plex Sn guarantees the existence of a sub-simplex with all
vertices differently labelled. Naturally, it has been influen-
tial on design of combinatorial algorithms for the fixed point
problem, started in the 60’s with Scarf’s seminal work [32],
which finds an approximate fixed point by finding a com-
pletely labelled primitive set based on a structure lemma
similar to, but not the same as, the Sperner’s Lemma. Kuhn
replaced the primitive sets by simplices and simplicial par-
tition [23]. The simplicial approach has since been adopted
by most general purpose fixed point algorithms developed
later, such as the restart algorithm of Merrill [27] and the
homotopy algorithm of Eaves [12].
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Many combinatorial algorithms based on simplicial par-
titioning are in the worst case exponential in computation
time. It was conjectured the performance of some such algo-
rithms might be better. Hirsch, Papadimitriou and Vavasis
played down such a hope by proving a general exponential
lower bound [13]. For contractive Lipschitz functions, that
is, F such that |F(x) − F(y) | ≤ c ∗ |x − y | with c < 1,
the fixed point problem can be solved much faster, for ex-
ample, by the fixed point iteration algorithm of Banach [3],
the Newton method (see the works of Ortega and Rhein-
bolt [30], Kellogg, Li, and Yorke [20], and Smale [39]), the
interior ellipsoid algorithm of Huang, Khachiyan and Siko-
rski [14].

We study the fixed point algorithm for general Lipschitz
functions. Therefore, the iteration algorithm approach for
contractive functions does not apply here. Our study is mo-
tivated by a particularly interesting recent discrete version
of the fixed point problem, introduced by Iimura [15, 16],
stating that any direction-preserving function F (a discrete
analogue to the continuous function) that maps D = Nd

(N = {0, 1, 2 ...n − 1}) to itself, has a fixed point [15, 16].
Iimura’s proof is non-constructive by extending the dis-

crete direction-preserving function to a continuous function
such that the latter has a fixed point if and only if the former
has one. It is, therefore, not suitable to develop algorithms
for finding a solution. The algorithmic results for approxi-
mate fixed point by Hirsch, Papadimitriou, and Vavasis, on
the other hand, have a natural extension for the discrete
version, leading to a lower bound of Ω(nd−2) and an upper
bound of O(nd) for the discrete fixed point problem on the
grid Nd. Noticeably, for d = 2, Hirsch, Papadimitriou and
Vavasis have a matching bound of Θ(n) for a grid of N2.
Closer examination of the upper bound of Hirsch, Papadim-
itriou and Vavasis would reveal a boundary condition for a
fixed point to exist: The winding number of the boundary
is non-zero. Our upper bound relies on the establishment
of such a boundary condition for higher dimensions. We
exploit the grid structure and the direction-preserving con-
dition for the discrete fixed point problem to develop a suc-
cinct combinatorial structure that leads to the design of our
algorithm.

In addition, the combinatorial lemma derives an indepen-
dent and a constructive proof for Iimura’s fixed point the-
orem. In fact, our result derives a general characterization
for a pair of function and domain (F , D) to have a fixed
point which is also applicable to non-convex domains and
thus improves the results of Iimura [15], Iimura, Murota,
and Tamura [16].

The construction is based on a characterization, via a par-
ity argument, of F(x) − x on a unit cube, and then builds
on a collection of unit cubes to establish a global boundary
condition, if no fixed point exists. It is as elementary as
Sperner’s Lemma [40]. In fact, the Brouwer fixed point the-
orem for the continuous case can also be derived from our
characterization lemma.

The tight lower bound proof for the two dimension case
by Hirsch, Papadimitriou and Vavasis is also very elegantly
done. However, some weakness makes it not suitable to be
extended to higher dimensions directly. Our lower bound
proof fully utilizes the simplification brought in by the dis-
crete version and introduces a game on a lattice graph to
focus on the essence of the problem. Then we extend the re-
sult derived from the game played on the lattice graph to the

matching lower bound for the discrete fixed point problem.
Even though the final proof is deep and rather complicated,
the approach is quite clear and accessible.

Finally, it is not hard to establish a linkage between direc-
tion-preserving functions for the discrete fixed point prob-
lem and Lipschitz functions for the approximate fixed point
problem. That linkage makes our results for the discrete ver-
sion extendable to the approximate fixed point problem for
Lipschitz functions. In particular, our algorithmic results
solved an open problem proposed by Hirsch, Papadimitriou
and Vavasis [13].

For succinctness of the presentation here, we consider the
function f(x) = F(x) − x. The problem of finding a fixed
point for F is equivalent to the problem of finding a root
for f : F(x) = x if and only if f(x) = 0. We call such a
point a zero point (or root) of f . As pointed out by Hirsch,
Papadimitriou and Vavasis [13], the general zero point prob-
lem is algorithmically harder than the fixed point problem.
However, our discussion only considers a special class of zero
point problem which is equivalent to the discrete fixed point
problem. We should in Section 2 present the necessary def-
initions, together with a proof that the above two problems
are equivalent in computational complexity. The crucial
combinatorial lemma is discussed in Section 3, followed by
the algorithm and the upper bound proof. The lower bound
construction and proof will be outlined in Section 4. In Sec-
tion 5, we will discuss applications to the continuous case.
We conclude in Section 6 with discussions and remarks on
our approach and other related results as well as potential
research directions.

2. DEFINITIONS
For any x 6= 0 ∈ R, we define sgn(x) = +1 if x > 0 and

sgn(x) = −1 if x < 0. For any 1 ≤ k ≤ d, we use ek to
denote the kth unit vector of Z

d. Here ek
k = 1 and for any

1 ≤ i 6= k ≤ d, ek
i = 0. For any vector v ∈ Z

d, 1 ≤ k ≤ d
and l ∈ Z, we define vector v[k ← l ] = v + ( l − vk )ek. For
simplicity, we use v− to denote vector v[d ← (vd − 1) ] and
v+ to denote vector v[d← (vd + 1) ].

Definition 1. For any p < q ∈ Z
d, we define a rectan-

gular set Ap,q = { r ∈ Z
d | p ≤ r ≤ q } ⊂ Z

d. Its boundary
is defined as Bp,q = { r ∈ Ap,q | ∃ 1 ≤ i ≤ d such that ri =
pi or qi } ⊂ Ap,q.

Definition 2. Map F :Ap,q → R
d is said to be direction-

preserving if ∀ r1, r2 ∈ Ap,q such that |r1 − r2 |∞ ≤ 1, we
have (Fi(r

1)− r1
i )(Fi(r

2)− r2
i ) ≥ 0, for any 1 ≤ i ≤ d.

Definition 3. Function f : S → { 0,±e1,±e2 ... ± ed },
where S ⊂ Z

d, is said to be direction-preserving if ∀ r1, r2 ∈
S such that |r1 − r2 |∞ ≤ 1, we have |f(r1)− f(r2) |∞ ≤ 1.
We use F [S ] to denote all such functions on S. Function
f :Ap,q → { 0,±e1, ... ±ed } is said to be bounded if F(r) =
f(r) + r is a map from Ap,q to itself.

Using the discrete fixed point theorem in [15][16], we get
the following simplified version. Actually, we will derive an
independent constructive proof later.

Theorem 1. For any direction-preserving map F from
Ap,q to itself, there exists r∗ ∈ Ap,q such that F(r∗) = r∗.
Such point r∗ is called a fixed point of map F.
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We are interested in the following discrete fixed point pro-
blem DFPd : given a direction-preserving map F from Ap,q

to itself, where Ap,q ⊂ Z
d, compute a fixed point r∗ of F .

Algorithms discussed in this paper will be restricted to those
that are based on map evaluations. That is, map F looks like
a black box to algorithm designers. It can only be accessed
by giving a point r ∈ Ap,q and evaluate F(r). We use n =
|p− q |∞ + 1 as the measure of input size, then two kinds of
complexities will be considered, query complexity Q (n, d )
and time complexity T (n, d ).

Actually, we only need to focus on the following discrete
zero point problem DZPd : given a bounded function f ∈
F [Ap,q ] where Ap,q ⊂ Z

d, compute a zero point r∗ such that
f(r∗) = 0. The existence of such r∗ is guaranteed by Theo-
rem 1, as (A) F(r) = f(r)+ r is a direction-preserving map
from Ap,q to itself. Similarly, we use Q′(n, d ) and T ′(n, d )
here to denote the query complexity and time complexity of
DZPd respectively. Our main results in section 3 and 4 are

Theorem 2. For any d ≥ 2 and n > 48d, we have

0.5 ( ⌊(n− 1)/210⌋ )d−1 ≤ Q′(n, d ) ≤ 7nd−1

Q′(n, d ) ≤ T ′(n, d ) ≤ O (d2(2n)d−1)

There is a strong relationship between these two problems.
(A) shows that any algorithm for DFPd can be used to sol-
ve DZPd. We simply call it on F to get a fixed point r∗ of
F and it must also be a zero point of f . If at some time, the
algorithm wants to evaluate F(r), then we just query f(r)
and compute F(r) = f(r) + r using O(d) steps. This shows
Q′(n, d ) ≤ Q(n, d ) and T ′(n, d ) ≤ O(d)Q(n, d ) + T (n, d ).

On the other hand, for any direction-preserving map F
from Ap,q to itself, a bounded function f ∈ F [Ap,q ] can be
constructed. For any r ∈ Ap,q, if F(r) = r, then f(r) = 0.
Otherwise, let 1 ≤ i ≤ d be the largest integer such that
Fi(r) 6= ri, then f(r) = sgn(Fi(r)−ri)ei. Similarly we have

Q(n, d) ≤ Q′(n, d) and T (n, d) ≤ O(d)Q′(n, d) + T ′(n, d).
In conclusion, these two problems are equivalent in com-

putational complexity and Theorem 2 is also true for both
Q(n, d) and T (n, d). For any specific d ≥ 2, it gives us
matching bounds Θ(nd−1) for these two complexities.

3. AN ALGORITHM FOR DZP
In this section, we’ll first prove a discrete zero point the-

orem. For any function f ∈ F [Ap,q ], it gives us a condition
on f(Bp,q) which guarantees the existence of zero point in
Ap,q. Then a recursive algorithm will be presented, which
can be used to solve problem DZPd. Its main idea is really
similar to binary search. In each turn, we divide the func-
tion domain into two parts and the zero point theorem is
employed to decide which side to follow.

3.1 The Discrete Zero Point Theorem
First we define subsets of Z

d called t-cubes where 0 ≤ t ≤
d. Lemma 1 and 2 about t-cubes are both easy to prove.

Definition 4. For any r ∈ Z
d and S ⊂ {1, 2 ... d} with

|S | = d − t, the t-cube Ct ⊂ Z
d which is centered at r and

perpendicular to S is defined as Ct = { p ∈ Z
d | ∀ 1 ≤ i ≤ d

if i ∈ S, then pi = ri. Otherwise, pi = ri or ri + 1}.

Definition 5. For any rectangular set Ap,q ⊂ Z
d, we de-

fine V [p, q] = { (d − 1)-cube C ⊂ Ap,q | C is perpendicular
to S = {k } and centered at r such that rk = pk or qk }.

Lemma 1. Let Ct ⊂ Z
d be a t-cube where t ≥ 2, then for

any (t − 2)-cube Ct−2 ⊂ Ct, there are exactly two (t − 1)-
cubes in Ct that contain Ct−2.

Lemma 2. Let Cd−1 ⊂ Ap,q ⊂ Z
d be some (d−1)-cube. If

Cd−1 ∈ V [p, q], then there is exactly one d-cube ⊂ Ap,q that
contains it. Otherwise, there are exactly two such d-cubes.

Our zero point theorem is closely related to the number
of bad (d− 1)-cubes in set V [p, q]. Inductively, bad t-cubes
in Z

d where 0 ≤ t ≤ d − 1 with respect to certain function
f are defined as follows.

Definition 6. A 0-cube C0 ⊂ Z
d is bad relative to f iff

f(C 0) = {e1 }. For 1 ≤ t ≤ d − 1, a t-cube Ct ⊂ Z
d is bad

relative to f if (B1) f(Ct) = { e1, e2 ... et+1 } and (B2) the
number of bad (t− 1)-cubes in Ct is odd. For any function
f ∈ F [Ap,q], set Vf [p, q] = { bad (d− 1)-cubes in V [p, q] }.

Lemma 3. For any d-cube Cd ⊂ Z
d and f ∈ F [Cd] such

that f has no zero point in Cd, the number of bad (d − 1)-
cubes in Cd must be even.

Before presenting the proof of Lemma 3 (which is simply
a corollary of Lemma 4), we note Lemma 2 and 3 together
have already proved a zero point theorem for us.

Theorem 3. Any function f ∈ F [Ap,q] satisfies |Vf [p, q]|
is odd must have a zero point in Ap,q.

Lemma 4. For any t-cube Ct ⊂ Z
d where 1 ≤ t ≤ d and

any f ∈ F [Ct ] such that f(Ct) ⊂ {±e1,±e2, ... ± et}, the
number of bad (t− 1)-cubes in Ct must be even.

Proof. The base case for t = 1 is trivial. For t ≥ 2,
we assume that the claim is true for t − 1. If there is no
bad (t− 1)-cube ⊂ Ct, then we are done. Otherwise, there
exists at least one bad (t − 1)-cube Ct−1⊂Ct. (B1) shows
that f(Ct−1) = { e1, e2 ... et } and the direction-preserving
property of f indicates that f(Ct) = { e1, e2 ... et }.

For any (t − 1)-cube Ct−1 ⊂ Ct, we’ll prove that if it
satisfies (B2), then it must also satisfy (B1). This shows
that Ct−1 ⊂ Ct is bad iff the number of bad (t − 2)-cubes
in Ct−1 is odd. As a consequence, the parity of bad (t− 1)-
cubes in Ct must be the same as the following summation∑

Ct−1
⊂ Ct | { bad (t− 2)-cubes in Ct−1 } |. But Lemma 1

asserts that it is even and the lemma will follow.
Therefore, we only need to prove that (B2) implies (B1)

for any Ct−1 ⊂ Ct. As there is at least one bad (t− 2)-cube
in Ct−1 to ensure (B2), we have { e1, e2 ... et−1 } ⊂ f(Ct−1).
If f(Ct−1) = { e1, e2 ... et−1 }, then induction assumption for
the claim of this lemma requires the number of bad (t− 2)-
cubes in Ct−1 to be even, and hence can’t satisfy (B2).
Therefore, f(Ct−1) ⊂ f(Ct) = { e1, e2 ... et } must equal
to { e1, e2 ... et } and (B1) is satisfied.

3.2 The Recursive Algorithm
We’re now ready to present our recursive algorithm called

FindZerod (g, Vg[p, q] ). Its input satisfies that g ∈ F [Ap,q]
where Ap,q ⊂ Z

d and |Vg[p, q]| is odd. In each turn, this
algorithm divides the function domain into two parts and
specifies the one with a zero point, as guaranteed by Theo-
rem 3 above, and proceeds recursively. Let n = |p−q |∞+1,
then it uses at most 6nd−1 queries and O (d2(2n)d−1 ) time
to find a zero point of g, for any d ≥ 2 and n > 48d.
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Algorithm Cutd (g, Vg[p, q], k )

Ensure: 1 ≤ k ≤ d, qk − pk > 1 and |Vg[p, q]| is odd

1: set l = ⌊(pk + qk)/2⌋ and p′ = p [k ← l]
set q′ = q [k ← l] and Vg[p, q′ ] = Vg[p

′, q ] = ∅
2: for any r ∈ S = { r ∈ Z

d | ∀ 1 ≤ i ≤ d, p′

i ≤ ri ≤ q′i }
query g(r)

3: for any (d− 1)-cube C ∈ Vg[p, q]
4: case C ∈ V [p, q′] : Vg[p, q′] = Vg[p, q′] ∪ {C}

case C ∈ V [p′, q] : Vg[p
′, q] = Vg[p

′, q] ∪ {C}
5: compute V = { bad (d− 1)-cubes in S }
6: for any (d− 1)-cube C ∈ V

add C into both Vg[p, q′] and Vg[p
′, q]

7: if |Vg[p, q′]| is odd, then output (g, Vg[p, q′])
else output (g, Vg[p

′, q])

Algorithm FindZerod (g, Vg[p, q] )

Ensure: p < q and |Vg[p, q]| is odd

1: if |p− q |∞ = 1 then query every point r ∈ Ap,q and
output a zero point of g

2: for i = 1 to d
3: if qi− pi > 1, set (g, Vg[p, q]) =Cutd (g, Vg[p, q], i)
4: output FindZerod (g, Vg[p, q] )

Figure 1: The recursive algorithm FindZerod

But how can we use FindZerod to solve DZPd? Given a
bounded f ∈ F [Ap,q], we extend f to be f ′ on Ap′,q′ , where
p′ = p− 1 and q′ = q +1 as follows: f ′ = f on Ap,q. For any
r ∈ Bp′,q′ , let i be the largest integer satisfies ri = p′

i or q′i.
If ri = p′

i, then f ′(r) = +ei. Otherwise, we set f ′(r) = −ei.
It’s easy to check that f ′ is direction-preserving on Ap′,q′ .
The proof of Lemma 5 can be found in the full version.

Lemma 5. For any bounded function f ∈ F [Ap,q], the set
Vf ′ [p′, q′] contains exactly one (d−1)-cube, i.e., the (d−1)-
cube centered at p′ and perpendicular to S = {1}.

Observation shows that any zero point of f ′ must also be
a zero point of f , so we can call FindZerod (f ′, Vf ′ [p′, q′] )
to compute a zero point of f and

Q′(n, d) ≤ 6(n + 2)d−1 ≤ 7nd−1 T ′(n, d) = O(d2(2n)d−1)

for any d ≥ 2 and n > 48d.
The algorithm is showed in figure 1. Here Cutd uses set

S which is perpendicular to the kth dimension to divide
Ap,q into two smaller rectangular sets of almost the same
size. After querying all the points in S, it chooses one set,
which still satisfies the condition of our zero point theorem,
to return. The correctness of FindZerod is easy to prove.

Let n = |p− q |∞ +1, then the number of queries used by
the d calls to Cutd in FindZerod is at most

nd−1 + nd−2(⌊n/2⌋ + 1) + ... + (⌊n/2⌋ + 1)d−1 < 3nd−1

under the condition that n > 48d. Recurrence can be easily
solved to get a 6nd−1 upper bound for the query complexity
of FindZerod. An implementation of line 5 in Cutd, which
is based on dynamic programming, can be found in the full
version. It requires O(d22d |S |) time, so the d calls to Cutd

in FindZerod totally use O(d22dnd−1) time and we get a
O(d2(2n)d−1) upper bound for its time complexity.

3.3 A New Discrete Fixed Point Theorem
It’s easy to check that Theorem 1 can be directly proved

by Theorem 3 and Lemma 5. Actually, Theorem 3 implies a
stronger fixed point theorem. For any direction-preserving
map F from Ap,q to R

d, function f ∈ F [Ap,q] can be con-
structed using the method in section 2 and we have

Corollary 1. If |Vf [p, q]| is odd, then there must exist
some fixed point in map F.

Furthermore, the way we prove Theorem 3 suggests that
both Theorem 3 and Corollary 1 can be easily generalized
to non-convex domain D ⊂ Z

d which is union of d-cubes.

4. A LOWER BOUND FOR DZP
In this section, we define a class of graphs Gm,d = (Nm,d,

Em,d ), then a game on Gm,d between two players, Alice and
Bob, is introduced and strategies for Alice are constructed.
Finally, we show that these strategies can be used to prove
a lower bound for the query complexity of DZPd.

4.1 Pipe Paths and Sparse Sets
First we define Gm,d which looks like a lattice in Z

d.

Definition 7. For any m ≥ 2, we define rectangular set
Nm,d ⊂ Z

d as Nm,d = { r ∈ Z
d | ∀ 1 ≤ i ≤ d, 1 ≤ ri ≤ m }.

Let S be some subset of Z
d, then for any t ∈ Z, the layer t

of set S is defined as St = { r ∈ S | rd = t }.

Definition 8. For any d ≥ 1 and m ≥ 2 ∈ Z
+ which

is a multiple of 256, we define graph Gm,d = (Nm,d, Em,d ).
Here for any u, v ∈ Nm,d, uv ∈ Em,d iff ∃ 1 ≤ i ≤ d such
that |ui − vi | = 1 and ∀ 1 ≤ j 6= i ≤ d, uj = vj . For
any 1 ≤ t ≤ m, the layer t of Gm,d is the subgraph spanned
by N t

m,d. Obviously, it is isomorphic to Gm,d−1 under the
mapping D, where D(u) = (u1, u2 ... ud−1). Given a path
P = u ... w in Gm,d, u is called the start vertex and w is
called the end vertex of P . If the end vertex of P1 is same
as the start vertex of P2, then we use P1 ∪ P2 to denote the
path concatenated by P1 and P2.

Definition 9. Path P = v1v2 ... vk in Gm,d is said to be
monotone if k = 1 or

v1
d + 1 = v2

d ≤ ... ≤ vk−1

d = vk
d − 1 or

v1
d − 1 = v2

d ≥ ... ≥ vk−1

d = vk
d + 1

For any v1
d ≤ t ≤ vk

d , we use P t to denote the part of P on
layer t of Gm,d. It is clear that for any monotone path P ,
P t is a subpath of P on layer t of graph Gm,d.

Now we define pipe paths and sparse sets in Gm,d.

Definition 10. For d = 1, any path P in Gm,1 is also
called a pipe path. For d ≥ 2, path P in Gm,d is called a
pipe path if it is monotone and for any 1 ≤ t ≤ m, P t is
either empty or a pipe path in layer t of Gm,d (means that
D(P t) is a pipe path in graph Gm,d−1).

Definition 11. Let S be some subset of graph Gm,d and
vertex u ∈ Gm,d. For d = 1, S is said to be sparse relative
to u in Gm,1 iff S = ∅. For d ≥ 2, S is said to be sparse
relative to u iff (1) u /∈ S and |S | < lm,d = (m/256)d−1.
(2) If ud < m, then Sud+1 is sparse relative to u+ in layer
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ud + 1 of Gm,d. (3) If ud > 1, then Sud−1 is sparse relative
to u− in layer ud−1 of Gm,d. Here (2) (and (3) similarly)
implies that set D(Sud+1) (D(Sud−1) ) is sparse relative to
D(u+) (D(u−) ) in graph Gm,d−1. We use Km,d to denote
the set of all such pairs (S, u) in graph Gm,d.

Proofs of the following two lemmas can be found in the
full version.

Lemma 6. For any S ⊂ Gm,d, we have
∣∣{u ∈ Gm,d such

that (S, u) /∈ Km,d }
∣∣ ≤ 256d−1m|S |.

Lemma 7. For any given pair (S, u) ∈ Km,d where m ≥
12d, there exist at least md/2 pipe paths which all start at
u, end at different vertices and contain no vertex in S.

4.2 A Game on Gm,d and Strategies for Alice
Now we can define a game on Gm,d between two players.

Assume Alice holds a pipe path P in Gm,d. At the begin-
ning, she sends a pair (S, u) ∈ Km,d to Bob and tells him
that u is the start vertex of P and P ∩ S = ∅. Bob tries to
find the end vertex w of P through the following protocol.

In each round, Bob sends a vertex v ∈ Gm,d to Alice and
asks if it is in P . Alice answers according to the following
Rules: (1) If v /∈ P , then the answer is simply false. (2)
If v ∈ P and v = w, then the answer is true and Bob wins
the game. (3) If v ∈ P but v 6= w, then the subpath of P
which starts at u and ends at the successor of v is answered.
Bob only has lm,d = (m/256)d−1 chances. After all these
queries, he can ask Alice to show him P and check whether
she acts according to the Rules above.

For any graph Gm,d such that m ≥ 12d, we’ll construct
a strategy T [m, d] for Alice which consists of three parts:
Init(S, u), Query(v) and GetPaths(). At the beginning,
Alice calls Init(S, u) to initiate it. In each round, she uses
the output of Query(v) to answer. Finally, she chooses any
pipe path returned by GetPaths(), which is consistent with
all the answers before, and shows it to Bob.

After the first s ≤ lm,d queries, we use Us to denote the
set of all those paths output by Query(v) before and Hs to
denote the union of S and { vertex v | v is queried by Bob
before and Query(v) = false }.

Theorem 4. For any m ≥ 12d, our strategy T [m, d] has
the following 2 properties: (C1) After initiated by any pair
(S, u) ∈ Km,d, no matter how Bob queries, the output of
Query(v) is either false or a path that starts at u, contains
v and ends at the successor of v; (C2) After lm,d queries,
GetPaths() can output at least (md/8) pipe paths in Gm,d

which all start at u and end at different vertices. Each of
them contains all the paths in Ulm,d

and has no vertex in set
Hlm,d

. In another word, they are all consistent with Alice’s
answers before.

Theorem 4 shows that Alice can always employ strategy
T [m, d] to beat Bob. Our strategy T [m, d] for Alice is con-
structed inductively. For d = 1, strategy T [m, 1] is trivial
since we require set S to be empty. For d ≥ 2, to build
T [m, d], we assume strategy T [m,d − 1] has already been
constructed as m ≥ 12d > 12(d− 1). Furthermore, strategy
T [m, d − 1] can be employed to work on any layer of Gm,d

using the isomorphic mapping D.
During the game, T [m, d] always maintains a pipe path

Q ⊂ Gm,d. It starts at vertex u and grows away from layer

Algorithm T [m,d].Init(S, u)

1: set Q = uu+ and V = S
2: create a new strategy T [m, d− 1] on the layer ud + 1

of graph Gm,d and use T [ud + 1] to denote it
3: call T [ud + 1].Init(V ud+1, u+ )

Algorithm T [m,d].Query(v)

1: Assume Q = uv1 ... vk and t = vk
d

2: if v ∈ S then output false
3: else if v ∈ V then { v must be queried at some

time before } output the same answer
4: else if vd > t then output false
5: else if vd < t then

6: if v /∈ Q then output false
7: else output the subpath of Q that starts at u

and ends at the successor of v
8: else if |V t | < (cm,d − 1) then

9: call T [ t ].Query(v)
10: if the output is false then output false
11: else the output must be a path Q∗, output Q ∪Q∗

12: else { |V t | ≥ ( cm,d − 1) }
13: find the smallest l satisfies l > t and |V l | < cm,d

14: call T [ t ].GetPaths() to get a set R of pipe paths
in the layer t of graph Gm,d

15: find a pipe path Q∗ ∈ R, whose end w∗ satisfies
(G1). for any v ∈ V , D(w∗) 6= D(v)

(G2). V l is sparse relative to w∗[d← l] in layer l
16: delete T [ t ], create a new strategy T [m,d− 1] on

the layer l of Gm,d and use T [ l ] to denote it
17: set Q = Q ∪ Q∗ ∪ (w∗w∗[d← t + 1] ... w∗[d← l])

and call T [ l ].Init(V l, w∗[d← l] )
18: if v /∈ Q then output false
19: else output the subpath of Q which starts at u

and ends at the successor of v
20: set V = V ∪ {v}

Algorithm T [m,d].GetPaths()

1: Assume Q = uv1 ... vk and t = vk
d

2: find the smallest l such that l > t and |V l | < cm,d

3: call T [ t ].GetPaths() to get a set R of pipe paths
in the layer t of graph Gm,d

4: find a pipe path Q∗ ∈ R, whose end vertex w∗ satisfies
(G1). for any v ∈ V , D(w∗) 6= D(v)
(G2). V l is sparse relative to w∗[d← l] in layer l

5: set Q = Q ∪ Q∗ ∪ (w∗ w∗[d← t + 1] ... w∗[d← l] )
6: find a set R′ of pipe paths in the layer l of Gm,d with

different end vertices such that every pipe path in
R′ starts at w∗[d← l] and has no vertex in V l

7: for any pipe path Q′ ∈ R′ whose end vertex w′

satisfies that for any v ∈ V , D(w′) 6= D(v) do

8: for any l < i ≤ m do

output Q ∪ Q′ ∪ (w′ w′[d← l + 1] ... w′[d← i] )

Figure 2: Details of Strategy T [m,d]
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ud very slowly. If ud ≤ m/2, then Q will grow from the bo-
ttom up. Otherwise, it will grow from the top down. These
two cases are really similar, so only the one for ud ≤ m/2 is
described here. Details of strategy T [m, d] are presented in
figure 2. Here the constant cm,d ∈ R

+ is defined as cm,d =
lm,d−1 /16 = (m/256)d−2 /16. Proof of Theorem 4 can be
found in the full version.

4.3 A Lower Bound for DZP
Theorem 4 can be applied to get a lower bound for prob-

lem DZPd. For any pipe path P in Gm,d and n = 4m + 1,
a bounded function fP ∈ F [Nn,d] can be constructed. The
method can be found in the full version, which is straight
forward but tedious. It has the following 2 properties: (D1)
function fP has exactly one zero point. Once it is found,
the end vertex of P can be directly decided, thus any al-
gorithm for DZPd can be employed to help Bob find the
end vertex of P held by Alice. Assume at some time, the
algorithm for DZPd wants to evaluate fP (r), then (D2) at
most two queries to Alice are enough. If one of the answers
is true, then the game is over. Otherwise, fP (r) can be de-
cided. Theorem 4 shows that for any n = 4m + 1 such that
m ≥ 12d, 2Q′(n, d) ≥ lm,d . Thus

Q′(n, d) ≥ 0.5(⌊(n − 1)/210 ⌋)d−1

for any d ≥ 2 and n > 48d.

5. APPLICATION TO THE APPROXIMATE
FIXED POINT PROBLEM

In this section, we first define the approximate fixed point
problem [13] with respect to Lipschitz functions. Then three
bounds for it are proved, as corollaries of Theorem 2.

Definition 12. Map F : Ed = [0, 1]d → R
d satisfies a

Lipschitz condition with constant L if for any x, y ∈ Ed,
|F(x) − F(y) |∞ ≤ L |x − y |∞. We use LM,d to denote the

set of all those maps F : Ed → Ed such that F(x)− x is a
map satisfies a Lipschitz condition with constant M .

Brouwer’s fixed point theorem shows that any F ∈ LM,d

has a fixed point x∗ ∈ Ed which satisfies F(x∗) = x∗. The
approximate fixed point problem AFPM,d,m is defined as
follows: given a map F ∈ LM,d, find an approximate fixed
point x∗ ∈ Ed with error 2−m, which actually means that
|F(x∗)−x∗ |∞ ≤ 2−m. Similarly, F will be taken as an black
box to algorithms, which can only be accessed by map eval-
uations. We use Q (M, d, m) and T (M,d, m) to denote the
query complexity and time complexity of AFPM,d,m respec-
tively. For d = 2, [13] proves that Q (M, d, m) = Θ(2mM).
But for case d > 2, there is still a gap between their lower
bound and upper bound.

Theorem 5. For any d ≥ 2, 2mM > 192d3 and 2m > 4d

0.25 (⌊n2/211 ⌋)d−1 − 1 ≤ Q (M, d, m) ≤ 8nd−1

1

T (M,d, m) = O (d2(2m+1M )d−1)

where n1 = ⌈ 2mM ⌉ and n2 = ⌊ 2m−2M/d2 ⌋.

For any specific d, it gives matching bounds Θ((2mM)d−1)
for both complexities, thus settles an open problem in [13].

5.1 Two Upper Bounds for AFP
First we prove the two upper bounds for AFPM,d,m. Let
F ∈ LM,d be the input map of AFPM,d,m, then we can
construct f ∈ F [Ap,q] where pi = 0 and qi = n1, 1 ≤ i ≤ d.
For any r ∈ Ap,q, the value of f(r) is decided by F(x) where
x = r/n1. If | F(x)−x |∞ < 2−m, then f(r) = 0. Otherwise,
let i be the largest integer satisfies | Fi(x)− xi | ≥ 2−m and
set f(r) = sgn(Fi(x)−xi )ei. It’s not hard to check that the
Lipschitz property of F guarantees that f is both bounded
and direction-preserving. Hence, we can use any algorithm
for DZPd to compute a zero point r∗ of f and x∗ = r∗/n1

must be an approximate fixed point of F . Each time the
algorithm for DZPd queries f(r), we use one query on F
and O (d) time to compute f(r). Therefore, Q(M,d, m) ≤
Q′(n1 +1, d), T (M,d, m) ≤ Q′(n1 +1, d)O(d)+T ′(n1 +1, d)
Using Theorem 2, we get the upper bounds in Theorem 5.

5.2 A Lower Bound for AFP
For any d-cube C ⊂ Z

d which is centered at r̃, we define
set VC ⊂ R

d as [ r̃1, r̃1 + 1] × [ r̃2, r̃2 + 1] ... × [ r̃d, r̃d + 1].
For any map F : C → R

d, the Cartesian Interpolation

extends it to be a map F ′ from VC to R
d as follows.

Definition 13. For any r ∈ C, function wr : VC → [0, 1]

is defined as wr(x) =
∏d

i=1
(1− |xi − ri |), then

F ′(x)− x =
∑

r ∈C

wr(x) (F(r)− r ) ∀ x ∈ VC

It’s easy to check that for any x ∈ VC,
∑

r ∈C
wr(x) = 1.

Let c = M/(2d), l = ⌊c⌋, point p and q satisfy pi = 0
and qi = n2 + 2l for any 1 ≤ i ≤ d. For any bounded func-
tion f ∈ F [Nn2+1,d ], we construct a map F∗ ∈ LM,d in 4
steps. The proof of Lemma 8 below can be found in the full
version.

(E1) Construct a bounded function f ′ ∈ F [Ap,q] as: for any
r ∈ Ap,q satisfies l ≤ r ≤ l + n2, f ′(r) = f(r − l + 1).
Otherwise, let 1 ≤ i ≤ d be the largest integer such
that ri < l or ri > l + n2 and f ′(r) = sgn(l − ri)e

i.

(E2) Construct a map F on Ap,q as F(r) = r + cf ′(r).

(E3) Use the Cartesian Interpolation on each d-cube in
Ap,q. In this way, we extend F to be a map F ′ from
set [0, n2 + 2l ]d to R

d.

(E4) For any x ∈ Ed, F∗(x) = F ′((n2 + 2l)x)/(n2 + 2l).

Lemma 8. Map F∗ constructed above must satisfy F∗ ∈
LM,d. Let x∗ be an approximate fixed point of map F∗ with
error 2−m and C ⊂ Ap,q be any d-cube which satisfies that
(n2 + 2l)x∗ ∈ VC, then there must exist r∗ ∈ C such that
f ′(r∗) = 0 and f(r∗ − l + 1) = 0.

For any bounded function f ∈ F [Nn2+1,d], lemma above
shows that any algorithm for AFPM,d,m can be used to
compute a zero point of f and solve DZPd. We first use it
to find an approximate fixed point x∗ of F∗. Each time it
queries F∗(x), 2d queries on f are sufficient to decide the
value of F∗(x). Once we get x∗, 2d more queries on f are
enough to find a zero point of f , according to Lemma 8. As
2mM > 192 d3 and n2 + 1 > 48d, result in section 4 shows
that 0.5(⌊n2/210 ⌋)d−1 ≤ 2dQ(M, d, m)+2d. This gives us
the lower bound in Theorem 5.
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6. CONCLUSION AND REMARKS
In establishing the algorithmic complexity for the discrete

fixed point problem with the oracle function calls, we de-
velop a deep lower bound proof and a succinct algorithm of
an asymptotic matching upper bound. The powerfulness of
our approach allows us to close an exponential gap between
the upper bound and the lower bound for approximate fixed
point algorithms for the classic Brouwer fixed point prob-
lem, therefore, settles this problem. The novelty of our up-
per bound proof may shed new light in algorithm design for
other related problems, for example, the fixed point problem
for non-convex regions.

The celebrated fixed point theorem of Brouwer followed
from a concept of degree, which was also the main idea in
many of his other contributions in topology. The idea can be
traced back to the Kronecker Integral [22]. Brouwer derived
it from a discretrization of the metric space under consider-
ation, as in our definition of badness. Informally, it is the
number of “positively” oriented simplices minus the number
of “negatively” oriented simplices that maps into regions
that covers a given point in the image in the limit as the
simplices goes to infinitely small uniformly. Brouwer proved
that the value is a constant independent of the choices of
the “triangulation” of the domain space. In addition, he
showed that the value is invariant under homotopy, if cer-
tain conditions are satisfied. The concept of degree with
these properties can be applied to derive a series of fixed
point theorems. Each of them describes an interesting class
of function-domain pairs which guarantee the existence of
fixed point.

Degree in the two dimensional case can be simplified to
the winding number. If the winding number of a function
f around the boundary of its domain is nonzero, it must
have a fixed point. Moreover, this function-domain prop-
erty defined by winding number is dividable. That is, after
dividing the domain into two parts, this property still holds
in one of them. Therefore, the existence of fixed point is
ensured by its existence in the limit. Employing this idea,
Hirsch, Papadimitriou and Vavasis got their matching al-
gorithm bound for the two dimensional case. To generalize
the winding number to higher dimensions, however, through
the boundary conditions, is not easy and has been relied on
the discretrization process of Brouwer’s definition of degree,
which is not suitable for a divide-&-conquer approach to
narrow down the existence of fixed points. On the other
hand, our discrete fixed point theorem describes a new class
of function-domain pairs which is dividable for all dimen-
sions. It allows us to obtain the matching algorithm bound
for arbitrary dimensions.

Our oracle model for function evaluation is quite strong.
In a more general approach, one may assume the function
is presented as a Turing machine. It becomes undecidable
if the domain contains all the integers since one may eas-
ily reduce the halting problem to it. Papadimitriou [29]
and Ko [21] studied interesting properties of the fixed point
problem for some interesting class of function-domain pairs,
with function evaluations done by Turing machines.

Though our algorithmic matching bound concludes the
study of the oracle model, it still leaves room for better algo-
rithms to be designed for specific classes of functions. There
have been extensive literatures in algorithms and complex-
ity for finding fixed points of various classes of functions [36,
33, 34, 35, 37, 38, 42], by Sikorski and his co-authors, as well

as others. The fixed point problem also has a strong connec-
tion with the economic market equilibrium problem which
has been recently studied intensively on its algorithmic com-
plexity issues [5, 6, 8, 9, 10, 11, 17, 18, 19]. Our results may
contribute new ideas to such studies.
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