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a b s t r a c t

The parity decision tree model extends the decision tree model by allowing the computa-
tion of a parity function in one step. We prove that the deterministic parity decision tree
complexity of any Boolean function is polynomially related to the non-deterministic com-
plexity of the function or its complement. We also show that they are polynomially related
to an analogue of the block sensitivity. We further study parity decision trees in their re-
lations with an intermediate variant of the decision trees, as well as with communication
complexity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and summary of results

The decision tree model is perhaps the simplest model of computation. It is, however, capable of capturing the inherent
complexity of many natural computational problems. Its relations with other models of computation have also proved to be
useful. In this section, we will first review some definitions and key results on decision trees, before we present a summary
of our results.
Let f : {0, 1}n → {0, 1} be a Boolean function throughout this paper, unless specified otherwise. Formally, a decision

tree algorithm for computing f is a full binary tree T , labeled as follows: (1) each non-leaf vertex is labeled with an index
i ∈ {1, 2, . . . , n} to the input bits, (2) each leaf and each edge is labeled with either 0 or 1. The computation of T on an input
x ∈ {0, 1}n is the path that starts at the root and follows the xi edge from a vertex labeled with i. The leaf label reached by
this path is the output of T on x. The depth of the tree is the worst-case complexity of the algorithm. The minimum depth
of all decision trees computing f is the deterministic decision tree complexity of f , denoted by D(f ).
A set of decision trees non-deterministically computes f , if for any input x, f (x) = 1, if and only if a decision tree from

the set outputs 1. The non-deterministic decision tree complexity of f , denoted by C1(f ), is the smallest integer k such that f
is computed non-deterministically by a set of depth-k decision trees. Alternatively, C1(f ) is characterized by the smallest
integer k, such that for any input x with f (x) = 1, there is a subset S ⊆ {1, . . . , n} such that any input x′ with the same
value as x on bits indexed by S must also have f (x′) = 1. Thus C1(f ) is also commonly called the 1-certificate complexity. The
0-certificate complexity, C0(f ) def= C1(1− f ), and the certificate complexity, C(f ) def= max{C0(f ), C1(f )}.
It follows straightforwardly from the definitions that C(f ) ≤ D(f ). A key result [2] is, for any f ,

D(f ) ≤ C1(f )C0(f ). (1)

Thus for any Boolean function, its deterministic complexity is polynomially related with its non-deterministic complexity
or that of its complement. This is in sharp contrast with the fact that for Turing machine computations the corresponding
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question of P versus NP remains open. In fact, several other complexitymeasures such as randomized and quantum decision
tree complexities are also known to be polynomially related to the deterministic decision tree complexity. A comprehensive
survey on the subject is [3] by Buhrman and de Wolf.
If in a decision tree, each non-leaf vertex is labeled with a c ∈ {0, 1}n instead, and the computation path follows the

edge labeled with 〈x, c〉 def=
∑
i xici mod 2, we call this extended decision tree a parity decision tree and the corresponding

complexity as the parity decision tree complexity, denoted by D⊕(f ). This model was first defined in [4], which derived some
simple properties of the complexity. The parity certificate complexities, C0

⊕
(f ), C1

⊕
(f ), and C⊕(f ), can be defined in analogy to

the certificate complexities (see Definition 2.1). They measure the non-deterministic parity decision tree complexities of f
(or 1− f ). Our first main result is in analogy to (1).

Theorem 1.1. For any Boolean function f , D⊕(f ) ≤ C0⊕(f )C
1
⊕
(f ).

The block-sensitivity of f , bs(f ), is the smallest integer k such that for any input x ∈ {0, 1}n there are k pair-wise disjoint
subsets of {1, . . . , n} such that flipping all bits in any of those subsets flips f (x). Nisan [8] showed that, for any f ,

C(f ) ≤ bs2(f ). (2)

Together with the simple relation that bs(f ) ≤ C(f ), this result shows that bs(f ) is polynomially related with C(f ), thus
with D(f ). We define (in Definition 3.3) the parity block sensitivity bs⊕(f ), and show that a similar relation holds.

Theorem 1.2. For any Boolean function f , bs⊕(f ) ≤ C⊕(f ) ≤ bs2⊕(f ).

The above three classes of parity complexities we study satisfy the following symmetry properties. Let c ∈ {0, 1}n.
The function obtained by shifting f by c is fc : x 7→ f (x + c). Let A be a linear transformation on {0, 1}n (as the n-
dimensional linear space over the field F2), fA is the function defined as fA(x) = f (Ax). For any coset H of {0, 1}n (i.e. a
shift of a subspace), denote by f |H the restriction of f on H . A complexity measureΘ defined on Boolean functions is said to
be invariant under shift ifΘ(fc) = Θ(f ) for any c ∈ {0, 1}n. It is said to be invariant under rotation ifΘ(fA) = T (f ) for any
invertible transformation A over Fn2.
When Θ is invariant under shift and rotation, we can extend the domain of Θ to include any function g defined on a

coset H of {0, 1}n. For such a g , and a coset H = c + S where c ∈ {0, 1}n and S is a subspace with basis {e1, . . . , em}, we
define g ′ : {0, 1}m → {0, 1} as follows,

g ′(x1x2 · · · xm)
def
= g(c + x1e1 + · · · + xmem) for all x ∈ {0, 1}m, (3)

and extendΘ to g by setting,

Θ(g) def= Θ(g ′). (4)

ThenΘ(g) is well defined, as it is independent of the choice of the basis and c forH due toΘ being invariant under shift and
rotation.We say a complexitymeasureΘ invariant under shift and rotation ismonotone if for any n ≥ 1, f : {0, 1}n → {0, 1},
and coset H ⊆ {0, 1}n,Θ(f |H) ≤ Θ(f ).
All the classical complexity measures of Boolean functions such as decision tree complexity, certificate complexity, and

block sensitivity are invariant only under shift but not under rotation. The parity version complexitieswe study are, however,
invariant under both shift and rotation, and are monotone.
To contrast those two sets of complexity measures, we may ‘‘symmetrize’’ every classical complexity measure Θ to ΘI

by defining ΘI(f )
def
= minBΘ(fB), where B takes value from all invertible linear transformations. A natural question is if

each parity complexity is identical, or at least polynomially related, to the rotation invariant version of the corresponding
classical complexity. We show that this is not the case. In this sense, the parity decision tree model is an inherently more
powerful model than the decision tree model.

Theorem 1.3. For infinitely many n, there exists fn : {0, 1}n → {0, 1}, such that D⊕(fn) = O(log n) and DI(fn) = Θ(n).

Parity decision trees are closely related to the communication complexity of XOR functions [10]. Communication
complexity is a major branch of complexity theory that studies the inherent communication cost for distributive
computation. The deterministic communication complexity of F : {0, 1}n×{0, 1}n → {0, 1}, denoted by DC(F), is the smallest
integer k, such that there is a communication protocol between twoparties Alice and Bob satisfying the following conditions:
(1) Alice’s input is an x ∈ {0, 1}n, and Bob’s input is a y ∈ {0, 1}n. (2) Alice and Bob take turn to send each other a message,
each message is determined by each party’s input as well as the messages s/he has received previously. (3) At the end of
the protocol one party knows F(x, y). (4) The total number of bits in the messages is ≤ k. This model as well as its several
variants have been extensively studied. For surveys, see [5,9,6].
Determining DC(F)may be a highly nontrivial problem, even for the following class of functions of a simple structure. A

function F : {0, 1}n × {0, 1}n → {0, 1} is called an XOR function [10] if for some f : {0, 1}n → {0, 1}, F(x, y) = f (x+ y), for
all x, y ∈ {0, 1}n. The computation of a parity decision tree T for f can be simulated by Alice and Bob for computing F : each
query c is simulated by Alice and Bob computing 〈c, x〉 and 〈c, y〉, respectively, and exchange the outcomes.

Proposition 1.4. For any XOR function F : {0, 1}n × {0, 1}n → {0, 1} with F(x, y) = f (x+ y), DC(F) ≤ 2D⊕(f ).
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In Section 5, we show that C1(f ), times log n, also gives an upper bound on the non-deterministic communication
complexity of F . A natural question is if those upper bounds are far from being tight. While we are not able to answer this
question, we conjecture they are. We also put forward a conjecture that, if true, would also imply the well-known Log-Rank
Conjecture [7] when restricted to XOR functions.

2. Parity certificate complexity

We consider {0, 1}n as a n-dimensional vector space over F2, the two-element finite field, as well as an Abelian group
with respect to the bit-wise XOR. Then a coset of {0, 1}n is a set b+ V , where b ∈ {0, 1}n and V is a subspace of {0, 1}n. The
co-dimension of b + V is n − dim(V ). Equivalently, a coset is the set of solutions to a system of linear equations, and the
minimumnumber of the equations defining the same coset is the co-dimension. Informally, the parity certificate complexity
measures how many linear constraints have to be given on the input in order to fix the value of f .

Definition 2.1. Let f : D→ {0, 1} be defined on D ⊆ {0, 1}n, and x ∈ D. A coset S of {0, 1}n is called a parity certificate of f
on x if s ∈ S and f is constant on S ∩ D. The size of the certificate is defined to be the co-dimension of S. The minimum size
of a parity certificate for x is denoted by C⊕(f , x). The parity certificate complexity of f , denoted by C⊕(f ), is maxx C⊕(f , x).
A parity certificate S is called a 0- (or 1-) parity certificate if f (x) = 0 (or f (x) = 1, respectively) for all x ∈ S ∩ D. The

0- and 1-parity certificate complexities of f are C0
⊕
(f ) def= maxx:f (x)=0 C⊕(f , x), and C1⊕(f )

def
= maxx:f (x)=1 C⊕(f , x), respectively.

If f ≡ 0 (or f ≡ 1), then C1
⊕
(f ) (or C0

⊕
(f ), respectively) is not defined. We may represent a parity certificate S of size T (or a

coset S of co-dimension T ) by a pair (C, r), where C ∈ {0, 1}T×n and r ∈ {0, 1}T , such that S = {x : Cx = r}. It follows from
the definitions that when B ∈ {0, 1}n×n takes value from invertible matrices,

C⊕(f , x) = min
B
C(fB, B−1x). (5)

Similar relations between the 0- and 1-parity certificates/certificates also hold. Note that 0- and 1-parity certificate
complexity measure the non-deterministic parity decision tree complexity of f and 1 − f , respectively, with the non-
deterministic parity decision tree complexity defined in analogy to the non-deterministic decision tree complexity. Since
any parity decision tree gives a certificate of size no more than the depth of the tree for any input, we have the following
relation.

Proposition 2.2. For any Boolean function f , C⊕(f ) ≤ D⊕(f ).

We now prove Theorem 1.1, which states that D⊕(f ) ≤ C0⊕(f )C
1
⊕
(f ), for any f .

Proof of Theorem 1.1. The idea of the proof is similar to that in [2] for proving Inequality (1). We give an algorithm that
computes f using no more than C1

⊕
(f )C0

⊕
(f ) queries.

Fix an input x0. For a sequence of cosets (C1, r1), (C2, r2), . . . , define Vi
def
= {x : Cjx = Cjx0, j = 1, 2, . . . , i} for i ≥ 1 and

V0
def
= {0, 1}n. By definition, V0 ⊇ V1 ⊇ V2 ⊇ · · ·. The algorithm will examine a sequence of 1-parity certificates, (C1, r1),

(C2, r2), . . . , that it constructs incrementally from an initially empty sequence. It proceeds as follows: For i = 1, 2, . . ., if
f |Vi−1 is constant, output that constant and terminate. Otherwise, extend the current sequence of 1-parity certificates with
a new one (Ci, ri) for f |Vi−1 of the smallest size. Since f |Vi−1 is not constant, such a 1-parity certificate exists. Query the rows
in Ci. If the answers agree with ri, return 1. Otherwise continue with i incremented by 1.
The algorithm clearly outputs the correct answer. Since restricting a function on a subset does not increase C1

⊕
, at most

C1
⊕
(f ) queries are made in the ith iteration, for each i. We prove that f |VT is constant for some T ≤ C

0
⊕
(f ). Assume otherwise

and fix an x′0 ∈ VT with T = C
0
⊕
(f ) and f (x′0) = 0. We argue that for each i, 1 ≤ i ≤ T ,

C⊕(f |Vi , x
′

0) ≤ C⊕(f |Vi−1 , x
′

0)− 1. (6)

Fix a parity certificate (C, r) for f |Vi−1 containing x
′

0 and of the smallest size. Since the linear system {Cix = ri, Cx = r} does
not have a solution in Vi−1 but the system {Cix = ri} does (by the definition of (Ci, ri) being a 1-parity certificate for f |Vi−1 ,
which is non-constant), the row space of C has a non-empty intersection with the space spanned by the rows of C1, . . . , Ci.
Assumewithout loss of generality that the intersection is spanned by the first k rows, for some k ≥ 1, in C (otherwise, apply
an appropriate invertible matrix on both sides of Cx = r), and denote the sub-matrix of C and r containing those rows by
C ′ and r ′, and the remaining portions by C ′′ and r ′′. Any x ∈ Vi satisfying C ′′x = r ′′ must have C ′x = C ′x0 = C ′x′0 = r

′,
thus Cx = r , implying f (x) = 0. Thus (C ′′, r ′′) is a parity certificate containing x′0 for f |Vi , and Eq. (6) holds. Consequently,
C⊕(f , x′0) ≥ T + C⊕(f |VT , x

′

0) ≥ T + 1 > C
0
⊕
(f ), a contradiction. Therefore f |VT is constant for some T ≤ C

1
⊕
(f ), and the

algorithm uses no more than C1
⊕
(f )C0

⊕
(f ) number of queries. �
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3. Parity block sensitivity

Recall that the block sensitivity of f on an input x, bs(f , x), is the smallest integer k, such that there exist S1, S2, . . . , Sk ⊆
{1, 2, . . . , n} that are pair-wise disjoint, and for each i, 1 ≤ i ≤ k, f (x) 6= f (xSi), where xSi ∈ {0, 1}n is obtained from x
by flipping each bit indexed by Si. The block sensitivity of f , bs(f ), is maxx bs(f , x). We define the parity analogues of those
concepts. First define weak parity block sensitivity wbs(f , x) similar to the definition of parity certificate complexity.

Definition 3.1. The weak parity block sensitivity of f on x is

wbs⊕(f , x)
def
= min

B
bs(fB, B−1x).

The weak parity block sensitivity of f is

wbs⊕(f )
def
= max

x
wbs⊕(f , x).

Note thatwbs⊕(f ) is invariant under shift and rotation, sowe can extend it to functions defined on a coset through Eq. (4).
The following example shows that wbs⊕(f ) is not monotone.

Example 3.2. Consider f (x1, x2, x3) = x1 ⊕ (x2 ∨ x3). For any input x, we can always choose a basis {e1, e2, e3} such that
f (x + ei) = f (x), i = 1, 2, 3. For example, when x = 011 we can choose the basis {010, 001, 111}. For such bases, any
sensitive block contains at least two base vectors. So there is at most one sensitive block, implying wbs⊕(f , x) ≤ 1. But with
H = {x : x1 = 0}, f |H(x2, x3) = x2 ∨ x3. This is the OR function on two variables, of which the parity block sensitivity is 2
at 0. Thus for this f , wbs⊕(f ) < wbs⊕(f |H).

We modify wbs⊕ to a parity complexity measure by taking maximum over all restrictions to cosets. Then it will be
invariant under shift and rotation, and is monotone.

Definition 3.3. For a Boolean function f : {0, 1}n → {0, 1}, its parity block sensitivity, bs⊕(f ), is

bs⊕(f ) = max
H
wbs⊕(f |H),

where H takes value from the cosets of {0, 1}n.

Similar to Inequality (2), Theorem 1.2 implies that the parity block sensitivity is polynomially related to parity certificate
complexity. We give below the proof for the Theorem, which states that bs⊕(f ) ≤ C⊕(f ) ≤ bs2⊕(f ) for any f . The proof idea
is also similar to that for proving (2) in [8].

Proof of Theorem 1.2. Since C⊕ is monotone, to prove bs⊕(f ) ≤ C⊕(f ), it suffices to prove wbs⊕(f , x) ≤ C⊕(f ), for any x.
This follows straightforwardly from the definition, the relation between block sensitivity and certificate complexity, and
Eq. (5):

wbs⊕(f , x) = min
B
bs(fB, B−1x) ≤ min

B
C(fB, B−1x) = C⊕(f , x).

We prove the second inequality by showing C⊕(f ) ≤ wbs⊕(f )bs⊕(f ). Since the three quantities are both invariant under
shift, we assume without loss of generality that C⊕(f ) is achieved at x = 0. Also assume without loss of generality that
f (0) = 0. Since C⊕(f , x) = C⊕(fB, B−1x) for any invertible B and any x, we can further assume without loss of generality
that b def= wbs⊕(f , 0) = bs(f , 0). Let S1, S2, . . . , Sb ⊆ {1, 2, . . . , n} be a collection of disjoint and minimal sets achieving
bs(f , 0). Consider S = {x : xi = 0, i ∈ S1 ∪ S2 ∪ · · · Sb}. Then S is a parity certificate for f , as otherwise there would be a
block S ′ ⊆

(
{1, . . . , S} −

⋃b
i=1 Si

)
such that f (0S

′

) = 1, contradicting that b = bs(f , 0).

Fix an i, 1 ≤ i ≤ b. Let m = |Si| and Si = {a1, a2, . . . , am}. Consider f |Hi , where Hi
def
= {x : xj = 0, j ∈ {1, 2, . . . , n} − Si}.

Then f |Hi : {0, 1}
m
→ {0, 1} and

f |Hi(y) = f

(
m∑
i=1

yieai

)
, for all y ∈ {0, 1}m.

Since Si is minimal, for any S ′i ⊆ Si, f (0
S′i ) = 1 if and only if S ′i = Si. Thus f |Hi(y) is the AND function on m variables.

Therefore wbs⊕(f |Hi) = m. Consequently, m ≤ bs⊕(f ). Thus C⊕(f ) = C⊕(f , 0) ≤
∑b
i=1 |Si| ≤ wbs⊕(f , 0)bs⊕(f ), implying

C⊕(f ) ≤ wbs⊕(f )bs⊕(f ). �
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4. The gap between parity measures and symmetrized classical measures

In this section, we prove Theorem 1.3, which states that for infinitely many n, there exists fn : {0, 1}n → {0, 1}, such that
D⊕(fn) = O(log n) and DI(fn) = Θ(n). We will define the desired function fn by a random parity decision tree of logarithmic
depth, then show that there exists such a parity decision tree of which the function requires linear certificate complexity,
thus linear decision tree complexity.
For A ∈ {0, 1}m×n, s ∈ {0, 1}n, define

τA(s)
def
= min{|s+ v| : v ∈ row space of A}.

We will need the following lemma to lower bound the certificate complexity.

Lemma 4.1. Let f : {0, 1}n → {0, 1}, s ∈ {0, 1}n and f (x) = 〈x, s〉 for all x in a coset H = (A, r). Then C(f ) ≥ τA(s). In
particular, D(f ) ≥ τA(s).

Proof. Choose an arbitrary x0 ∈ H . Let `
def
= C(f , x0) ≤ C(f ). Suppose that E ∈ {0, 1}`×n describes a certificate. That is, each

row in E contains all 0 but a single 1, and all x′ with Ex′ = Ex0 must have f (x′) = f (x0).
Now consider two sets of equations on the unknown y ∈ {0, 1}n:{Ey = Ex0

Ay = r
〈s, y〉 = 〈s, x0〉

and

{Ey = Ex0
Ay = r
〈s, y〉 = 1− 〈s, x0〉.

The first set of equations has a solution (e.g. y = x0) but not the second set, since all y satisfying Ay = r must have
〈s, y〉 = 〈s, x0〉. This is possible only when s is in the span of the rows in E and in A. Thus for some v in the row space of
A, s + v is in the row space of E. Thus τA(s) ≤ `. Therefore, τA(s) ≤ C(f ). That D(f ) ≥ τA(s) follows from the fact that
C(f ) ≤ D(f ). �

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let n = 2k. We construct a function f with n variables decided by a parity decision tree T of depth
k + 4. For 1 ≤ i ≤ k + 3, all the i-th layer nodes are labeled by ei

def
= 0i−110n−i. The t-th node of the last layer before the

output, 1 ≤ t ≤ 8n, is labeled by a random st ∈ {0, 1}n. The answer to this query 〈x, st〉 is the output.
Fix an invertible matrix B. Then fB is computed by the parity tree that replaces each query c in T by BT c. In this parity

decision tree, the inputs that arrive at a node with query s′t
def
= BT st form a coset Ht = (Ct , rt) of co-dimension k + 3, and

fB(x) = 〈x, s′t〉 for all x ∈ Ht . By Lemma 4.1, D(fB) ≥ τCt (s
′
t).

For each v in the row space of Ct , s′t+v is uniformly distributed. Thus byHoeffding’s Inequality, Pr(|s
′
t+v| ≤ n/4) ≤ e

−n/8.
Thus

Pr(τCt (s
′

t) ≤ n/4) ≤ 2
k+3e−n/8 = 8ne−n/8.

There are 8n independently chosen sj, thus

Pr(D(fB) ≥ n/4) ≥ 1−
(
8ne−n/8

)8n
= 1− (8n)8ne−n

2
.

There are at most (2n)n = 2n
2
different transformations B (the exact number isΠn−1i=0 (2

n−i
− 1)). Therefore,

P(min
B
D(fB) ≥ n/4) ≥ 1− (8n)8ne−n

2
· 2n

2
= 1− (8n)8n

(
2
e

)n2
→ 1.

This implies that when n is large enough, almost all the functions f computed by the above parity trees have DI(f ) =
minB D(fB) ≥ n/4. In contrast, the parity decision tree complexity of these f is no more than k+ 4 = log2 n+ 4. �

The following corollary follows from the polynomial relations among certificate complexity and block sensitivity with
decision tree complexity and their analogy for parity complexities.

Corollary 4.2. For infinitely many n, there exists a n-variate fn such that the gaps between C⊕(f ) and CI(f ) and between bs⊕(f )
and bsI(f ) are exponential.
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5. Connection with communication complexities

In a non-deterministic communication protocol for computing F : {0, 1}n × {0, 1}n → {0, 1}, Alice or Bob may non-
deterministically choose from a set of strategies for the rest of the communication. We say that the protocol computes F
if for any (x, y), F(x, y) = 1 if and only if for some choice in the non-deterministic steps the protocol outputs 1. Denote
the non-deterministic communication complexity of F by N1(F). A fundamental result by Aho, Ullman and Yannakakis [1] is
DC(F) = O(N1(F)N1(1− F)), a relation similar to those about decision tree complexity and parity decision tree complexity.
The main result of this section relates N1(F)with C1

⊕
(f ) for XOR functions F with F(x, y) = f (x+ y).

Theorem 5.1. For any XOR function F(x, y) = f (x⊕ y), N1(F) ≤ C1
⊕
(f ) log n.

To prove this result, we will make use of the following notion.

Definition 5.2. A set C of 1-parity certificates for f is called essential if (1) for any x with f (x) = 1 there is an element in C
containing x, (2) no element is a subset of the union of all the other elements, and (3) any element is of a size C1

⊕
(f ).

Clearly there exists an essential set of 1-parity certificates, as one could start with one smallest 1-parity certificate for
each x, increase its size to C1

⊕
(f ) if necessary, and remove any element contained in the union of the rest of the set.

Proof of Theorem 5.1. Let d = C1
⊕
(f ). Fix an essential set C = {(Ci, ri) : 1 ≤ i ≤ K} of 1-parity certificates. The following

is a simple non-deterministic communication protocol for F . bits of communication: Alice non-deterministically chooses
(Ci, ri) ∈ C, sends i, as well as Cix. Bob checks if Cix + Ciy = ri. He accepts if yes, rejects otherwise. The correctness of the
protocol follows from the definition of 1-parity certificate and the assumption that C contains a 1-parity certificate for any
1-input. The total cost is d+ dlog2(K + 1)e. Lemma 5.3 shows that K = nO(d). Thus N1(F) = O(d log n). �

Lemma 5.3. Let C be an essential set of 1-parity certificates for f : {0, 1}n → {0, 1} and d = C1
⊕
(f ). Then |C| ≤ nO(d).

Proof. Let P be the number of pairs (x, C) that x ∈ C and C ∈ C. Since |C | = 2n−d for each C ,

P = 2n−d |C|. (7)

For each x ∈ {0, 1}n, let S1, S2, . . . , Sk ∈ C be those that contains x. Then Vi
def
= x + Si, 1 ≤ i ≤ k, are n − d-dimensional

subspaces none of which is a subset of the union of the rest. We show below any such set of subspaces must have k = nO(d).
Thus P = 2nnO(d). Together with Eq. (7), this implies the conclusion that |C| = nO(d).
Let Ci ∈ {0, 1}d×n such that Vi = {x : Cix = 0}, 1 ≤ i ≤ k. For any i, let xi ∈ Vi be such that xi 6∈

⋃
j6=i Vj. Then Cixi = 0,

but Cjxi 6= 0 for all j 6= i. Consider a kd× kmatrix

G =

C1C2
· · ·

Ck

 [x1, x2, . . . , xk].
Let rank2 denote the rank over filed F2. Then rank2(G) ≤ n from the above factorization of G. Represent G by a k×k block

matrix aij, where each block aij is a d× 1 vector.
For each t , 1 ≤ t ≤ d, define the k × k submatrix Gt = [atij]1≤i,j≤k, where a

t
ij is the t-th element of aij. Since G

t is a
submatrix of G, rank2(Gt) ≤ rank2(G) ≤ n.
Let M = G1 ∨ G2 ∨ · · · ∨ Gd be the entry-wise conjunction of G1,G2, . . . ,Gd. Notice that for any matrix A and B,

A ∨ B = A + B + A � B, where A � B is the entry-wise product of A and B. Since rank2(A � B) ≤ rank2(A)rank2(B),
we have

rank2(A ∨ B) ≤ rank2(A)+ rank2(B)+ rank2(A� B) ≤ 3rank2(A)rank2(B).

Thus rank2(M) < (3n)d. On the other hand, from the fact that aij = 0 iff i = j,M = I − J , where I is the identity matrix and
J the all 1 matrix. Thus rank2(M) ≥ rank2(I)− rank2(J) = k− 1. This implies k = |V| ≤ (3n)d. �

The following conjecture, if true, would imply that DC(F) is polynomially related to D⊕(f ) (as well as C⊕(f )), by the
Aho–Ullman–Yannakakis Theorem and Theorem 1.1.

Conjecture 5.4. For any XOR function F based on f , N1(F) = Ω(C1
⊕
(f )).

Amajor open problem on deterministic communication complexity is the Log-Rank Conjecture [7]. Denote by rank(F) =
rank([F(x, y)]x,y∈{0,1}n), where rank(·) is the rank over the reals. The Log-Rank Conjecture states that

DC(F) = logO(1) rank(F), for any F . (8)

The study of XOR functions is partly motivated by the Log-Rank Conjecture. Denote by

‖f̂ ‖0 = |{f̂w 6= 0 : w ∈ {0, 1}n}|,
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where

f̂w =
1
2n

∑
x∈{0,1}n

(−1)〈x,w〉f (x)

is the Fourier coefficient of f on w. Then for any XOR function F based on f , rank(F) = ‖f̂ ‖0. Our conjecture below, if true,
would imply the Log-Rank Conjecture on XOR functions.

Conjecture 5.5. For any Boolean function f : {0, 1}n → {0, 1}, D⊕(f ) and C⊕(f ) are polynomially related with log ‖f̂ ‖0.
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