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Abstract

We consider complexity issues for a special type of combinatorial auctions, the single-minded auction,
where every agent is interested in only one subset of the commodities.

First, we present a matching bound on the communication complexity for the single-minded auction
under a general communication model. Next, we prove that it is NP-hard to decide whether Walrasian
equilibrium exists in a single-minded auction. Finally, we establish a polynomial size duality theorem for
the existence of Walrasian equilibrium for the single-minded auction.
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The combinatorial auctions problem has attracted much attention in recent years because of its
applications to various interesting problems [6,17,24]. In that model, participating agents have
preferences not only for particular item of commodities, but also for all possible bundles. There is,
however, an inherent difficulty in applying computational complexity to obtain meaningful results
for this model: The value function v of each agent is defined on 2m subsets, exponential in the
number m of commodities. That is very similar to a situation in the complexity study of
cooperative game theory where it was proposed to consider value functions implicitly described
with a number of parameters polynomial in m [21]. Such a paradigm has turned complexity into a
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major issue in the studies of cooperative games (see, e.g., [8,7]). Obviously, a complexity theory in
combinatorial auctions would require such a feature to take off.
A special subclass of combinatorial auctions, the single-minded auction [18,1,22,4], where each

agent only desires a fixed bundle of commodities, has the property that its input size is OðmnÞ;
where m is the number of commodities and n is the number of participating agents. A useful first
step in complexity approach to the studies of combinatorial auctions would be a complete
understanding of single-minded auction. In this work, we present the communication complexity
of single-minded auction, as well as its computational complexity and the existence condition for
Walrasian equilibrium for single-minded auction.
Recently, communication complexity has been proposed as a measure of coordination

requirement and applied to study the necessary information exchanged among economic agents at
market places. Nisan [23] studied the communication complexity of combinatorial auctions,
demonstrated that producing optimal allocation requires an exponential amount of information
transfer, and obtained polynomial communication protocols for a truth-telling mechanism when
the optimal allocation can be obtained by linear program relaxation. Deng, Papadimitriou and
Safra [9] studied the communication complexity for the Arrow–Debreu equilibrium price [2] in an
exchange market. Shoham and Tennenholtz [26] studied the communication complexity of
rationally computable functions, using the model of auctions of unit-item and multi-items of the
commodity.
In the communication complexity model of Nisan for combinatorial auctions [23], we obtain a

matching bound for single-minded auction. We present a YðmnÞ bound for communication
complexity of single-minded auction with m commodities and n agents. Note that OðmnÞ is a
trivial upper bound in this model since every agent can simply submit his bundle to the auctioneer.
Our main effort in Section 3 is a proof of the lower bound OðmnÞ:
Next, we focus on the Walrasian equilibrium for single-minded auction. Walrasian equilibrium

specifies a tuple of allocation and price vector of commodities satisfying that (i) the prices of all
non-allocated commodities are zero, and (ii) each agent receives a bundle of his highest utility
under the price vector, where utility for each agent is the difference between the value function
and the price over corresponding allocation. Kelso and Crawford [15] proved that, under gross
substitutes (GS) condition, Walrasian equilibrium exists. Subsequently, Bikhchandani and Mamer
[3] established a powerful sufficient and necessary condition for a Walrasian equilibrium to exist:
The total value of the optimal allocation of bundles to individuals, written as an integer program,
is equal to the value of the corresponding relaxed linear program. This condition is, however, not
easy to verify in polynomial time. Gul and Stacchetti [14] later considered the GS condition again
and showed that another condition, the SI condition that valuation functions satisfy single

improvement condition, is equivalent to the GS condition, and hence is also sufficient for the
existence of Walrasian equilibrium.
All the above studies considered the standard linear pricing scheme, i.e., the price of a bundle is

defined by the sum of prices of items in the bundle. If non-linear pricing scheme is allowed,
Walrasian equilibrium always exists for combinatorial auctions [5,19].
We concentrate on the linear pricing scheme and are interested in the computational complexity

for Walrasian equilibrium. In Section 4, we prove that whether a Walrasian equilibrium exists is
NP-hard for the single-minded auction problem. Note that, it is known that the optimal allocation
problem for single-minded auction is NP-hard [18]. The duality theorem of Bikhchandani and
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Mamer [3] (and even ours in Section 5) reveals a relationship between the Walrasian equilibrium
and the optimal allocation if Walrasian equilibrium indeed exists. Therefore, there is a probable
link between deciding the existence of Walrasian equilibrium and finding the optimal allocation.
Our proof of the NP-hardness of the Walrasian equilibrium confirms that.
Finally, we explore the duality relationship for single-minded auction, with its complexity issues

in mind. Duality has played a crucial role in many important aspects in economics. Algorithmic
design for market equilibrium by Devanur et al. [10] depends on an important duality relations for
the prices of commodities and the assets of individual agents. Linear program duality has also
been a fruitful tool in cooperative game theory. Literatures dealing with the non-emptiness of the
core often result in a statement that an integer program and its corresponding linear program
relaxation have the same optimal value, such as the assignment game [25], the cost allocation
game on trees [27], the partition game [11], the combinatorial optimization game [7] and the
facility location game [13].
In Section 5, we exploit such a duality relationship. Note that the linear program approach

established by Bikhchandani and Mamer [3] is exponential in the input size. Thus it is not suitable
for our algorithmic study. We establish a formulation that is of polynomial size.
We conclude our work in Section 6 with remarks and discussions on future research.

2. The model

An auctioneer sells m heterogeneous commodities O ¼ fd1 � o1;y; dm � omg; with quantity dj

for each commodity oj; to n potential buyers O ¼ fO1;y;Ong: Each buyer Oi has a valuation

function vi: 2
O-Rþ,f0g that describes his true values over the various subsets of commodities.

That is, for any BDO; viðBÞ is the maximal amount of money that Oi is willing to pay in order to
win B: We say Oi is a single-minded buyer if there exists a basic bundle1 OiDO such that for any
BDO; viðBÞ ¼ viðOiÞ40 if OiDB and viðBÞ ¼ 0 otherwise. That is, Oi is the core bundle that Oi

desires. In this paper, we consider the case that all buyers are restricted to be single-minded, and
denote A ¼ ðO;O1; v1;y;On; vnÞ as a single-minded auction [18]. Let type matrix M ¼ ½aj;i�m�n;
where aj;iAN,f0g is the number of oj contained in the bundle Oi: Unless stated otherwise, vi

denotes the value viðOiÞ throughout the paper.
When receiving the submitted tuple ðOi; viÞ from each buyer i (the input), the auctioneer

specifies the following two parts as the output of the auction:

* Allocation vector X ¼ ðX1;y;XnÞ of O to all buyers, where Xi represents the collection of
commodities allocated to buyer Oi: X � ¼ ðX �

1 ;y;X �
n Þ is said to be an optimal allocation if for

any allocation X ; we haveXn

i¼1

viðX �
i ÞX

Xn

i¼1

viðXiÞ:

That is, X � maximizes total valuations of buyers. Let X0 ¼ O\ð
Sn

i¼1 XiÞ be the set of

commodities that are not allocated to any buyers.
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* Price vector ðpðo1Þ;y; pðomÞÞ (or ðp1;y; pmÞ). In this paper, we assume the prices of the
commodities are linear, i.e., pðBCÞ ¼ pðBÞ þ pðCÞ; for any B;CDO:

If Oi wins bundle B; his (quasi-linear) utility is uiðB; pÞ ¼ viðBÞ  pðBÞ: For any non-trading
buyer, his utility is zero.

3. Communication complexity

In this section, we study the communication complexity issues in single-minded auction. For
convenience, here we assume that d1 ¼ ? ¼ dm ¼ 1:
Following a model in [23], we are interested in the number of bits for the buyers to convey their

subsets of interests to the auctioneer. Here, the communication cost is referred to the criteria of
Yao [28], i.e., the total number of bits that all buyers transmit to the auctioneer. The upper bound
is obviously OðmnÞ: Our focus here is thus the proof of the matching lower bound. We study a
special case of single-minded auction, and demonstrate the lower bound of communication
complexity for this special case is OðmnÞ; which implies the same lower bound for the general
problem. Specifically, we consider the following single-minded auction:

* There are 2n independent buyers bidding for 2m commodities. For any 1pip2n; assume the
basic bundle Oi of buyer Oi contains exactly m various commodities (i.e., jOij ¼ m), and
viðOiÞ ¼ 1:

* In terms of the deterministic auction protocol, the auctioneer determines whether there exists

the (optimal) allocation ðX1;y;X2nÞ such that
P2n

i¼1 viðXiÞ ¼ 2: That is, whether there exist

Oi;Oj; iaj; such that Oi,Oj ¼ O; or equivalently, Oi-Oj ¼ |: Therefore, we may assume

without loss of generality that 2np 2m
m

� �
=29M; otherwise, such allocation always exists.

* In any round of the communication, each buyer knows what the other buyers submit to the
auctioneer.

Let C be the set of all m-collections of commodities, i.e., jCj ¼ 2m
m

� �
¼ 2M: Therefore any basic

bundle can be uniquely encoded by an integer xiAf1; 2;y; 2Mg in such a way that Oi,Oj ¼ O if

and only if xi þ xj ¼ 2M þ 1: It is easy to see such encoding does exist. It can be executed locally

and does not require communication. Therefore from the point of view of the communication
complexity, the above single-minded auction problem is equivalent to the following multi-party
communication problem:
There are 2n players, each holds an integer xiAf1; 2;y; 2Mg; they want to evaluate a 2n-

argument function

f ðx1;y;x2nÞ ¼
1 if ( iaj; s:t: xi þ xj ¼ 2M þ 1;

0 otherwise:

�

Following we construct another two-party communication game DISJM
n [16]: Alice and Bob hold

inputs Y and Z; respectively, where Y ;ZDf1; 2;y;Mg; and jY j ¼ jZj ¼ n: Note that npM=2;

define DISJM
n ðY ;ZÞ ¼ 1 iff Y-Z ¼ |:
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Now we show that the multi-party communication problem f is at least as hard as the two-

party communication problem DISJM
n ; and any communication protocol used to compute f can

be used to computing DISJM
n :

Assume Y ¼ fy1;y; yng; Z ¼ fz1;y; zng: Let xi ¼ yi; and xnþi ¼ 2M þ 1 zi; for i ¼ 1;y; n:
Notice that (i) yi þ yjp2Mo2M þ 1; since yipM; and (ii) ð2M þ 1 ziÞ þ ð2M þ 1
zjÞX2M þ 242M þ 1; since zipM:
If f ðx1;y;xn; xnþ1;y;x2nÞ ¼ 1; i.e., there exist 1piojp2n such that xi þ xj ¼ 2M þ 1: From

the above arguments, there must be xiAfx1;y;xng; and xjAfxnþ1;y;x2ng: Therefore, we have

xi þ xj ¼ yi þ ð2M þ 1 zjnÞ ¼ 2M þ 1 ) yi ¼ zjn; which implies that Y-Za|:
If Y-Za|; then there exist i; j; such that yi ¼ zj: Thus xi þ xnþj ¼ yi þ ð2M þ 1 ziÞ ¼

2M þ 1: Hence,

f ðx1;y;xn;xnþ1;y;x2nÞ ¼ 1 3 DISJM
n ðY ;ZÞ ¼ 0:

For any protocol P that computes f ðx1;y; xn;xnþ1;y;x2nÞ; Alice and Bob can simulate it step-
by-step. In each step, if player iAf1;y; ng does some computation and broadcasts a bit a; then
we let Alice compute it and send the same bit a to Bob and the auctioneer (Alice knows all
information that player i knows, so he can simulate the computation player i does). If player
jAfn þ 1;y; 2ng does some computation and broadcasts a bit b; then let Bob compute and send
the same bit b to Alice and the auctioneer (Bob knows all information that player j knows, so he
can simulate player j’s computation). At the end of the protocol, both players get the value of
f ðx1;y; xn;xnþ1;y; x2nÞ; so does the auctioneer. That means protocol P can be used to

computing DISJM
n :

From [16], we know that the DISJM
n problem has the communication lower bound log M

n

� �
; and

log
M

n

� �
Xn log

M

n
¼ n log

2m

m

� �
 log 2n

� �
¼ OðmnÞ;

where the last equality holds when log 2nocm for some constant cAð0; 2Þ: That is, in the worst
case, the communication complexity is lower bounded by OðmnÞ: Hence we get the following
conclusion.

Theorem 3.1. For any single-minded auction, the communication complexity that computes the

optimal allocation is YðmnÞ:

4. Complexity of Walrasian equilibrium

In this section, we study the computational complexity of Walrasian equilibrium in single-
minded auction. Intuitively, Walrasian equilibrium specifies the allocation and price vector such
that any remaining commodity is priced at zero and all buyers are satisfied with their
corresponding allocations under the given price vector. Formally,

Definition 4.1 (Walrasian Equilibrium for Unit-Item Auction Gul and Stacchetti [14]). A
Walrasian equilibrium of single-minded auction A ¼ ðO;O1; v1;y;On; vnÞ with d1 ¼ ? ¼ dm ¼ 1
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is a tuple ðX ; pÞ; where X ¼ ðX1;y;XnÞ is an allocation vector, pX0 is a price vector, such that (i)

pðX0Þ ¼ 0; where X0 ¼ O\ð
Sn

i¼1 XiÞ and (ii) for any buyer Oi; uiðXi; pÞXuiðB; pÞ; for all BDO:

For the auction with multiple items of the same type of commodity, let f ðoj;XÞ be the number

of oj allocated to buyers in allocation X : Therefore we must have f ðoj;XÞpdj:

Definition 4.2 (Walrasian Equilibrium for Multi-Items Auction).2 A Walrasian equilibrium of
multi-items single-minded auction A is a tuple ðX ; pÞ; where X ¼ ðX1;y;XnÞ is an allocation
vector, pX0 is a price vector, such that (i) if f ðoj;XÞodj; then pðojÞ ¼ 0; for any 1pjpm; (ii) for
any buyer Oi; uiðXi; pÞXuiðB; pÞ; for all BDO:

From the above definitions, we may assume without loss of generality that Xi ¼ Oi or Xi ¼ |:
As in the general combinatorial auctions [5], Walrasian equilibrium may not exist in (unit-item)

single-minded auction.

Example 4.1. Three buyers bid for three commodities with unit quantity each. O1;O2;O3 desire
fo1;o2g; fo2;o3g; fo1;o3g; respectively, at valuation 3,2,2. We only consider the optimal
allocation here, i.e., assigning fo1;o2g to buyer O1: Hence, the equilibrium price vector p should
satisfy pðo1o2Þp3; pðo2o3Þ; pðo1o3ÞX2; and pðo3Þ ¼ 0; which cannot be held simultaneously.
Therefore the Walrasian equilibrium does not exist.

Note that our value function is defined in a special way for our algorithmic study, different
from the standard weakly increasing assumption under which the value of any bundle B for buyer
Oi is at least vi if OiDB: Therefore, the input size of our model is polynomially bounded by the
number of commodities and buyers. That allows us to deal with the computational complexity
issues with ease.

Theorem 4.1. Given any single-minded auction, it is NP-hard to determine whether Walrasian
equilibrium exists.

Proof. We reduce from EXACT COVER BY 3-SETS (X3C) [12]. That is, given a family S ¼
ðs1;y; snÞ of 3-subsets of N ¼ f1;y; 3mg; we are asked whether there is a subfamily of m sets of
S covering all elements in N:
For the above input of X3C, we construct the following auction with 3m þ 3 commodities (with

unit quantity each) and 9m þ n þ 1 buyers: Let every element of N correspond to a commodity,
i.e., O0 ¼ fo1;y;o3mg: We add another three special commodities a;b; g; let snþ1 ¼ fa; b; gg and
O ¼ O0,snþ1: The first n þ 1 buyers’ valuation functions are defined as follows:

viðBÞ ¼
3 if siDB;

0 otherwise;

�
i ¼ 1;y; n þ 1;
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where si denotes the set of corresponding commodities. That is, si is the basic bundle of buyer Oi;
1pirn þ 1: Let O0 ¼ fO1;y;Ong be the set of first n buyers. For any 3-collection C ¼
ff1;f2;og; where f1;f2Asnþ1; f1af2; and oAO0; we add one buyer with C as the basic bundle
at valuation 3. Note that the number of such 3-collections is 9m; therefore we just added 9m new
buyers.
If there exists a subfamily of m sets fsi1 ;y; simgDS covering all elements in N; we may allocate

snþ1 to buyer Onþ1; and sik to buyer Ok; for 1pkpm: Hence when we set the price of each
commodity is one, all buyers are satisfied with their corresponding allocations, and then the
equilibrium exists.
Conversely, assume M has an equilibrium ððX1;y;Xnþ1;X 0Þ; pÞ; where X 0 is the vector of

allocations to buyers except O1;y;Onþ1: We only need to show that the above equilibrium must
be allocating all commodities of O0 to buyers in O0; that is, m different buyers in O0 win with three
elements each, which constructs a 3-sets cover. Otherwise, at least three elements of O0 are not
allocated to any buyer in O0: With a change of notations, we may assume that such three elements
are fo1;o2;o3g: There are the following various cases:

(1) All items in snþ1 are bought by Onþ1: Then, none of items fo1;o2;o3g can be bought by
anyone. They will all be priced at zero. However, at least one of the items in fa; b; gg must be
priced at least 1. Assume, w.l.o.g., it to be a: Then the buyer interested in fb; g;o1g would be
able to buy the bundle at a price no more than 2; a contradiction to the definition of
Walrasian equilibrium.

(2) Some but not all items in snþ1 are bought by some buyer. Without loss of generality, assume
that it is bought by a buyer who is interested in fa;b;oig for some oiAO0; ia1: At least one of
a and b must be priced at no more than 3=2; and assume, w.l.o.g., pðaÞp3=2: Then no one
could buy g and it must be priced at zero. The buyer interested in fa; g;o1g would be able to
buy the bundle at a price no more than 3=2: A contradiction.

(3) No items in snþ1 is bought by some buyer. This is not possible since all will be priced at zero
and buyer Onþ1 would be able to buy his interested bundle fa;b; gg at a null price, a
contradiction.

In conclusion, no matter how we allocate the commodities in snþ1; there always exists a buyer
whose utility is not maximized for his allocation, which contradicts the definition of Walrasian
equilibrium. &

Furthermore, given any solution of allocation and price vector, it’s not hard to see that we can
check if it is a Walrasian equilibrium in polynomial time. Hence, the problem of computing
Walrasian equilibrium in single-minded auction is NP-complete. As for the general combinatorial
auctions, we need exponential steps to check if all buyers are satisfied with their allocations.

5. Polynomial size duality theorem for Walrasian equilibrium

The following lemma is on the relation between Walrasian equilibrium and optimal allocation.

Lemma 5.1. If ðX ; pÞ is a Walrasian equilibrium, then X must be an optimal allocation.
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Proof. We need to prove that for any allocation Y ¼ ðY1;y;YnÞ;Xn

i¼1

viðXiÞX
Xn

i¼1

viðYiÞ:

Denote the number of commodity wj in bundle B by njðBÞ: From the definition of Walrasian

equilibrium, we know that

viðXiÞ 
X
ojAXi

pðojÞnjðXiÞXviðYiÞ 
X
ojAYi

pðojÞnjðYiÞ:

Hence for all buyers, we have:

Xn

i¼1

viðXiÞ 
X
ojAXi

pðojÞnjðXiÞ

0
@

1
AX

Xn

i¼1

viðYiÞ 
X
ojAYi

pðojÞnjðYiÞ

0
@

1
A

)
Xn

i¼1

viðXiÞ 
Xn

i¼1

X
ojAXi

pðojÞnjðXiÞX
Xn

i¼1

viðYiÞ 
Xn

i¼1

X
ojAYi

pðojÞnjðYiÞ

)
Xn

i¼1

viðXiÞ 
X
oj

pðojÞf ðoj;XÞX
Xn

i¼1

viðYiÞ 
X
oj

pðojÞf ðoj;YÞ

)
Xn

i¼1

viðXiÞ 
Xn

i¼1

viðYiÞX
X
oj

pðojÞðf ðoj;XÞ  f ðoj;YÞÞ:

Note that for 8j; f ðoj;XÞpdj; and f ðoj;YÞpdj: If f ðoj;XÞ ¼ dj; then

pðojÞðf ðoj;XÞ  f ðoj;YÞÞX0:

Otherwise commodity oj is not clear in allocation X : Since ðX ; pÞ is a Walrasian equilibrium, due

to the condition (i) of Walrasian equilibrium, we have pðojÞ ¼ 0; which implies that

pðojÞðf ðoj;XÞ  f ðoj;YÞÞ ¼ 0:

Hence we always have
P

oj
pðojÞðf ðoj;XÞ  f ðoj;YÞÞX0: That is,

Xn

i¼1

viðXiÞX
Xn

i¼1

viðYiÞ: &

Following we consider the existence of Walrasian equilibrium from the point of view of integer
program and its linear program relaxation.

Integer Program ðIPÞ:

max
xi

Pn
i¼1

vixi

s:t:
Pn
i¼1

aj;ixipdj; 8 1pjpm;

xiAf0; 1g; 8 1pipn;
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where ½aj;i�m�n is the type matrix, and xi denotes whether buyer Oi wins his desired basic bundle or

not.
Linear Program Relaxation ðLPRÞ:

max
xi

Pn
i¼1

vixi

s:t:
Pn
i¼1

aj;ixipdj; 8 1pjpm

0pxip1; 8 1pipn:

Dual of LPR ðDLPRÞ:

min
yj ;zi

Pm
j¼1

djyj þ
Pn
i¼1

zi

s:t:
Pm
j¼1

aj;iyj þ ziXvi; 8 1pipn

yjX0; 8 1pjpm

ziX0; 8 1pipn:

Note that in the economic sense, yj represents the price of commodity oj: Let MIP; MLPR and

MDLPR be the values of the optimal solutions of IP, LPR and DLPR, respectively. Thus,

MDLPR ¼ MLPRXMIP:

Theorem 5.1. Walrasian equilibrium exists if and only if any optimal solution of IP is an optimal
solution of LPR, i.e., MIP ¼ MLPR:

Proof. (: Assume MIP ¼ MLPR: Let x� ¼ ðx�
i Þ be an optimal solution of IP, then x� is also an

optimal solution of LPR. Let y� ¼ ðy�
j Þ; z� ¼ ðz�i Þ be an optimal solution of DLPR. Then

Xn

i¼1

vix
�
i ¼

Xm

j¼1

djy
�
j þ

Xn

i¼1

z�i ð1Þ

Due to the complementary slackness condition, we have

Xm

j¼1

aj;iy
�
j þ z�i  vi

 !
� x�

i ¼ 0; 8 1pipn ð2Þ

dj 
Xn

i¼1

aj;ix
�
i

 !
� y�j ¼ 0; 8 1pjpm ð3Þ

ð1 x�
i Þ � z�i ¼ 0; 8 1pipn ð4Þ
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Now we construct an allocation as follows: If x�
i ¼ 1; let Xi ¼ Oi; otherwise let Xi ¼ |: Let the

price of commodity oj be y�j ; i.e., pj ¼ y�j : We following prove this is a Walrasian equilibrium.

There are four conditions we need to check:

(1) For each commodity oj; we should have
Pn

i¼1 aj;ix
�
i pdj: (It is satisfied since x� is IP (LPR)

feasible).
(2) For each commodity oj that is not clear, we should have pj ¼ 0: (If oj is not clear, i.e.,

dj 
Pn

i¼1 aj;ix
�
i 40; by (3), we have pj ¼ y�j ¼ 0).

(3) If buyer Oi gets the bundle Oi; i.e., x�
i ¼ 1; then vi should be greater than the price of Oi:

(By (2), we have
Pm

j¼1 aj;iy
�
j þ z�i  vi ¼ 0; i.e., vi ¼

Pm
j¼1 aj;iy

�
j þ z�i X

Pm
j¼1 aj;iy

�
j ¼Pm

j¼1 aj;ipj ¼ pðOiÞ).
(4) If buyer Oi does not get the bundle Oi; i.e., x�

i ¼ 0; then vi should be less than the price of Oi:

(By (4), we have z�i ¼ 0: Because y�; z� is DLPR feasible, so
Pm

j¼1 aj;iy
�
j þ z�i Xvi: HencePm

j¼1 aj;iy
�
j Xvi; i.e., pðOiÞ ¼

Pm
j¼1 aj;ipj ¼

Pm
j¼1 aj;iy

�
j Xvi).

From the above conditions, ðX ; pÞ is a Walrasian equilibrium.
): Assume a Walrasian equilibrium ðX ; pÞ exists. Let x�

i ¼ 1; if Xi ¼ Oi; otherwise let x�
i ¼ 0:

Then x� ¼ ðx�
i Þ is IP (LPR) feasible. By Lemma 5.1, we have

MIP ¼
Xn

i¼1

vix
�
i : ð5Þ

We following construct vector y� ¼ ðy�
j Þ and z� ¼ ðz�i Þ: Let y�

j ¼ pj: If x�
i ¼ 0; i.e., vi  pðOiÞp0;

let z�i ¼ 0; otherwise let z�i ¼ vi  pðOiÞ: From the above construction, it is clear that for all

1pipn;

Xm

j¼1

aj;iy
�
j þ z�i ¼

Xm

j¼1

aj;ipj þ z�i ¼ pðOiÞ þ z�i Xvi:

Hence y�; z� is DLPR feasible. Then,

MDLPRp
Xm

j¼1

djy
�
j þ

Xn

i¼1

z�i : ð6Þ

Similarly, we have x�
i � ðvi 

Pm
j¼1 aj;iy

�
j  z�i Þ ¼ 0: Hence,

Xn

i¼1

x�
i � vi 

Xm

j¼1

aj;iy
�
j  z�i

 !
¼ 0

)
Xn

i¼1

vix
�
i 

Xm

j¼1

y�j
Xn

i¼1

aj;ix
�
i 

Xn

i¼1

x�
i z�i ¼ 0:

If
Pn

i¼1 aj;ix
�
i odj; then y�j ¼ pj ¼ 0; and y�j �

Pn
i¼1 aj;ix

�
i ¼ 0 ¼ djy

�
j ; otherwise

Pn
i¼1 aj;ix

�
i ¼ dj; we

also have y�j �
Pn

i¼1 aj;ix
�
i ¼ djy

�
j : If x�

i ¼ 0; then z�i ¼ 0; and x�
i z�i ¼ z�i ; otherwise x�

i ¼ 1; we also
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have x�
i z�i ¼ z�i : Therefore,

Xn

i¼1

vix
�
i 

Xm

j¼1

djy
�
j 

Xn

i¼1

z�i ¼ 0: ð7Þ

Combining (5), (6), and (7), we have MLPR ¼ MDLPRpMIP: That is, MIP ¼ MLPR: &

6. Conclusion and discussions

In this work, we consider algorithm and complexity issues of Walrasian equilibrium
for single-minded auction. Our communication complexity result is the first non-trivial
matching bound in communication complexity of computational economics. The reduction
technique for NP-hard proof of Walrasian equilibrium may be useful in related equilibrium
problems.
A polynomial size duality theorem for single-minded auction is established. In comparison, that

of Bikhchandani and Mamer [3] for combinatorial auctions (and their version for single-minded
auction) is of exponential size, and thus not suitable for the study of complexity issues. Our
discussion is specified to single-minded buyers, what happens if buyers are, for example, k-
minded?
Because Walrasian equilibrium does not necessarily exist, we may consider relaxed Walrasian

equilibrium, in which we only require condition (i) of Definition 4.2 (i.e., if the commodity is not
clear, its price is zero). Trivially, relaxed Walrasian equilibrium always exists. Here, for any single-
minded auction, we are asked to select a relaxed Walrasian equilibrium ðX ; pÞ to maximize d � n;
0odp1; the number of satisfied buyers, where buyer Oi is satisfied if his utility is maximized by
the corresponding allocation Xi under price vector p:
Note that the ordinary Walrasian equilibrium is equivalent to the case d ¼ 1: In Example 4.1,

d ¼ 2=3: Thus, there is an instance such that the number of satisfied buyers is at most 2n=3:
Specifically, we have the following conjecture.

Conjecture. For any single-minded auction, dX2=3; and then, the bound d ¼ 2=3 is tight. That is,
there always exists relaxed Walrasian equilibrium ðX ; pÞ such that there are at least 2n=3 satisfied

buyers under ðX ; pÞ:
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