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Abstract. Cognitive Radio Networks (CRNs) are considered as a
promising solution to the spectrum shortage problem in wireless com-
munication. In this paper, we address the algorithmic complexity of the
connectivity problem in CRNs through spectrum assignment. We model
the network of secondary users (SUs) as a potential graph, where if two
nodes have an edge between them, they are connected as long as they
choose a common available channel. In the general case, where the poten-
tial graph is arbitrary and SUs may have different number of antennae,
we prove that it is NP-complete to determine whether the network is
connectable even if there are only two channels. For the special case
when the number of channels is constant and all the SUs have the same
number of antennae, which is more than one but less than the number of
channels, the problem is also NP-complete. For special cases that the po-
tential graph is complete or a tree, we prove the problem is NP-complete
and fixed-parameter tractable (FPT) when parameterized by the num-
ber of channels. Furthermore, exact algorithms are derived to determine
the connectivity.

1 Introduction

Cognitive Radio is a promising technology to alleviate the spectrum shortage
in wireless communication. It allows the unlicensed secondary users to utilize
the temporarily unused licensed spectrums, referred to as white spaces, without
interfering with the licensed primary users. Cognitive Radio Networks (CRNs)
is considered as the next generation of communication networks and attracts
numerous research from both academia and industry recently.

In CRNs, each secondary user (SU) can be equipped with one or multiple
antennae for communication. With multiple antennae, a SU can communicate
on multiple channels simultaneously (in this paper, channel and spectrum are
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used interchangeably.). Through spectrum sensing, each SU has the capacity to
measure current available channels at its site, i.e. the channels are not used by
the primary users (PUs). Due to the appearance of PUs, the available channels
of SUs have the following characteristics [1]: 1)Spatial Variation: SUs at different
positions may have different available channels; 2)Spectrum Fragmentation: the
available channels of a SU may not be continuous; and 3)Temporal Variation:
the available channels of a SU may change over time.

Spectrum assignment is to allocate available channels to SUs to improve sys-
tem performance such as spectrum utilization, network throughput and fairness.
Spectrum assignment is one of the most challenging problems in CRNs and has
been extensively studied [12–15].

Connectivity is a fundamental problem in wireless communication. Connec-
tion between two nodes in CRNs is not only determined by their distance and
their transmission powers, but also related to whether the two nodes has chosen
a common channel. Due to the spectrum dynamics, communication in CRNs is
more difficult than in the traditional multi-channel radio networks [3]. Authors
in [8–10] studied the impact of different parameters on connectivity in large-
scale CRNs, such as the number of channels, the activity of PUs, the number of
neighbors of SUs and the transmission power.

(a) (b)

Fig. 1. the general case. a) the potential graph: the set besides each SU is its available
channels, and β is its number of antennae. u2 and u4 are not connected because they are
a pair of heterogenous nodes or their distance exceeds at least one of their transmission
ranges. b) the realization graph which is connected: the set beside each SU is the
channels assigned to it.

In this paper, we focus on the complexity of connectivity in CRNs through
spectrum assignment. We model the network as a potential graph and a realized
graph before and after spectrum assignment respectively (refer to Section 2). We
start from the most general case, where the network is composed of heterogenous
SUs1, SUs may be equipped with different number of antennae and the poten-
tial graph can be arbitrary (Figure 1). Then, we proceed to study the special
case when all the SUs have the same number of antennae. If all the SUs are

1 We assume two heterogenous SUs cannot communicate even when they work on a
common channel and their distance is within their transmission ranges.
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homogenous with transmission ranges large enough, the potential graph will be
a complete graph. For some hierarchically organized networks, e.g. a set of SUs
are connected to an access point, the potential graph can be a tree. Therefore,
we also study these special cases. Exact algorithms are also derived to deter-
mine connectivity for different cases. Our results are listed below. To the best
of knowledge, this is the first work that systematically studies the algorithmic
complexity of connectivity in CRNs with multiple antennae.

Our Contributions: In this paper we study the algorithmic complexity of the
connectivity problem through spectrum assignment under different models. Our
main results are as follows.

• When the potential graph is a general graph, we prove that the problem
is NP-complete even if there are only two channels. This result is sharp as
the problem is polynomial-time solvable when there is only one channel. We
also design exact algorithms for the problem. For the special case when all
SUs have the same number of antennae, we prove that the problem is NP-
complete when k > β ≥ 2, where k and β are the total amount of channels
in the white spaces and the number of antennae on an SU respectively.

• When the potential graph is complete2, the problem is shown to be NP-
complete even if each node can open at most two channels. However, in
contrast to the general case, the problem is shown to be polynomial-time
solvable if the number of channels is fixed. In fact, we prove a stronger result
saying that the problem is fixed parameter tractable when parameterized by
the number of channels. (See [4] for notations in parameterized complexity.)

• When the potential graph is a tree, we prove that the problem is NP-complete
even if the tree has depth one. Similar to the complete graph case, we show
that the problem is fixed parameter tractable when parameterized by the
number of channels.

Paper Organization: In Section 2 we formally define our model and problems
studied in this paper. We study the problem with arbitrary potential graphs
in Section 3. The special cases where the potential graph is complete or a tree
are investigated in Sections 4 and 5. The paper is concluded in Section 6 with
possible future works.

2 System Model and Problem Definition

We first describe the model used throughout this paper. A cognitive radio net-
work is comprised of the following ingredients:

• U is a collection of secondary users (SUs) and C is the set of channels in the
white spaces.

• Each SU u ∈ U has a spectrum map, denoted by SpecMap(u), which is a
subset of C representing the available channels that u can open.

2 Note that the complete graph is a special case of disk graphs.
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• The potential graph PG = (U,E), where each edge of E is also called a
potential edge. If two nodes are connected by a potential edge, they can
communicate as long as they choose a common available channel.

• Each SU u ∈ U is equipped with a number of antennas, denoted as antenna
budget β(u), which is the maximum number of channels that u can open
simultaneously.

For a set S, let 2S denote the power set of S, i.e., the collection of all subsets of
S. A spectrum assignment is a function SA : U → 2C satisfying that

SA(u) ⊆ SpecMap(u) and |SA(u)| ≤ β(u) for all u ∈ U.

Equivalently, a spectrum assignment is a way of SUs opening channels such that
each SU opens at most β channels and can only open those in its spectrum map.

Given a spectrum assignment SA, a potential edge {u, v} ∈ E is called real-
ized if SA(u) ∩ SA(v) �= ∅, i.e., there exists a channel opened by both u and
v. The realization graph under a spectrum assignment is a graph RG = (U,E′),
where E′ is the set of realized edges in E. Note thatRG is a spanning subgraph of
the potential graph PG. A cognitive radio network is called connectable if there
exists a spectrum assignment under which the realization graph is connected, in
which case we also say that the cognitive radio network is connected under this
spectrum assignment. Now we can formalize the problems studied in this paper.

The Spectrum Connectivity Problem. The Spectrum Connectivity
problem is to decide whether a given cognitive radio network is connectable.

We are also interested in the special case where the number of possible chan-
nels is small3 and SUs have the same antenna budget. Therefore, we define the
following subproblem of the Spectrum Connectivity problem:

The Spectrum (k, β)-Connectivity Problem. For two constants k, β ≥ 1, the
Spectrum (k, β)-Connectivity problem is to decide whether a given cognitive
radio network with k channels in which all SUs have the same budget β is
connectable. For convenience we write SpecCon(k, β) to represent this problem.

Finally, we also consider the problem with special kinds of potential graphs,
i.e. the potential graph is complete or a tree.

3 The Spectrum Connectivity Problem
In this section, we study the the Spectrum Connectivity problem from both
complexity and algorithmic points of view.

3.1 NP-Completeness Results

We show that the Spectrum Connectivity problem is NP-complete even if
the number of channels is fixed. In fact we give a complete characterization of
the complexity of SpecCon(k, β) by proving the following dichotomy result:

3 Commonly, the white spaces include spectrums from channel 21 (512Mhz) to 51
(698Mhz) excluding channel 37, which is totally 29 channels [1].
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Theorem 1. SpecCon(k, β) is NP-complete for any integers k > β ≥ 2, and
is in P if β = 1 or k ≤ β.

The second part of the statement is easy: When β = 1, each SU can only open
one channel, and thus all SUs should be connected through the same channel.
Therefore, the network is connectable if and only if there there exists a channel
that belongs to every SU’s spectrum map (and of course the potential graph
must be connected), which is easy to check. When k ≤ β, each SU can open
all channels in its spectrum map, and the problem degenerates to checking the
connectivity of the potential graph.

In the sequel we prove the NP-completeness of SpecCon(k, β) when k >
β ≥ 2. First consider the case k = β + 1. We will reduce a special case of the
Boolean Satisfiability (SAT) problem, which will be shown to be NP-complete,
to SpecCon(β + 1, β), thus showing the NP-completeness of the latter.

A clause is called positive if it only contains positive literals, and is called neg-
ative if it only contains negative literals. For example, x1∨x3∨x5 is positive and
x2 ∨x4 is negative. A clause is called uniform if it is positive or negative. A uni-
form CNF formula is the conjunction of uniform clauses. Define Uniform-SAT
as the problem of deciding whether a given uniform CNF formula is satisfiable.

Lemma 1. Uniform-SAT is NP-complete.

Proof. Let F be a CNF formula with variable set {x1, x2, . . . , xn}. For each i
such that xi appears in F , we create a new variable yi, and do the following:

• substitute yi for all occurrences of xi;

• add two clauses xi ∨ yi and xi ∨ yi to F . More formally, let F ← F ∧ (xi ∨
yi) ∧ (xi ∨ yi). This ensures yi = xi in any satisfying assignment of F .

Call the new formula F ′. For example, if F = (x1 ∨ x2) ∧ (x1 ∨ x3), then F ′ =
(x1 ∨ y2) ∧ (y1 ∨ x3) ∧ (x1 ∨ y1) ∧ (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ (x2 ∨ y2).

It is easy to see that F ′ is a uniform CNF formula, and that F is satisfiable if
and only if F ′ is satisfiable. This constitutes a reduction from SAT to Uniform-
SAT, which concludes the proof. �
Theorem 2. SpecCon(β + 1, β) is NP-complete for any integer β ≥ 2.

Proof. The membership of SpecCon(β + 1, β) in NP is clear. In what follows
we reduce Uniform-SAT to SpecCon(β +1, β), which by Lemma 1 will prove
the NP-completeness of the latter.

Let c1 ∧ c2 ∧ . . . ∧ cm be an input to Uniform-SAT where cj , 1 ≤ j ≤ m, is
a uniform clause. Assume the variable set is {x1, x2, . . . , xn}. We construct an
instance of SpecCon(β + 1, β) as follows.

• Channels: There are β + 1 channels {0, 1, 2, . . . , β}.
• SUs: 1) For each variable xi, there is a corresponding SU Xi with spectrum
map SpecMap(Xi) = {0, 1, 2, . . . , β} (which contains all possible channels);
2) for each clause cj , 1 ≤ j ≤ m, there is a corresponding SU Cj with
SpecMap(Cj) = {pj}, where pj = 1 if cj is positive and pj = 0 if cj is
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negative; 3) there is an SU Y2 with SpecMap(Y2) = {2}. For every 1 ≤ i ≤ n
and 2 ≤ k ≤ β, there is an SU Yi,k with SpecMap(Yi,k) = {k}; and 4) all
SUs have the same antenna budget β.

• Potential Graph: For each clause cj and each variable xi that appears in
cj (either as xi or xi), there is a potential edge between Xi and Cj . For each
1 ≤ i ≤ n and 3 ≤ k ≤ β, there is a potential edge between Xi and Yi,k.
Finally, there is a potential edge between Y2 and every Xi, 1 ≤ i ≤ n.

Denote the above cognitive radio network by I, which is also an instance of
SpecCon(β + 1, β). We now prove that c1 ∧ c2 ∧ . . . ∧ cm is satisfiable if and
only if I is connectable.

First consider the “only if” direction. Let A : {x1, . . . , xn} → {0, 1} be a
satisfying assignment of c1 ∧ c2 ∧ . . . ∧ cm, where 0 stands for FALSE and 1 for
TRUE. Define a spectrum assignment as follows. For each 1 ≤ i ≤ n, let user Xi

open the channels {2, 3, . . . , β}∪{A(i)}. Every other SU opens the only channel
in its spectrum map.

We verify that I is connected under the above spectrum assignment. For each
1 ≤ i ≤ n, Xi is connected to Y2 through channel 2. Then, for every 2 ≤ l ≤ β,
Yi,l is connected to Xi through channel l. Now consider SU Cj where 1 ≤ j ≤ m.
Since A satisfies the clause cj , there exists 1 ≤ i ≤ n such that: 1) xi or xi occurs
in cj ; and 2) A(xi) = 1 if cj is positive, and A(xi) = 0 if cj is negative. Thus Xi

and Cj are connected through channel A(xi). Therefore the realization graph is
connected, completing the proof of the “only if” direction.

We next consider the “if” direction. Suppose there is a spectrum assignment
that makes I connected. For every 1 ≤ i ≤ n and 2 ≤ l ≤ β, Xi must open
channel l, otherwise Yi,l will become an isolated vertex in the realization graph.
Since Xi can open at most β channels in total, it can open at most one of the
two remaining channels {0, 1}. We assume w.l.o.g. that Xi opens exactly one of
them, which we denote by ai.

Now, for the formula c1 ∧ c2 ∧ . . . ∧ cm, we define a truth assignment A :
{x1, . . . , xn} → {0, 1} as A(xi) = ai for all 1 ≤ i ≤ n. We show that A satisfies
the formula. Fix 1 ≤ j ≤ m and assume that cj is negative (the case where cj
is positive is totally similar). Since the spectrum map of SU Cj only contains
channel 0, some of its neighbors must open channel 0. Hence, there exists 1 ≤
i ≤ n such that xi appears in cj and the corresponding SU Xi opens channel 0.
By our construction of A, we have A(xi) = 0, and thus the clause cj is satisfied
by A. Since j is chosen arbitrarily, the formula c1∧c2∧ . . .∧cm is satisfied by A.
This completes the reduction from Uniform-SAT to SpecCon(β, β + 1), and
the theorem follows. �
Corollary 1. SpecCon(k, β) is NP-complete for any integers k > β ≥ 2.

Proof. By a simple reduction from SpecCon(β + 1, β): Given an instance of
SpecCon(β+1, β), create k−β−1 new channels and add them to the spectrum
map of an (arbitrary) SU. This gives a instance of SpecCon(k, β). Since the
new channels are only contained in one SU, they should not be opened, and thus
the two instances are equivalent. Hence the theorem follows. �
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Theorem 2 indicates that the Spectrum Connectivity problem is NP-
complete even if the cognitive radio network only has three channels. We further
strengthen this result by proving the following theorem:

Theorem 3. The Spectrum Connectivity problem is NP-complete even if
there are only two channels.

Proof. We present a reduction from Uniform-SAT similar as in the proof of
Theorem 2. Let c1 ∧ c2 ∧ . . . ∧ cm be a uniform CNF clause with variable set
{x1, x2, . . . , xn}. Construct a cognitive radio network as follows: There are two
channels {0,1}. For each variable xi there is a corresponding SU Xi with spec-
trum map SpecMap(Xi) = {0, 1} and antenna budget β(Xi) = 1. For each
clause cj there is a corresponding SU Cj with SpecMap(Cj) = {pj} and
β(Cj) = 1, where pj = 1 if cj is positive and pj = 0 if cj is negative. There
is an SU Y with SpecMap(Y ) = {0, 1} and β(Y ) = 2. Note that, unlike in
the case of SpecCon(k, β), SUs can have different antenna budgets. Finally,
the edges of the potential graph include: {Xi, Cj} for all i, j such that xi or
xi appears in cj , and {Y,Xi} for all i. This completes the construction of the
cognitive radio network, which is denoted by I. By an analogous argument as
in the proof of Theorem 2, c1 ∧ c2 ∧ . . . ∧ cm is satisfiable if and only if I is
connectable, concluding the proof of Theorem 3. �
Theorem 3 is sharp in that, as noted before, the problem is polynomial-time
solvable when there is only one channel.

3.2 Exact Algorithms

In this subsection we design algorithms for deciding whether a given cognitive ra-
dio network is connectable. Since the problem is NP-complete, we cannot expect
a polynomial time algorithm.

Let n, k, t denote the number of SUs, the number of channels, and the maxi-
mum size of any SU’s spectrum map, respectively (t ≤ k). The simplest idea is to
exhaustively examine all possible spectrum assignments to see if there exists one
that makes the network connected. Since each SU can have at most 2t possible
ways of opening channels, the number of assignments is at most 2tn. Checking
each assignment takes poly(n, k) time. Thus the running time of this approach
is bounded by 2tn(nk)O(1), which is reasonable when t is small. However, since
in general t can be as large as k, this only gives a 2O(kn) bound, which is un-
satisfactory if k is large. In the following we present another algorithm for the
problem that runs faster than the above approach when k is large.

Theorem 4. There is an algorithm that decides whether a given cognitive radio
network is connectable in time 2O(k+n logn), where n and k are the number of
SUs and channels respectively.

Proof. Let I be a given cognitive radio network with potential graph PG. Let
n be the number of SUs and k the number of channels. Assume that I is con-
nected under some spectrum assignment. Clearly the realization graph contains
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a spanning tree of PG, say T , as a subgraph. If we change the potential graph to
T while keeping all other parameters unchanged, the resulting network will still
be connected under the same spectrum assignment. Thus, it suffices to check
whether there exists a spanning tree T of G such that I is connectable when
substituting T for PG as its potential graph. Using the algorithm of [5], we can
list all spanning trees of PG in time O(Nn) where N is the number of spanning
trees of PG. By Cayley’s formula [2, 11] we have N ≤ nn−2. Finally, for each
spanning tree T , we can use the algorithm in Theorem 9 (which will appear in
Section 5) to decide whether the network is connectable in time 2O(k)nO(1). The
total running time of the algorithm is O(nn−2)2O(k)nO(1) = 2O(k+n log n). �
Combining Theorem 4 with the brute-force approach, we obtain:

Corollary 2. The Spectrum Connectivity problem is solvable can be solved
in time 2O(min{kn,k+n logn}), with n and k being the number of SUs and channels
respectively.

4 Spectrum Connectivity with Complete Potential
Graphs

In this section we consider the special case of the Spectrum Connectivity
problem, in which the potential graph of the cognitive radio network is com-
plete. We first show that this restriction does not make the problem tractable in
polynomial time.

Theorem 5. The Spectrum Connectivity problem is NP-complete even
when the potential graph is complete and all SUs have the same antenna budget
β = 2.

Proof. The membership in NP is trivial. The hardness proof is by a reduction
from the Hamiltonian Path problem, which is to decide whether a given graph
contains a Hamiltonian path, i.e., a simple path that passes every vertex exactly
once. TheHamiltonian Path problem is well-known to be NP-complete [6]. Let
G = (V,E) be an input graph of the Hamiltonian Path problem. Construct
an instance of the Spectrum Connectivity problem as follows: The collection
of channels is E and the set of SUs is V ; that is, we identify a vertex in V as
an SU and an edge in E as a channel. For every v ∈ V , the spectrum map of
v is the set of edges incident to v. All SUs have antenna budget β = 2. Denote
this cognitive radio network by I. We will prove that G contains a Hamiltonian
path if and only if I is connectable.

First suppose G contains a Hamiltonian path P = v1v2 . . . vn, where n = |V |.
Consider the following spectrum assignment of I: for each 1 ≤ i ≤ n, let SU vi
open the channels corresponding to the edges incident to vi in the path P . Thus
all SUs open two channels except for v1 and vn each of whom opens only one.
For every 1 ≤ i ≤ n− 1, vi and vi+1 are connected through the channel (edge)
{vi, vi+1}. Hence the realization graph of I under this spectrum assignment is
connected.
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Now we prove the other direction. Assume that I is connectable. Fix a spec-
trum assignment under which the realization graph of I is connected, and con-
sider this particular realization graph RG = (V,E′). Let {vi, vj} be an arbitrary
edge in E′. By the definition of the realization graph, there is a channel opened
by both vi and vj . Thus there is an edge in E incident to both vi and vj , which
can only be {vi, vj}. Therefore {vi, vj} ∈ E. This indicates E′ ⊆ E, and hence
RG is a connected spanning subgraph of G. Since each SU can open at most
two channels, the maximum degree of RG is at most 2. Therefore RG is either
a Hamiltonian path of G, or a Hamiltonian cycle which contains a Hamiltonian
path of G. Thus, G contains a Hamiltonian path.

The reduction is complete and the theorem follows. �
Notice that the reduction used in the proof of Theorem 5 creates a cognitive radio
network with an unbounded number of channels. Thus Theorem 5 is not stronger
than Theorem 1 or 3. Recall that Theorem 3 says the Spectrum Connectivity
problem is NP-complete even if there are only two channels. In contrast we
will show that, with complete potential graphs, the problem is polynomial-time
tractable when the number of channels is small.

Theorem 6. The Spectrum Connectivity problem with complete potential

graphs can be solved in 22
k+O(k)nO(1) time, where k is the number of channels

and n is the number of SUs.

Proof. Consider a cognitive radio network I with SU set U , channel set C and
a complete potential graph, i.e., there is a potential edge between every pair
of distinct SUs. Let n = |U | and k = |C|. For each spectrum assignment SA,
we construct a corresponding spectrum graph GSA = (V,E) where V = {C′ ⊆
C | ∃u ∈ U s.t. SA(u) = C′} and E = {{C1, C2} | C1, C2 ∈ V ;C1 ∩ C2 �=
∅}. Thus, V is the collection of subsets of C that is opened by some SU, and
E reflexes the connectivity between pairs of SUs that open the corresponding
channels. Since each vertex in V is a subset of C, we have |V | ≤ 2k, and the

number of different spectrum graphs is at most 22
k

.
We now present a relation between GSA and the realization graph of I under

SA. If we label each vertex u in the realization graph with SA(u), and contract
all edges between vertices with the same label, then we obtain precisely the
spectrum graph GSA = (V,E). Therefore, in the language of graph theory, GSA =
(V,E) is a minor of the realization graph under SA. Since graph minor preserves
connectivity, I is connectable if and only if there exists a connected spectrum
graph. Hence we can focus on the problem of deciding whether a connected
spectrum graph exists.

Consider all possible graphs G = (V,E) such that V ⊆ 2C , and E =

{{C1, C2} | C1, C2 ∈ V ;C1 ∩ C2 �= ∅}. There are 22
k

such graphs each of which

has size 2O(k). Thus we can list all such graphs in 22
k+O(k) time. For each graph

G, we need to check whether it is the spectrum graph of some spectrum assign-
ment of I. We create a bipartite graph in which nodes on the left side are the
SUs in I, and nodes on the right side all the vertices of G. We add an edge
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between an SU u and a vertex C′ of G if and only if C′ ⊆ SpecMap(u) and
|C′| ≤ β(u), that is, u can open C′ in a spectrum assignment. The size of H is
poly(n, 2k) and its construction can be finished in poly(n, 2k) time. Now, if G
is the spectrum graph of some spectrum assignment SA, then we can identify
SA with a subgraph of H consisting of all edges (u,SA(u)) where u is an SU.
In addition, in this subgraph we have

– every SU u has degree exactly one; and
– every node C′ on the right side of H has degree at least one.

Conversely, a subgraph of H satisfying the above two conditions clearly induces a
spectrum assignment whose spectrum graph is exactly G. Therefore it suffices to
examine whetherH contains such a subgraph. Furthermore, the above conditions
are easily seen to be equivalent to:

– every SU u has degree at least one in G; and
– G contains a matching that includes all nodes on the right side.

The first condition can be checked in time linear in the size of H , and the second
one can be examined by any polynomial time algorithm for bipartite matching
(e.g., [7]). Therefore, we can decide whether such subgraph exists (and find one
if so) in time poly(n, 2k). By our previous analyses, this solves the Spectrum
Connectivity problem with complete potential graphs. The total running time

of our algorithm is 22
k+O(k)poly(n, 2k) = 22

k+O(k)nO(1). �
Theorem 7. Spectrum Connectivity with complete potential graphs is fixed
parameter tractable when parameterized by the number of channels.

5 Trees as Potential Graphs

In this section, we study another special case of the Spectrum Connectivity
problem where the potential graph of the cognitive radio network is a tree. Many
NP-hard combinatorial problems become easy on trees, e.g., the dominating set
problem and the vertex cover problem. Nonetheless, as indicated by the following
theorem, the Spectrum Connectivity problem remains hard on trees.

Theorem 8. The Spectrum Connectivity problem is NP-complete even if
the potential graph is a tree of depth one.

Proof. We give a reduction from the Vertex Cover problem which is well
known to be NP-complete [6]. Given a graph G = (V,E) and an integer r, the
Vertex Cover problem is to decide whether there exists r vertices in V that
cover all the edges in E. Construct a cognitive radio network I as follows. The
set of channels is C = {cv | v ∈ V }. For each edge e = {u, v} ∈ E there is an
SU Ue with SpecMap(Ue) = {cu, cv} and antenna budget 2. There is another
SU M with SpecMap(M) = C and antenna budget r. The potential graph is
a star centered at M , that is, there is a potential edge between M and Ue for
every e ∈ E. This finishes the construction of I.
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We prove that G has a vertex cover of size r if and only if I is connectable.
First assume G has a vertex cover S ⊆ V with |S| ≤ r. Define a spectrum
assignment A(S) as follows: M opens the channels {cv | v ∈ S}, and Ue opens
both channels in its spectrum map for all e ∈ E. Since S is a vertex cover,
we have u ∈ S or v ∈ S for each e = {u, v} ∈ E. Thus at least one of cu
and cv is opened by M , which makes it connected to Ue. Hence the realization
graph is connected. On the other hand, assume that the realization graph is
connected under some spectrum assignment. For each e = {u, v} ∈ E, since the
potential edge {M,Ue} is realized, M opens at least one of cu and cv. Now define
S = {v ∈ V | cv is opened by M}. It is clear that S is a vertex cover of G of size
at most β(M) = r. This completes the reduction, and the theorem follows. �
We next show that, in contrast to Theorems 2 and 3, this special case of the
problem is polynomial-time solvable when the number of channels is small.

Theorem 9. Given a cognitive radio network whose potential graph is a tree, we
can check whether it is connectable in 2O(t)(kn)O(1) time, where n is the number
of SUs, k is the number of channels, and t is the maximum size of any SU’s
spectrum map. In particular, this running time is at most 2O(k)nO(1).

Proof. Let I be a given cognitive radio network whose potential graph PG =
(V,E) is a tree. Root PG at an arbitrary node, say r. For each v ∈ V let PGv
denote the subtree rooted at v, and let Iv denote the cognitive radio network
obtained by restricting I on PGv. For every subset S ⊆ SpecMap(v), define
f(v, S) to be 1 if there exists a spectrum assignment that makes Iv connected
in which the set of channels opened by v is exactly S; let f(v, S) = 0 otherwise.
For each channel c ∈ C, define g(v, c) to be 1 if there exists S, {c} ⊆ S ⊆
SpecMap(v), for which f(v, S) = 1; define g(v, c) = 0 otherwise. Clearly I is
connectable if and only if there exists S ⊆ SpecMap(r) such that f(r, S) = 1.

We compute all f(v, S) and g(v, c) by dynamic programming in a bottom-up
manner. Initially all values to set to 0. The values for leaf nodes are easy to
obtain. Assume we want to compute f(v, S), given that the values of f(v′, S′)
and g(v′, c) are all known if v′ is a child of v. Then f(v, S) = 1 if and only if for
every child v′ of v, there exists c ∈ S such that g(v′, c) = 1 (in which case v and
v′ are connected through channel c). If f(v, S) turns out to be 1, we set g(v, c)
to 1 for all c ∈ S. It is easy to see that g(v, c) will be correctly computed after
the values of f(v, S) are obtained for all possible S. After all values have been
computed, we check whether f(r, S) = 1 for some S ⊆ SpecMap(r).

Denote n = |V |, k = |C|, and t = maxv∈V |SpecMap(v)|. There are at
most n(2t+k) terms to be computed, each of which takes time poly(n, k) by our
previous analysis. The final checking step takes 2tpoly(n, k) time. Hence the total
running time is 2tpoly(n, k) = 2t(kn)O(1), which is at most 2O(k)nO(1) since t ≤
k. Finally note that it is easy to modify the algorithm so that, given a connectable
network it will return a spectrum assignment that makes it connected. �
Corollary 3. Spectrum Connectivity with trees as potential graphs is fixed
parameter tractable when parameterized by the number of channels.
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6 Conclusion

In this paper, we systematically study the algorithmic complexity of connectivity
problem in cognitive radio networks through spectrum assignment. The hard-
ness of the problem in the general case and several special cases are addressed.
Our work gives a better understanding of the complexity of the problem. Exact
algorithms are also derived to check whether the network is connectable. Due
to interference, the connected nodes can not communicate simultaneously. One
meaningful extension of this work is how to schedule the links such that the
network throughput is optimized under realistic interference models. Another
future work is to design efficient distributed channel assignment algorithms to
achieve network connectivity.
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