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Abstract This paper introduces a class of games, called unit-sphere games, in which
strategies are real vectors with unit 2-norms (or, on a unit-sphere). As a result, they
should no longer be interpreted as probability distributions over actions, but rather
be thought of as allocations of one unit of resource to actions and the payoff effect
on each action is proportional to the square root of the amount of resource allocated
to that action. The new definition generates a number of interesting consequences.
We first characterize the sufficient and necessary condition under which a two-player
unit-sphere game has a Nash equilibrium. The characterization reduces solving a
unit-sphere game to finding all eigenvalues and eigenvectors of the product matrix
of individual payoff matrices. For any unit-sphere game with non-negative payoff
matrices, there always exists a unique Nash equilibrium; furthermore, the unique
equilibrium is efficiently reachable via Cournot adjustment. In addition, we show that
any equilibrium in positive unit-sphere games corresponds to approximate equilibria
in the corresponding normal-form games. Analogous but weaker results are obtained
in n-player unit-sphere games.
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1 Introduction

Consider the following two games.

Example 1 ProtectingManhattan.Twopolice stations try to protectManhattan,which
can be visualized as a rectangle, from a terrorist attack. Station A is responsible for
protecting all the streets, i.e., the horizontal paths across the rectangle; while station
B is responsible for protecting all the avenues, i.e., the vertical paths. Each police
station has one unit of police force, distributes its force among its paths, and derives
a positive utility uA

i j (resp. u
B
i j ) from successfully protecting each subway station Si j ,

namely, the intersections of street i and avenue j and 0 utility when failing to protect
it. The probability of successfully protecting a subway station is

√
aib j , where ai and

b j are the amount of police force station A and B allocates to street i and avenue j
respectively.

Example 2 Sponsored search for complementary queries.A user submits a query, say
“Yellow Stone national park”, to a travel website, hoping to book a hotel and a flight.
The query triggers interests from two complementary advertisement agencies: one has
a collection of hotel ads and the other airline ads. The website allocates space for two
listings of advertisements, one for hotel and the other for airline.

Each agency derives positive utility uA
i j (resp. u

B
i j ) if the user successfully clicks

a pair of ads (hotel i , airline j). Note that agency A’s utility may depend on j since
the payment rule may involve both i and j . To achieve a click through rate (CTR, the
probability that an ad is clicked) of ai for hotel ad i , agency A needs to pay CAa2i ,
where CA is some characteristic constant (e.g., the quality score) with respect to A;
similarly, agency B must pay CBb2j to get a CTR of b j . The rationality of the cost

model is further justified in the footnote.1 The two agencies seek to maximize their
utilities with fixed amounts of budget, XA and XB respectively.

Formalizing the problem above, we have the following game theoretical model:
agencyA picks a CTR vector a, where ai is the CTR that agencyAwants to achieve for
hotel ad i , subject to the total cost equal to the budget of the agency, i.e.,CA‖a‖22 = XA,
where CA and XA are constants. Similarly, agency B chooses a vector b of expected
CTR of airline ads subject to its own budget constraint. Agency A (resp. B) seeks to
maximize its utility, aTU Ab (resp. aTU Bb), where U A = {uA

i j } and UB = {uB
i j }.

The games abovemay somewhat resemble theBlotto game (Roberson 2006), where
players wish to jointly ensure a set of outcomes and the probability that an outcome
is ensured is a non-linear function in the amount of resource each agent spends on the
corresponding action. As we shall see, both examples are instances of positive unit-
sphere games, a class of games that possess unique, learnable, pure Nash equilibria.

1 According to certain existing empirical evaluations (see Agarwal et al. 2011), the CTR of an ad link is
concave in payment, where the degree of concavity depends on the keyword length. In our example, the
CTR is proportional to the square root of the money spent, which is one special and commonly used concave
function. In fact, it is standard to assume that the cost of a certain amount of “effort” e (e.g., CTR in our
example) is proportional to e2. See Holmstrom and Milgrom (1987), Hauser et al. (1994), Lafontaine and
Slade (1996) and Hu et al. (2015).

123

Author's personal copy



Unit-sphere games

2 Unit-sphere games

Most of the paper deals with 2-player unit-sphere games. In Sect. 6, this definition is
extended to accommodate any number of players.

Definition 1 A two-player unit-sphere game (USG) is defined by twomatrices A×B,
where

• A is an m × n payoff matrix for player 1,
• B is an n × m payoff matrix for player 2.

A unit-sphere strategy x for player 1 is a column vector of real numbers such that
x ∈ R

m, ‖x‖2 = 1, while a strategy y for player 2 is a column vector of real numbers
such that y ∈ R

n, ‖y‖2 = 1. Given a strategy profile (x, y), the utility u1(x, y) of
player 1 is xT Ay while the utility u2(x, y) of player 2 is yT Bx . Other game-theoretical
notions, such as best response and Nash equilibrium, follow standard definitions.

Mathematically, the above definition is a 2-player normal-form game, except for
the definition of strategy, where the restriction of unit L1-norm is now replaced by
unit L2-norm. In other words, each unit-sphere strategy is a point on a unit sphere,
rather than a probability distribution. It implies that both x and y can be negative on
some dimensions, as long as they are on a unit sphere.

It is important to note that a USG can just be thought of as a standard normal-form
game, where each pure strategy corresponds to a unit-sphere strategy and there are
infinite many such strategies. From this perspective, the characterization theorems
(Theorems 3.1, 3.3, 3.4) are sufficient and necessary conditions for a new class of
normal-form games to have (unique) pure Nash equilibria.

In this paper,wedonot consider randomizedunit-sphere strategies, for the following
reasons. First of all, a randomization over unit-sphere strategies is no longer a unit-
sphere strategy, thus not well-defined under our new definition. Secondly, it is not
hard to see that such a randomized strategy has a L2-norm less than 1 and is always
utility-dominated by some unit-sphere strategy. Last but not least, we are interested in
comparing unit-sphere strategy (which is somewhatmixed) to standardmixed strategy,
in terms of existence and computation efficiency of Nash equilibrium. Adding another
level of mixture makes the comparison less interesting.

One can also view players in a USG as risk averse agents whose payoffs, when
facing a lottery outcome, are not linear expectations of their utilities on deterministic
outcomes in the lottery, but concave expectations (in our case, a square-root function).
In general, games with concave utility agents possess a mixed Nash equilibrium but it
is in general computationally hard to find such an equilibrium (Fiat and Papadimitriou
2010, Theorem 1). Our model and results differ from Fiat and Papadimitriou in that
we allow for negative strategies, i.e., x and y can have negative entries, thus the whole
strategy set is not necessarily convex, precluding a Nash style proof. Furthermore,
when restricting to positive payoff matrices, we show that a unique Nash equilibrium
exists and easy to compute. Readers are referred to Fiat and Papadimitriou (2010) and
the references therein for an introduction on non-linear expectations.

Finally, in our definition, adding a positive constant to each payoff function no
longer yields an equivalent USG. Intuitively, when adding a large constant to a player’s
payoff function, the player has more incentive to distribute her resource more evenly
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among actions. So, it loses generality to restrictions on positive payoff matrices. On
the other hand, USGs are scale-invariant in the sense that multiplying a constant to a
player’s payoff function yields an equivalent USG.
Our results For 2-player USGs, we show:

• The necessary and sufficient condition for a USG to have a Nash equilibrium
(Theorem 3.1). A USG with payoff matrices A and B has an NE if and only if the
product of payoff matrices, AB, has a nonnegative eigenvalue.

• Closed forms of a pair of NEs for any positive USG (Theorems 3.2, 3.3).
• Uniqueness of NE in positive USGs (Theorem 3.4). As a result, the two NEs we
give explicitly in Theorem 3.2 are identical (Corollary 1).

• Learnability of the unique NE in repeated positive USGs via Cournot adjustments
(Theorem 4.1). The error decreases exponentially fast when both players play their
best responses in each round.

• AmultiplicativeO
(√

max(m, n)
)
-approximation formixed strategyNE in normal

form games via USGs (Theorem 5.1), where m and n are the numbers of pure
strategies for the players.

We further generalize our results tom-player positive USGs.We show the existence of
NE inmultiplayer positive USGs (Theorem 6.1), and discuss subclasses ofmultiplayer
positive USGs, symmetric positive USGs and Markov positive USGs. We present an
algorithm to find a symmetric NE for any symmetric positive USG with even number
of players, and show that a unique NE exists in any Markov positive USG, which can
be efficiently reached via Cournot adjustments (Theorems 6.2, 6.3).

3 Nash equilibria in USGs

In this section, we characterize the sufficient and necessary conditions for Nash equi-
librium (NE) to exist in USGs. In particular, equilibrium exists in all the USGs with
positive payoff matrices. It is unique and efficiently computable, via a well-known
learning process known as Cournot adjustment.

3.1 Structure of NE in USGs

Let us now consider a USG A× B. It is easy to see that the utilities of the two players
under strategy profile (x, y) are

u1 = xT Ay = ‖Ay‖2 cosα,

u2 = yT Bx = ‖Bx‖2 cosβ,

respectively, where α denotes the angle between x and Ay and β denotes the angle
between y and Bx .2 Since both x and y are on the unit-sphere, a strategy profile (x, y)
forms an NE if and only if

2 In cases where Ay = 0 (resp. Bx = 0), one may set α (resp. β) arbitrarily.

123

Author's personal copy



Unit-sphere games

x = argmax
x ′ x ′T Ay ⇐⇒ α = 0 or ‖Ay‖ = 0 ⇐⇒ λx = Ay,

and

y = argmax
y′ y′T Bx ⇐⇒ β = 0 or ‖Bx‖ = 0 ⇐⇒ μy = Bx,

where λ = ‖Ay‖2, μ = ‖Bx‖2.
By this observation, we derive a necessary condition of existence of NE for two-

player USGs.

Lemma 1 For a USG A × B. If AB and BA do not share a nonnegative eigenvalue,
it does not have any NE.

Proof We show that an NE exists only if AB and BA share a nonnegative eigenvalue.
Consider payoff matrices A and B. For a NE profile (x, y),

Bλx = BAy ⇒ λμy = BAy,

Aλy = ABx ⇒ λμx = ABx .

In other words, x is an eigenvector of AB with eigenvalue λμ, and y is an eigenvector
of BA with eigenvalue λμ. �	

It is known that AB and BA have the same set of eigenvalues. The following
theorem characterizes the sufficient and necessary condition for an NE to exist in any
two-player USG.

Theorem 3.1 For a USG A × B, it has an NE if and only if AB has a nonnegative
eigenvalue.

Proof The only-if direction follows from Lemma 1. We now prove the if direction.
Assume AB has a nonnegative eigenvalue λ with eigenvector x such that ‖x‖2 = 1.

• If Bx 
= 0, let y = Bx
‖Bx‖2 . (x, y) is an NE for the game, because λ

‖Bx‖2 x = Ay,
and ‖Bx‖2y = Bx .

• If Bx = 0, y 
= 0 can be chosen such that either Ay = kx for some k > 0, when
det A 
= 0, or Ay = 0, when det A = 0. Also we assume ‖y‖2 = 1. Again (x, y)
is an NE for the game, because kx = Ay for some k ≥ 0, and the utility of player
2, yT Bx , is always 0.

�	

As stated in Theorem 3.1, to solve a USG A×B, i.e., to find all NEs or to ensure that
no NE exists, it is equivalent to calculate all eigenvalues of AB and the corresponding
eigenvectors. SolvingUSGs is reduced to the eigenvalue problem, one of themostwell-
studied problems in linear algebra. Refer to Sorensen (2002) for efficient algorithms.
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3.2 Positive USGs

We now focus on a general, intuitive class of USGs where there always exists a unique
NE.

Definition 2 AUSG A×B ispositive if A, B > 0, and any strategy satisfies x, y ≥ 03.

Positive USGs (PUSGs) have many interesting properties that general USGs do not
necessarily possess. Before we state these properties, we need the following lemma
from linear algebra.

Lemma 2 (Perron–Frobenius Berman and Plemmons 1979) For any square matrix
A > 0, we have

• A has an eigenvalue λ > 0. Moreover, for any other eigenvalue μ of A, |λ| > |μ|.
We call λ the Perron–Frobenius value, or spectral radius of A, denoted as λ =
ρ(A).

• The eigenvalue λ has algebraic and geometric multiplicity one. There is an eigen-
vector x > 0 of A with an eigenvalue of λ. Moreover, the only positive eigenvectors
of A have the form kx for some k > 0, and all positive eigenvectors have corre-
sponding eigenvalue λ.

Lemma 3 For payoff matrices A > 0, B > 0, AB and BA share at least one positive
eigenvalue, which is their spectral radius.

Proof Clearly, AB and BA are square matrices. Let x > 0 be an eigenvector of AB
with eigenvalue λ = ρ(AB) > 0, whose existence is guaranteed by Lemma 2. Note
that

BA(Bx) = B(ABx) = λ(Bx).

Namely, Bx is an eigenvector of BA with eigenvalue λ. It follows that AB and BA
share the same positive eigenvalue λ > 0. Now suppose ρ(BA) > λ. By the same
argument, we can see that ρ(BA) is an eigenvalue of AB, a contradiction. �	

With Lemma 3, we are now able to derive a pair of NEs for all PUSGs.

Theorem 3.2 There exists two NEs (x1, y1), (x2, y2) for any PUSG, where

• x1 > 0 is the unit eigenvector of AB with eigenvalue λ = ρ(AB).
• y1 = Bx1‖Bx1‖2 . where the utilities of the players obtained from (x1, y1) are

(
λ

‖Bx1‖2 , ‖Bx1‖2
)
.

• y2 > 0 is the unit eigenvector of BA with eigenvalue λ = ρ(BA).4

• x2 = Ay2
‖Ay2‖2 . where the utilities of the players obtained from (x2, y2) are

(
‖Ay2‖2, λ

‖Ay2‖2
)
.

3 We say a matrix A > 0 if Ai j > 0 for all (i, j), and a vector x ≥ 0 if xi ≥ 0 for all i .
4 Recall that ρ(AB) = ρ(BA).
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Proof We prove for the case of (x1, y1). The case of (x2, y2) is symmetric. By
Lemma 3, it is always feasible to pick x1 as stated in the theorem. For player 1,

u1(x
′, y1) = x ′T Ay1 = 1

‖Bx1‖2 x
′T ABx1

= λ

‖Bx1‖2 x
′T x1 ≤ λ

‖Bx1‖2 x
T
1 x1

= λ

‖Bx1‖2 .

For player 2,

u2(x1, y
′) = y′T Bx1 = y′T ‖Bx1‖2y1

≤ ‖Bx1‖2yT1 y1 = ‖Bx1‖2.

In other words, neither player has profitable deviation in (x1, y1). �	
Theorem 3.2 derives a pair of NEs for any PUSG. One might wonder whether the

two NEs are identical? This is indeed the case. We dedicate Sect. 3.3 to this result.
In fact, there is a symmetric NE in a PUSG if the payoff matrices satisfy a certain

additional condition. Before we state these conditions, we need the following technical
lemma.

Lemma 4 For square matrices A > 0, B > 0 such that AB = BA, A and B share
the same one-dimensional eigenspace of spectral radius.

Proof Let λ = ρ(A), x > 0 be an eigenvector of A whose corresponding eigenvalue
is λ, then

A(Bx) = B(Ax) = λ(Bx),

namely Bx is an eigenvector of Awhose eigenvalue is λ. By Lemma 2, the eigenspace
of λ is one-dimensional, which implies that Bx = μx for some μ. Again by
Lemma 2, x belongs to the eigenspace of the spectral radius of B, or equivalently
μ = ρ(B). �	

If AB = BA, the corresponding PUSG has a symmetric NE.

Theorem 3.3 There is a symmetric NE (x, x) for any PUSGwith square payoff matri-
ces A × B such that AB = BA. The NE utilities are (ρ(A), ρ(B)).

Proof Let x > 0 be the unit eigenvector of Awhose corresponding eigenvalue is ρ(A)

(and therefore the unit eigenvector of B whose eigenvalue is ρ(B)). For player 1,

u1(x
′, x) = x ′T Ax = ρ(A)x ′T x

≤ ρ(A)xT x = ρ(A).
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For player 2,

u2(x
′, x) = x ′T Bx = ρ(B)x ′T x

≤ ρ(B)xT x = ρ(B).

Neither player has a profitable deviation in (x, x). �	

3.3 Uniqueness of NE in PUSGs

As mentioned, one of the most appealing properties of all PUSGs is that they have
unique NE.

Theorem 3.4 Any PUSG has an unique NE.

Proof Let (x, y) be an arbitrary NE of PUSG with payoff matrices A and B, whose
existence has been established in Theorem 3.2. By Lemma 1,

∃λ > 0, μ > 0, s.t. ABx = λx, BAy = μy

We will show that λ is the spectral radius of AB, and x is the corresponding positive
unit eigenvector. The case of y is symmetric.

Assume λ 
= ρ(AB). By Lemma 2, there must be some i ∈ [n] such that xi = 0,
since there are no other positive eigenvectors beside those of the spectral radius. Note
that λ > 0, AB > 0.

0 = λxi = (ABx)i =
∑

j

(AB)i j x j

≥ min(AB)i j‖x‖1 > 0,

a contradiction. Therefore λ = ρ(AB). Again by Lemma 2, the eigenspace of λ is
one-dimensional. Namely x is the unique positive eigenvector of λ such that ‖x‖2 = 1.

The same argument works for y. To conclude, we prove that (x, y) is the unique
NE. �	

Note that if we restrict strategies to be strictly positive, Theorem 3.4 then follows
directly as a corollary of Lemma 2. When taking nonnegative strategies into consid-
eration, with the additional argument above, we are still able to obtain the uniqueness
result.

Corollary 1 Any PUSG has an unique NE, which has the form stated in Theorem 3.2.
Moreover, the two symmetric NEs in Theorem 3.2 are identical.

Next, we show the unique NE of a PUSG can be efficiently found via a natural
learning process.
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4 Solving PUSGs via Cournot adjustments

In this section, we show that the unique NE of any PUSG can be resulted when both
players follow a well-known learning process called Cournot adjustments . This is
remarkable property since it states that players can learn to play NE even without any
information of each other’s payoff matrix.

4.1 Cournot adjustments

Define Cournot adjustments as follows,

1. In the first round, each player i plays any positive strategy s0i > 0.
2. In round t , each player i observes st−i , the strategy of player −i .
3. In round t + 1, each player i plays her best response against st−i . Namely

st+1
i = Ai st−i

‖Ai st−i‖2
.

4. Iterate until no player updates her strategy.

Cournot adjustments define a natural protocol for players to learn to play a game
over time. It is appealing when players do not know others’ payoff matrices and for
whatever reason that the players cannot perform equilibrium computation upfront. It
is known that, for any standard games, a carefully designed better response dynamics
can converge to some mixed-strategy Nash equilibrium (aka. Nash’s proof), but may
take exponential number of rounds. In the following, we show that this procedure
thoroughly exploits the properties of PUSGs and finds efficiently the unique NE for
any PUSG in logarithmic number of rounds with respect to the initial error.

4.2 Convergence of Cournot adjustments in PUSGs

To formally state and prove the convergence result, we need the following proposition
from numerical analysis.

Lemma 5 (Convergence of power iterationMises and Pollaczek-Geiringer 1929) For
any positive square matrix A whose eigenvalue with the largest modulus is λ and the
corresponding eigenspace is E, let x0 be an arbitrary unit vector such that x is not
orthogonal to E. Let

xt = Axt−1

‖Axt−1‖2 .

It is guaranteed that xt converges to x∗, where Ax∗ = λx∗. Moreover,

∀p ∈ Z
+ ∪ {∞}, ∃r ∈ (0, 1), c ∈ R

+, s.t.
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‖xt − x∗‖p ≤ cr t .

We now state a convergence result of Cournot adjustments in PUSGs.

Theorem 4.1 If both players follow Cournot adjustments, the strategy sequence
(xt , yt ) linearly converges to the unique NE of the PUSG, where the game matri-
ces A > 0, B > 05.

Proof Let A and B be the payoff matrices. We can explicitly derive the strategy
expressions of Cournot adjustments in round t as follows,

xt = Ayt−1

‖Ayt−1‖2 , yt = Bxt−1

‖Bxt−1‖2 .

It follows that

x2k = (AB)k x0

‖(AB)k x0‖2 , y2k = (BA)k y0

‖(BA)k y0‖2 , ∀k ∈ N.

Since we choose x0 > 0, y0 > 0, by Lemma 2, it is impossible that x0 (resp. y0) is
orthogonal to the eigenspace of the spectral radius of AB (resp. BA). By Lemma 5, as
k grows, x2k converges to the positive unit eigenvector of AB exponentially fast, and
y2k converges to that of BA. Therefore (x2k, y2k) converges to the unique PSNE expo-
nentially fast. As (x2k, y2k) converges, (x2k+1, y2k+1) converges as well, concluding
the proof. �	

5 Approximating mixed-strategy equilibrium in standard games via
USGs

It is known that computing a mixed-strategy Nash equilibrium (MSNE) in standard
two-player games is PPAD-complete (Chen and Deng 2006). In this section, we show
that our understanding of USG can help us to find an approximate MSNE of any
standard games.

5.1 Approximation scheme

Consider any PUSG. By theorems we have derived so far, one can easily compute the
unique NE (x, y) of the PUSG. We now normalize x and y to be x ′ and y′, so that
‖x ′‖1 = ‖y′‖1 = 1. Our main finding in this section is that (x ′, y′) is a multiplicative
O(

√
max(m, n))-approximate MSNE6 for the underlying standard two-player game.

Call this approximation scheme the simple approximate scheme.

5 Linear convergence is another way of saying the error diminishes exponentially fast in the number of
iterations.
6 A multiplicative k-approximate MSNE denotes a strategy profile where no player can improve her utility
by k times via deviation.
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5.2 Approximation via simple approximate scheme

Once again, before we state and prove our result, we need the following technical
lemma.

Lemma 6

min
x∈Rn , ‖x‖1=1

{
‖x‖22
‖x‖∞

}

= 2√
n + 1

.

Proof Let t = ‖x‖∞ ≥ 1
n . We have,

‖x‖22
‖x‖∞

≥
t2 + (n − 1)

(
1−t
n−1

)2

t

= n

n − 1
t − 2

n − 1
+ 1

t (n − 1)

≥ 2√
n + 1

.

�	
We are now ready to state our result of the section.

Theorem 5.1 For any standard two-player game with payoff matrices A and B, the
simple approximation scheme yields a multiplicative O

(√
max(m, n)

)
-approximate

MSNE, where m is the number of rows of A, and n is the number of rows of B.

Proof Let (x, y) be the NE of the induced PUSG over payoff matrices A × B, and
(x ′, y′) be the normalized vectors, as stated in the simple scheme. Since (x, y) is an
NE in the PUSG, ∃λ, μ, s.t.

Ay′ = λx ′, Bx ′ = μy′.

Consider player one’s payoff with or without deviation.
Without deviation, she gets

u1(x
′, y′) = x ′T Ay′ = λ‖x ′‖22.

By deviation, she gets

max‖x1‖1=1
u1(x1, y

′) = max‖x1‖1=1
xT1 Ay′

= λ max‖x1‖1=1
xT1 x

′ = λ‖x ′‖∞.
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By Lemma 6,

min
(x ′,y′)

u1(x ′, y′)
max‖x1‖1=1 u1(x1, y′)

= min
(x ′,y′)

‖x ′‖22
‖x ′‖∞

≥ 1√
m

+ m − 2
√
m + 1√

m(m − 1)

= �

(
1√
m

)
.

Symmetrically, for player two, the approximate factor becomes �
(

1√
n

)
. �	

6 Multiplayer PUSGs

In this section, we extend our discussion to the general m-player case.

Definition 3 An m-player PUSG is defined as (n1, . . . , nm, u1, . . . , um), where ni
is the size of action set of player i , ui the utility function, where ui (x1, . . . , xm) is
multilinear in x1, . . . , xm , and for all x1 ≥ 0, . . . , xm ≥ 0, we have ui (x1, . . . , xm) >

0.

An equivalent formulation of PUSGswill involve positive tensors. That is, Ak is the
payoff tensor for player k, such thatuk(x1, . . . , xm) = ∑

i1,...,im Ak
i1,...,im

x1,i1 . . . xm,im ,

and Ak
i1,...,im

> 0 for all i1, . . . , im .Wewill further exploit this notation in the following
detailed discussion.

6.1 Existence of NE in multiplayer PUSGs

Lemma 7 (Brouwer’s fixed point theorem) For any n ∈ Z
+, � ⊆ R

n which is
compact and convex, f : � → � which is continuous, there is some x∗ ∈ � such
that f (x∗) = x∗.

Theorem 6.1 There exists an NE for any m-player PUSG (A1, . . . , Am).

The proof resembles that of the existence of MSNE in normal form games.

Proof Let

si =
∑

j≤i

n j ,R
sm ⊃ �

= {x = (x1, . . . , xm) ∈ R
sm |xi ∈ R

ni , ‖xi‖1 = 1, xi, j ≥ 0, ∀i ∈ [m], j ∈ [ni ]}.

For all x = (x1, . . . , xm) ∈ �,

f (x) =
(

A1x2x3 . . . xm
‖A1x2x3 . . . xm‖1 ,

A2x1x3 . . . xm
‖A2x1x3 . . . xm‖1 , . . . ,

Amx1x2 . . . xm−1

‖Amx1x2 . . . xm−1‖1
)

.
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It is easy to verify that � and f satisfy the conditions in Lemma 7. Therefore there
is some x∗ = (x∗

1 , . . . , x
∗
m) satisfying f (x∗) = x∗, which implies that there is some

λi such that Ai x∗
1 . . . x∗

m = λi x∗
i for all i . So

(
x∗
1‖x∗
1‖2 , . . . ,

x∗
m‖x∗
m‖2

)
is an MSNE of the

PUSG. �	

6.2 Subclasses of multiplayer PUSGs

In this subsection, we investigate several subclasses of multiplayer PUSGs that are
easy to solve.

6.2.1 Symmetric PUSGs with even number of players

We first present an algorithm that solvesm-player symmetric PUSGs when m is even.

Definition 4 An m-player symmetric PUSG is a PUSG where Ai = A j for all i, j ∈
[m], and Ak

i1,...,im
= Ak

σ(i1),...,σ (im ) for all k ∈ [m] and σ ∈ Sn , where Sn is the
symmetric group over [n] and n is the number of actions of each player.

The method used to find NE in symmetric PUSG is called SS-HOPM. SS-HOPM
outputs a symmetric NEwith a particular payoff which equals the largest Z-eigenvalue
of the payoff tensor. (λ ∈ R is a Z-eigenvalue of m-th order n-dimensional symmetric
tensor A if there is some x ∈ R

n , Axm−1 = λx and ‖x‖2 = 1.) The linear convergence
of SS-HOPM has been originally established in Kolda and Mayo (2011) and revised
in Chang et al. (2013).

The algorithm is as follows,

1. Choose x0 > 0, and the shift constant α = ⌈
m

∑
i1,...,im Ai1,...,im

⌉
.

2. Let yt+1 = A(xt )m−1 + αxt .
3. Compute

xt+1 = yt+1

‖yt+1‖2 , λt+1 = A(xt+1)m .

As shown in Chang et al. (2013), xt converges to an symmetric NE x∗ while λt

converges to the payoff of each player under x∗.

6.2.2 Markov PUSGs via Cournot adjustments

Generalizing our uniqueness result for the two-player case using the techniques in Li
and Ng (2014), we show that a unique PSNE exists in anyMarkov PUSG, which can
be efficiently reached via Cournot adjustments.

Definition 5 An Markov PUSG (A1, . . . , Am) is a PUSG such that

∑

ik

Ak
i1,...,im = ck
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for all k ∈ [m], i1 ∈ [n1], . . . , ik−1 ∈ [nk−1], ik+1 ∈ [nk+1], . . . , im ∈ [nm] and a
constant ck .

In other words, Markov PUSG is a subset of PUSG such that, fixing any other
players’ strategy profile, the sum of player k’s utility over all his/her actions is a
constant, for any k. Since every Markov PUSG can be scaled so that for all k, ck = 1,
it is without loss of generality to consider games with ck = 1 for all k.

Lemma 8 For nonnegative x1, . . . , xm such that ‖xi‖1 = 1, we have ‖Akx1 . . .

xk−1xk+1 . . . xn‖1 = 1 for all k ∈ [m].

Proof

‖Akx1 . . . xk−1xk+1 . . . xn‖1
=

∑

ik

∑

i1,...,ik−1,ik+1,...,im

Ak
i1,...,im x1,i1 . . . xk−1,ik−1xk+1,ik+1 . . . xm,im

=
∑

i1,...,ik−1,ik+1,...,im

∑

ik

Ak
i1,...,im x1,i1 . . . xk−1,ik−1xk+1,ik+1 . . . xm,im

=
∑

i1,...,ik−1,ik+1,...,im

x1,i1 . . . xk−1,ik−1xk+1,ik+1 . . . xm,im

= 1

�	

Lemma 9 Let � be as defined above, f : � → � be such that for v ∈ �,

f (v)k = Akv1 . . . vk−1vk+1 . . . vm .

For x = (x1, . . . , xm) ∈ �, y = (y1, . . . , ym) ∈ �,

‖ f (x)k − f (y)k‖1 ≤ (1 − δk)

⎛

⎝
∑

i∈[m], i 
=k

‖xi − yi‖1
⎞

⎠ ,

where

δk = min
V⊆[nk ]

⎡

⎣ min
i1,...,ik−1,ik+1,...,im

∑

ik∈V
Ak
i1,...,im + min

i1,...,ik−1,ik+1,...,im

∑

ik∈V ′
Ak
i1,...,im

⎤

⎦ ,

and V ′ = [nk] \ V .

123

Author's personal copy



Unit-sphere games

Proof

∑

ik∈Vk
( f (x)k,ik − f (y)k,ik )

=
∑

ik∈Vk

∑

i1,...,ik−1,ik+1,...,im

Ai1,...,im (x1,i1 . . . , xk−1,ik−1 , xk+1,ik+1 , . . . , xm,im

− y1,i1 . . . , yk−1,ik−1 , yk+1,ik+1 , . . . , ym,im )

=
∑

ik∈Vk

∑

i1,...,ik−1,ik+1,...,im

Ai1,...,im [(x1,i1 − y1,i1)x2,y2 . . . , xm,im

+ y1,i1(x2,i2 − y2,i2)x3,i3 . . . xm,im + · · · + y1,i1 . . . ym−1,im−1(xm,im − ym,im )].

Let Vk ⊆ [nk] be the largest set such that ∀ik ∈ Vk , f (x)k,ik > f (y)k,ik , V1 ⊆ [n1] the
largest set such that ∀i1 ∈ V1, x1,i1 > y1,i1 . Note that by Lemma 8, ‖xk‖1 = ‖yk‖1 =
1, and hence

∑
ik xk,ik − yk,ik = 0 for all k ∈ [m]. We then have

∑

i1,...,ik−1,ik+1,...,im

∑

ik∈Vk
Ai1,...,im (x1,i1 − y1,i1 )y2,i2 . . . , ym,im

=
∑

i1∈V1

∑

i2,...,ik−1,ik+1,...,im

∑

ik∈Vk
Ai1,...,im (x1,i1 − y1,i1 )y2,i2 . . . , ym,im

+
∑

i1 /∈V1

∑

i2,...,ik−1,ik+1,...,im

∑

ik∈Vk
Ai1,...,im (x1,i1 − y1,i1 )y2,i2 . . . , ym,im

≤
∑

i1∈V1

∑

i2,...,ik−1,ik+1,...,im

⎛

⎝ max
j1∈V1, j2,..., jm

∑

jk∈Vk
A j1,..., jm

⎞

⎠ (x1,i1 − y1,i1 )y2,i2 . . . , ym,im

−
∑

i1 /∈V1

∑

i2,...,ik−1,ik+1,...,im

⎛

⎝ min
j1∈V1, j2,..., jm

∑

jk∈Vk
A j1,..., jm

⎞

⎠ (y1,i1 − x1,i1 )y2,i2 . . . , ym,im

=
⎛

⎝ max
j1∈V1, j2,..., jm

∑

jk∈Vk
A j1,... jm − min

j1∈V1, j2,..., jm
∑

jk∈Vk
A j1,..., jm

⎞

⎠

×
∑

i1 /∈V1

∑

i2,...,ik−1,ik+1,...,im

(y1,i1 − x1,i1 )y2,i2 . . . yk−1,ik−1 yk+1,ik+1 . . . ym,im

≤
⎛

⎝1 − min
j1,..., jm

∑

jk /∈Vk
A j1,..., jm − min

j1,..., jm

∑

jk∈Vk
A j1,..., jm

⎞

⎠
∑

i1 /∈V1
(y1,i1 − x1,i1 )

≤ 1

2
(1 − δk)‖x1 − y1‖1.
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We therefore get

‖ f (x)k − f (y)k‖1 = 2
∑

ik∈Vk
( f (x)k,ik − f (y)k,ik )

≤ 2
∑

i 
=k

[
1

2
(1 − δk)‖xi − yi‖1

]

= (1 − δk)

⎛

⎝
∑

i 
=k

‖xi − yi‖1
⎞

⎠ .

�	
Theorem 6.2 There exists an unique NE in any Markov PUSG where δk > m−2

m−1 for
all k.

Proof Assume there are two distinct NE in an m-player game (A1, . . . , Am), x0 and
y0. Let x = x0‖x0‖1 , y = y0

‖y0‖1 . By Lemma 9,

‖x − y‖1 =
∑

k

‖xk − yk‖1

=
∑

k

‖ f (x)k − f (y)k‖1

≤
∑

k

∑

i 
=k

(1 − δk) (‖xi − yi‖1)

<
∑

i∈[m]
(m − 1)

(
1 − m − 2

m − 1

)
(‖xi − yi‖1)

= ‖x − y‖1,

an contradiction.

Theorem 6.3 Cournot adjustments lead to the unique NE in anyMarkov PUSGwhere
δk > m−2

m−1 for all k.

Proof For simplicity, we denote strategies by vectors whose L1-norm are scaled to 1 in
the proof. Consider a procedure where player k starts by playing x0k = ( 1

nk
, . . . , 1

nk
).

Let x∗ be the unique PSNE of the game, guaranteed to exist by Theorem 6.2. Let
ε0 = maxi∈[m] ‖x0i − x∗

i ‖1, δ = maxi∈[m](1 − δi ). Clearly, in round t , strategies of
player k will be xtk = f (xt−1)k , where f is the same as stated above.

On the other hand, as shown in Lemma 9,

‖xtk − x∗
k ‖1 ≤ δ

⎛

⎝
∑

i 
=k

‖xt−1
i − x∗

i ‖1
⎞

⎠ , ∀t ∈ Z
+, k ∈ [m].
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By a simple induction, we prove that

εt = max
k

[‖xtk − x∗
k ‖1] ≤ (m − 1)tδtε0.

When t = 0, it holds obviously that ε0 ≤ ε0. Assume that εt−1 ≤ (m − 1)t−1δt−1ε0,
we may show,

εt = max
k

[‖xtk − x∗
k ‖1] ≤ max

k
δ

⎛

⎝
∑

i 
=k

‖xt−1
i − x∗

i ‖1
⎞

⎠ ≤ δ(m − 1)εt−1 ≤ (m − 1)tδtε0.

It can be seen easily that εt goes to 0 exponentially fast considering that δ < 1
m−1 .

We have shown that the L1-norm normalized strategies converge to the L1-norm
normalized NE. It follows naturally that the strategies themselves converge to the
unique NE. Moreover, the convergence is linear, i.e., the error decreases exponentially
fast. �	

6.3 Multiplicity of NE in multiplayer USGs

In fact, there may be infinitely many NEs in a multiplayer USG. Here is an interesting
example (Chang et al. 2013).

Example 3 Consider a 4-player USG where game tensors (A1, A2, A3, A4) are such
that A1

1112 = A1
2122 = A2

1112 = A2
1222 = A3

1112 = A3
2122 = A4

1121 = A4
2122 = 2,

A j
i1i2i3i4

= 0 otherwise. We consider symmetric strategy x = (x1, x2). In order for x
to be an NE, we need

⎧
⎨

⎩

2x21 x2 = λx1
2x1x22 = λx2
x21 + x22 = 1

.

By setting λ = 2x1x2, it appears that any pair of (x1, x2) where x21 + x22 = 1 forms a
symmetric NE. Moreover, any equilibrium payoff λ ∈ [0, 1] can be achieved by some
choice of (x1, x2).
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