Pseudorandomness for Linear Length Branching Programs and Stack Machines

Andrej Bogdanov ${ }^{1, \star}$, Periklis A. Papakonstantinou ${ }^{2}$, and Andrew Wan²,
${ }^{1}$ Department of Computer Science and Engineering and ITCSC Chinese University of Hong Kong andrejb@cse.cuhk.edu.hk
${ }^{2}$ Institute for Theoretical Computer Science, IIIS ${ }^{\star \star}$
Tsinghua University, P.R. China
\{papakons, andrew\}@tsinghua.edu.cn

Abstract

We show the existence of an explicit pseudorandom generator G of linear stretch such that for every constant k, the output of G is pseudorandom against: - Oblivious branching programs over alphabet $\{0,1\}$ of length $k n$ and size $2^{O(n / \log n)}$ on inputs of size n. - Non-oblivious branching programs over alphabet Σ of length $k n$, provided the size of Σ is a power of 2 and sufficiently large in terms of k. - The model of logarithmic space randomized Turing Machines (over alphabet $\{0,1\}$) extended with an unbounded stack that make k passes over their randomness. The construction of the pseudorandom generator G is the same as in our previous work (FOCS 2011). The results here rely on a stronger analysis of the construction. For the last result we give a length-efficient simulation of stack machines by non-deterministic branching programs. (over a large alphabet) whose accepting computations have a unique witness.

1 Introduction

We consider the problem of constructing an explicit pseudorandom distribution for branching programs of bounded width. A branching program with input symbols from the alphabet Σ, is a directed acyclic graph with a unique start vertex, where every non-sink vertex is labeled by one of n variables and has $|\Sigma|$ outgoing arcs, each labelled with $\sigma \in \Sigma$, and each sink vertex is labeled by an output value "accept" or "reject." The branching program computes a Boolean function over n variables in the natural way: it begins at the start vertex, reads the value of the variable at that vertex, and follows the corresponding arc to the

[^0]next vertex. When it reaches a sink vertex, it halts and outputs the corresponding label.

Fix an alphabet Σ. A family of distributions P: $\Sigma^{s(n)} \rightarrow \Sigma^{n}$ is pseudorandom with seed length $s(n)<n$, and bias $\epsilon(n)$ for a class of functions \mathcal{F} if for every $f \in \mathcal{F}$ in n inputs,

$$
\left|\mathbf{E}_{\mathrm{P}}[f(\mathrm{P})]-\mathbf{E}_{\mathrm{U}}[f(\mathrm{U})]\right| \leq \epsilon(n) .
$$

where U is the uniform distribution on n symbols.
The problem of constructing explicit, unconditionally pseudorandom distributions for various models of computation has been met with the most success for two types of models, the first being small-depth computation AB84, AW85, Nis91, Bra10. The second type is space-bounded computation, for which branching programs play an important role: the computation of a randomized Turing Machine that uses n random bits and space S can be modeled as a width 2^{S} branching program, where the inputs to the program are the n random bits. The pseudorandom generators constructed by Nisan Nis92] and by Impagliazzo et al. INW94 use seed length $O\left(\log ^{2} n\right)$ to fool fixed input-order, poly (n) width, read-once branching programs.

Pseudorandom generators for space-bounded algorithms take advantage of the limited communication that can occur between parts of the computation, and are typically based on the following principle: a space-bounded algorithm records a small amount of information between stages of its computation, so randomness may be reused from one stage to the next without substantially altering performance.

However, in the constructions mentioned, the ability to recycle randomness relies not only on limited communication between the computation stages, but also on the nature of its access to the randomness. The random bits cannot be accessed too often and the order in which they are accessed must be known in advance. A natural goal is to construct distributions that remain pseudorandom without these access restrictions.

Recent work BPW11 makes some progress towards removing these restrictions, giving the first pseudorandom generator (with linear stretch) for read-once branching programs under any ordering of the inputs. However, the access to the randomness is still restricted: the branching program is read-once and oblivious, i.e., it reads bits in an order independent of their values.

One motivation for our work comes from the problem of derandomizing logspace stack machines which make a bounded number of sequential passes over their randomness. These machines were proposed by David et al. DNPS11] as a model of randomized polynomial time with limited access to randomness 1 Without the random tape access restriction, randomized stack machines characterize randomized polynomial time Coo71. If they are allowed one pass over the randomness, however, such machines can be simulated deterministically. David et al. suggest studying what happens between these two extreme cases.

[^1]
1.1 Results

In this work we show that the distribution in BPW11 (with different parameters) is pseudorandom even for bounded-width branching programs that have linear length. In other words, the input symbols may be accessed adaptively and arbitrarily many times, provided that the total number of accesses is $O(n)$.

Theorem 1. For every $k>1$ there exist constants ρ, γ, λ and and an explicit pseudorandom distribution family P : $\Sigma^{(1-\rho) n} \rightarrow \Sigma^{n}$, where $\Sigma=\{0,1\}^{\lambda}$ so that for every n,

$$
\left|\mathbf{E}_{\mathrm{P}}[F(\mathrm{P})]-\mathbf{E}_{\mathrm{U}}[F(\mathrm{U})]\right|=2^{-\Omega(n)}
$$

for every length $k n$, width $2^{\gamma n}$ branching program $F: \Sigma^{n} \rightarrow\{0,1\}$ over n inputs.
Here the constants ρ, γ, λ are inverse exponential in k; see the end of Section 3.2 for the precise dependence on k. For oblivious branching programs, we obtain a stronger form of the theorem in which $\Sigma=\{0,1\}$. This theorem is stated and proved as Theorem 2 in Section 3.1

As an example application, consider the problem of identity testing for linearsize arithmetic formulas (see KI04]). Let f be a linear-size arithmetic formula on inputs of length n coming from some subset S of a field \mathbb{F}. Such a formula can be computed ${ }^{2}$ by a boolean oblivious branching program of linear length and width $|\mathbb{F}|^{O(\log n)}$. The Schwarz-Zippel lemma says that if f is nonzero, then $f(\mathrm{U})$ takes value zero with probability at most $\operatorname{deg}(f) /|S|$. By Theorem $2 f(\mathrm{P})$ takes value zero with probability at most $\operatorname{deg}(f) /|S|-2^{-\Omega(n)}$, as long as $|\mathbb{F}| \ll 2^{n /(\log n)^{2}}$.

Our proof of Theorem 1 immediately applies to non-deterministic branching programs with unique witnesses as well; we apply this result to fool (nonuniform) randomized Turing Machines over alphabet $\{0,1\}$ extended with an unbounded stack, henceforth called stack machines, which make a constant number of passes over their randomness tape. As mentioned previously, randomized log-space stack-machines characterize probabilistic polynomial time. David et al. DNPS11 showed that pseudorandom generators that fool polynomial size circuits of depth $d(n)=\Omega(\log n)$ also fool stack machines that make $2^{O(d(n))}$ passes over their randomness. It is conceivable that one can derandomize stack machines that make a sub-polynomial (and in particular constant) number of passes over the randomness without the full derandomization of BPNC ${ }^{1}$.

In the full version, we show that our pseudorandom distribution fools stack machines that make k sequential passes over their input. This in particular implies that we can replace the random tape of a randomized stack machine (restricted to make k passes over its randomness - and unrestricted in every other tape) with our distribution. Here k is the same constant as in Theorem 11 Previously, no nontrivial simulation was known even for $k=2$.

[^2]
1.2 Techniques

Fooling Branching Programs. In order to construct pseudorandomness that can be accessed in arbitrary order, the approach in BPW11 addresses the issue of limited communication in the following way. Consider the computation as occurring in two halves, where only a bit of information (however, it may be computed in an arbitrary fashion) is remembered from each half. The distribution P constructed in BPW11] was shown to satisfy the following property:

For every pair of Boolean functions $f, g:\{0,1\}^{n / 2} \rightarrow\{0,1\}$ and every equipartition (I, J) of $[n]$, the joint distribution $\left(f\left(\left.\mathrm{P}\right|_{I}\right), g\left(\left.\mathrm{P}\right|_{J}\right)\right)$ is close (in statistical distance) to the distribution $\left(f\left(\left.U\right|_{I}\right), g\left(\left.U\right|_{J}\right)\right)$.
The distribution output by the base generator of the expander-based construction from [INW94 satisfies the above property for any fixed equipartition such as $\{1, \cdots, n / 2\} \cup\{n / 2+1, \cdots, n\}$ (but not all at the same time).

The distribution from BPW11 has the advantage that it is pseudorandom for every equipartition and hence will accomodate access to the inputs under every ordering. In fact, it was observed in BPW11, without proof, that the distribution remains pseudorandom for any f and g which depend on at most $(1-\Omega(1)) n$ of the input bits. We prove this more general lemma (Lemma 1) in Section 2 In the lemma, inputs to f and g can now be shared, so one might expect that the distribution will remain pseudorandom with multiple accesses.

Now consider an oblivious branching program of length $k n$. We split the computation into t stages, for some large enough t that will be set later. The result of the computation can then be stated as a sum over w^{t} products of t Boolean functions, each over $n k / t$ variables. We do not argue that the outputs of these functions look independent; instead, we show in Section 3.1 that each summand can always be rewritten as a pair of functions (f, g), where f and g each depend on at most $(1-\Omega(1)) n$ bits, and then apply Lemma 1 .

A more complicated argument is required if the branching program is nonoblivious; under the previous decomposition, a single stage of the computation may depend on all n input symbols. In fact, in this case we do not know how to construct a pseudorandom distribution with symbols from $\{0,1\}$. However, we can achieve this over any sufficiently large (in terms of k) alphabet Σ, where $|\Sigma|$ is a power of 2 . Achieving this over $\{0,1\}$ is a very interesting open question. In Lemma 3, we show how to rearrange the paths of the branching program so that the combinatorial argument in Section 3.1 can still be used. Thus, we can express any branching program as a short sum (the size of the summation is substantially larger than in the oblivious case) over pairs of functions that fulfill the conditions of Lemma 1

In fact, the decompositions we obtain for (oblivious) branching programs are implicit in work of Beame, et al. BJS01. That work gives similar decompositions for branching programs in order to prove lower bounds using communication complexity arguments. Accordingly, they decompose a branching program as a disjunction of function pairs, and the conditions on the function pairs are stronger. Our application requires the summation instead of the disjunction;
however, the proofs are essentially the same, and we include them here for completeness and simplification. We remark that further decompositions that yielded stronger lower bounds were given in subsequent work Ajt99, BSSV03, but, to our knowledge, these are not relevant to the constructions here.

Fooling Stack Machines. We show that for every constant λ, a log-space stack machine over alphabet $\{0,1\}$ that makes $k(n)$ passes over its randomness can be simulated by a family of nondeterministic branching programs over alphabet $\{0,1\}^{\lambda}$ of size $2^{O\left((\log n)^{2}\right)}$ and length $n k(n)$. Moreover, the branching programs can be designed to have unique witnesses; namely, for every accepting input there is exactly one accepting computation path. We observe that our proof of Theorem 1 easily extends to nondeterministic branching programs with unique witnesses, and we conclude that our distribution P is pseudorandom for the corresponding stack machines. Due to space limitations, our reduction is given in the full version of this work.

A log-space stack machine computes a polynomial time predicate but it may run in time $2^{n^{O(1)}}$. In DNPS11] it is shown that given a stack machine that makes $k(n)$ passes over its randomness, for a given input x, there is an advice string and a stack machine that computes the same predicate, runs in time $k(n) \cdot$ poly (n), and preserves the number of passes over the random tape. Such stack machines can be simulated by small space computations All89, BCD ${ }^{+} 89$ Ruz80. Niedermeier and Rossmanith NR95 give a variant of this simulation that preserves the number of witnesses. However, these simulations fail to preserve the number of accesses to the input, even when the stack machines are equipped with an index tape to access the memory.

We show that with a non-trivial modification to Ruz80, a randomized stack machine that makes $k(n)$ many passes can be simulated by a non-deterministic branching program with a unique witness that preserves the number of accesses to input bits (but not necessarily the order). More specifically, the branching program recursively verifies a kind of a "proof tree" that the computation accepts. For our purposes it is crucial to ensure that the random tape is not accessed more than $n k(n)$ times.

2 Fooling Pairs of Functions with Shared Inputs

In this section we give a distribution P over $\{0,1\}^{n}$ that looks pseudorandom to any pair of functions $f, g:\{0,1\}^{n} \rightarrow[-1,1]$ such that f and g depend on at most $(1-\Omega(1)) n$ of their inputs. The construction is identical to the one from our previous work BPW11, with different parameters. Note, however, that later on we will apply this theorem in two different ways, one of which regards distributions over alphabets other than $\{0,1\}$ (and this is essential for obtaining non-trivial stretch). In BPW11 we proved that the desired pseudorandomness under the additional restriction that f and g each depend on $n / 2$ bit inputs which are disjoint. We also remarked (without proof) that our analysis can be extended to the more general case, which is needed for the applications in this work. We now give a proof of that statement.

Our Pseudorandom Distribution. The pseudorandom distribution P has the form $\mathrm{P}=M z+e$, where M is a fixed $n \times m$ for $m=(1-\rho) \cdot n$ matrix over $G F(2)$ such that every subspace spanned by $\alpha \cdot n$ rows has dimension $\alpha \cdot n-r$, and all operations are over $G F(2)$. Here $z \sim\{0,1\}^{m}$ is a uniformly random seed, and $e \in\{0,1\}^{n}$ is chosen independently of z from an ϵ-biased distribution. (Recall that e is ϵ-biased if for every $s \in\{0,1\}^{n}, s \neq 0,\left|\mathbf{E}_{e}\left[(-1)^{|\langle s, e\rangle|}\right]\right| \leq \epsilon$.)

The existence of an explicit matrix M with the desired properties follows from constructions of binary codes with small list size for list-decoding radius bounded away from $1 / 2$. We now explain this connection. Recall that a linear code C over $\{0,1\}^{n}$ is (δ, ℓ) list-decodable if for every $x \in\{0,1\}^{n}$, the number of codewords of C within hamming distance δn of x is at most ℓ. A parity check matrix M for C is a $G F(2)$ matrix such that $c^{T} M=0$ if and only if c is a codeword of C.

It is easily seen (by substituting α for $1 / 2$) that the proof of Proposition 1 from BPW11 yields the following more general statement:
Proposition 1. Let C be a $\left(\frac{\alpha}{2}, \ell\right)$ list-decodable code over $\{0,1\}^{n}$. Let M be the parity check matrix of C. Then every subset of $\alpha \cdot n$ rows of M spans a vector space over $G F(2)$ of dimension at least $\alpha \cdot n-\log _{2}(2 \ell)$.

Then we have the following fact, which follows from the Johnson bound and standard constructions of asymptotically good binary linear codes; see Theorems 3.1 and 7.1 from Gur07.

Proposition 2. For every $\alpha>0$ there exists $\rho>0$ and an explicit matrix M of size $n \times(1-\rho) n$ such that every subset of $\alpha \cdot n$ rows spans a vector space over $G F(2)$ of dimension at least $\alpha \cdot n-r$, with $r=4 \log (4 n /(1-\alpha))$.

The Main Lemma Now, we prove the main lemma that powers our results in Section 3 ,

Lemma 1. For every $\alpha>0$ there exists $\rho>0$ and an explicit matrix M of size $n \times(1-\rho) \cdot n$ so that for every pair of (possibly intersecting) ordered sets I, J with $|I|,|J| \leq \alpha n$ and for every pair of functions $f:\{0,1\}^{|I|} \rightarrow[-1,1], g:$ $\{0,1\}^{|J|} \rightarrow[-1,1]$,

$$
\left|\mathbf{E}_{\mathrm{P}}\left[f\left(\left.\mathrm{P}\right|_{I}\right) g\left(\left.\mathrm{P}\right|_{J}\right)\right]-\mathbf{E}_{\mathrm{U}}\left[f\left(\left.\mathrm{U}\right|_{I}\right) g\left(\left.\mathrm{U}\right|_{J}\right)\right]\right| \leq 2^{r} \epsilon
$$

where U is the uniform distribution over $\{0,1\}^{n}$, P is defined as above, and $\left.x\right|_{I},\left.x\right|_{J}$ denote the projections of x on the sets I and J, respectively, and $r=$ $4 \cdot \log \frac{4 n}{1-\alpha}$.

In particular, when $g=1,\left|\mathbf{E}_{\mathrm{P}}\left[f\left(\left.\mathrm{P}\right|_{I}\right)\right]-\mathbf{E}_{\mathrm{U}}\left[f\left(\left.\mathrm{U}\right|_{I}\right)\right]\right| \leq 2^{r} \epsilon$, so the pseudorandom distribution also preserves the marginal probabilities of events, within $2^{r} \epsilon$, over all subsets of size at most $\alpha \cdot n$.

Proof (Proof of Lemma 11). Using Fourier decomposition, for any pair of subsets I, J of $[n]$ with $|I|,|J| \leq \alpha n$, we have

$$
\begin{align*}
\mathbf{E}_{\mathrm{P}}\left[f\left(\left.\mathrm{P}\right|_{I}\right) g\left(\left.\mathrm{P}\right|_{J}\right)\right] & =\mathbf{E}_{z, e}\left[f\left(\left.(M z+e)\right|_{I}\right) g\left(\left.(M z+e)\right|_{J}\right)\right] \\
& =\sum_{S \subseteq I, T \subseteq J} \hat{f}(S) \hat{g}(T) \mathbf{E}_{z, e}\left[\chi_{S}\left(\left.M z\right|_{I}\right) \chi_{S}\left(\left.e\right|_{I}\right) \chi_{T}\left(\left.M z\right|_{J}\right) \chi_{T}\left(\left.e\right|_{J}\right)\right] \tag{1}
\end{align*}
$$

We may view subsets $S \subseteq I$ and $T \subseteq J$ as subsets of $[n]$, so we write $\chi_{S}\left(\left.M z\right|_{I}\right)=$ $\chi_{S}(M z)$ and $\chi_{T}\left(\left.M z\right|_{J}\right)=\chi_{T}(M z)$, and (11) becomes:

$$
\sum_{S \subseteq I, T \subseteq J} \hat{f}(S) \hat{g}(T) \mathbf{E}_{z}\left[\chi_{S}(M z) \chi_{T}(M z)\right] \mathbf{E}_{e}\left[\chi_{S}(e) \chi_{T}(e)\right] .
$$

We denote by $S \Delta T$ the symmetric difference of S and T viewed as subsets of [n].

We have that $\mathbf{E}_{\mathrm{U}}\left[f\left(\left.\mathrm{U}\right|_{I}\right) g\left(\left.\mathrm{U}\right|_{J}\right)\right]=\sum_{S \subseteq I \cap J} \hat{f}(S) \hat{g}(S)$ and $\left|\mathbf{E}_{e}\left[\chi_{S \Delta T}(e)\right]\right| \leq \epsilon$, therefore

$$
\begin{aligned}
\mid \mathbf{E}_{\mathrm{P}}\left[f\left(\left.\mathrm{P}\right|_{I}\right) g\left(\left.\mathrm{P}\right|_{J}\right)\right] & -\mathbf{E}_{\mathrm{U}}\left[f\left(\left.\mathrm{U}\right|_{I}\right) g\left(\left.\mathrm{U}\right|_{J}\right)\right] \mid \\
& =\left|\sum_{\substack{S \subseteq I, T \subseteq J \\
S \Delta T \neq \varnothing}} \hat{f}(S) \hat{g}(T) \mathbf{E}_{z}\left[\chi_{S \Delta T}(M z)\right] \mathbf{E}_{e}\left[\chi_{S \Delta T}(e)\right]\right| \\
& \leq \sum_{\substack{S \subseteq I, T \subseteq J \\
S \Delta T \neq \varnothing}} \epsilon \cdot|\hat{f}(S)||\hat{g}(T)|\left|\mathbf{E}_{z}\left[\chi_{S \Delta T}(M z)\right]\right|
\end{aligned}
$$

Let G be a bipartite graph over vertices (subsets of $I) \cup($ subsets of J), with an edge (S, T) present whenever $\mathbf{E}_{z}\left[\chi_{S \Delta T}(M z)\right] \neq 0$. We will shortly argue that G has maximum degree 2^{r}. Assuming this, we can upper bound the last expression by

$$
\begin{aligned}
\epsilon \cdot \sum_{\text {edge }(S, T)}|\hat{f}(S)||\hat{g}(T)| & \leq \epsilon \cdot \sqrt{\sum_{\text {edge }(S, T)} \hat{f}(S)^{2}} \sqrt{\sum_{\text {edge }(S, T)} \hat{g}(T)^{2}} \\
& \leq \epsilon \cdot \sqrt{2^{r} \cdot \sum_{S \subseteq I} \hat{f}(S)^{2}} \sqrt{2^{r} \cdot \sum_{T \subseteq J} \hat{g}(T)^{2}} \leq \epsilon \cdot 2^{r},
\end{aligned}
$$

where the first inequality follows from the Cauchy-Schwarz inequality, the second from the fact that G has maximum degree 2^{r}, and the third from Parseval's identity.

It remains to argue that G has maximum degree 2^{r}. We let $s \in\{0,1\}^{n}, t \in$ $\{0,1\}^{n}$ be indicator vectors for the sets S and T, respectively, and s and t as vectors in $G F(2)^{n}$. Then

$$
\mathbf{E}_{z}\left[\chi_{S \Delta T}(M z)\right]=\mathbf{E}\left[(-1)^{(s+t)^{T} M z}\right]= \begin{cases}1, & \text { if }(s+t)^{T} M=0 \\ 0, & \text { otherwise }\end{cases}
$$

Now, $(s+t)^{T} M=0$ if and only if $s^{T} M=t^{T} M$, where $s^{T} M$ is zero at least everywhere outside I and similarly for $t^{T} M$ and J. Since (by assumption) the matrix $\left.M\right|_{I}$ has rank at least $\alpha n-r$, for every $t \in\{0,1\}^{n}$, there can be at most 2^{r} distinct vectors $s \in\{0,1\}^{n}$ such that $s^{T} M=t^{T} M$. Similarly, for every $s \in\{0,1\}^{n}$, there can be at most 2^{r} vectors $t \in\{0,1\}^{n}$ such that $s^{T} M=t^{T} M$.

In Section 3.2 we will apply the pseudorandom generator to strings of length n over alphabet $\Sigma=\{0,1\}^{\lambda}$. These can be viewed as strings in $\{0,1\}^{\lambda n}$ in the natural way.

3 Fooling Branching Programs of Linear Length

We show that essentially the same generator (modulo the setting of the parameters and the different input alphabets) fools branching programs of linear length. For oblivious branching programs we obtain this for binary $\{0,1\}$ input alphabets (Section 3.1), whereas for arbitrary branching programs we show this for branching programs over (larger) constant size alphabets (Section 3.2).

Let F be a width w, length $k n$, layered branching program over n inputs; we think of k as an arbitrarily large but fixed constant as n increases. We view the computation of the branching program on an input x as occurring in t stages, where each stage reads $k n / t$ variables. Suppose first that the branching program is oblivious. Then, for every input each stage reads the same $k n / t$ variables. In this case, we may write the branching program as a sum over w^{t} many t-tuples of Boolean functions (as was done in BPW11 for $k=1$ and $t=2$).

More formally, divide the inputs into t sets of layers so that S_{1} consists of inputs $\{1, \cdots, k n / t\}, S_{2}$ of inputs $\{k n / t+1, \cdots, 2 k n / t\}$, etc. (if variables reoccur within a set, its size might be smaller). We define functions $f_{i, p, q}\left(\left.x\right|_{S_{i}}\right)$: $\{0,1\}^{\left|S_{i}\right|} \rightarrow\{0,1\}$ to be indicator functions for the event that the program moves from state p to q when the inputs in S_{i} are read from x. By definition, we have

$$
\begin{equation*}
F(x)=\sum_{\substack{p_{1}, \ldots, p_{t}: \\ p_{t} \in \text { accept }}} f_{1, s, p_{1}}\left(\left.x\right|_{S_{1}}\right) f_{2, p_{1}, p_{2}}\left(\left.x\right|_{S_{2}}\right) \cdots f_{t, p_{t-1}, p_{t}}\left(\left.x\right|_{S_{t}}\right) \tag{2}
\end{equation*}
$$

3.1 Pseudorandomness for Oblivious Branching Programs

We will argue that each of the summands in (2) can be rewritten in terms of two functions, each over at most αn bits. Then, we apply Lemma 1 to show that the output of the generator fools each of these summands. This will give us the following theorem for oblivious branching programs.

Theorem 2. Let $F:\{0,1\}^{n} \rightarrow\{1,-1\}$ be computable by a width w, length $k n$ oblivious branching program on n inputs. Let P be the pseudorandom distribution. Then

$$
\left|\mathbf{E}_{\mathrm{P}}[F(\mathrm{P})]-\mathbf{E}_{U}[F(U)]\right| \leq w^{t} \cdot 2^{r} \epsilon
$$

where $t=2^{4 k}, r=4 \log \frac{4 n}{1-\alpha}$, and $\alpha>1-\frac{1}{2^{2 k}}$.

The proof of Theorem 2 will use the following combinatorial lemma, which shows that we can always find a way to color each stage by one of two colors, so that neither color will contain too many variables. A slightly different version of this lemma was proven in BJS01; in the full version, we include a proof and argue that the parameter α below is close to optimal.
Lemma 2. Fix any $k \in \mathbb{Z}^{+}$. Let $\left\{S_{1}, \cdots, S_{t}\right\}$ be a collection of subsets over $[n]$, each of size at most $k n / t$. Then there exists a partition $(\mathcal{C}, \overline{\mathcal{C}})$ of $\{1, \cdots, t\}$ satisfying:

$$
\left|\bigcup_{i \in \mathcal{C}} S_{i}\right| \leq \alpha \cdot n \quad \text { and } \quad\left|\bigcup_{i \in \overline{\mathcal{C}}} S_{i}\right| \leq \alpha \cdot n
$$

where $\alpha \geq 1-\frac{1}{2^{k}}+\frac{2 k}{\sqrt{t}}+\frac{2}{\sqrt{n}}$.
Proof (Proof of Theorem 园). Now, consider the expected bias of the branching program using Equation2 by linearity of expectation and the triangle inequality, we have:

$$
\begin{align*}
& |\mathbf{E}[F(U)]-\mathbf{E}[F(\mathrm{P})]| \leq \\
& \sum_{\substack{p_{1}, \ldots, p_{t}: \\
p_{t} \in \text { accept }}}\left|\mathbf{E}\left[f_{1, s, p_{1}}\left(\left.\mathrm{P}\right|_{S_{1}}\right) \cdots f_{t, p_{t-1}, p_{t}}\left(\left.\mathrm{P}\right|_{S_{t}}\right)\right]-\mathbf{E}\left[f_{1, s, p_{1}}\left(\left.U\right|_{S_{1}}\right) \cdots f_{t, p_{t-1}, p_{t}}\left(\left.U\right|_{S_{t}}\right)\right]\right| . \tag{3}
\end{align*}
$$

For each expectation of the summation, we can apply Lemma 2 to rewrite each product as a product of two functions, i.e.,

$$
f_{1, s, p_{1}}\left(\left.x\right|_{S_{1}}\right) \cdots f_{t, p_{t-1}, a}\left(x_{S_{t}}\right)=g_{1}\left(\left.x\right|_{\mathcal{S}}\right) g_{2}\left(\left.x\right|_{\overline{\mathcal{S}}}\right)
$$

where both $\mathcal{S}:=\left|\bigcup_{i \in \mathcal{C}} S_{i}\right| \leq \alpha \cdot n$ and $\overline{\mathcal{S}}$ contain at most $\alpha \cdot n$ variables.
Setting $t=2^{4 k}$ in Lemma 2 and applying Lemma 1 with α from Lemma 2, we bound the magnitude of each difference by $2^{r} \epsilon$. Since there are w^{t} terms, we obtain

$$
\begin{equation*}
|\mathbf{E}[F(U)]-\mathbf{E}[F(\mathrm{P})]| \leq w^{t} 2^{r} \cdot \epsilon . \tag{4}
\end{equation*}
$$

3.2 Arbitrary Linear Size Branching Programs over Large Alphabets

We show how to fool arbitrary branching programs with inputs over alphabet $\Sigma=\{0,1\}^{\lambda}$, where λ is a sufficiently large constant which depends on the multiplicative constant k in the length of the branching program.

Lemma 3. Let $P(x)=P_{1}(x) \wedge \ldots \wedge P_{t}(x)$, where $P_{1}, \cdots, P_{t}: \Sigma^{n} \rightarrow\{0,1\}$ are branching programs of length at most $k n / t$ each. Then, there exist collections of boolean functions $\left\{F_{\mathcal{C}, U}\right\}$ and $\left\{G_{\mathcal{C}, V}\right\}$, where \mathcal{C} ranges over all partitions of $\{1, \ldots, t\}$ and U, V range over all subsets of $[n]$ of size αn such that

$$
\begin{equation*}
P(x)=\sum_{\substack{\mathcal{C} \subseteq[t], U, V \subseteq[n] \\|U|=|V|=\alpha n}} F_{\mathcal{C}, U}(x) \cdot G_{\mathcal{C}, V}(x) \tag{5}
\end{equation*}
$$

and $\alpha \geq 1-\frac{1}{2^{k}}+\frac{2 k}{\sqrt{t}}+\frac{2}{\sqrt{n}}$.

Proof. We can express every P_{i} as $P_{i}(x)=\sum_{\ell_{i} \in \mathcal{L}_{i}} f_{i, \ell_{i}}(x)$ where the summation ranges over \mathcal{L}_{i} which denotes all accepting paths ℓ_{i} of P_{i} and $f_{i, \ell_{i}}(x)$ is the indicator function for the event that the computation of P_{i} on input x takes path ℓ_{i}. We can write

$$
P(x)=\prod_{i=1}^{t} P_{i}(x)=\prod_{i=1}^{t} \sum_{\ell_{i} \in \mathcal{L}_{i}} f_{i, \ell_{i}}(x)=\sum_{\left(\ell_{1}, \ldots, \ell_{t}\right) \in \mathcal{L}_{1} \times \cdots \times \mathcal{L}_{t}} f_{1, \ell_{1}}(x) \cdot \ldots \cdot f_{t, \ell_{t}}(x) .
$$

By Lemma 2 for every collection $\ell=\left(\ell_{1}, \ldots, \ell_{t}\right)$ there exists a partition $\mathcal{C}(\ell)$ of $[t]$ and sets $U(\ell)$ and $V(\ell)$, each of size at most αn, such that when $i \in \mathcal{C}$, $f_{i, \ell_{i}}(x)$ depends only on inputs in $U(\ell)$ and when $i \in \overline{\mathcal{C}}, f_{i, \ell_{i}}(x)$ depends only on inputs in $V(\ell)$. Without loss of generality we will assume that the sizes of $U(\ell)$ and $V(\ell)$ are exactly αn. We set

$$
F_{\mathcal{C}, U}(x)=\bigvee_{\substack{\ell: \mathcal{C}(\ell)=\mathcal{C} \\ U(\ell)=U}} \bigwedge_{i \in \mathcal{C}} f_{i, \ell_{i}}(x) \quad \text { and } \quad G_{\mathcal{C}, V}(x)=\bigvee_{\substack{\ell: \mathcal{C}(\ell)=\mathcal{C} \\ V(\ell)=V}} \bigwedge_{i \in \overline{\mathcal{C}}} f_{i, \ell_{i}}(x)
$$

We now prove the identity (5). If $P(x)=1$, then there is a unique path $\ell=$ $\left(\ell_{1}, \ldots, \ell_{t}\right)$ such that $f_{i, \ell_{i}}(x)=1$ for all i, and so $F_{\mathcal{C}, U}(x)$ and $G_{\mathcal{C}, V}(x)$ both take value 1 when and only when $\mathcal{C}=\mathcal{C}(\ell), U=U(\ell)$, and $V=V(\ell)$. Then exactly one term on the right hand side of (5) evaluates to 1 .

If $P(x)=0$, then $P_{i}(x)=0$ for some i, so $f_{i, \ell_{i}}(x)=0$ for all accepting paths ℓ_{i} of P_{i}. This forces $F_{\mathcal{C}, U}(x)$ to equal zero when $i \in \mathcal{C}$, and $G_{\mathcal{C}, V}(x)=0$ when $i \in \overline{\mathcal{C}}$. So all terms on the right hand side of (5) evaluate to 0 .

To prove Theorem 3 below, we will use Lemma 3 to write the branching program as a sum of a limited number of pairs of functions, where each pair satisfies the desired property. We then use Lemma 1 to bound the deviation of each term in this summation when the uniform distribution is replaced by the pseudorandom one.

Theorem 3. Let $k>0$ be a constant, and fix an alphabet size $\lambda \geq 2$. Let $F: \Sigma^{n} \rightarrow\{0,1\}$ be computable by a branching program on n inputs of width w and length $k n$. Then

$$
\left|\mathbf{E}_{\mathrm{P}}[F(\mathrm{P})]-\mathbf{E}_{\mathrm{U}}[F(\mathrm{U})]\right| \leq\left(\frac{4 \lambda n}{1-\alpha}\right)^{4} \cdot w^{2^{4 k}} \cdot 2^{2 H(\alpha) n} \cdot \epsilon,
$$

where P is the pseudorandom distribution over $\{0,1\}^{\lambda n}$, and $\alpha \geq 1-\frac{1}{2^{2 k}}$.
Proof. Applying the decomposition (2) we write

$$
\begin{aligned}
F(x) & =\sum_{\substack{p_{1}, \ldots, p_{t}: \\
p_{t} \in \text { accept }}} f_{1, s, p_{1}}\left(\left.x\right|_{S_{1}}\right) f_{2, p_{1}, p_{2}}\left(\left.x\right|_{S_{2}}\right) \cdots f_{t, p_{t-1}, p_{t}}\left(\left.x\right|_{S_{t}}\right) \\
& =\sum_{\substack{p_{1}, \ldots, p_{t}: \\
p_{t} \in \text { accept }}} F_{p_{1}, \ldots, p_{t}}(x)
\end{aligned}
$$

Here, $f_{i, p, q}$ are all branching programs of length $k n / t$. By Lemma 3 we have

$$
\begin{equation*}
F(x)=\sum_{\substack{p_{1}, \ldots, p_{t}: \\ p_{t} \text { दaccept }}} \sum_{\mathcal{C}, U, V} F_{p_{1}, \ldots, p_{t}, \mathcal{C}, U}(x) \cdot G_{p_{1}, \ldots, p_{t}, \mathcal{C}, V}(x) . \tag{6}
\end{equation*}
$$

where \mathcal{C} ranges over all partitions of $[t], U, V$ range over all subsets of $[n]$ of size αn, and $F_{p_{1}, \ldots, p_{t}, \mathcal{C}, U}: \Sigma^{\alpha n} \rightarrow\{0,1\}$ and $G_{p_{1}, \ldots, p_{t}, \mathcal{C}, V}: \Sigma^{\alpha n} \rightarrow\{0,1\}$ depend only on inputs coming from U and V respectively. Now, let us view $F_{p_{1}, \ldots, p_{t}, \mathcal{C}, U}, G_{p_{1}, \ldots, p_{t}, \mathcal{C}, V}$ as functions with domain $\{0,1\}^{\alpha \lambda n}$. Set $t=2^{4 k}$ and $r=4 \log (4 \lambda n /(1-\alpha))$. By Lemma 1 for each term in the sum, the difference in expectations under the uniform and pseudorandom distributions is at most $\epsilon 2^{r}$ in absolute value. Since there are at most w^{t} choices for $\left(p_{1}, \ldots, p_{t}\right), 2^{t}$ choices for \mathcal{C}, and $\binom{n}{\alpha n}$ choices for each of U and V, by the triangle inequality we obtain that

$$
\left|\mathbf{E}_{\mathrm{P}}[F(\mathrm{P})]-\mathbf{E}_{\mathrm{U}}[F(\mathrm{U})]\right| \leq \epsilon 2^{r} \cdot w^{t} \cdot 2^{t}\binom{n}{\alpha n}^{2}
$$

which yields the desired bound after substituting the values for r and t and the standard bound for binomial coefficients.

Parameters. We now set the parameters to obtain Theorem [1. We assume the availability of a family small-biased generators over $\{0,1\}^{m}$ for bias ϵ and seed length $\log (m / \epsilon)^{K}$ for some constant K constructible in time polynomial in the seed length (see e.g. AGHP90 for a construction with $K=2$). We instantiate this construction with parameters $m=\lambda n$ and $\epsilon=2^{-4 n}$ to obtain a seed length of $4 K n+o(n)$. Set $\alpha=1-2^{-2 k}$. By Lemma 1 , there exists a constant 2ρ (depending on α) for which the distribution P can be generated efficiently with seed length $(1-2 \rho) \lambda n+4 K n+o(n)$. Setting $\lambda=5 K / \rho$, the seed length is upper bounded by $(1-\rho) \lambda n$ bits, i.e. $(1-\rho) n$ elements of Σ, when n is sufficiently large. To calculate the bias, we simplify the upper bound in Theorem 3 to $4 \lambda^{4} n^{4} w^{2^{4 k}}$. $2^{2 n} \cdot \epsilon$. When $w \leq 2^{n / 2^{4 k}}$, this expression is upper bounded by $4 \lambda^{4} n^{4} \cdot 2^{-n}=$ $2^{-\Omega(n)}$.

Acknowledgements. We are grateful to the anonymous referee that pointed out a significant flaw in the proof of a previous version of our main theorem.

References

[AB84] Ajtai, M., Ben-Or, M.: A theorem on probabilistic constant depth computations. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC 1984, pp. 471-474. ACM, New York (1984)
[AGHP90] Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pp. 544-553 (1990)
[Ajt99] Ajtai, M.: A non-linear time lower bound for boolean branching programs. In: 40th Annual Symposium on Foundations of Computer Science, pp. 6070. IEEE (1999)
[All89] Allender, E.W.: P-uniform circuit complexity. Journal of the ACM 36(4), 912-928 (1989)
[AW85] Ajtai, M., Wigderson, A.: Deterministic simulation of probabilistic constant depth circuits. In: 26th Annual Symposium on Foundations of Computer Science, pp. 11-19. IEEE (1985)
$\left[\mathrm{BCD}^{+} 89\right]$ Borodin, A., Cook, S.A., Dymond, P.W., Ruzzo, W.L., Tompa, M.: Two applications of inductive counting for complementation problems. SIAM J. Comput 18(3), 559-578 (1989)
[BJS01] Beame, P., Jayram, T.S., Saks, M.: Time-space tradeoffs for branching programs. Journal of Computer and System Sciences 63(4), 542-572 (2001)
[BPW11] Bogdanov, A., Papakonstantinou, P.A., Wan, A.: Pseudorandomness for read-once formulas. In: Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science, FOCS 2011 (2011)
[Bra10] Braverman, M.: Polylogarithmic independence fools $A C^{0}$ circuits. Journal of the ACM (JACM) 57(5), 1-10 (2010)
[BSSV03] Beame, P., Saks, M., Sun, X., Vee, E.: Time-space trade-off lower bounds for randomized computation of decision problems. Journal of the ACM (JACM) 50(2), 154-195 (2003)
[Coo71] Cook, S.A.: Characterizations of pushdown machines in terms of timebounded computers. Journal of ACM (JACM) 18(1), 4-18 (1971)
[DNPS11] David, M., Nguyen, P., Papakonstantinou, P.A., Sidiropoulos, A.: Computationally limited randomness. In: Chazelle, B. (ed.) Proceedings of Innovations in Computer Science - ICS 2010, January 7-9, pp. 522-536. Tsinghua University Press, Beijing (2011)
[DP10] David, M., Papakonstantinou, P.A.: Trade-off lower bounds for stack machines. In: IEEE Conference on Computational Complexity (CCC), Boston, USA, pp. 163-171 (2010)
[Gur07] Guruswami, V.: Algorithmic results in list decoding. Foundations and Trends® in Theoretical Computer Science 2(2), 107-195 (2007)
[INW94] Impagliazzo, R., Nisan, N., Wigderson, A.: Pseudorandomness for network algorithms. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC 1994, Montréal, Québec, Canada, May 23-25, pp. 356364. ACM Press, New York (1994)
[KI04] Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1-2), 1-46 (2004)
[Nis91] Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63-70 (1991)
[Nis92] Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12(4), 449-461 (1992)
[NR95] Niedermeier, R., Rossmanith, P.: Unambiguous auxiliary pushdown automata and semi-unbounded fan-in circuits. Information and Computation 118(2), 227-245 (1995)
[Ruz80] Ruzzo, W.L.: Tree-size bounded alternation. Journal of Computer Systems and Sciences (JCSS) 21(2), 218-235 (1980)

[^0]: * Work partially supported by RGC GRF grants CUHK410309 and CUHK410111.
 ** This work was supported in part by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, and the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174, 61050110452, 61150110163.

[^1]: ${ }^{1}$ They are also known as auxiliary pushdown automata, see the full version of DP10 for terminology.

[^2]: ${ }^{2}$ Lemma 1 of BPW11 shows this for boolean formulas. The extension to larger domains is straightforward.

