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Abstract—Time delay estimation is a very general problem
with wide range of applications. When noisy repetitive signals
are observed, the noise cancellation is achieved by averaging
perfectly aligned signals. A time delay estimator is developed
for determining time delay between signals received on different
trials in the presence of uncorrelated noise. The estimator is
based on a probabilistic generative model for delayed signals, and
tries to find the delay and the source signal simultaneously so
that maximum likelihood is achieved. An iterative method based
on the Expectation-Maximization algorithm is used for finding
maximum likelihood estimate of parameters. The estimator has
been tested on three types of synthetic signals. The result shows
that it can tolerate 5 to 10dB more noise while achieving the
same performance as cross-correlation estimator.

I. INTRODUCTION

Recurrent signals play an important part in many signal
processing applications. For example, the estimation of a
transient signal usually needs the average of a lot of identically
repeated experiments to enhance the signal to noise ratio
(SNR) in the physical chemistry field. Biomedical signals
such as electrocardiograms or evoked potentials are also good
examples of recurrent signals.

This recurrence is used in the signal averaging process
in order to improve the SNR or to cancel random artefacts.
This averaging process is efficient when the recurrent signals
are perfectly aligned. The effect of the misalignment can
be approximated within the signal convolution with the low-
pass filter whose impulse response is the probability density
function of this misalignment. This filter will reduce the SNR
improvement. The loss of the high frequency information can
also reduce the relevance of the mean signal.

Time Delay Estimation (TDE) has been intensively studied
in the field of signal processing and system control [1]-
[6]. Knapp and Carter [3] used a pair of receiver prefilters
and a cross-correlator to find the relative time delay between
two input sequences. Carter [4] extended this approach to
multiple input sequences. Ljung [7] formulated this problem
as optimizing the response of a parameterized system together
with a time delay. Ran [2] discussed the time delay estimation
methods using fractional fourier transform. Most of these
works require some kind of prior knowledge of the source
signals, which is difficult to obtain in some circumstances.
This paper focuses on the situation where no such prior
knowledge is available, and develops a method to find the
relative time delay between data sequences.

In this paper, the problem is formulated as finding pa-
rameters to maximize likelihood in a probabilistic model for
time delay estimation. An iterative algorithm is developed for
joint estimation of time delay and source signal based on the
Expectation-Maximization (EM) algorithm. The idea of this
algorithm is to calculate the conditional probability distribu-
tion of the time delay based on current estimate of the source
signal, and then use it to better estimate the source signal.
EM algorithm [8] is a general method for solving maximum
likelihood estimation problems, and has been successfully
applied to estimate the time delay in multipath scenario [9].

This paper is organized as follows. The formulation of the
problem and the probabilistic model is presented in section II.
Our algorithm is then introduced in section III. After that some
experiment results are carried out to demonstrate capabilities
and some other aspects of the algorithm in section IV.

II. PROBABILISTIC MODEL OF TIME DELAY

Suppose that there are M channels and N trials in an
experiment. For each channel i there is a source signal S;
related to this channel. For each trial j there is an inherent
time delay 7} on this trial. For each pair of channel ¢ and
trial 7, the signal received by channel 7 on trial j is a delayed
signal with some noise:

Xij(t) = Si(t — Ty) + nij(t)

With these M x N signal sequences X;; as data, the problem
is to estimate the inherent time delay T} of each trial and
also try to retrieve the source signals S; for each channel as
well. It is assumed that the noises are independent, additive
gaussian noises with zero mean and unknown variance. It
is also assumed that no prior knowledge about the source
signals is available. Finally for simplicity, the sampling rate is
assumed to be high enough that all time delay variables can
be approximately treated as discrete variables.

A probabilistic model can be used to describe the signal
generation process, as shown in Fig. 1.Here S; denotes the
source signal on channel 7. Since there is no prior knowledge
about .S, it is uniformly distributed among all possible signals.
p;(-) is prior distribution of the time delay 7} on trial j, it
could be either uniform or non-uniform, based on the prior
knowledge about the distribution of time delay. ajz denotes the
variance of gaussian noise on trial j, it is a fixed but unknown
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Fig. 1. The Graphical Model

parameter. The distribution of each parameter is defined as

follow:
o S; ~Uniform(-)
« Tj~p;()
o Xij ~ N(Si(t = T;),031)
[II. MAXIMUM LIKELIHOOD ESTIMATION VIA THE EM
ALGORITHM

The EM algorithm, introduced by Dempster et al. [8], is an
iterative method for finding maximum likelihood or maximum
a posteriori (MAP) estimates of parameters in probabilistic
models, where the model depends on unobserved latent vari-
ables. EM algorithm generally alternates between two steps:
expectation, which calculates the expected log-likelihood using
the current estimate of the parameters; and maximization,
which maximize the expected log-likelihood calculated in the
E step.

We utilize the EM algorithm to find MAP estimates of
parameters. Let £(S,T) denotes the log-likelihood of the
model. It can be calculated as follow:

T) = Z log p; (T;) — Z(log \/ﬂaj

G0~ St = T,)?

2
20j

) )]

In E step, the algorithm needs to calculate the posterior
distribution of the time delay T, then use this posterior
distribution to calculate the expected log-likelihood. The con-
ditional probability distribution of 7); on previous estimate
of parameters S() is first calculated, using the fact that the
conditional probability of T is proportional to the complete
likelihood:

P(T;,8D)
P(T;|S™) = S P(T, = .50 (2)
Where,
P(T;,8) = p;(T}) exp(— Z(log mgj
L X () _2ii2.(t — 1)) ) 3)

The expected log-likelihood is then calculated as follow(using
the fact that 7); are independent conditioned on S):

Er(L(S,T)) =Y £L(S, T)P(T|SV)
T

=> LS, 1) [[P(1y18?) 4)
T J

In M step, the expected log-likelihood is maximized towards
S. Substituting Eq. 2 and Eq. 3 into Eq. 4:

ZZPT\S“

Where L£(Tj,S) is the log-likelihood of T}:

L(S,T)) (T3,8) (5)

£(T;,8) = logp; (T;) — > _(log V270
(0= ST

The parameter S used in next iteration is found by maximizing
the expected log-likelihood:

SUHY = sup Ex(L(S, T))
S

In order to find SU*1D), we calculate the derivative of the
expected log—likelihood on S;, and set it to zero:

3ET ZZP (T |S(Z)) Xi;(t) O’Szi(thj) .
J

Then S; can be calculated using the following formula:

> D P(TIS)Xy(t+T;)  (6)
T

1 1
Si(t) = ij?
J o3 J

The outline of algorithm is given in pseudocode as fol-
low:

1: 140

2: Randomly initialize S(©)

3: repeat

4:  for all trial j and all possible value k& do
5: Calculate P(T; = k|S™) using equation (2)
6: end for

7. Calculate SU+1) using equation (6)

8 1 i1+1

9: until |[S®) — SC-D|| < ¢

10: for all trial j do

11: T + sup, P(T; = k|S™)

12: end for

The noise variance af is usually pre-estimated manually and

then fixed during the algorithm. It can be estimated before the
experiment using the data segment with no signal. Although
it can be viewed as explicit parameter and optimized by EM
algorithm, introducing this parameter does not improve the
performance(see section IV for more details), and may harm
the efficiency of the algorithm, also potentially cause the
problem of overfitting.
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Fig. 2. Source signal(Left) and retrieved signal(Right). Top: single-frequency
signal, Middle: signal with limited bandwidth, Bottom: random signal. In these
experiments SNR = 10dB and number of trials is 100.
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Fig. 3. The comparison between cross-correlation(CC) method and EM

method on single frequency signals(computer simulation), the left figure shows
the time delay estimation accuracy on different SNR scenarios, the right figure
shows the correlation coefficient of the source signal and retrieved signal

IV. EXPERIMENT RESULT

In order to demonstrate our probabilistic approach’s ca-
pabilities, our work was compared with conventional cross-
correlation based algorithm on synthetic signals. Three differ-
ent types of signals were synthesized with uniformly random
time delay and white gaussian noise. Fig. 2 shows the signal
used to generate data and the signal retrieved by our algorithm.
Fig. 3 shows the result on single frequency signal. Fig. 4
shows the result on signal with limited bandwidth. Fig. 5
shows the result on completely random signal. In all scenarios,
our approach consistently outperformed the cross-correlation
algorithm.

We also studied the effect of parameters in the algorithm.
As shown in Fig. 6, the accuracy of time delay estimation
increases as the number of channels grows. Fig. 7 shows that
the retrieved signal gets closer to the original source signal if
we have more trials.

Since in our method, the parameter o;, which denotes
the noise variance on each trial, is manually estimated and
fixed in the algorithm. Inaccurate estimation of o; may affect
the performance of our algorithm. We studied the effect of

Fig. 4. The comparison between cross-correlation(CC) method and EM
method on signals with limited bandwidth(computer simulation), the left figure
shows the time delay estimation accuracy on different SNR scenarios, the right
figure shows the correlation coefficient of the source signal and retrieved signal
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Fig. 5. The comparison between cross-correlation(CC) method and EM

method on random signals(computer simulation), the left figure shows the
time delay estimation accuracy on different SNR scenarios, the right figure
shows the correlation coefficient of the source signal and retrieved signal
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Fig. 6. The relationship between the number of channels and the accuracy
of time delay estimation
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Fig. 7. The relationship between the number of trials and the correlation
coefficient between retrieved signal and source signal
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Fig. 8. The accuracy of EM Algorithm with different pre-estimated value
of o(the standard deviation of noise), the true value of o is 80

inaccurate estimation. Fig. 8 shows that underestimating the
noise variance, as long as the estimated variance is not far
apart from the true value, will not harm the performance.
However, overestimating the noise variance may greatly reduce
the performance.
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Fig. 9. The overall comparison between cross-correlation(CC) method and
EM method(computer simulation), the left figure shows the average time delay
estimation accuracy on different SNR scenarios, the right figure shows the
average correlation coefficient of the source signal and retrieved signal

Fig. 9 shows the overall comparison between EM and cross-
correlation method. It shows that our method can tolerate 5
to 10dB more noise while achieving the same performance as
cross-correlation method.

V. DISCUSSION

Our method usually took about 20 to 50 iterations to
converge. The convergence rate depends on both input SNR
and the initial value. A good initial value can greatly speed
up the convergence rate, and could be manually set according
to the prior knowledge on source signals, if any.

Fast Fourier Transform, a common method to speed up the
cross-correlation process, may also be used in our algorithm.
Equation (3) and (6), the most time-consuming steps in our
methods, both involves the convolution of two signals, which
can be efficiently solved by FFT.

Our method, as well as most TDE methods, assumed
additive white noise. So it would be an interesting study to
consider non-white noises, such as time-dependent noises.

In many applications, the time delay are caused by the
distance between the signal source and sensors, which would
also weaken the amplitude of the signals. Our work didn’t take
this factor into account, and may possibly reduce the accuracy
of time delay estimation.

Future work will consider the extension of the model to
incorporate the prior knowledge of source signals, such as
parameterized family of signals, and deal with the situation
where the amplitude of signals are no longer invariant among
trials.

VI. CONCLUSION

Conventional cross-correlation algorithm could not tolerant
large noises. We have developed a new time delay estimation
method based on statistical framework, which aims to find
the maximum likelihood estimation of parameters(time delay
and source signals) in a probabilistic, using the expectation-
maximization algorithm. The utility of our method has been
demonstrated on three different kinds of synthetic signal-
s, where it outperformed conventional cross-correlation ap-
proach, achieving the same performance while tolerating 5 to
10dB more noise.
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