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ABSTRACT
This paper addresses the problem of producing very compact
representation of a face image for large-scale face search and
analysis tasks. In tradition, the compactness of face rep-
resentation is achieved by a dimension reduction step after
representation extraction. However, the dimension reduc-
tion usually degrades the discriminative ability of the orig-
inal representation drastically. In this paper, we present a
deep learning framework which optimizes the compactness
and discriminative ability jointly. The learnt representation
can be as compact as 32 bit (same as the int32) and still
produce highly discriminative performance (91.4% on LFW
benchmark). Based on the extreme compactness, we show
that traditional face analysis tasks (e.g. gender analysis) can
be effectively solved by a Look-Up-Table approach given a
large-scale face data set.

Categories and Subject Descriptors
I.4 [Image Processing And Computer Vision]: Im-
age Representation; H.3 [Information Storage And Re-
trieval]: Content Analysis and Indexing

Keywords
face recognition; face search; deep learning

1. INTRODUCTION
Numerous vision tasks benefit from a compact represen-

tation of the image data. In face search/analysis tasks, the
vector representation of a face image is typically of very high
dimension [2] to preserve sufficient discriminative ability.
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Figure 1: Compact face representation. Our system
exploits deep neural networks to produce extremely
compact face representation that can fit into a 32-bit
integer. The short and low-dimensional representa-
tion facilitates efficient large scale face search. In
addition, it enables very simple classifiers for face
attribute analysis given large scale data set.

In tradition, a face representation of thousands of dimen-
sions has already been considered as “compact” in the com-
munity of face recognition. Some dimension reduction or
quantization methods may be adopted to compress the rep-
resentation dimension for the applications of large-scale face
systems. However, the discriminative ability is usually de-
creased due to the compactness requirement. As a result,
existing methods make different tradeoffs between compact-
ness and discriminative ability.

To pursue a compact and discriminative representation
of a face image, our key observation is that the compact-
ness and discriminative ability should be optimized together.
The compactness of the representation is decided by the fea-
ture dimension and discreteness strategy. For the feature di-
mension part, a dimension reduction step is usually adopted
after representation extracted. Discreteness is another key
issue in the representation learning. Storing quantized or
categorical information requires less bits than storing a real-
value variable. For example, an int32 data structure can
store a single bin of 32-bit feature or four independent bins
of 8-bit. Since existing dimension reduction and discrete-
ness [4, 11, 5, 1] methods are all post-processing. The dis-



criminative ability will degrade drastically during these two
steps.

In this paper, we present a new deep learning framework
called Deep Compactness Learning, which can tackle the
aforementioned problems in a unified framework. Our con-
tributions are summarized as follows:

1. We propose a deep learning framework which can op-
timize the compactness and discriminative ability of
face representation jointly.

2. We conduct extensive experiments to show our rep-
resentation learning framework achieves good tradeoff
between compactness and discriminative ability (91.4%
accuracy on LFW benchmark with 32-bit length).

3. We demonstrate the advantage of our extreme compact
representation in the applications of face search and
analysis tasks.

2. DEEP COMPACTNESS LEARNING
In this section, we describe the details of our deep rep-

resentation learning framework. The compactness and dis-
criminative ability of the representation is jointly optimized
in a unified CNN framework.

2.1 Joint Optimization Framework
In order to make the representation compact, we have to

incorporate the low-dimension and discreteness constraint
into our framework. The representation is formulated as a
function from image data to a feature space:

f : Mh×w(R)→ Rn. (1)

A loss function is used to learn the function map accord-
ing to certain criteria. We adopt a pair-based loss func-
tion which encourages the identity-preserving property of
the learned representation:

L =
∑
x1,x2

L (α |f(x1)− f(x2)| − β, δ(x1, x2)) , (2)

where δ(·, ·) indicates whether the two images belong to the
same person (−1 for same, 1 for different), and

L(y, l) = log
(

1 + e−ly
)
. (3)

The loss function encourages small distance between the
matched (same identity) face pairs and large distance be-
tween unmatched pairs. In this way, the feature preserves
the discriminative information about the face.

The low-dimension constraint is enforced by setting the
model’s output dimension n to a small enough number. To
produce a 32-bit representation, we can set n = 32 and the
representation becomes a binary representation. We also al-
low even smaller n so that more bits can be assigned to each
dimension (e.g. 4 bits for each of the 8 dimensions). Using
more than one bit has the advantage of forming a hierarchi-
cal structure in the feature space so that the data points can
be indexed at different levels of granularity. However, some
applications explicitly demand binary representation, so we
treat the binary and non-binary cases separately.

Another constraint is discreteness, which means each di-
mension of the model’s output has to be rounded:

f(x) =
⌊
2Qfmodel(x)

⌋
, (4)

where Q corresponds to the number of bits available for
encoding one dimension, and fmodel(x) ∈ [0, 1)n.

However, the non-differentiable rounding operator posses
problem to gradient-based learning algorithms. To over-
come this obstacle, we propose three different techniques.
The first technique called “rounding error term” is the most
straight forward. A“noise” term f̃(x) is introduced to model
the error brought by rounding:

f(x) = 2Qfmodel(x) + f̃(x), (5)

where f̃(x) corresponds to the residual. When computing
the gradient of the loss function with respect to model pa-
rameters, this term is treated as a constant.

The technique works well for non-binary cases. However,
its performance is suboptimal when Q becomes as low as 1.
Therefore, we propose two different specialized techniques
to handle the binary case.

The first technique associates the model’s real valued out-
put with a random n-bit variable. The i-th bit of f(x) has
a probability of fmodel(x)i to be 1 and 1− fmodel(x)i proba-
bility to be 0. The bits are independent. Then we take the
expectation of the loss function:

L′ =
∑
x1,x2

E [L(α |f(x1)− f(x2)| − β, δ(x1, x2))] , (6)

where the expectation is taken over the random choices of
f(x1) and f(x2). It is easy to verify that L′ is differentiable
with respect to the model’s output. Computing the expec-
tation directly is intractable. However, it can be efficiently
computed by dynamic programming. For x1 and x2, let Di,j

be the probability that f(x1) and f(x2) differs at j bits in
their first i bits. We have

Di,j = (1− p1 − p2 + 2p1p2)Di−1,j

+(p1 + p2 − 2p1p2)Di−1,j−1,
(7)

where p1 = f(x1)i, p2 = f(x2)i. The boundary conditions
are D0,0 = 1 and Di,−1 = 0.

Another technique aims at minimizing the error intro-
duced by rounding. The idea is to encourage the model
to output binarized value by adding a standard deviation
term:

L′ = L+ ω
∑
i

Std(f(x)i), (8)

where Std(·) denotes the standard deviation across the train-
ing set.

Our framework is jointly optimized in the sense that both
the requirements of compactness and discriminative power
are tightly incorporated into the framework. This is in con-
trast to other methods which use hashing or dimensionality
reduction algorithms as a post-processing step.

2.2 Deep Learning Model
We formulate the function family using CNN (Convolu-

tional Neural Network). The CNN is a composition of mul-
tiple linear and non-linear operators.

fcnn(x) = fn (fn−1 (· · · f1 (x) · · · )) . (9)

The first type of the operators is the convolution which
filters the multi-channel image signal:

CW (x)i,j,k =
∑
u,v,w

Wu,v,k,wxi−u,j−v,w +Bk. (10)



Another operator is max-pooling which reduces the size of
the image:

Ms(x)i,j,k = max
0≤u,v<s

xis−u,js−v,k. (11)

Non-linearity is introduced to the network by using element-
wise non-linear operators:

g(x) = abs(tanh(x)). (12)

This activation function is inspired by [7] which reveals its
advantage in the object recognition task.

The structure of a typical CNN is illustrated in Figure 2.
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Figure 2: Typical structure of convolutional neural
network. Convolution, max-pooling and non-linear
operators are three key modules to form a multi-
layer convolutional neural network.

3. EXPERIMENT

3.1 Effects of Representation Learning
Firstly we evaluate the proposed framework on face verifi-

cation task to validate the effectiveness of our method. Our
experiment is conducted on the Labelled Faces in the Wild
(LFW) [6] data set. We use an outside training set (around
630 thousand faces crawled from the web) which has little
overlap with LFW (less than 0.6% pictures in LFW appear
as near duplicate in our training set). A 6-layer neural net-
work containing 9 million parameters is employed in our sys-
tem (inspired by [3]). The parameters in the neural networks
are optimized by Stochastic Gradient Descent, and standard
deep learning techniques including greedy pre-training are
adopted to further accelerate training process.
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Figure 3: Demonstration of binarized activation
value. All the three techniques (a. rounding error
term; b. dynamic programming; c. standard devia-
tion) encourage the neurons’ output to saturate.

We study two categories of 32-bit representations. The
first category is the binary representation in which each bit

Table 1: Face verification accuracy on the LFW
benchmark with the binary representation. The ta-
ble lists accuracy achieved by different techniques to
handle the binarization constraint.

Length Method Accuracy
32 bits rounding error term 87.7%
32 bits dynamic programming 88.4%
32 bits standard deviation 88.5%

corresponds to one binarized dimension. The three tech-
niques described in Section 2.1 are implemented and com-
pared. It is observed in the experiment that all these tech-
niques effectively encourage the activation function to sat-
urate (Figure 3). As shown in Table 1, with the dynamic
programming technique or the standard deviation technique,
our representation achieves 88.5% verification accuracy on
LFW. As a comparison, we evaluated a baseline method
based on high dimensional LBP and PCA [2]. Though it
achieves an accuracy of 96% when more than 1000 dimen-
sions are used, the performance drastically degrades to 81%
when the dimension is reduced to 32.
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Figure 4: Face verification accuracy obtained by dif-
ferent configurations of the 32 bits. Rounding error
term is used to produce quantized features of 32, 16,
8 and 4 dimensions. The best result is achieved by
using 4 bits for each of the 8 dimensions.

Conversely, in the second category, each dimension is no
longer limited to 1 bit, while the total length of each fea-
ture is still 32 bits. We test 4 configurations, from 32× 1 to
4 × 8 bits. The the rounding error term is used to produce
discrete features of different dimensions. As shown in Fig-
ure 4, the best result is obtained by using 4 bits for each of
the 8 dimensions. It achieves an accuracy of 91.4% which is
better than the binary representations. It validates the ben-
efits of the flexibility introduced by using multiple bits for
one dimension. It is worth mentioning that the 32-bit repre-
sentation already beats many more complicated and higher-
dimensional features [8, 9, 10]. The 8 × 4 configuration is
used throughout remaining face search and classification ex-
periments.

3.2 Applications to Face Search and Analysis
In this subsection we explore the application of the com-

pact representation in face search and analysis.
In large-scale face search, the compact representation is

used to build an index for fast nearest neighbour searching.
Candidates are quickly generated based on the index, and



finer-grained search and re-ranking steps follow. The 32-bit
representation divides the feature space into bins. Each bin
contains faces with the same 32-bit representation. We focus
on evaluating the recall value when only a small fraction of
bins are visited during searching. The bins are visited in
ascending order of the distance to the query vector. For
fair comparison, the evaluation was also conducted on LFW
dataset. We choose persons with more than two pictures
in the data set and use their faces as queries to search for
matched images. The recall rate when different number of
bins are visited is recorded in Figure 5. The figure shows
that high recall rate can be obtained by visiting less than
one thousandth of the total bins, which greatly accelerates
the searching.
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Figure 5: Performance of learnt representation in
face search application. This figure shows the recall
rate obtained by visiting a small number of bins.

Then we apply the deep face representation in face classi-
fication task. The usual way of building classifiers is to learn
statistical models based on the feature vectors. As the num-
ber of training samples increases, the learning-based meth-
ods always suffer from the expensive training cost. Large-
scale social network normally maintains a huge image gallery
from billions of people, with hundreds of millions of photos
uploaded every day. Despite current efforts in online learn-
ing and incremental algorithms, it is still difficult to guar-
antee that the learning process scales well as the training
samples continuously come.

When the feature representation is short enough, a scal-
able and straight forward method of analysis is enabled. The
method uses the representation as an entrance and builds
a Look Up Table (LUT) for classification. Due to the id-
preserving property of the representation, we can hopefully
expect the photos belonging to the same bin share common
attributes (Figure 6). When the number of training samples
is large enough, the accuracy of the classifier approaches the
Bayesian error rate. Training and classifying becomes as
simple as a table look-up.

Due to limited space, here we construct a prototype sys-
tem from small-scale data set to illustrate our idea. The task
is to predict the gender of the person in a facial image. We
gather a training set of 80,000 pictures from existing data
sets, and evaluate the performance on the LFW benchmark.
As the number of training samples is not large enough, we
retrieve data points from nearby bins when doing prediction.
We achieve a classification accuracy of 96.8%. We believe
as the scale of the data set becomes larger, the performance
will be further promoted.

Figure 6: Face samples in different face bins. Based
on the representation, the feature space is divided
into bins (216 bins in this figure). Clearly, the faces
falling in the same bin share a strong correlation
with the high-level facial attributes (e.g, gender).
This validates our representation bin to be a proper
cue for facial attribute analysis.

4. CONCLUSION
We present a new face representation learning approach

based on deep learning framework. Our method can jointly
optimize the compactness and discriminative ability of the
representation in a unified framework. With our extreme
compact representation, the face search task can be greatly
accelerated and the traditional face analysis task can be ef-
fectively solved by large-scale data-driven approach. Exten-
sive experiments justify the effectiveness of our method.
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