
Finite-Length Analysis of BATS Codes

Tsz-Ching Ng
Department of Mathematics

The Chinese University of Hong Kong, Hong Kong, China

Email: tcng@math.cuhk.edu.hk

Shenghao Yang
Institute for Interdisciplinary Information Sciences

Tsinghua University, Beijing, China

Email: shyang@tsinghua.edu.cn

Abstract—In this paper, performance of finite-length batched
sparse (BATS) codes with belief propagation (BP) decoding is
analyzed. For fixed number of input symbols and fixed number
of batches, a recursive formula is obtained to calculate the exact
probability distribution of the stopping time of the BP decoder.
When the number of batches follows a Poisson distribution,
a recursive formula with lower computational complexity is
derived. Inactivation decoding can be applied to reduce the
receiving overhead of the BP decoder, where the number of
inactive symbols determines the extra computation cost of in-
activation decoding. Two more recursive formulas are derived
to calculate the expected number of inactive symbols for fixed
number of batches and for Poisson distributed number of batches,
respectively. Since LT/Raptor codes are BATS codes with unit
batch size, our results also provide new analytical tools for
LT/Raptor codes.

Index Terms—BATS codes, finite-length analysis, belief prop-
agation, inactivation decoding

I. INTRODUCTION

Batched sparse (BATS) codes [1], [2] have been proposed

for file transmission through networks employing linear net-

work coding [3]. BATS codes generalize LT codes [4] and

Raptor codes [5] by generating coded symbols in batches.

Coded symbols of the same batch are encoded using the same

subset of input symbols, and a BATS code with unit batch size

is just an LT/Raptor code. An advantage of using batch size

larger than one is that linear network coding can be applied on

symbols of the same batch during the network transmission,

while the degree distribution of the received batches remains

unchanged. This property guarantees that with proper designed

degree distribution, efficient belief propagation (BP) decoding

can be applied to decode BATS codes. BATS codes with linear

network coding achieve higher rate than fountain codes with

routing, and have lower complexity than the normal random

linear network coding scheme that combines all symbols

together during the network transmission.
The existing works only analyzed the asymptotic perfor-

mance of BATS codes. The analysis of BATS codes in [2]

provides a sufficient condition for the BP decoder to recover

a fixed fraction of the input symbols with high probability

when both the number K of input symbols and the number n
of batches received tend to infinity. The sufficient condition

induces an optimization problem, the solution of which gives

a degree distribution that demonstrates nearly optimal perfor-

mance when K goes to infinity.
Though the asymptotic analysis demonstrates that BATS

codes can be nearly capacity achieving, the performance of

BATS codes when K is relatively small is of more practical

interests. The error bound obtained in the asymptotic analysis

is rather loose for small K. In this paper, we provide analysis

of BATS codes with finite number of input symbols. Since

LT/Raptor codes are BATS codes with unit batch size, our

results also provide new analytical tools for LT/Raptor codes.

Particularly, for given values of K and n, we derive the

distribution of the stopping time of the BP decoder using a

recursive formula, which can be used to calculate the error

probability of the BP decoder (decoding error occurs when

the BP decoder stops before a target number of input symbols

are recovered). The computational complexity of evaluating

the above recursive formulas is O(K2n2M), where M is the

batch size. Our formula applies to LT codes by setting M = 1.

Though the formula obtained by Karp et al. for LT codes [6]

has slightly lower complexity than our formula with M =
1, directly extending the analysis in [6] to M > 1 results

in much higher complexity since more variables should be

tracked recursively.

Inactivation decoding [7] has been used for LT/Raptor codes

to reduce the number of extra batches required for decoding

(also known as receiving overhead). The similar method can

be applied to BATS codes to reduce receiving overhead. Inac-

tivation decoding trades computation cost (decoding inactive

input symbols using Gaussian elimination) to get low receiving

overhead. To understand the tradeoff between computation

cost and receiving overhead, for given values of K and n we

derive a recursive formula to compute the expected number

of inactive symbols required for inactivation decoding, which

shares the same computational complexity of the first recursive

formula.

The number of batches received in a time interval is

random in general. For a given distribution of the number

of batches, directly using the above formulas to accurately

compute the error probability and the expected number of

inactive symbols can have high computation cost. But for

Poisson distributed number of batches, we show that those

values can be computed using simpler recursive formulas,

which have complexity O(Kn̄M2D), where n̄ is the mean

of the number of batches, and D is the maximum degree. Our

Poisson model is different from the model used to analyze LT

codes by Maneva and Shokrollahi [8], where the number of

received coded symbols is the summation of random variables

of binomial distributions.

Due to the page limit, only parts of the proofs are given

to demonstrate our techniques used to obtain these recursive

formulas. Readers are referred to [9] for the full proofs.

II. BATS CODES

In this section, the encoding and decoding processes of

BATS codes will be briefly introduced. Readers may refer

to [2] for more discussion.

A. Encoding

Suppose K input symbols will be transmitted from a source

node to a sink node through a network employing linear

network coding, where each input symbol is an element1 of

the finite field Fq of size q. For the purpose of analysis,

we describe a random encoding procedure of BATS codes.

A batch is a row vector of M symbols. The encoder of

a BATS code generates a potentially unlimited sequence of

batches X1,X2, . . . using the K input symbols and a degree

distribution Ψ = {Ψd, d = 1, . . . , D}, where D is the

maximum degree. Each batch Xi is generated independently

using the same procedure as follows.

First, choose a degree di by sampling the distribution Ψ.

Second, uniformly at random choose an index set Ai of

di integers ranging from 1 to K, and form a row vector Bi

by using the input symbols with indices in Ai. Third, set

Xi = BiGi, where Gi is a di×M matrix with all components

being uniformly i.i.d. from the field Fq . We call the symbols

with indices in Ai the contributors of the batch Xi.

Symbols in batches are sent out by the source node using

certain scheduling scheme. By assuming that the network only

applies linear operations on each batch and does not mix

different batches together, the received form of batch Xi is

Yi = XiHi, where Hi, called a transfer matrix, is determined

by the network operations including linear network coding and

packet loss. We assume that Hi, i = 1, 2, . . . are mutually

independent and following the same distribution of H, and

Hi, i = 1, 2, . . . are also independent to the encoding process.

The network output Yi of a batch can be expressed as

Yi = Bi ·Gi ·Hi. (1)

We call Yi a received batch, or a batch for simplicity, and we

call (1) the associated linear system of batch i.
Similar to Raptor codes, precoding can be applied to the

input symbols before applying the above encoding procedure.

A BATS code with batch size M = 1 is just a Raptor code

or an LT code, depending on whether precoding is applied or

not.

B. Belief propagation decoding

Consider n batches Y1,Y2, . . . ,Yn are received. We as-

sume that the sink knows GiHi and Ai for i = 1, . . . , n. The

decoding of BATS codes is actually to solve the linear systems

of the form in (1), where Bi is the variable, to recover the

input symbols. We use the following belief propagation (BP)

decoding algorithm, which is also illustrated in Fig. 1.

1In general, each symbol can be a vector of elements, but the generalization
does not affect the analysis.

bk

Yi Yj

Fig. 1. A decoding graph. Nodes in the first row represent the input symbols.
Nodes in the second row represents the batches.

A received batch Yi is called decodable if GiHi has

rank di. If so, then Bi is recovered by solving the linear

system (1), which has a unique solution since rk(GiHi) = di.
The symbols in Bi, once decoded, can be substituted into and

hence simplify the associated linear systems of batches Yj

with Aj ∩Ai �= ∅. For example in Fig. 1, if Yi is decoded, bk
can be recovered. Since bk is a contributor of Yj , the value of

bk can be substituted into the linear system associated with Yj .

After the substitution, some previously undecodable batches

may become decodable. We repeat the above decoding and

substituting procedure until there are no decodable batches.

The goal of this paper is to analyze the number of input

symbols recovered when the BP decoding stops. However,

directly analyzing the above decoding procedure is difficult.

We instead use a decoding process that in each decoding

step only one input symbol is decoded, which is described

as follows.

The time starts at 0 and increases by 1 after each decoding

step. We say an input symbol is decodable if it contributes

to a decodable batch. In each decoding step, we first pick a

decodable input symbol2, and mark it as decoded. Then we

substitute the input symbol to the associated linear systems of

the batches it contributes to. The decoding stops when there

is no decodable input symbols.

For each batch i and time t, let At
i be the indices of the

contributors of batch i that have not been decoded. Note that

A0
i = Ai. Let j be the index of the input symbol decoded in

the decoding step right after time t. Then At+1
i = At

i \ {j} if

j ∈ At
i, and At+1

i = At
i otherwise. Define Bt

i, G
t
i and Yt

i for

each batch i and time t as follows. First, B0
i = Bi, G

0
i = Gi

and Y0
i = Yi. For t ≥ 0, Bt+1

i = Bt
i, Gt+1

i = Gt
i and

Yt+1
i = Yt

i if At+1
i = At

i. Otherwise, let j be the index in

At
i \At+1

i . Then Bt+1
i is formed by removing the component

of Bt
i corresponding to bj , Gt+1

i is formed by removing the

row g of Gt
i corresponding to bj , and Yt+1

i = Yt
i − bjg. The

associated linear system of batch i at time t can be denoted

by Yt
i = Bt

i ·Gt
i ·Hi.

C. Solvability of a batch

At time t of the decoding procedure, the degree of a batch i
is |At

i|, and define the rank of the batch to be rk(Gt
iHi). A

batch becomes decodable only when its degree equals to its

2How to choose the input symbol does not affect the time when the
decoding stops.

rank. Let us check the probability that a batch is decodable

when its degree is s.

Let G[s] be an s×M random matrix with uniformly i.i.d.

components in Fq , and G′
[s] be the submatrix of G[s] obtained

by removing one row. Define

�s := Pr{rk(G[s+1]H) = rk(G′
[s+1]H) = s}, (2)

�
′
s := Pr{rk(G[s]H) = s}. (3)

We can check that �s is the probability that a batch is

decodable for the first time when its degree is s. Once a

batch becomes decodable, it keeps to be decodable until all

its contributors are decoded. Similarly, we see that �′s is the

probability that a batch is decodable when its degree is s. Note

that �′s =
∑

k≥s �k and for s > M , �s = 0.

The explicit forms of �s and �
′
s will not be directly used

in the analysis, but are useful in the numerical evaluation.

According to Appendix II of [2],

�s =

M∑
i=s

ζis
qi−s

hi and �
′
s =

M∑
k=s

ζks hk,

where

ζmr :=

{
(1− q−m)(1− q−m+1) · · · (1− q−m+r−1) r > 0

1 r = 0.

and hr := Pr{rk(H) = r} is the rank distribution of H.

When applying the analysis to LT/Raptor codes, i.e. M = 1,

we can use deterministic generator matrices with all compo-

nents being the identity of the field, and hence �1 = �
′
1 = h1.

In the case of M = 1, h0 can be regarded as the erasure rate.

III. STOPPING TIME OF BP DECODER

In this section, we fix a number K of input symbols and

compute the distribution of the stopping time of the BP

decoder. In general, the number of (received) batches can

be random. Let N be the random variable of the number of

batches used in the decoder.

A. Fixed number of batches

We start with the performance of BP decoding for a fixed

number n of batches, i.e., the condition N = n is assumed.

Let Rt be the number of decodable input symbols at time t.
The probability that the decoder stops at time t is

Pr{Rt = 0, Rτ > 0, τ < t|N = n}.
The stopping time of the BP decoder is equal to the number

of packets that can be decoded.

Let Ct be the number of batches with its degree strictly

larger than its rank at time t, i.e., the number of undecodable

batches at time t. We are interested in the probabilities

Λt
c,r|n := Pr{Ct = c, Rt = r,Rτ > 0, τ < t|N = n}.

We will express Λt
c,r|n in terms of Λt′

c′,r′|n’s for t′ < t, so that

we can calculate Λt
c,r|n’s recursively.

For c ≤ n, define

Λt
c|n := (Λt

c,0|n,Λ
t
c,1|n, . . . ,Λ

t
c,K−t|n),

and let (Λt
c|n)

\1 be the sub-vector of Λt
c|n without the first

component. Let

Bi(n, k; p) :=

(
n

k

)
(p)

k
(1− p)

n−k

and let

hyge(n, i, j, k) :=

⎧⎨
⎩

(i
k)(

n−i
j−k)

(nj)
k ≤ min{i, j}

0 o.w.

be the p.m.f. of hyper-geometric distribution.

Theorem 1. Given the number K of input symbols, the
number n of batches, the degree distribution {Ψd}, the rank
distribution {hr} of the transfer matrix, the maximum de-
gree D and the batch size M , we have

Λ0
c|n = Bi(n, c; 1− ρ0)e1Q

n−c
0 , (4)

and for t > 0,

Λt
c|n =

∑
c′≥c

Bi(c′, c; 1− ρt)(Λt−1
c′|n)

\1Qc′−c
t

where the notations are defined as follows:
1) e1 = (1, 0, . . . , 0).
2) ρ0 =

∑
s p

0
s, where p0s = Ψs�

′
s.

3) For t > 0,

ρt =

∑
s p

t
s

1−∑t−1
τ=0

∑
s p

τ
s

where

pts = �s

D∑
d=s+1

Ψd
d

K
hyge(K−1, d−1, t−1, d−s−1).

4) For t ≥ 0, Qt is a (K − t + 1) × (K − t + 1) matrix
with

Qt(i+1, j+1) =

j∑
s=j−i

pts∑
s p

t
s

hyge(K−t, i, s, i+s−j)

if j −M ≤ i ≤ j, and Qt(i+ 1, j + 1) = 0 otherwise,
where Qt(i + 1, j + 1) is the component of Qt on the
(i+ 1)th row and (j + 1)th column.

The derivation of the initial status (4) is given in Ap-

pendix. The probability that BP decoding stops at time t is∑
c Λ

t
c,0|n, and hence the error probability of BP decoding can

be calculated. When there is no precoding, the BP decoder

must recover all input symbols, so the error probability is∑K−1
t=0

∑
c Λ

t
c,0|n. When precoding is applied, the BP decoder

only needs to recover a fraction of the input symbols, so the

error probability is
∑K′−1

t=0

∑
c Λ

t
c,0|n, where K ′ is the number

of input symbols to be recovered.

The computational complexity to evaluate the recursive

formula in Theorem 1 is O(K2n2M), where K is the number

of input symbols, n is the number of batches and M is

the batch size. The complexity can be shown by first noting

that the quantities {pts, ρt,Qt}t≤K,s≤M can be computed

in O(K2MD) steps using recursive formulas (e.g.,
(
n
k

)
=

n
n−k

(
n−1
k

)
) to compute binomial coefficients. Secondly, the

matrix Qt has at most K + 1 columns, and each column has

most M +1 non-zero elements. Therefore, the complexity for

multiplying a vector to Qt is O(KM). For fixed t ≤ K,

c ≤ n, the vectors {(Λt−1
c′|n)

\1Qc′−c
t }c≤c′≤n can be computed

recursively in O(KnM) steps. Hence, the total complexity is

O(K2n2M), where we assume D = O(n2). Since M is small

(e.g., 32) and n is usually linear with K, we can also say that

the complexity is O(K4).
The approach we use to prove Theorem 1 is different from

the one used to analyze LT codes by Karp et al. [6], where the

number of decodable received symbols (called output ripple)

is calculated recursively. Directly extending their approach for

M > 1 requires us to calculate the number of decodable

batches. But since decodable batches, when M > 1, can have

different degrees, different recursive formula must be provided

for each degree value of decodable batches. So directly gener-

alizing their approach will result in much higher complexity.

Our approach, instead, tracks the number of decodable input

symbols. Though our formula has slightly higher complexity

(O(K4)) when M = 1 than the formula of LT codes in [6]

(O(K3 log2(K) log log(K))), our approach is simpler to apply

for cases with M > 1.

B. Poisson number of batches

In network communications, the number of received packets

in a time interval is usually random, and typically assumed to

be Poisson distributed. When N follows a general distribution,

we can calculate the error probability using the above formulas

by first calculating the error probabilities for all possible

instances n of N , and then combining these error probabilities

according the distribution of N , i.e, the error probability is

∑
n

Pr{N = n}
K′−1∑
t=0

∑
c

Λt
c,0|n. (5)

But this approach is not usable when the support of N is large.

For example, when N has a Poisson distribution, the support

of N is non-negative integers, and hence accurately computing

the error probability using (5) directly is not possible.

In this subsection, we show that there exists a simpler recur-

sive formula to compute the exact distribution of the stopping

time of BP decoder when N has a Poisson distribution. We

consider that the number N of batches is Poisson distributed

with mean n̄, that is,

Pr{N = n} =
n̄n

n!
e−n̄.

For 0 ≤ t ≤ K, define

Λt
r := Pr{Rt = r,Rτ > 0, τ < t},

which is the probability that the BP decoder successfully

decodes t input symbols and Rt = r. Define a vector of size

K − t+ 1:

Λt := (Λt
0,Λ

t
1, . . . ,Λ

t
K−t).

Then, we have

Λt =
∑
n

Pr{N = n}
∑
c≤n

Λt
c|n.

Before giving the general result, we show Λ0 as an example.

Substituting Pr{N = n} and Λ0
c|n given in Theorem 1,

Λ0 =
∑
n

n̄n

n!
e−n̄

∑
c≤n

Bi(n, c; 1− ρ0)e1Q
n−c
0

=
∑

c,n:c≤n

n̄n

n!
e−n̄

(
n

c

)
(1− ρ0)c(ρ0)n−ce1Q

n−c
0

= e−n̄e1
∑

c,n:c≤n

(n̄(1− ρ0))c

c!

(n̄ρ0Q0)
n−c

(n− c)!
.

By defining m = n− c and using matrix exponential defined

for a square matrix A as

exp(A) :=

∞∑
i=0

Ai

i!
,

we can further simplify the above formula as

Λ0 = e−n̄e1
∑
c

(n̄(1− ρ0))c

c!

∑
m

(n̄ρ0Q0)
m

m!

= e−n̄e1 exp(n̄(1− ρ0)) exp(n̄ρ0Q0)

= e1 exp(−n̄ρ0) exp(n̄ρ0Q0). (6)

The general result is as follows.

Theorem 2. Given the number K of input symbols, the degree
distribution {Ψd}, the rank distribution {hr} of the transfer
matrix, the maximum degree D, the batch size M , and the
number of batches being Poisson distributed with the mean
equal to n̄, we have for t ≥ 0,

Λt = exp(−n̄
∑
s

pts)(Λ
t−1)\1 exp(n̄

∑
s

ptsQt), (7)

where (Λ−1)\1 := e1, while pts and Qt are defined as in
Theorem 1.

The computational complexity of evaluating the recursive

formula in Theorem 2 is O(Kn̄M2D/tol), where tol is

the tolerable error in the computation. Assume the average

number of symbols received is larger than the number of input

symbols, i.e., Mn̄ ≥ K. Since the complexity of computing

the quantities {pst ,Qt}t≤K,s≤M is O(K2MD), to show the

overall complexity it suffices to consider the cost of computing

the action of matrix exponential (Λt−1)\1 exp(n̄ptQt), which

is usually faster than computing exp(n̄ptQt), where pt =∑
s p

t
s. Using the algorithm in [10], the cost for computing an

action of an matrix exponential eA is O(‖A‖1Mul(A)/tol),
where Mul(A) is the cost for multiplying A with a vector.

From the expression of n̄ptQt, we have ‖n̄ptQt‖1 ≤ n̄D
K for

t > 0 and ‖n̄p0Q0‖1 ≤ n̄. Also, as in the discussion following

Theorem 1, Mul(Qt) = O(KM). Therefore the complexity

of calculating every Λt is

O(K × n̄DM/tol + n̄KM/tol) = O(Kn̄MD/tol). (8)

When precoding is applied, we know that D = O(M) is

sufficient to achieve the maximum rate [2]. So the complexity

in (8) becomes O(Kn̄M3/tol). When there is no precoding,

we know the average degree must be of the order O(logK)
[5]. So the maximum degree D must also increase with K to

get the optimal performance.

IV. INACTIVATION DECODING

BATS codes demonstrate nearly optimal asymptotic per-

formance [2], but the achievable rates of BATS codes with

finite input symbols are lower than the asymptotic optimal

value since extra number of batches is required to guarantee

the success of BP decoding. We call this number of extra

batches received the receiving overhead. Though the receiving

overhead is neglectable when K (the number of input symbols)

is large, it reduces the rate of BATS codes significantly

for small K. An effective method to reduce the receiving

overhead is to use inactivation decoding, which was proposed

for LT/Raptor codes [7], and can be similarly applied to BATS

codes.

In the following of this section, after an introduction of

inactivation decoding, we will modify Theorem 1 and 2 to

calculate an important parameter of inactivation decoding.

In the BP decoding algorithm introduced in Section II-B,

the decoding stops when there are no decodable input symbols.

Though BP decoding stops, Gaussian elimination can still be

used to decode the remaining input symbols (by combining

the linear systems associated with the undecoded batches to a

single linear system involving all undecoded input symbols).

But the decoding complexity using Gaussian elimination is

higher than BP decoding. Inactivation decoding combines BP

decoding with Gaussian elimination in a more efficient way.

With inactivation decoding, when there are no decodable in-

put symbols at time t, we instead randomly pick an undecoded

symbol bk and mark it as inactive. We substitute the inactive

symbol bk into the batches like a decoded symbol, except that

bk is an indeterminate. For example, if k ∈ At
i, each element

of Yt+1
i = Yt

i − bkg will be expressed as a linear polynomial

of bk. The decoding process is repeated until all input symbols

are either decoded or inactive. The inactive input symbols can

be recovered by solving a linear system of equations using

Gaussian elimination, and then the values of inactive symbols

are substituted into the decoded input symbols.

Inactivation decoding incurs extra computation cost that in-

cludes solving the inactive symbols using Gaussian elimination

and substituting the values of the inactive symbols. Since both

terms depend on the number of inactive symbols, knowing

this number can help us to understand the tradeoff between

computation cost and receiving overhead. In the following, we

provide methods to compute the expected number of inactive

symbols.

When the number of received batches is n, the expectation

of the number of inactive symbols is given by

K−1∑
t=0

Pr{Rt = 0|N = n}. (9)

Theorem 1 can be modified to compute (9). For inactivation

decoding, we define

Γt
c,r|n := Pr{Ct = c, Rt = r|N = n}.

Let

Γt
c|n := (Γt

c,0|n,Γ
t
c,1|n, . . . ,Γ

t
c,K−t|n),

(Γt
c|n)

1+2 := (Γt
c,0|n + Γt

c,1|n,Γ
t
c,2|n, . . . ,Γ

t
c,K−t|n),

i.e., (Γt
c|n)

1+2 is obtained by combining the first two compo-

nents of Γt
c|n.

Theorem 3. Under the notations and assumption of Theo-
rem 1, we have for inactivation decoding

Γ0
c|n = Bi(n, c; 1− ρ0)e1Q

n−c
0 ,

and for t > 0,

Γt
c|n =

∑
c′≥c

Bi(c′, c; 1− ρt)(Γt−1
c′|n)

1+2Qc′−c
t .

The expected number of inactive symbols for K input

symbols and n batches is
∑K−1

t=0

∑
c Γ

t
c,0|n.

When the number of received batches follows a Poisson

distribution, the expected number of inactive symbols is given

by
K−1∑
t=0

Pr{Rt = 0}. (10)

We can modify Theorem 2 to compute (10). Define

Γt := (Γt
0,Γ

t
1, . . . ,Γ

t
K−t),

where

Γt
r = Pr{Rt = r}.

Theorem 4. Under the notations and assumption of Theo-
rem 2, we have the following for inactivation decoding:
For t ≥ 0

Γt = exp(−n̄
∑
s

pts)(Γ
t−1)1+2 exp(n̄

∑
s

ptsQt),

where (Γ−1)1+2 := e1.

The expected number of inactive symbols for Poisson

distributed number of received batches is
∑K−1

t=0 Γt
0.

V. CONCLUDING REMARKS

The recursive formulas in this paper can be easily evalu-

ated numerically using matrix operations. So without heavy

simulation, we can directly calculate the error probability of

BP decoder and the expected number of inactive symbols.

Numerical results show that an asymptotically optimal degree

distribution may not work well for small number of input

symbols. For a given degree distribution, those recursive

formulas can help us to determine the number of batches to

received, and the distribution of stopping time also provides

hints on how to tune the degree distribution to improve the

performance. But more analytical tools are still desired to

design optimal degree distribution for BATS codes with small

number of input symbols.

ACKNOWLEDGEMENT

The work described in this paper was partially supported by

a grant from University Grants Committee of the Hong Kong

Special Administrative Region, China (Project No. AoE/E-

02/08).

REFERENCES

[1] S. Yang and R. W. Yeung, “Coding for a network coded fountain,” in
Proc. IEEE ISIT ’11, Saint Petersburg, Russia, Aug. 2011.

[2] ——, “Batched sparse codes,” 2012. [Online]. Available: http:
//arxiv.org/abs/1206.5365

[3] R. S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, pp. 371–381, 2003.

[4] M. Luby, “LT Codes,” in Proc. IEEE Symposium on Foundations of
Computer Science, 2002, pp. 271–280.

[5] A. Shokrollahi, “Raptor Code,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[6] R. Karp, M. Luby, and A. Shokrollahi, “Finite length analysis of LT-
codes,” in Proc. IEEE ISIT ’04, 2004, p. 39.

[7] A. Shokrollahi, S. Lassen, and R. Karp, “Systems and processes for de-
coding chain reaction codes through inactivation,” U.S. Patent 6,856,263,
Feb. 15, 2005.

[8] E. Maneva and A. Shokrollahi, “New model for rigorous analysis of
LT-codes,” in Proc. IEEE ISIT ’06, Jul. 2006, pp. 2677–2679.

[9] T. C. Ng and S. Yang, “Finite-length analysis of BATS codes,”
2013. [Online]. Available: http://iiis.tsinghua.edu.cn/∼shenghao/pub/
finite length full.pdf

[10] A. H. Al-Mohy and N. J. Higham, “Computing the action of the
matrix exponential, with an application to exponential integrators,” SIAM
Journal on Scientific Computing, vol. 33, no. 2, pp. 488–511, 2011.

APPENDIX

PROOF OF THE INITIAL STATUS OF THEOREM 1

We first calculate Λ0
c,r|n = Pr{C0 = c, R0 = r|N = n}.

The condition N = n will be implied in the following of the

proof. Let Θ̄t
s be the set of indices of batches that both the

degree and the rank at time t equal to s. In other words, a

batch with index in Θ̄t
s, s > 0, is solvable and can decode

s symbols. Let Θt be the set of indices of batches that are not

in Θ̄t := ∪M
s=0Θ̄

t
s. We see that Rt = | ∪i∈Θ̄t At

i|, which is

valid since At
i = ∅ for i ∈ Θ̄t

0. We see that Ct = |Θt|.
When t = 0, the probability that a batch has degree s is Ψs

and for a batch with degree s, it is decodable with probability

�
′
s (see (3)). Therefore, the probability that a batch is in Θ̄0

s

is Ψs�
′
s, i.e., for i ≤ n and s ≤ M ,

Pr{i ∈ Θ̄0
s} = p0s := Ψs�

′
s.

Hence,

Pr{i ∈ Θ̄0} =

M∑
s=0

p0s := ρ0.

Since all batches are independent, we obtain that

Pr{C0 = k} = Pr{|Θ0| = k} = Bi(n, k; 1− ρ0). (11)

Recall that Q0 is a (K + 1)× (K + 1) matrix defined as

Q0(i+ 1, j + 1) =

j∑
k=j−i

hyge(K, i, k, i+ k − j)
p0k
ρ0

if j −M ≤ i ≤ j, and Q0(i+ 1, j + 1) = 0 otherwise.

Lemma 1. We have

(Pr{R0 = j|C0 = n− k} : j = 0, . . . ,K) = e1Q
k
0 ,

where e1 = (1, 0, . . . , 0).

Proof: Fix n and k. If k = 0, then Θ̄0 = ∅, and hence

Pr{R0 = 0|C0 = n} = 1, i.e., the lemma with k = 0 is

proved. In the following, we assume k > 0. We have

Pr
{
R0 = j|C0 = n− k

}
= Pr

{| ∪i∈Θ̄0 A0
i | = j

∣∣|Θ̄0| = k
}

= Pr
{| ∪k

i=1 A
0
i | = j

∣∣Θ̄0 = {1, . . . , k}}
where the second equality follows that since all batches are

i.i.d., Pr
{| ∪i∈B A0

i | = j
∣∣Θ̄0 = B

}
is the same for any B ⊂

{1, 2, . . . , n} with |B| = k.
Let

Qr|k(j) = Pr
{| ∪r

i=1 A
0
i | = j

∣∣Θ̄0 = {1, . . . , k}} .
We give a recursive formular to compute Qr|k(·) for r =
1, . . . , k. Note that Qk|k(j) = Pr

{
R0 = j|C0 = n− k

}
.

First,

Q1|k(s) = Pr
{|A0

1| = s
∣∣Θ̄0 = {1, . . . , k}}

= Pr
{
1 ∈ Θ̄0

s

∣∣1 ∈ Θ̄0
}

=
p0s
ρ0

.

Second, for r > 1,

Qr|k(s) = Pr
{| ∪r

i=1 A
0
i | = s

∣∣Θ̄0 = {1, . . . , k}}

=

s∑
i=0

Qi,sQr−1|k(i),

where

Qi,s = Pr
{| ∪r

i=1 A
0
i | = s

∣∣| ∪r−1
i=1 A0

i | = i, Θ̄0 = {1, . . . , k}}

=

s∑
j=s−i

Pr
{| ∪r

i=1 A
0
i | = s

∣∣| ∪r−1
i=1 A0

i | = i, |A0
r| = j

}

×Pr
{|A0

r| = j
∣∣| ∪r−1

i=1 A0
i | = i, Θ̄0 = {1, . . . , k}}

=
s∑

j=s−i

hyge(K, i, j, i+ j − s)
p0j
ρ0

.

The former part of each summand is a hypergeometric distri-

bution; and the latter part is equal to Pr
{|A0

r| = j
∣∣r ∈ Θ̄0

}
,

which can be obtained similar to Q1|k.
Note that Qi,s does not depend on r. Let πr|k =

(Qr|k(0), Qr|k(1), . . . , Qr|k(K)). We have

Qr|k = πr−1|kQ0 = π1|kQ
r−1
0 .

Noting that π1|k = 1
ρ0 (p

0
0, p

0
1, . . . , p

0
K) is the same as the first

row of Q0, the proof is completed.
By (11) and Lemma 1, we have

Λ0
c|n = (Pr{C0 = c, R0 = j} : j = 0, . . . ,K)

= Pr{C0 = c}(Pr{R0 = j|C0 = c} : j = 0, . . . ,K)

= Bi(n, c; 1− ρ0)e1Q
n−c.

