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Abstract
A normal Hall subgroup N of a group G is a normal subgroup with its order coprime with

its index. Schur-Zassenhaus theorem states that every normal Hall subgroup has a complement
subgroup, that is a set of coset representatives H which also forms a subgroup of G. In this paper,
we present a framework to test isomorphism of groups with at least one normal Hall subgroup,
when groups are given as multiplication tables. To establish the framework, we first observe that
a proof of Schur-Zassenhaus theorem is constructive, and formulate a necessary and sufficient
condition for testing isomorphism in terms of the associated actions of the semidirect products,
and isomorphisms of the normal parts and complement parts.

We then focus on the case when the normal subgroup is abelian. Utilizing basic facts of
representation theory of finite groups and a technique by Le Gall in [9], we first get an efficient
isomorphism testing algorithm when the complement has bounded number of generators. For
the case when the complement subgroup is elementary abelian, which does not necessarily have
bounded number of generators, we obtain a polynomial time isomorphism testing algorithm by
reducing to generalized code isomorphism problem. A solution to the latter can be obtained
by a mild extension of the singly exponential (in the number of coordinates) time algorithm
for code isomorphism problem developed recently by Babai in [3]. Enroute to obtaining the
above reduction, we study the following computational problem in representation theory of finite
groups: given two representations ρ and τ of a group H over Zdp , p a prime, determine if there
exists an automorphism φ : H → H, such that the induced representation ρφ = ρ ◦ φ and τ are
equivalent, in time poly(|H|, pd).

Keywords and phrases Group Isomorphism Problem, Normal Hall Subgroups, Computational
Complexity
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1 Introduction

The Group Isomorphism problem(GpI) is a computational problem intriguing for both com-
plexity theorists as well as computational group theorists. Given two finite groups G and H,
the problem asks to test if they are isomorphic, that is the existence of a bijection φ : G→ H
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568 Isomorphism Testing of Groups with Nomral Hall Subgroups

preserving group operations, namely ∀g, h ∈ G, φ(g · h) = φ(g) · φ(h). Naturally, the com-
plexity of the problem depends on how the group is represented: if the groups are given
as presentations (generators and relations), then it is undecidable [8, 1]. For permutation
groups given as generators, the best upper bound known [6] is PSPACE.

The least succinct input format, multiplication table (Cayley table), gives rise to a more
interesting scenario from a complexity theoretic perspective. For this case, the problem is
known to be easier than the well-known Graph Isomorphism problem (GrI) [13], thus giving
an upper bound of NP ∩ coAM. However, unlike many other isomorphism-type problems, a
reduction in the reverse direction is not known[13]. A recent work [7] shows that GrI can not
be AC0 reducible to GpI. Another distinction between GpI and GrI lies in the best known
algorithms for them. The best known algorithm for GrI is 2Õ(

√
n) [5], where n is the size of

the graph. For groups of size n with b generators, in [16] Tarjan is credited for pointing out
an nb+O(1) algorithm. Then by the observation that every group has a generating set of size
dlogne, we get an nlogn+O(1) algorithm for testing isomorphism of general groups. This is
improved by Lipton, Snyder and Zalcstein [14], who gave an algorithm running in O(log2 n)
space. However, whether a polynomial time algorithm exists is still open.

1.1 Progress for testing isomorphism of restricted classes of groups
There has been some progress on group isomorphism problem for restricted classes of groups.
The class of groups with bounded number of generators (say, of size b) can be tested efficiently
by the nb+O(1) algorithm. For abelian groups, Savage [19] first gave an O(n2) algorithm,
which was improved to O(n logn) by Vikas [24] and finally to O(n) by Kavitha [11]. Little
is known beyond abelian groups until 2008, when Le Gall [9] showed that isomorphism of
groups in the form of semidirect products of an abelian group and a cyclic group, whose
orders are coprime, can be tested in almost linear time even in the model of black-box groups.
The class of p-groups seems to be the current barrier, though recent works by Wilson [25, 26]
on the structure of p-groups are noteworthy.

Recently, Kayal and Nezhmetdinov [12] and Wilson [27] address the problem of finding
the factors of a group under the direct product operation (Wilson [27] considers a stronger
model, that is permutation groups given as generators). They show that given a group,
all its direct factors can be computed efficiently. As pointed out in [12], this result can
be interpreted in the context of isomorphism testing as follows: by Remak-Krull-Schmidt
theorem, two groups are isomorphic if and only if their direct factors are isomorphic up to
appropriate correspondence of the factors. Thus, the class of groups that are direct products
of groups with known efficient isomorphism testing procedure can be tested efficiently.

This argument suggests the following strategy: suppose for some group class, the groups
can be decomposed into smaller subgroups in some canonical way. Then after decomposition,
isomorphism testing of the original groups may reduce to testing isomorphism of the building
blocks, and then pasting solutions of building blocks back together. In the case of direct
product, decomposition is solved in [12] and [27], and “pasting” is trivial due to Remak-
Krull-Schmidt theorem. Now it is natural to ask if this strategy can be extended to the case
of less stringently defined products. The next natural target is that of semidirect products,
which is already considered in [9]. A group G is the semidirect product of a normal subgroup
N by a subgroupH ifG = NH andN∩H = {id}. Every h ∈ H can act onN by conjugation,
giving rise to a homomorphism from H to Aut(N), called the action associated with the
semidirect product. Unlike direct product, a semidirect product G = N oτ H is canonical
only with respect to the associated action. For the special class considered in [9], due to this
reason Le Gall needs to solve the problem of testing whether two automorphisms of abelian
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groups are conjugate or not (when the automorphisms satisfy some property), for which he
gives an efficient algorithm.

1.2 Our result: a framework for testing isomorphism of groups with
normal Hall subgroups

A Hall divisor m of an integer n is a divisor of n such that (m,n/m) = 1. A normal Hall
subgroup is a normal subgroup whose order is a Hall divisor of the order of the group. In
this paper, we consider the class of groups with at least one normal Hall subgroup, and use
H to denote this group class. It turns out this condition suggests some interesting properties
of the group structure. For a given Hall divisor of the size of the group, if the normal Hall
subgroup of this size exists then it is a characteristic subgroup. Schur-Zassenhaus theorem
states that a normal Hall subgroup always has a complement, that is a set of representatives
forming a subgroup. Thus the semidirect product arises naturally for groups in H. Note
that H contains all groups of order 2 · pk, p a prime other than 2, and all nilpotent groups
that are not p-groups. To see the first point, note that a Sylow p-subgroup is normal as it
is of index 2, and the second point follows due to that a nilpotent group is direct product
of its Sylow subgroups.

Inspired by [9], we begin with formalizing the strategy for isomorphism testing discussed
in Section 1.1 for the class H. As a first step, we need to have an efficient decomposition
procedure. The observation is that the proof of Schur-Zassenhaus theorem is efficiently
constructive, establishing the following theorem about finding a complement of a normal
Hall subgroup.

I Theorem 1.1. (Algorithmic Schur-Zassenhaus theorem) For a group G of order n, given
as multiplication table, all its normal Hall subgroups can be computed in time O(n4). Given
a specific normal Hall subgroup, one of its complements can be computed in time O(n4).

In the second step, we need to consider how isomorphism of the original groups connects
isomorphisms of the components. Our next result, which has been discovered by Taunt [23]
in the context of construction of finite groups, is the formulation of a necessary and sufficient
condition of the original groups being isomorphic in Theorem 4.1. That condition involves
the actions associated with the semidirect products, and the isomorphisms of the normal and
complement parts. It is not listed here, partly due to its technicality, but the main reason
is that as discussed, we need to turn our focus to the case when the factors of semidirect
product are efficiently testable. The following notations will help us to talk about the group
classes of the factors in the semidirect product. Given two groups X and Y whose orders
are coprime, H(X,Y ) is the class of groups with a normal Hall subgroup isomorphic with
X, and a complement isomorphic with Y . For two group classes X and Y, H(X ,Y) is the
class of groups with a normal Hall subgroup X from X and the complement Y from Y.
Note that X being a Hall subgroup implies that the orders of X and Y are coprime. That
is H(X ,Y) =

⋃
X∈X ,Y ∈Y,gcd(|X|,|Y |)=1H(X,Y ).

We set notations for some group classes with known isomorphism testing/computing
procedure. Let A be the class of abelian groups. As subclasses of A, Ap is the class
of abelian p-groups, and E is the class of elementary abelian groups.

∏
E is the class of

direct products of elementary abelian groups. Bb is the class of groups with the number
of generators bounded by b. Note that B2 includes all finite simple groups1, symmetric

1 For readers unfamiliar with this fact, c.f. the first theorem in [15], and note that a simple abelian group
must be a cyclic group with prime order.
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groups and cyclic groups. When the specific number of generators is not of our concern, we
will simply write B. C = B1 is the class of cyclic groups. Finally, we let K be a variable
taking values from the class of groups with known efficient isomorphism testing/computing
procedure. In this article, we mainly consider the case when K is A or B, or subclasses of
A or B. To give an example of the use of the notations, the main result of [9] is an efficient
isomorphism testing/computing algorithm of H(A, C), while our main concrete results are
efficient algorithms for H(A,B) (when the complement has bounded number of generators),
and H(A, E) (when the complement is elementary abelian). H(A,B) improves the class
H(A, C) studied in [9].

1.3 Our result: efficient isomorphism testing of H(A, E), H(A,B)
Representation theory of finite groups studies the homomorphisms from abstract groups to
general linear groups. Such a homomorphism is called a representation. In Theorem 4.1,
when the normal subgroup is an elementary abelian group Zkp, p a prime, it naturally gives
rise to the following algorithmic problem in representation theory of finite groups which may
be of independent interest, which we call AutoInducedRepEquiv (short for finding the
Automorphism Induced Representation Equivalence).
I Problem 1. (AutoInducedRepEquiv) Given two representations ρ and τ of a group H
over Zdp, p a prime, determine if there exists an automorphism φ : H → H, such that the
induced representation ρφ = ρ ◦ φ and τ are equivalent, in time poly(|H|, pd).

The following theorem suggests that AutoInducedRepEquiv can not be got around
in order to solve isomorphism of groups from H(E ,K).

I Theorem 1.2. For groups from H(E ,K), isomorphism testing is many-one equivalent to
AutoInducedRepEquiv.

Using basic facts from representation theory, it is not hard to solve AutoInducedRepE-
quiv when the number of generators is bounded, giving an efficient testing algorithm of
H(E ,B). The non-trivial case is when the number of generators is not bounded. When the
complement is an elementary abelian group, we further reduce AutoInducedRepEquiv to
a mild generalization2 of the linear code isomorphism problem in singly exponential time,
which asks whether two linear subspaces are the same up to permutation of coordinates in
time exponential to the number of coordinates.

I Theorem 1.3. For groups from H(E , E), AutoInducedRepEquiv reduces to generalized
code isomorphism problem.

In a recent work [3], Babai presents an algorithm solving the code isomorphism problem
in singly exponential time in the number of coordinates, which is logarithmic of the size of
the group in our case, allowing us to establish the following.

I Corollary 1.4. There is an O(n6) algorithm testing isomorphism of groups from H(E , E).

It is worth noting that the number of groups in this class is lower bounded by nΩ(logn),
for certain infinite sequence of group size n. Applying a technique in [9], we extend this
further to provide an efficient isomorphism testing of groups from H(A, E). An O(nb+5)
algorithm for H(A,Bb) can also be derived in this framework, rediscovering what is known
in Section 8.9, [10] (see Section 4.2).

2 See Section 5 for specific points of generalization.



Y. Qiao, J. Sarma and B. Tang 571

I Theorem 1.5. For groups of size n from H(A, E), there is an algorithm in time O(n6)
testing isomorphism.

The rest of the paper is organized as follows. Section 2 contains the preliminaries. In
Section 3 we present the decomposition procedure into normal and complement parts ,
proving Theorem 1.1. In Section 4, we first present the condition that shows how testing
isomorphism of the original groups relates to that of the small groups. Then we prove
Theorem 1.2, elaborate on the framework, and show that how a technique from [9] allows us
to reduce from H(

∏
E , E) to H(A, E). Finally, in Section 5, we introduce generalized code

isomorphism, the reductions (Theorem 1.3) and show how to test isomorphism of H(A, E).
Due to the page constraints, we only give sketches of proofs for some propositions. We refer
the interested readers to a full version of this article for the detailed proofs and complete
algorithms.

2 Preliminaries

In this section we introduce some preliminary concepts and notations that we will be using.
We refer the reader to a standard text book [18] for basic concepts in Group theory.

An abelian group is a group with group operation commutative. Given a prime p, an
abelian p-group is an abelian group of order pk, k ∈ Z+, and an elementary abelian p-group
is Zkp. Every abelian group can be decomposed as direct product of cyclic groups by the
fundamental theorem of abelian groups.

For a group G, we say that G is the semidirect product of N by H, for N � G and
H ≤ G, written as G = N oH, if G = NH and N ∩H = {id}. For a given decomposition of
G = N oH, we call N the normal subgroup of this decomposition, and H the complement
subgroup. For a given N �G, from the definition of semidirect product it can be seen that
G = N oH if and only if there is a set of coset representatives of G/N closed under group
operation. We use CNh to denote the automorphism of N induced by h by conjugating action.
Formally, CNh : N → N by n→ hnh−1. This gives an homomorphism of τ : H → Aut(N), by
sending h to CNh . When we write G = NoτH, τ is the associated homomorphism from H to
Aut(N) acting by conjugation. Conversely, given two groupsN andH, and a homomorphism
τ : H → Aut(N) (we will use τh to denote the image of h under τ), a group G can be formed
as follows: elements in G are from N ×H, and we let (n, h) · (n′, h′) = (nτh(n′), hh′). This
gives a construction of (outer) semidirect product G = N oτ H.3

I Theorem 2.1. (Schur-Zassenhaus theorem, c.f. [18]) Let G be a finite group of order n,
and m is a Hall divisor of n. If there exists N � G, |N | = m, then we have H ≤ G such
that G = N oH. If H and H ′ are two complements of N , then H and H ′ are conjugate.

Representation theory of finite groups: we list basic notions and facts about rep-
resentation theory of finite groups, and we refer the reader to a standard text book [20] for
further details.

For a finite group G and a vector space V , a representation of G over V is a group
homomorphism φ : G→ GL(V ). There is always a trivial representation by mapping every
element in G to 1. If the underlying field of V is F, and V is of finite dimension d, a
homomorphism φ : G→ GL(d,F) is called a representation of G over F of dimension d. For

3 Note that actually G = N ′ oτ H ′, where N ′ = {(n, 1) | n ∈ N} and H ′ = {(1, h) | h ∈ H}. τ also
maps H ′ to Aut(N ′) naturally. As this is a simple embedding, for convenience we write G = N oτ H.

STACS’11



572 Isomorphism Testing of Groups with Nomral Hall Subgroups

a given representation φ : G → GL(d,F), a subspace of V , L is an invariant subspace, or a
sub-representation if ∀g ∈ G, φg(L) = L. ~0 and V are called trivial invariant subspaces. A
representation without non-trivial invariant subspaces is called an irreducible representation.
If φ and ρ are representations of a group G over spaces V and W (over a field F), then the
direct sum φ ⊕ ρ is the representation of G over V ⊕ W defined as: (φ ⊕ ρ)g(u + v) :=
φg(u) + ρg(v) for g ∈ G. A representation is completely reducible if it is a direct sum
of irreducible representations. Maschke’s theorem states that if characteristic of F is 0 or
coprime with |G|, then the representation over F is completely reducible.

Two representations φ : G→ GL(V ) and ψ : G→ GL(V ) are equivalent if there exists a
general linear map T : V → V such that φ(g) = Tψ(g)T−1 for every g ∈ G. A fact about
completely reducible representations is that two representations are equivalent if and only
if irreducible representations (up to equivalence) that appear in their decompositions are
the same. Specifically, decomposing a representation gives for every irreducible represen-
tation (up to equivalence) its multiplicity in that representation, and two representations
are equivalent if and only if for every irreducible representation the multiplicities are the
same. For a representation φ : G→ GL(F, d), and i ∈ [d], let Lφ(i) be the set of irreducible
representations with multiplicity i in the decomposition φ, and Lφ = (Lφ(i))i∈[d]. We say
Lφ = Lψ if and only if Lφ(i) = Lψ(i) for every i ∈ [d].

We use this straightforward criterion to test whether a representation is irreducible.
I Proposition 1. Let φ : G → GL(V ) be a representation. φ is irreducible if and only if
∀v ∈ V , v 6= ~0, 〈gv | g ∈ G〉 = V .

I Theorem 2.2. (Maschke’s theorem. Adaptation of [20], page 6, Theorem 1) Let φ : G→
GL(F, d) be a representation, gcd(|G|, char(F)) = 1. W ≤ V is a sub-representation of V .
Let p : V →W be a projection of V onto W , and the image of p′ = 1

|G|
∑
g∈G φ(g)◦p◦φ(g−1)

be W ′. Then W ′ is a sub-representation and V = W ⊕W ′.

Proposition 1 and Theorem 2.2 suggest the following procedure to decompose a represen-
tation into its irreducible components. Let φ : G → GL(V ) be a representation. For every
v ∈ V , test if 〈gv | g ∈ G〉 generates V . If so, it is an irreducible representation. Otherwise,
for a specific v, 〈gv | g ∈ G〉 is a sub-representation W . Then Theorem 2.2 helps to identify
a sub-representation W ′ such that V = W ⊕W ′. Recursively using the above procedure on
W and W ′ decomposes V into its irreducible components. This gives:
I Proposition 2. Given a representation φ : G→ GL(V ), its irreducible components can be
listed in time O(dim(V )2 · |V | · |G|).

Proposition 2 is sufficient for our purpose. But we remark that, in general, the decom-
position of modular representation (representations over fields of finite characteristic) can
be done much more efficient (c.f. [17] and Chapter 7.4 of [10]). Given two irreducible repre-
sentations, there is an efficient algorithm to determine whether they are equivalent (c.f.[10],
Chapter 7.5.3). For factoring polynomials of degree n over Zp, we use theO(p1/2(log p)2n2+ε)
algorithm in [21]. For computing canonical normal form of a linear transformation, Steel’s
algorithm [22] in time O(n4) suffices.

3 Decomposition into normal and complement parts

In this section we describe that for a given group, all its normal Hall subgroups and their
complements can be listed, proving Theorem 1.1, by providing the following two propositions.
I Proposition 3. Let G be a group of size n. For a Hall divisor m, if a normal Hall subgroup
of order m exists then it can be computed in time O(n3).
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I Proposition 4. Let G be a group of order n, and N a normal Hall subgroup of order m.
Then a complement of N can be found in time O(n4).

The two propositions give a natural way of listing the normal Hall subgroups and their
complements: for a given Hall divisor m of the group size n, compute the normal Hall sub-
group of sizem by Proposition 3 if it exists. Then compute its complement by Proposition 4.
Going over all Hall divisors lists all normal Hall subgroups and their complements.

Proposition 3 follows from that for a specific Hall divisor m, if the normal Hall subgroup
of m exists then it is generated by 〈gn/m | g ∈ G〉. Proof of Proposition 4 follows from the
constructive proof of Schur-Zassenhaus theorem [18], which can be rephrased as a recursive
algorithm. The base case of the algorithm is abelian groups, for which a complement can be
found starting with an arbitrary set of representatives. When the input is not abelian, the
algorithm branches into two cases depending on whether the normal subgroup is minimal.
The case using the Hall condition is when the normal subgroup is minimal, and we use the
Frattini argument and second isomorphism theorem to reduce to an instance of smaller size.

4 Condition for isomorphism testing

The next theorem shows how isomorphism of big groups reduces to that of components for
groups with normal Hall subgroups. This has been discovered by Taunt [23] in the context of
construction of finite groups, though he did not apply it to normal Hall subgroups explicitly.

I Theorem 4.1. (Theorem 3.3, [23]) Given G1 = N1 oτ H1, G2 = N2 oγ H2, with |N1| =
|N2|, |H1| = |H2|. N1 and N2 are normal Hall. Then G1 ∼= G2 if and only if there exist an
isomorphism ψ : N1 → N2, and an isomorphism φ : H1 → H2, such that, ∀h ∈ H1,

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ. (1)

4.1 Proof of Theorem 1.2
Theorem 1.2 states that isomorphism of H(E ,K) is equivalent to AutoInducedRepEquiv.
In this section we show the two reductions here.
Isomorphism of groups in H(E ,K) to AutoInducedRepEquiv: By listing all normal Hall
subgroups and their complements we can find two normal Hall subgroups of the same size
from two groups. Then to test isomorphism of the original group, we first use known
isomorphism procedure for normal and complement parts. Given the isomorphisms of the
normal and complement parts, the only task left is to test Equation 1, which, by composing
the isomorphisms of the normal and complement parts, becomes AutoInducedRepEquiv
naturally.
AutoInducedRepEquiv to isomorphism of groups in H(E ,K): In Section 2 we described
the standard construction that, given groups N , H and τ : H → Aut(N), defines a group
G = N oτ H. Thus, given two representations τ and γ of H over Zkp, we can construct
G1 = Zkp oτ H and G2 = Zkp oγ H, and then call the oracle to test if G1 and G2 are
isomorphic. By Theorem 4.1, the two representations are equivalent up to automorphism
action if and only if G1 and G2 are isomorphic. This gives the reduction.

4.2 A framework for testing isomorphism of groups from H(K,K)
Suppose we want to test isomorphism of two groups G1 and G2 from H(K,K). Given Theo-
rem 1.1, for any group all its normal Hall subgroups can be listed efficiently, so we can first
compare the orders of the normal Hall subgroups of G1 and G2, and output “not isomorphic”
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574 Isomorphism Testing of Groups with Nomral Hall Subgroups

if there are no normal Hall subgroups of the same size. For normal Hall subgroups with
the same order, compute their complements using Proposition 4. Suppose we decompose
G1 = N1 oH1 and G2 = N2 oH2, with |N1| = |N2|. As the normal and complement parts
are from groups with known isomorphism computing procedure, run the isomorphism tests
between N1, N2 and H1, H2. If they are not isomorphic output “not isomorphic”. Now the
only task left is to test Equation 1. Recall that

∏
E denotes the class of direct products of

elementary abelian groups. The cases H(E ,B) and H(
∏
E ,B) are immediate: for H(E ,B),

the automorphisms of complements can be enumerated. For a given automorphism of the
complement, the problem is to test if two representations are equivalent. It can be solved by
decomposing the representations, and then noticing that equivalence of irreducible represen-
tations can be determined efficiently. For H(

∏
E ,B), like in H(E ,B), as the automorphisms

of the complement can be enumerated, for a given automorphism, the problem is to test
if the representations over the direct factors of the normal subgroup are equivalent. These
instances can be solved separately.

We remark that when the complement is in B, to find the complement it is easy to come
up with an efficient enumeration procedure (without using algorithmic Schur-Zassenhaus).
It is also noted that when the normal subgroup is

∏
E , the idea of treating the represen-

tations over the factors separately does not work in general unless an automorphism of the
complements is fixed as a priori. From the above discussion, the difficult case is when the
complement has no generating set of size O(1).

4.3 From H(∏ E ,K) to H(A,K): Le Gall’s technique
In [9], Le Gall presented a technique that reduces testing conjugation of automorphisms
of an abelian group to that of linear mappings, when the orders of the automorphisms are
coprime with that of the abelian group. We refer it as Le Gall’s technique in this paper.

I Lemma 4.2. (Le Gall’s technique) For a given abelian p-group A, and a generating set
S ⊆ A, let φ1 and φ2 be two automorphisms of A, given by listing the images of the generating
set. If p - |φ1| = |φ2|, there exists an efficiently-computable map Λp : Aut(A)→ GL(Zp, |S|),
such that φ1 and φ2 are conjugate if and only if Λp(φ1) and Λp(φ2) are conjugate.

We show that Le Gall’s technique allows us to reduce testing isomorphism of H(A,K)
to that of H(

∏
E ,K). For convenience we first explain how Le Gall’s technique allows us to

reduce isomorphism of H(Ap,K) to H(E ,K). Let G1 and G2 be decomposed as N1 oτ H1
and N2 oγH2, where N1 and N2 are abelian p-groups. Then decompose N1 and N2 into the
canonical form, and identify H1 and H2 as isomorphic. Now by Theorem 4.1, we need to
test if there exist ψ ∈ Aut(N1), and φ ∈ Aut(H), such that τ(h) and γ(φ(h)) are conjugate
by ψ, for every h ∈ H. Noting that p - |H|, Lemma 4.2 tells that this happens if and only
if Λp(τ(h)) and Λp(γ(φ(h))) are conjugate. Thus composing Λp with τ and γ, noting that
Λp ◦ τ and Λp ◦ γ send H to GL(Zp, k), we reduce the case of H(Ap,K) to H(Zkp,K). To
go from H(A,K) to H(

∏
E ,K) we just need to consider the factors of

∏
E separately and

apply the appropriate Λp.

5 Isomorphism of H(A, E)

The main result of this section is a reduction of the isomorphism testing problem for groups
in H(A, E) to the problem of generalized code isomorphism problem. We first introduce this
problem. For Fn, a linear code of dimension d is a subspace of dimension d. A generating
matrix of a code C of dimension d is a d by n matrix with row vectors being a basis of
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C. With abuse of notation we will also use C to denote the generating matrix of the code
C. Two codes C and D of dimension d over F are isomorphic if they are equivalent up to
permutation of coordinates. Formally, if there exists a d by d non-singular matrix G and an
n by n permutation matrix P such that GCP = D.

I Theorem 5.1. ([3]) For C and D be two linear codes given as generating matrices, their
isomorphism can be tested, and the coset of isomorphism be computed, in time (2 + o(1))n.

We generalizes code isomorphism problem slightly to get:
I Problem 2. (Generalized code isomorphism problem) Given two matrices d′ × n matrices
C ′ and D′ over the field F, and a permutation group S ≤ Sn, if there exists G ∈ GL(F, d′)
and a permutation matrix P ∈ S, such that GC ′P = D′.

The generalized code isomorphism problem generalizes code isomorphism problem in two
ways: first we do not require row vectors of C ′ and D′ to be linearly independent. Secondly
the permutation matrix P must come from a certain permutation group S. Its solution in
singly exponential time can be viewed as a corollary to Theorem 5.1, by applying a coset
intersection running in singly exponential time[2].

I Corollary 5.2. Given two d′×n matrices C ′ and D′, and a permutation group S, whether
C ′ and D′ are isomorphic can be tested, the coset of permutation matrices be computed, in
time (2 + o(1))n.

5.1 Representation of Z`
q over Zp

In this section, we recall basic facts concerning representations of Z`q over Zp, p, q two
different primes, and we refer the reader to standard textbooks for more details. First
suppose the cyclotomic polynomial Φq(x) factors as g1 · g2 · . . . · gr over Zp, in which gi’s are
monic polynomials with the same degree d = (q − 1)/r. It is noted that d is the order of p
in the multiplicative group (Z/qZ)×. Let M ∈ GL(Zp, d) be the companion matrix of g1.4
For v ∈ Z`q, v 6= ~0, we define v∗ : Z`q → Zq by mapping v∗(u) = (v, u) (the inner product of
v and u). Now define fv : Z`q → GL(Zp, d) by sending u → Mv∗(u). To unify notation let
f~0 : Z`q → Zp be the trivial representation. Then fv gives an irreducible representation of
Z`q over Zp, and {fv | v ∈ V } is the set of all irreducible representations. However, fv and
fu may be equivalent, for u, v ∈ V , as described in the following claim.
I Claim 1. Let fv and fu be two irreducible representations of Z`q over Zp induced from
v, u ∈ Z`q, v, u 6= ~0 as above. fv and fu are equivalent if and only if u = sv for s ∈ Zq, and
Ms and M are conjugate.

I Corollary 5.3. Let Sp,q be the set of s satisfying the condition in Claim 1, and d be the
order of p in the multiplicative group (Z/qZ)×. Then |Sp,q| = d.

Let τ : Z`q → GL(Zp, k) be a representation. Due to Maschke’s theorem, representations
of Z`q over Zp are completely reducible. Suppose τ = fk1

v1
⊕ · · · ⊕ fkt

vt
, for vi ∈ V , i ∈ [t],

k1 ≥ · · · ≥ kt ≥ 1. Note that t is bounded by 1 + b(k− 1)/dc or k/d, depending on whether
the trivial representation exists or not. We will assume when a representation is decomposed
as such, the multiplicities of irreducible components are arranged to be non-increasing. For

4 In fact, any d by d matrix with characteristic polynomial as g1 would suffice, and it does not matter if
we choose, say companion matrix of gi, for any i ∈ [r].
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a given multiplicity w ∈ [k], recall that Lτ (w) is the set of irreducible representations with
multiplicity w appearing in τ , and Lτ = (Lτ (w))w∈[k] determines a representation up to
equivalence. The problem of working with Lτ is that the irreducible representations are
“abstract”, while we need to actually know the form of the irreducible representations. The
idea is to use vectors to index irreducible representations, at the cost of losing uniqueness.

I Definition 5.4. Given a representation τ : Z`q → GL(Zp, k), and w ∈ [k], Lτ (w) is a set
of vectors such that for every irreducible representation f ∈ Lτ (w), there is a unique vector
v ∈ Lτ (w) such that fv and f are equivalent. Lτ = (Lτ (w))w∈[k]. Such a tuple of sets of
vectors is called an indexing tuple of Lτ .

I Remark. By Corollary 5.3, the number of different indexing tuples of Lτ is bounded by
dk/d ≤ (e1/e)k < 2k. (Note that we do not need to consider f~0.)

For two representations τ : Z`q → GL(Zp, k) and γ : Z`q → GL(Zp, k), τ and γ are
equivalent if and only if Lτ = Lγ . For two indexing tuples Lτ and Lγ of τ and γ, we also
use Lτ = Lγ to denote for every w ∈ [k], Lτ (w) = Lγ(w). An immediate consequence is the
following claim.
I Claim 2. Let τ : Z`q → GL(Zp, k) and γ : Z`q → GL(Zp, k) be two representations. τ and
γ are equivalent if and only if there exist indexing tuples of τ and γ, Lτ and Lγ , such that
Lτ = Lγ .

The induced representation of fv by φ ∈ GL(Zq, l) has a nice form: (fv ◦ φ)(u) =
fv(φ(u)) = Mv∗(φ(u)) = M (φT (v))∗(u) = fφT (v)(u). That is fv ◦φ = fφT (v). Note that for any
two representations g and h of an arbitrary group G and φ′ ∈ Aut(G), (g⊕h)◦φ′ = (g◦φ′)⊕
(h ◦ φ′). If follows that τ ◦ φ = fk1

φT (v1) ⊕ · · · ⊕ f
kt

φT (vt). For φ ∈ GL(Zq, l), and S ⊆ Z`q, Sφ is
the set obtained by applying φT to every vector in S. Thus Lτ◦φ = Lφτ

.= (Lτ (w)φ | w ∈ [k]).

5.2 Isomorphism of H(E , E): proof of Theorem 1.3
To test isomorphism of two groups G1 and G2 identified as Zkp oτ Z`q and Zkp oγ Z`q, by
Theorem 1.2 we can view τ and γ as two representations of Z`q over Zp of dimension k.
Then we need to solve AutoInducedRepEquiv problem for τ and γ. This is done, as
shown in Theorem 1.3, by reducing to generalized code isomorphism problem.

Since τ and γ are equivalent if and only if Lτ = Lγ , using Proposition 2 we decompose
τ and γ as τ = fk1

v1
⊕ · · · ⊕ fkt

vt
and γ = f `1

u1
⊕ · · · ⊕ f `t′

ut′ to get two specific indexing sets Lτ
and Lγ . Along with the decomposition, we can calculate the change of basis matrices S and
T , such that, the images of S(τ ◦φ)S−1 and TγT−1 are sets of block diagonal matrices with
blocks representing the irreducible representations. Also note that for a specific irreducible
representation, it is easy to identify an indexing vector of it, by examining which vector
maps to M , the companion matrix of some pre-determined factor of Φq(x) over Zp.

Given the decomposition, we first need to test if t = t′, and |Lτ (w)| = |Lγ(w)|, ∀w ∈ [k].
If the conditions are not satisfied τ and γ can not be equivalent under automorphism. For
now assume that the conditions are satisfied. By Lτ◦φ = Lφτ , we know the indexing tuple
of Lτ◦φ is to apply φT to the vectors in Lτ . From a specific indexing tuple Lτ , all indexing
tuples of Lτ can be enumerated based on Claim 1. From Remark 5.1, we can afford the
enumeration of all indexing tuples. Finally, by Claim 2, the only task left is to determine
whether there exists φ ∈ GL(Zp, `), such that Lφτ is a specific indexing tuple of Lγ , in time
poly(pk, q`), where pk · q` is the size of the original group.
I Proposition 5. Testing the existence of φ so that of LφT

τ = Lγ in time poly(pk, q`) reduces
to generalized code isomorphism problem in singly exponential time.



Y. Qiao, J. Sarma and B. Tang 577

Proof. Expand Lτ = (Lτ (1), . . . ,Lτ (k)) as

({v1, . . . , vs1}, {vs1+1, . . . , vs2}, . . . , {vsk−1+1, . . . , vsk
}),

in which s1 ≤ s2 ≤ · · · ≤ sk = t. Similarly expand Lγ as

({u1, . . . , us1}, {us1+1, . . . , us2}, . . . , {usk−1+1, . . . , usk
}).

LφT

τ is just ({φ(v1), . . . , φ(vs1)}, {φ(vs1+1), . . . , φ(vs2)}, . . . , {φ(vsk−1+1), . . . , φ(vsk
)}), LφT

τ =
Lγ can be formulated as finding φ ∈ GL(Zq, `) and σ ∈ Ss1 × Ss2−s1 × · · · × Ssk−sk−1 such
that φ(v1, . . . , vt)σ = (u1, . . . , ut). This is just generalized code isomorphism problem with
the permutation group Ss1 × Ss2−s1 × · · · × Ssk−sk−1 , whose the generators can be com-
puted as symmetric groups can be generated by two elements. The reduction takes time
poly(k, `). J

Thus the solution for generalized code isomorphism in singly exponential time gives the
algorithm for AutoInducedRepEquiv for elementary abelian groups, finishing the proof
of Theorem 1.3.

5.3 Isomorphism of H(A, E)
The idea for H(E , E) can be extended to H(

∏
E , E), as follows. Suppose we have G1 and

G2 identified as (
∏
i∈[s] Z

ki
pi

) o Z`q, with the associated actions as τ and γ, respectively.
Now we need to test if there exist ψ ∈

∏
i∈[s] GL(Zpi , ki) and φ ∈ GL(Zq, l) such that

τ(h) = ψ−1 ◦ γ(φ(h)) ◦ ψ, for every h ∈ Z`q. Let τi : H1 → GL(Zpi
, ki) be the projection

of τ into the ith component, and similarly we have γi : H2 → GL(Zpi , ki). This reduces
to testing for every i ∈ [s], if τi(h) and γi(φ(h)) are conjugate by ψi ∈ GL(Zpi

, ki), for
every h ∈ Z`q. Viewing τi’s and γi’s as representations and going through the decomposition
into irreducibles, we get Lτi

’s and Lγj
’s and similarly we need to determine if there exists

φ ∈ GL(Zq, l) such that LφT

τi
= Lγi

, for every i ∈ [s]. Now it is enough to group Lτi
’s

and Lγj ’s respectively, and view them as a single generalized code isomorphism instance.
Finally, Le Gall’s technique gives an efficient algorithm for groups from H(A, E).
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