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Abstract

An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the
integers 1, . . . ,m such that all n-vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident
with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield,
G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108–109, Revised version, 1994] conjectured that
every simple connected graph, except K2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are
antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles)
in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conference
COCOON’2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671–679], all Cartesian products of two or more regular graphs of
positive degree can be proved to be antimagic.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs in this paper are finite, undirected and simple. We follow the notation and terminology of [5]. In 1990,
Hartsfield and Ringel [5] introduced the concept of antimagic graph. An antimagic labeling of a graph with m edges
and n vertices is a bijection from the set of edges to the integers 1, . . . ,m such that all n-vertex sums are pairwise
distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if
it has an antimagic labeling. Hartsfield and Ringel showed that paths Pn(n ≥ 3), cycles, wheels, and complete graphs
Kn(n ≥ 3) are antimagic. They conjectured that all trees except K2 are antimagic. Moreover, all connected graphs
except K2 are antimagic. These two conjectures are unsettled. In [2], Alon et al. showed that the latter conjecture is
true for all graphs with n vertices and minimum degree Ω(log n). They also proved that complete partite graphs (other
than K2) and n-vertex graphs with maximum degree at least n− 2 are antimagic. In [6], Hefetz proved several special
cases and variants of the latter conjecture. In particular, he proved that for integers k > 0 a graph with 3k vertices
is antimagic if it admits a K3-factor. The main tool used in his paper is the Combinatorial NullStellenSatz (see [1]).
In [7], Wang showed that the toroidal grids, i.e., Cartesian products of two or more cycles, are antimagic. In [3], the
author proved that Cartesian products of two paths, or of a cycle and a path, are antimagic.

I This work was supported in part by the National Natural Science Foundation of China under grant No. 60553001 and the National Basic
Research Program of China under grant No. 2007CB807900, 2007CB807901.

E-mail address: cyx@mails.tsinghua.edu.cn.

0012-365X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.12.032

http://www.elsevier.com/locate/disc
mailto:cyx@mails.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.disc.2007.12.032


6442 Y. Cheng / Discrete Mathematics 308 (2008) 6441–6448

In this paper, we prove that the Cartesian products G1 × G2 of a regular graph G1 and a graph G2 of bounded
degrees are antimagic, provided that the degrees of G1 and G2 satisfy some inequality. By combining this result and
the antimagicness result on the Cartesian products of two cycles [7], all Cartesian products of two or more regular
graphs of positive degree (not necessarily connected) can be proved to be antimagic. First, we introduce another
concept about graph labeling called δ-approximately magic.

Definition 1.1. A δ-approximately magic labeling of a graph with m edges is a bijection from the set of edges to the
integers 1, . . . ,m such that the difference between the largest and the smallest vertex sums is at most δ, where a vertex
sum is the sum of labels of all edges incident with that vertex. A graph is called δ-approximately magic if it has a
δ-approximately magic labeling.

Thus 0-approximately magic is the same as magic in [5], or supermagic in some literature. We first prove some
approximate magicness results on connected regular graphs, the following is proved in Section 2.

Theorem 1.1. If G is an n-vertex k-regular connected graph (k ≥ 1), then G is ( nk
2 − 1)-approximately magic in

case k is odd and k-approximately magic in case k is even.

Recall that the Cartesian product G1×G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph with vertex
set V1 × V2, and (u1, u2) is adjacent to (v1, v2) in G1 × G2 if and only if u1 = v1 and u2v2 ∈ E2, or, u2 = v2 and
u1v1 ∈ E1.

Using the approximate magicness results in Theorem 1.1, we prove the following theorem in Section 3.

Theorem 1.2. If G1 is an n1-vertex k1-regular connected graph, and G2 is a graph (not necessarily connected) with
maximum degree at most k2, minimum degree at least one, then G1 × G2 is antimagic, provided that k1 is odd and
k2

1−k1
2 ≥ k2, or, k1 is even and

k2
1
2 ≥ k2 and k1, k2 are not both equal to 2.

By combining Theorem 1.2 and the antimagicness result on the Cartesian products of two cycles in [7], the
following theorem is obtained in Section 4.

Theorem 1.3. All Cartesian products of two or more regular graphs of positive degree are antimagic.

Finally, we give a generalization of Theorem 1.1 in which G is not necessarily connected, and a generalization of
Theorem 1.2 in which G1 is not necessarily connected. The following two theorems are proved in Section 5.

Theorem 1.4 (Generalization of Theorem 1.1). If G is an n-vertex k-regular graph (k ≥ 1, G is not necessarily
connected), then G is ( nk

2 − 1)-approximately magic in case k is odd and ( 2n
3 + k − 1)-approximately magic in case

k is even.

Theorem 1.5 (Generalization of Theorem 1.2). If G1 is an n1-vertex k1-regular graph, and G2 is a graph with
maximum degree at most k2, minimum degree at least one (G1, G2 are not necessarily connected), then G1 × G2 is

antimagic, provided that k1 is odd and
k2

1−k1
2 ≥ k2, or, k1 is even and

k2
1
2 > k2.

For more results, open problems and conjectures on magic graphs, antimagic graphs and various graph labeling
problems, please see [4].

Throughout the paper, we denote dxe (ceiling of x) to be the least integer that is not less than x , denote bxc (floor
of x) to be the largest integer that is not greater than x .

2. Proof of Theorem 1.1

We begin with some terms and definitions (see [5]). A walk in a graph G is an alternating sequence
v1e1v2e2 · · · et−1vt of vertices and edges of G, with the property that every edge ei is incident with vi and vi+1,
for i = 1, . . . , t − 1. Vertices and edges may be repeated in a walk. A trail in a graph G is a walk in G with the
property that no edge is repeated. A circuit is a closed trail, that is a trail whose endpoints are the same vertex. A cycle
is a circuit with the property that no vertex is repeated. An Eulerian circuit in a graph G is a circuit that contains every
edge of G. In order to prove Theorem 1.1 for the case that k is odd, we need the following theorem ([5], pp. 56),
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Fig. 1. Labeling of the sequence of trails T : t1t2 . . . t n
2

.

Theorem 2.1 (Part of Listing Theorem). If G is a connected graph with precisely 2h vertices of odd degree, h 6= 0,
then there exist h trails in G such that each edge of G is in exactly one of these trails.

If G is a connected n-vertex regular graph of odd degree k, by Theorem 2.1, there are n/2 trails t1, t2, . . . , t n
2

in
G, such that each edge of G is in exactly one of these trails. Denote |t | to be the length (number of edges) of a trail
t . Without loss of generality, assume that |t1| ≥ |t2| ≥ · · · ≥ |t n

2
|. By concatenating these trails we get a sequence

T : t1t2 . . . t n
2
, which contains all the m(= nk

2 ) edges of G. Number the edges of G according to their ordering in
T , let e1, e2, . . . , em be the numbering. Assign the labels 1, 2, . . . , dm

2 e to the edges of odd indices e1, e3, . . . etc.,
and assign the labels m,m − 1, . . . , dm

2 e + 1 to the edges of even indices e2, e4, . . . etc. (see Fig. 1). It is easy to
see that for the above labeling, the sum of any two consecutive edges in T is either m + 1 or m + 2. In addition,
if e is the first or the last edge of a trail, then the largest possible label received by e is at most m − k−1

2 (notice
that |t1| ≥ k). For each vertex v of G, the k edges incident with v can be partitioned into k−1

2 pairs and a singleton,
such that each pair is composed of two consecutive edges within one of the above n/2 trails, and the single edge
is the first or the last edge of a trail. Therefore, for the above labeling, the sum received by any vertex of G is at
most (m − k−1

2 ) + k−1
2 × (m + 2) = m + k−1

2 × (m + 1), at least 1 + k−1
2 × (m + 1), implying that this is an

( nk
2 − 1)-approximately magic labeling of G. For the case that the degree k is even, we need the following lemma.

Lemma 2.2. Every m-vertex connected regular graph of degree 2 (i.e., cycle Cm) is 2-approximately magic, for
m ≥ 3.

Proof. We have the following four cases:

Case 1. m ≡ 1 (mod 4). Let m = 4t + 1, t ≥ 1. Partition the labels 1, 2, . . . ,m into 2t + 1 groups
(1), (2, 3), . . . , (2t, 2t + 1), (2t + 2, 2t + 3), . . . , (m − 1,m). First assign label 1 to an arbitrary edge of Cm , then
assign the labels (m,m−1), (2, 3), (m−2,m−3), (4, 5), . . . , (2t, 2t+1) in a way that each pair of labels is assigned
to the two edges that have common endpoints with the labeled arc.

Case 2. m ≡ 3 (mod 4). Let m = 4t + 3, t ≥ 0. Partition the labels 1, 2, . . . ,m into 2t + 2 groups
(1), (2, 3), . . . , (2t, 2t + 1), (2t + 2, 2t + 3), . . . , (m − 1,m). First assign label 1 to an arbitrary edge of Cm , then
assign the labels (m,m − 1), (2, 3), (m − 2,m − 3), (4, 5), . . . , (2t + 3, 2t + 2) in the same way as in Case 1.

Case 3. m ≡ 0 (mod 4). Let m = 4t + 4, t ≥ 0. Partition the labels 1, 2, . . . ,m into 2t + 3 groups
(1), (2, 3), . . . , (2t, 2t + 1), (2t + 2), (2t + 3, 2t + 4), . . . , (m − 1,m). First assign label 1 to an arbitrary edge
of Cm , then assign the labels (m,m − 1), (2, 3), (m − 2,m − 3), (4, 5), . . . , (2t + 4, 2t + 3) in the way that each pair
of labels are assigned to the two edges that have common endpoints with the labeled arc, finally assign the label 2t+2
to the one non-labeled edge.

Case 4. m ≡ 2 (mod 4). Let m = 4t + 2, t ≥ 1. Partition the labels 1, 2, . . . ,m into 2t + 2 groups
(1), (2, 3), . . . , (2t, 2t + 1), (2t + 2), (2t + 3, 2t + 4), . . . , (m − 1,m). First assign label 1 to an arbitrary edge
of Cm , then assign the labels (m,m − 1), (2, 3), (m − 2,m − 3), (4, 5), . . . , (2t, 2t + 1), (2t + 2) in the same way as
in Case 3.

It is easy to see that in any of the above cases, the vertex sums of Cm are all among m,m + 1, and m + 2, implying
the assertion of the lemma (see Fig. 2). �

Recall that a connected graph with all vertices of even degrees has an Eulerian circuit. It follows that if G is
a connected n-vertex regular graph of even degree k, G has an Eulerian circuit, without loss of generality, say
e1e2 . . . em , where m = nk

2 . We label 1, 2, . . . ,m to this circuit using the above 2-approximately magic labeling
in Lemma 2.2 (here we view this circuit as a cycle). For each vertex v of G, the k edges incident with v can be
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Fig. 2. 2-Approximately magic labeling of Cm .

partitioned into k/2 pairs such that each pair is composed of two consecutive edges in the Eulerian circuit e1e2 . . . em ,
thus the sum of each pair is among m,m + 1, and m + 2. Therefore, for the above labeling, the sum received by any
vertex of G is at least k

2 × m, at most k
2 × (m + 2), implying that the labeling of G is k-approximately magic.

3. Proof of Theorem 1.2

Suppose that G1 is an n1-vertex k1-regular connected graph, V (G1) = {u1, u2, . . . , un1}, and G2 is a graph with
maximum degree at most k2, minimum degree at least one, V (G2) = {v1, v2, . . . , vn2}. Denote by m1 (= k1n1

2 ) and
m2 the number of edges of G1 and G2, respectively.

Let f : E(G1 × G2) → {1, 2, . . . ,m2n1 + m1n2} be an edge labeling of G1 × G2, and denote the induced
sum at vertex (u, v) by w(u, v) =

∑
f ((u, v), (y, z)), where the sum runs over all vertices (y, z) adjacent to

(u, v) in G1 × G2. In the product graph G1 × G2, at each vertex (u, v), the edges incident to this vertex can be
partitioned into two parts, one part is contained in a copy of G1 component, and the other part is contained in a copy
of G2 component. Denote by w1(u, v) and w2(u, v) the sum at vertex (u, v) restricted to G1 component and G2
component respectively, i.e., w1(u, v) =

∑
f ((u, v), (y, v)), where the sum runs over all vertices y adjacent to u

in G1, and w2(u, v) =
∑

f ((u, v), (u, z)), where the sum runs over all vertices z adjacent to v in G2. Therefore,
w(u, v) = w1(u, v)+ w2(u, v).

Given two isomorphic graphs G and G ′, and two labelings f and f ′ of G and G ′ respectively, we call f ′ a δ-shift
of f , if for each edge e ∈ E(G) and its counterpart e′ ∈ E(G ′) under the isomorphism, we have f ′(e′) = f (e) + δ.
Now we will present our labeling of G1 × G2, which contains two steps.

Step 1 (renaming vertices): Assign labels 1, 2, . . . ,m1 to the edges of G1, such that the labeling is ( n1k1
2 − 1)-

approximately magic if k1 is odd, k1-approximately magic if k1 is even. Without loss of generality, we can rename
the vertices of G1 such that w(u1) ≤ w(u2) ≤ · · · ≤ w(un1), denote this labeling by L1. Assign labels
1, n1 + 1, 2n1 + 1, . . . , (m2 − 1)n1 + 1 arbitrarily to the edges of G2. Similarly, rename the vertices of G2 such
that w(v1) ≤ w(v2) ≤ · · · ≤ w(vn2), denote this labeling by L2.

Step 2 (labeling G1 × G2): Assign labels m2n1 + 1,m2n1 + 2, . . . ,m2n1 + m1n2 to the edges that are contained
in copies of G1 component. For the i th G1 component (with vertices (u1, vi ), (u2, vi ), . . . , (un1 , vi )), label its edges
with m2n1 + (i − 1)m1 + 1,m2n1 + (i − 1)m1 + 2, . . . ,m2n1 + (i − 1)m1 + m1, such that the labeling is an
[m2n1 + (i − 1)m1]-shift of L1, under the natural isomorphism, for i = 1, . . . , n2. Since G1 is regular, we have
w1(u1, vi ) ≤ w1(u2, vi ) ≤ · · · ≤ w1(un1 , vi ), for i = 1, . . . , n2.

Assign labels 1, 2, . . . ,m2n1 to the edges that are contained in copies of G2 component. For the j th G2 component
(with vertices (u j , v1), (u j , v2), . . . , (u j , vn2)), label its edges with j, n1+ j, 2n1+ j, . . . , (m2− 1)n1+ j , such that
the labeling is a ( j − 1)-shift of L2, under the natural isomorphism, for j = 1, . . . , n1. From the way we name the
vertices of G2, we have w2(u1, v1) ≤ w2(u1, v2) ≤ · · · ≤ w2(u1, vn2).

In what follows we will prove that for the above labeling, if k1 is odd and
k2

1−k1
2 ≥ k2, or, if k1 is even and

k2
1
2 ≥ k2

and k1, k2 are not both equal to 2, then

w(u1, v1) < w(u2, v1) < · · · · · · · · · · · · < w(un1 , v1) <

w(u1, v2) < w(u2, v2) < · · · · · · · · · · · · < w(un1 , v2) <

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w(u1, vn2) < w(u2, vn2) < · · · · · · · · · · · · < w(un1 , vn2),

(1)

implying that the above labeling is antimagic.
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For each i ∈ {1, . . . , n2}, we have w1(u1, vi ) ≤ w1(u2, vi ) ≤ · · · ≤ w1(un1 , vi ), and w2(u1, vi ) < w2(u2, vi ) <

· · · < w2(un1 , vi ) since w2(u j+1, vi ) − w2(u j , vi ) = d(vi ), where d(vi ) ≥ 1 is the degree of vi in G2,
j = 1, . . . , n1 − 1. It follows that w(u1, vi ) < w(u2, vi ) < · · · < w(un1 , vi ), for i = 1, . . . , n2. In order to
prove w(u1, vi+1) > w(un1 , vi ), for i = 1, . . . , n2 − 1, we distinguish between two cases.

Case 1. k1 is odd. For each i ∈ {1, . . . , n2 − 1}, we have w(u1, vi+1) ≥ w(u1, vi ) +
n1k2

1
2 since w1(u1, vi+1) =

w1(u1, vi )+ m1k1 = w1(u1, vi )+
n1k2

1
2 (notice that the labeling of the (i + 1)th G1 component is an m1-shift of the

labeling of the i th G1 component) and w2(u1, vi+1) ≥ w2(u1, vi ). In addition, we have w(un1 , vi ) ≤ w(u1, vi ) +

(
n1k1

2 − 1)+ k2(n1 − 1) since w1(un1 , vi ) ≤ w1(u1, vi )+ (
n1k1

2 − 1) (notice that G1 is regular and L1 is ( n1k1
2 − 1)-

approximately magic when k1 is odd), and w2(un1 , vi ) = w2(u1, vi ) + d(vi )(n1 − 1) ≤ w2(u1, vi ) + k2(n1 − 1).

It follows that w(u1, vi+1) − w(un1 , vi ) ≥ (w(u1, vi ) +
n1k2

1
2 ) − (w(u1, vi ) + (

n1k1
2 − 1) + k2(n1 − 1)) =

n1(
k2

1−k1
2 − k2)+ 1+ k2 > 0, for i = 1, . . . , n2 − 1.

Case 2. k1 is even. Similarly, for each i ∈ {1, . . . , n2 − 1}, we have w(u1, vi+1) ≥ w(u1, vi ) +
n1k2

1
2 since

w1(u1, vi+1) = w1(u1, vi ) + m1k1 = w1(u1, vi ) +
n1k2

1
2 and w2(u1, vi+1) ≥ w2(u1, vi ). In addition, w(un1 , vi ) ≤

w(u1, vi )+k1+k2(n1−1) holds sincew1(un1 , vi ) ≤ w1(u1, vi )+k1 (L1 is k1-approximately magic when k1 is even)
and w2(un1 , vi ) = w2(u1, vi )+ d(vi )(n1− 1) ≤ w2(u1, vi )+ k2(n1− 1). It follows that w(u1, vi+1)−w(un1 , vi ) ≥

(w(u1, vi )+
n1k2

1
2 )− (w(u1, vi )+ k1 + k2(n1 − 1)) = n1(

k2
1
2 − k2)+ k2 − k1.

If
k2

1
2 > k2, since k1 is even,

k2
1
2 − k2 ≥ 1, then w(u1, vi+1) − w(un1 , vi ) ≥ n1(

k2
1
2 − k2) + k2 − k1 ≥

n1 + k2 − k1 > 0 (since n1 > k1). If
k2

1
2 = k2, since k1, k2 are not both equal to 2, we have k1 > 2, it follows

that w(u1, vi+1) − w(un1 , vi ) ≥ k2 − k1 =
k2

1
2 − k1 > 0. Thus, in any case, we have w(u1, vi+1) − w(un1 , vi ) > 0,

for i = 1, . . . , n2 − 1.
Therefore, (1) holds, implying the assertion of Theorem 1.2.

4. Proof of Theorem 1.3

Since the Cartesian product preserves regularity, we only need to prove that all Cartesian products of two regular
graphs are antimagic. We first prove Theorem 1.3 for the case that G1 and G2 are both connected, then we generalize
the proof to the case where G1 and G2 are not necessarily connected.

4.1. Connected case

Suppose that G1 is an n1-vertex k1-regular connected graph, and G2 is an n2-vertex k2-regular connected graph.
Without loss of generality, assume that k1 ≥ k2. Furthermore, we may assume k1 ≥ 2 since K2 × K2 can be easily
verified as antimagic. If k1 = 2 and k2 = 1, by Theorem 1.2, G1 × G2 is antimagic. If k1 = 2 and k2 = 2, then

G1×G2 is a toroidal grid graph and its antimagicness is proved in [7]. For k1 ≥ 3, if k1 is odd, then
k2

1−k1
2 ≥ k1 ≥ k2;

if k1 is even, then k1 ≥ 4,
k2

1
2 > k1 ≥ k2. Thus by Theorem 1.2, G1 × G2 is antimagic.

4.2. Unconnected case

Denote by c1 and c2 the numbers of connected components of G1 and G2, respectively. It is easy to see that the
number of connected components of G1 × G2 is c = c1 × c2, and each of its connected components is a (k1 + k2)-
regular graph (which is the product of one k1-regular connected graph and one k2-regular connected graph). Let
m1,m2, . . . ,mc be the numbers of edges of these connected components C1,C2, . . . ,Cc. The labeling of G1 × G2
goes as follows. Assign 1, 2, . . . ,m1 to the edges of C1, assign m1+1,m1+2, . . . ,m1+m2 to the edges of C2, . . . . . .,
and assign m1 + · · · + mc−1 + 1,m1 + · · · + mc−1 + 2, . . . ,m1 + · · · + mc−1 + mc to the edges of Cc, such that
the labeling of each connected component is antimagic (this can be achieved because of the previous proof for the
case where G1 and G2 are both connected and the regularity of each component). The whole labeling of G1 × G2 is
antimagic, since between any two different components, any sum of k1 + k2 labels from a group of larger labels must
be greater than any sum of k1 + k2 labels from a group of smaller labels.
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5. Generalizations of Theorems 1.1 and 1.2

In this section, we will prove Theorem 1.4, a generalization of Theorem 1.1 in which G is not necessarily connected,
and Theorem 1.5, a generalization of Theorem 1.2 in which G1 is not necessarily connected.

5.1. Proof of Theorem 1.4

For the case k is odd, by Theorem 2.1 (Listing), for each connected component of G (which is a connected k-regular
graph), if it has ni vertices, we can decompose it into ni

2 trails. By running this decomposition over all connected
components of G, we can get a total number of n

2 trails, such that each edge of G is in exactly one of these trails.
It is easy to see that the largest length of these trails is at least k. We concatenate these trails into a sequence in the
ordering of non-increasing lengths, and label the sequence in the same way as in Theorem 1.1, which results in an
( nk

2 − 1)-approximately magic labeling of G. For the case k is even, we first prove the following lemma.

Lemma 5.1. If G is an n-vertex graph consisting of vertex-disjoint cycles of odd sizes (numbers of edges), then G is
d

2n
3 e-approximately magic, for n ≥ 3.

Proof. Suppose that G is composed of l cycles C1,C2, . . . ,Cl (of sizes n1, n2, . . . , nl , where n1 ≥ n2 ≥ · · · ≥ nl ≥ 3
are odd numbers, and n1+· · ·+nl = n). Let n = 3t+ε, t ≥ 1, ε ∈ {0, 1, 2}. We partition the labels 1, . . . , n into three
groups 1, 2, . . . , t and t+1, . . . , 2t+ε and 2t+ε+1, 2t+ε+2, . . . , 3t+ε. Let A : a1, a2, . . . , at denote the sequence
1, 2, . . . , t ; let B : b1, b2, . . . , bt+ε denote the sequence 2t + ε, 2t + ε−1, . . . , t +1; and let C : c1, c2, . . . , ct denote
the sequence 2t+ε+1, 2t+ε+2, . . . , 3t+ε. It is easy to see that 2t+ε+2 ≤ ai+c j ≤ 4t+ε, ai+bi = 2t+ε+1, and
bi + ci = 4t + 2ε+ 1, for i, j = 1, 2, . . . , t . In addition, 2t + 3 ≤ bi + b j ≤ 4t + 2ε− 1, for i 6= j , i, j = 1, 2, . . . , t .

Let mi =
ni−1

2 , i = 1, 2, . . . , l. We will present a labeling of G, which goes as follows. Label the cycles
C1,C2, . . . ,Cl one by one. For the i th cycle Ci , pick the mi smallest elements from the current (remained) A-
sequence and the mi smallest elements from the current (remained) C-sequence, if at this moment there are at least
mi elements remained in A (also C). Otherwise, pick all the remained elements of the two sequences. Specifically, we
have the following two cases.

Case 1. At the beginning of the labeling of Ci , there are at least mi elements remained in the current A- (also C-)
sequence. Denote by asi+1, asi+2, . . . , asi+mi and csi+1, csi+2, . . . , csi+mi (where s1 = 0, and si = m1 + · · · + mi−1
for 1 < i ≤ l) the mi smallest elements of the current A- (and C-) sequence. Pick bsi+mi from the current B-sequence,
and label the edges of Ci sequentially with bsi+mi , csi+1, asi+1, csi+2, asi+2, . . . , csi+mi , asi+mi , then remove these
elements from their sequences. Since 3t + ε + 2 ≤ bsi+mi + csi+1 ≤ 4t + 2ε + 1, for the above labeling, each vertex
sum of Ci is at least 2t + ε + 1, and at most 4t + 2ε + 1.

Case 2. At the beginning of the labeling of Ci , the number of elements remained in the current A- (also C-) sequence
is less than mi . In this case we must have n1 ≥ 5 (otherwise all cycles are ‘triangles’, i.e. consisting of 3 edges, in
our labeling each triangle will be labeled by three elements, and exactly one element from each sequence, which is a
contradiction). We can assume that l ≥ 2, since for the case l = 1G has been proved to be 2-approximately magic in
Lemma 2.2.

If the current A- (also C-) sequence is empty, then label the remained non-labeled cycles arbitrarily using elements
remained in B-sequence. Otherwise, pick all the elements asi+1, asi+2, . . . , at and csi+1, csi+2, . . . , ct from the current
A- and C-sequences. At this moment, besides bt (where t ≥ 2 since l ≥ 2), b1 is unused (if i = 1, since t ≥ 2, we
have b1 distinct from bt and unused; if i > 1, since n1 ≥ 5, b1 has not been used for labeling C1, thus is unused).
Remove bt and b1 from the current B-sequence, and label the elements bt , csi+1, asi+1, csi+2, asi+2, . . . , ct , at , b1
sequentially to an arc of consecutive edges of Ci . Then, label the remained non-labeled edges of Ci using arbitrary
elements remained in B-sequence, and remove these elements from B. Since 3t + ε+ 2 ≤ bt + csi+1 ≤ 4t + 2ε+ 1,
and at + b1 = 3t + ε, we have that for the above labeling, each vertex sum of Ci is at least 2t + ε + 1, and at most
4t + 2ε + 1.

Therefore, for the above labeling, the vertex sums of G are at least 2t+ε+1 (which is d 2n
3 e+1), at most 4t+2ε+1

(which is 2d 2n
3 e + 1), implying that the differences between vertex sums of G are at most d 2n

3 e. �
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Remark 5.2. The result that G is d 2n
3 e-approximately magic in Lemma 5.1 is actually asymptotically best possible.

Consider the case of G consisting of n
3 ‘triangles’. Suppose that label 1 is assigned to an edge v1v2 of a triangle

v1v2v3, if the edge v2v3 or v1v3 is assigned with a label l > 2n
3 , then the difference of the two vertex sums of v3 and

v1, or v3 and v2 will be at least 2n
3 . Similarly, suppose that label n is assigned to an edge v4v5 of a triangle v4v5v6, if

the edge v4v6 or v5v6 is assigned with a label l ≤ n
3 , then the difference of the two vertex sums of v5 and v6, or v4

and v6 will be at least 2n
3 . If neither of the above two cases happens, then the vertex sum of v1 or v2 is at most 2n

3 + 1,
and the vertex sum of v4 is at least 4n

3 + 1, thus, the difference of the two vertex sums of v4 and v1, or v4 and v2 is at
least 2n

3 .

Now we will prove Theorem 1.4 for the case that k is even. Since k is even, G is an even graph (a graph with
all vertices having even degrees), it follows that G can be decomposed into edge-disjoint simple cycles. In addition,
two cycles having a common vertex can be merged into one circuit. Therefore, by repeating the merging of two
cycles of odd sizes that have a common vertex into an even circuit, finally we will obtain a collection of s (≥0) even
circuits P1, P2, . . . , Ps (of sizes 2m1, 2m2, . . . , 2ms), together with a collection of t (≥0) vertex-disjoint odd cycles
Q1, Q2, . . . , Qt (of sizes n1, n2, . . . , nt , and n1 + n2 + · · · + nt ≤ n), such that each edge of G is in exactly one of
these circuits or cycles.

Let m = nk
2 be the number of edges of G. First we label the even circuits P1, P2, . . . , Ps . By viewing these

circuits as cycles, using the 2-approximately magic labeling in Lemma 2.2, we assign labels 1, 2, . . . ,m1 and
m,m−1, . . . ,m−m1+1 to P1, assign labels m1+1,m1+2, . . . ,m1+m2 and m−m1,m−m1−1, . . . ,m−m1−m2+1
to P2, . . . . . ., and assign labels m1 + · · · + ms−1 + 1, m1 + · · · + ms−1 + 2, . . . . . . ,m1 + · · · + ms−1 + ms and
m − m1 − · · · − ms−1, m − m1 − · · · − ms−1 − 1, . . . . . . ,m − m1 − · · · − ms−1 − ms + 1 to Ps . Thus, the sum of
any two consecutive edges of circuit Pi (i = 1, . . . , s) is among m, m + 1, and m + 2.

Let m∗ = m1 +m2 + · · · +ms , and n∗ = n1 + n2 + · · · + nt . If n∗ = 0 (i.e., there is no odd cycle), similarly as in
Theorem 1.1, the above labeling of G can be proved to be k-approximately magic, by partitioning the k edges incident
with any vertex of G into k/2 pairs such that each pair is composed of two consecutive edges in some circuit Pi (i ∈
{1, . . . , s}). Otherwise, we have n∗ ≥ 3. Assign the remained labels m∗+1,m∗+2, . . . ,m∗+n∗ to the vertex-disjoint
odd cycles Q1, Q2, . . . , Qt , using the d 2n∗

3 e-approximately magic labeling in Lemma 5.1. Since 2m∗ + n∗ = m, and

b
n∗
3 c + d

2n∗
3 e = n∗ for all integers n∗ ≥ 1, it follows that the sum of any two consecutive edges of these odd cycles is

at least 2m∗ + d 2n∗
3 e + 1 = m + 1− b n∗

3 c(≤ m), and at most 2m∗ + 2d 2n∗
3 e + 1 = m + 1− b n∗

3 c + d
2n∗

3 e(≥ m + 2).

Therefore, for the whole labeling of G, the sum received by any vertex of G is at least m × k−2
2 + (m + 1− b n∗

3 c), at

most (m+ 2)× k−2
2 + (m+ 1−b n∗

3 c+ d
2n∗

3 e). Since n∗ ≤ n, the whole labeling of G is ( 2n
3 + k− 1)-approximately

magic.

5.2. Proof of Theorem 1.5

If k1 = 2, since
k2

1
2 > k2, k2 = 1, G2 is 1-regular, by Theorem 1.3, G1 × G2 is antimagic. In what follows we

assume that k1 ≥ 3.
We do the same labeling on G1×G2 as in Theorem 1.2 (when k1 is even, the labeling L1 on G1 here is ( 2n1

3 +k1−1)-

approximately magic). We will prove that for this labeling, (1) still holds if k1 ≥ 3 is odd and
k2

1−k1
2 ≥ k2, or, if k1 ≥ 4

is even and
k2

1
2 > k2.

w(u1, vi ) < w(u2, vi ) < · · · < w(un1 , vi ) can be proved by using the same argument in Theorem 1.2, for
i = 1, . . . , n2. In order to prove w(u1, vi+1)− w(un1 , vi ) > 0, for i = 1, . . . , n2 − 1, there are two cases.

Case 1. k1 is odd. Since G1 is still ( n1k1
2 − 1)-approximately magic, by using the same argument in Theorem 1.2,

we can obtain that w(u1, vi+1)− w(un1 , vi ) > 0, for i = 1, . . . , n2 − 1.
Case 2. k1 is even (thus k1 ≥ 4). G1 is ( 2n1

3 + k1 − 1)-approximately magic. For each i ∈ {1, . . . , n2 − 1}, we

have w(u1, vi+1) ≥ w(u1, vi ) +
n1k2

1
2 since w1(u1, vi+1) = w1(u1, vi ) +

n1k2
1

2 and w2(u1, vi+1) ≥ w2(u1, vi ). In

addition, w(un1 , vi ) ≤ w(u1, vi ) + (
2n1

3 + k1 − 1) + k2(n1 − 1) since w1(un1 , vi ) ≤ w1(u1, vi ) + (
2n1

3 + k1 − 1)
and w2(un1 , vi ) = w2(u1, vi ) + d(vi )(n1 − 1) ≤ w2(u1, vi ) + k2(n1 − 1). Therefore, w(u1, vi+1) − w(un1 , vi ) ≥

(w(u1, vi )+
n1k2

1
2 )− (w(u1, vi )+ (

2n1
3 + k1 − 1)+ k2(n1 − 1)) = n1(

k2
1
2 −

2
3 − k2)+ k2 − k1 + 1.
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Since k2 <
k2

1
2 , there are two cases: k2 ≤

k2
1
2 − 2 or k2 =

k2
1
2 − 1. If k2 ≤

k2
1
2 − 2, w(u1, vi+1) − w(un1 , vi ) ≥

n1(
k2

1
2 −

2
3 − k2) + k2 − k1 + 1 > n1 + k2 − k1 > 0 (since n1 > k1). If k2 =

k2
1
2 − 1, w(u1, vi+1) − w(un1 , vi ) ≥

n1(
k2

1
2 −

2
3−k2)+k2−k1+1 >

k2
1
2 −k1 > 0 (since k1 ≥ 4). Thus, in either case, we havew(u1, vi+1)−w(un1 , vi ) > 0,

for i = 1, . . . , n2 − 1.
Therefore, (1) holds, the labeling for k1 ≥ 3 is antimagic.

6. Concluding remarks and open problems

Since the Eulerian circuit of an Eulerian graph (consequently the trails in the Listing Theorem) can be efficiently
computed, the proofs in this paper provide efficient algorithms for finding the antimagic labelings.

It is easy to see that, for cycles, the 2-approximate magicness result in Lemma 2.2 is the best possible (i.e., 2 cannot
be improved to 0 or 1). For n-vertex k-regular (k > 2) connected graphs, it may be interesting to prove that they are
δ-approximately magic for some δ < ( nk

2 − 1) in case k is odd, or δ < k in case k is even, or, to prove some lower
bounds on δ.
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