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Preface

The Fifth Workshop on Approximation and Online Algorithms (WAOA 2007)
focused on the design and analysis of algorithms for online and computationally
hard problems. Both kinds of problems have a large number of applications from
a variety of fields. WAOA 2007 took place in Eilat, Israel, during October 11–12,
2007. The workshop was part of the ALGO 2007 event that also hosted ESA 2007,
and PEGG 2007. The previous WAOA workshops were held in Budapest (2003),
Rome (2004), Palma de Mallorca (2005) and Zurich (2006). The proceedings of
these previous WAOA workshops have appeared as LNCS volumes 2909, 3351,
3879 and 4368, respectively.

Topics of interest for WAOA 2007 were: algorithmic game theory, approxi-
mation classes, coloring and partitioning, competitive analysis, computational
finance, cuts and connectivity, geometric problems, inapproximability results,
mechanism design, network design, packing and covering, paradigms for design
and analysis of approximation and online algorithms, randomization techniques,
real-world applications, and scheduling problems. In response to the call for pa-
pers, we received 56 submissions. Each submission was reviewed by at least three
referees, and the vast majority by at least four referees. The submissions were
mainly judged on originality, technical quality, and relevance to the topics of the
conference. Based on the reviews, the Program Committee selected 22 papers.

We are grateful to Andrei Voronkov for providing the EasyChair conference
system which was used to manage the electronic submissions, the review process,
and the electronic PC meeting. It made our task much easier.

We would also like to thank all the authors who submitted papers to WAOA
2007 as well as the local organizers of ALGO 2007.

November 2007 Christos Kaklamanis
Martin Skutella
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José R. Correa, Cristina G. Fernandes, Mart́ın Matamala, and
Yoshiko Wakabayashi

On the Online Unit Clustering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Leah Epstein and Rob van Stee

Better Bounds for Incremental Medians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Marek Chrobak and Mathilde Hurand

Minimum Weighted Sum Bin Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Leah Epstein and Asaf Levin

Approximation Schemes for Packing Splittable Items with Cardinality
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Leah Epstein and Rob van Stee

A Randomized Algorithm for Two Servers in Cross Polytope Spaces . . . . 246
Wolfgang Bein, Kazuo Iwama, Jun Kawahara,
Lawrence L. Larmore, and James A. Oravec

Deterministic Algorithms for Rank Aggregation and Other Ranking
and Clustering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Anke van Zuylen and David P. Williamson

Online Rectangle Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Haitao Wang, Amitabh Chaudhary, and Danny Z. Chen

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



Pricing Commodities, or How to Sell When

Buyers Have Restricted Valuations

Robert Krauthgamer1, Aranyak Mehta2,�, and Atri Rudra3,�

1 Weizmann Institute, Rehovot, Israel and IBM Almaden, San Jose, CA
robert.krauthgamer@weizmann.ac.il

2 Google, Inc., Mountain View, CA
aranyak@google.com

3 University at Buffalo, The State University of New York, NY
atri@cse.buffalo.edu

Abstract. How should a seller price his goods in a market where each
buyer prefers a single good among his desired goods, and will buy the
cheapest such good, as long as it is within his budget? We provide efficient
algorithms that compute near-optimal prices for this problem, focusing
on a commodity market, where the range of buyer budgets is small. We
also show that our technique (which is based on LP-rounding) easily
extends to a different scenario, in which the buyers want to buy all the
desired goods, as long as they are within budget.

1 Introduction

Pricing goods to maximize revenue is a critical yet difficult task in almost any
market. We study the case of a monopolistic seller (only one seller in the market),
a restricted scenario that is already quite challenging. One difficulty is to estimate
the demand curves (amount of demand at different prices), but even complete
knowledge of the demand curves is sufficient only in rather simple cases, e.g. if
the monopolist sells only a single type of good, or if the various goods he sells
cater to different sub-markets. In such cases, the revenue-maximizing prices can
be determined for each good separately, directly from that good’s demand curve.

But what if goods of different types are sold all in the same market? Now,
the seller’s own goods could be competing against each other for the attention of
the same buyer. This is generally true of a seller who wants to tap into multiple
market segments. For example, Dell sells many models of laptops with varying
features catering to varying needs of its consumers, but then it must price the
different models carefully so that they do not eat into each other’s revenue. As
an example on a smaller scale, consider the pricing of movie shows. Different
shows are priced differently (for example, matinee vs. evening shows) to attract
different audience sections. Again, pricing is critical– a very cheap matinee show
might eat into the evening show revenue and decrease the overall revenue.

On the other hand, multiple goods might lead to higher prices by comple-
menting each other. A very visible example is the marketing of Apple’s iPod
� Work done in part while at the IBM Almaden Research Center.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. Krauthgamer, A. Mehta, and A. Rudra

and various accessories. The strategy there is not to sell the iPod in isolation
but to offer various accessories. These accessories vary from items that are ex-
pensive (for example, a charger) to items that are inexpensive (for example,
songs from iTunes). Pricing for revenue maximization becomes computationally
complex precisely because of this interaction between different goods. Indeed,
Aggarwal, Feder, Motwani and Zhu [1] and also Guruswami, Hartline, Karlin,
Kempe, Kenyon and McSherry [2] studied the computational aspects of these
pricing problems, showing that in various such settings, computing the optimal
prices is NP-hard.

One setting, referred to as unit-demand consumers in [2], is where each buyer
wants to buy one good out of his desired set, as follows: There are m buyers,
each of whom has an arbitrary set of desirable goods and a spending budget. The
(single) seller knows the buyers’ types (i.e. desired set and budget) and needs
to set a price for each of the n goods. Once prices are set, every buyer buys
the (single) cheapest good in his set, provided it is within his budget (breaking
ties arbitrarily). Another setting, referred to as single-minded consumers in [2],
differs from the first setting in that now each buyer only wants to buy the desired
set as a bundle. That is, once prices are set, every buyer buys the entire set of
his desired goods, provided its total cost is within his budget (if not, he buys
nothing).

Throughout, we shall assume that the desired set of every buyer has size at
most k. As we shall soon see, even the case of small k is nontrivial and interesting.
In addition, we shall assume that the goods are available in unlimited supply,
that is, the seller can sell any number of copies of the item without paying any
marginal cost of production.

Several results are known about computing prices that maximize revenue in
these two settings. In [1], it is shown that the problem of maximizing revenue in
the unit-demand case is not only NP-hard, but APX-hard.1 For this problem,
they also give an O(log m) approximation algorithm (which uses the best single
price). In [2], similar results are shown independently, and it is shown in addi-
tion that for the single-minded setting, maximizing revenue is APX-hard and
that there is log(nm) approximation algorithm (which again uses the best single
price). Demaine, Feige, Hajiaghayi, and Salavatipour [3] show that the above
results are more or less optimal in the general single minded bidder problem –
under some complexity assumptions, there is a fixed δ > 0 such that the prob-
lem cannot be approximated to within a factor of logδ n. Balcan and Blum [4]
present a 4-approximation algorithm for single-minded bidders and k = 2. Their
algorithm extends to larger k, with O(k) approximation. As was observed in [5],
their arguments apply to the unit-demand case as well.

These results depict a rather grim landscape (at least computationally) for
the problem of pricing to maximize revenue. However, many real-life instances
are more specialized, and thus, a more practice-oriented approach is to identify
restrictions, under which one can beat the aforementioned O(log n) factor, or

1 An optimization problem is APX-hard if there exists a constant ρ > 1 such that it
is NP-hard to approximate the optimum within factor ρ.



Pricing Commodities, or How to Sell 3

better yet, obtain a very small constant-factor approximation. In particular,
every percent of improvement counts in practice, requiring us to improve one
(small) constant approximation factor to another.

We thus pay special attention to commoditized markets,2 where the range of
buyers budgets is restricted to a “small” set B. In one such restriction, B = {1, C}
is a doubleton, representing a bimodal market in which buyers are divided into
poor and rich. For example, buyers coming from different referring websites
such as lastminutedeals.com and hotels.com might have significantly differ-
ent budgets for booking a hotel room. As another example, a tourist might be
willing to pay for a Broadway show a significantly higher amount than a lo-
cal. Another motivation for studying such markets could be the low descriptive
complexity for the different buyers’ budget types, or equivalently a low com-
munication complexity to identify a buyer’s budget. In yet another restriction,
B = [1, C] is a small interval, representing a market with little variation, say
within 50%, in the valuation of different buyers, and clearly there are numerous
examples for such markets. Note that in both cases, the buyers can be completely
idiosyncratic regarding their desired goods, as only the budgets are restricted.

1.1 Results and Techniques

Unit-demand setting. In Section 2, we consider inputs with B = {1, C} (i.e.,
bimodal markets) and k = 2 (i.e. a desired set is a pair of goods). On the one
hand, the APX-hardness results [1,2] mentioned above are actually shown for
such restricted instances (in fact, for C = 2). On the other hand, obtaining 2− 1

C
approximation is rather easy — simply choose the best single price (same for all
goods) among {1, C} — obviously a very naive solution, but already better than
the (more general) 4 approximation that can be derived from [4]. The challenge
in this regime is to improve the approximation below 2, and indeed we present
an algorithm achieving factor 3

2 − 1
2C . Observe that even when C is not too

large, this is a significant improvement (e.g. for C = 2, from 1.5 to 1.25). This
approach easily extends to larger k, in which case the approximation we achieve
is 2 − 1

k − k−1
kC .

Our algorithms are based on randomized rounding of a linear programming
(LP) relaxation, a powerful paradigm that is often useful for discrete optimiza-
tion (for example, see the survey of Srinivasan [6]). We “round” the prices sug-
gested by the LP to prices in the discrete (“integral”) set {1, C}. The rationale
behind this rounding is that an optimal pricing may always choose prices from
the set {1, C}. However, it is interesting to note that the pricing problem does
not require the prices to be “discrete”, and thus, the real reason behind our
rounding procedure is the following: In contrast with a “standard” randomized
rounding algorithm, where the probability (with which we round a variable up-
wards) depends linearly on the corresponding LP variable, we use a probability
that is polynomial in the LP variable. The only other non-linear randomized

2 A commoditized (also commodified) market is one characterized by price-
competition with little or no differentiation by brand.
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LP rounding algorithms that we are aware of are the approximation algorithm
of Goemans and Williamson [7] for MAX SAT, and that for finding the dens-
est k-subgraph problem that is attributed to Goemans [8]. The crux is that at
every basic feasible solution of our LP relaxation, all the prices are half-integral
[9, Chap. 14] (modulo a normalization factor), and this fact greatly simplifies
the choice of the polynomial–in fact, our rounding procedure raises the variables
to a power. Interestingly, the value of the power is a function of C.

We further show that our algorithm can be derandomized, and that its ap-
proximation matches the LP’s integrality gap, and thus it is optimal with respect
to this LP. In addition, we observe that in the case where budgets come from
an interval B = [1, C], a simple algorithm achieves 1 + lnC approximation by
computing the best single price, and that this factor matches the integrality gap
of an LP relaxation that extends the LP mentioned above for the case {1, C}.

Single-Minded setting. Recently, Khandekar, Könemann and Markakis (Private
Communication) have studied the case of single-minded bidders with desired
sets of size at most 2, and the same budget for all the buyers, and gave a
4/3 approximation algorithm. Subsequently (but using independently derived
techniques), we found out that our LP rounding approach mentioned above is
easy to adapt to this setting as well, achieving 6+

√
2

5+
√

2
≈ 1.15 approximation.

In Section 3 we briefly present this algorithm, and show a matching integrality
gap. Again, this problem is known to be APX-hard because the results of [2]
are actually shown for such restricted instances. Further, our algorithm obtains
much better approximation than a 3/2 approximation achievable by choosing the
best single price in the set {1/2, 1}, which was already better than the (more
general) 4 approximation of [4].

Online pricing. Finally, we consider in Section 4 inputs with k = 2 (and no
restriction on the budget). Using a variation of the algorithm designed by Balcan
and Blum [4], we design an algorithm that works even in an online setting, where
goods arrive sequentially (together with the bids of all the buyers interested in
that good), and the seller has to determine the price of a good immediately as
it arrives. This model may correspond for instance to Comcast cable TV selling
video on demand, where new offerings are announced (with prices) on a regular
basis. Our algorithm achieves 4 approximation, compared to the best (offline)
prices. We note that [4] also give an online pricing algorithm, but in their setting
buyers arrive online, and the prices (of a fixed set of goods) need to be updated.

Truthful Mechanisms. We assume throughout the paper that the seller knows
the budget of each bidder. We may also be interested in settings where the seller
does not know such information about the market. Balcan, Blum, Hartline and
Mansour [10] show that every approximation algorithm for revenue maximiza-
tion can be converted into a truth-revealing mechanism. They design a general
technique that loses only an additional factor of 1 + ε in the approximation, if
certain technical conditions (like sufficiently many bidders) are satisfied. Simi-
larly to [4], we note that this technique is applicable in our setting, and thus
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converts our algorithms to truthful mechanisms, provided that the number of
bidders is at least (roughly) Cn/ε2.

1.2 Related Work

The notion of revenue-maximizing pricing of goods in unlimited supply was
introduced by Goldberg, Hartline, Karlin, Saks and Wright [11]. In their setting,
the goods were “independent” and hence the optimization problem was trivial,
and they focused on designing truthful mechanisms to maximize revenue. There
have been numerous followup work, and we only mention here results that are
directly related to our work.

Guruswami, Hartline, Karlin, Kempe, Kenyon and McSherry [2] considered
the problem of revenue maximization in a variety of settings, including both
unit-demand and single-minded bidders, and also envy-free pricing of goods in
limited supply. As mentioned earlier, they showed logarithmic upper bounds and
APX-hardness for both types of bidders. The results for the unit-demand case
were also obtained independently by Aggarwal, Feder, Motwani and Zhu [1]. For
single-minded bidders, a polylogarithmic hardness result, which complements
the result above, was obtained by Demaine, Feige, Hajiaghayi, and Salavatipour
[3]. The problem of the single-minded bidder case, where the size of the demand
sets was upper bounded by k, was considered by Briest and Krysta [12] who
gave an O(k2) approximation for the problem, and was improved by Blum and
Balcan [4] to O(k). For the special case of k = 2, they obtain a 4 approximation
algorithm.

Another paper that is less directly related but was also a starting point for
our work is the work of Bansal, Cheng, Cherniavsky, Rudra, Scheiber, Sviridenko
[13], which studies a problem of pricing over time, that was proposed in [2]. A
special case of their problem gives another interpretation for the unit-demand
setting: The seller is selling just one type of good (in unlimited supply), and
does so over a period of n days, and can set a different price on each day. Each
of the m buyers has a subset of size k of the n days, which represent the days
on which she can purchase the item, and will choose to buy a copy of the good
at the cheapest price she sees over the k days. The seller’s aim is to maximize
revenue.

1.3 Problem Definitions

Our pricing problems involve one seller and m buyers. The seller has a collection
V of n goods (also called items). Each j ∈ V is a digital good, i.e., the seller
has 0 marginal cost of production, or equivalently, the number of copies of j is
at least the number of buyers m. Once the seller sets the prices of the goods,
each buyer will buy a collection of goods, based on his own utility function. The
seller’s problem is to determine a price pj of each good j ∈ V so as to maximize
revenue. Depending on the utility functions of the buyers, we have the following
variations of the pricing problem. The first variation is our main focus, but we
will also show how the techniques we develop also work for the second variation.
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1. Unit-demand bidders: We let UDk(B) denote the problem of item pricing for
unit-demand bidders with sets of size at most k, and bids from the set B, as
follows. Buyer i has a budget of ui ∈ B and a subset Si of desirable goods, with
|Si| ≤ k. He is interested in buying exactly one good from Si, and given prices
on the goods, he will buy the cheapest good in Si, provided that its price is at
most ui. For a price vector p = (p1, ..., pm), let πi(p) be the revenue that the
seller obtains from buyer i if the prices are set to p. Thus

πi(p) =

{
min{pj : j ∈ Si} if min{pj : j ∈ Si} ≤ ui

0 otherwise

Thus the seller’s problem is: Find p so as to maximize
∑n

i=1 πi(p). We are
interested in the following special cases of this problem (defined by different
values of k and B): (1) UDk([1, C]) for C > 1 and (2) UDk({1, C}) for C > 1.

2. Single-minded bidders: We let SMk(B) denote the problem of item pricing
for single minded bidders, who have sets of size k and bids from the set B, as
follows. Buyer i has a budget of ui ∈ B and a subset Si of desirable goods with
|Si| ≤ k. He is interested in buying all the goods in the set Si. For a price vector
p, let πi be the revenue that the seller obtains from buyer i, if the prices are set
to p. Thus

πi(p) =

{∑
j∈Si

pj if
∑

j∈Si
pj ≤ ui

0 otherwise

Again, the seller’s problem is: Find p so as to maximize
∑n

i=1 πi(p). We will
show how our techniques for UD2({1, C}) extend to give an algorithm for the
case SM2({1}).

The case of k = 2: Pricing on a graph

Following [4], for k = 2, UD2(B) becomes a problem of pricing the vertices of
a graph, with the buyers’ desired sets corresponding to the edges of the graph.
This will be our main focus in our techniques and analysis. We study two settings
of budget ranges: B = {1, C} and B = [1, C], for C > 1.

Given a graph G = (V, E) (possibly with self loops and multiple edges), along
with edge weights cij ∈ B for every edge (i, j) ∈ E, the goal is to set prices pi

on every vertex i so as to maximize the total revenue. The revenue from an edge
(i, j) ∈ E becomes:

πij =
{

min(pi, pj) if min(pi, pj) ≤ cij

0 otherwise.

The case of SM2(B), studied in [4], is defined as a pricing problem on a graph
analogously.
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2 Unit-Demand Buyers in Commoditized Markets

In this section, we look at pricing for unit demand bidders with restricted val-
uations. We start with valuations restricted to the set {1, C} for some C > 1.
In other words, we are interested in pricing schemes for the UDk({1, C}) model.
Our main result is a pricing scheme that generates a revenue within a factor
(2k−1)C−k+1

kC of the optimal revenue (Theorem 2). For ease of exposition, we
present the proofs for the k = 2 case, and mention the result for the general case
in Section 2.5.

Our pricing scheme rounds an LP relaxation for the problem. Theorem 1 shows
that our rounding algorithm (for the case k = 2) has an approximation factor of
3C−1
2C . Our rounding procedure is tight (optimal) as we show in Section 2.4 that

the integrality gap of our LP relaxation is at least 3C−1
2C .

It is not difficult to verify that the LP in Figure 1 is a relaxation for our
pricing problem UD2({1, C}).

max
�

(i,j)∈E

πij subject to:

∀(i, j) ∈ E, cij = C πij ≤ 1 + pi (1)

∀(i, j) ∈ E, cij = C πij ≤ 1 + pj (2)

∀(i, j) ∈ E, cij = 1 πij ≤ 1 (3)

∀(i, j) ∈ E, i �= j, cij = 1 πij ≤ 2 − pi + pj

C − 1
(4)

∀(i, i) ∈ E, cii = 1 πii ≤ 1 − pi

C − 1
(5)

∀i ∈ V 0 ≤ pi ≤ C − 1 (6)

∀(i, j) ∈ E πij ≥ 0 (7)

Fig. 1. LP relaxation for the unit-demand setting

2.1 On the Optimal LP Solutions

We first observe that an optimal basic feasible solution to the LP relaxation is
half integral, in the sense that all the pi variables are from the set {0, C−1

2 , C−1}.
Note that the actual “price” set for vertex i is pi + 1.

Proposition 1. Every optimal basic feasible solution to the LP in Figure 1 is
half integral. That is, every extremal optimal assignment to the variables {p∗i }i∈V

satisfies the following: p∗i ∈ {0, C−1
2 , C − 1}.

Proof. Let {p∗i }i∈V be the assignments to the p(·) variables in some optimal
assignment such that the values are not half integral. We will show that such



8 R. Krauthgamer, A. Mehta, and A. Rudra

an assignment is not an extremal optimal solution. In particular, we will exhibit
two optimal assignments p−(·) and p+

(·) such that for all i ∈ V , p∗i = 1
2 (p−i + p+

i ).
Define the following two subsets of vertices: V + = {i|C−1

2 < p∗i < C − 1} and
V − = {i|0 < pi < C−1

2 }. Note that by the assumption on p∗, V − ∪ V + �= ∅. Let
ε > 0 be a small enough number (to be defined later). We define the two related
“price” assignments.

p+
i =

⎧⎪⎨
⎪⎩

p∗i + ε if i ∈ V +

p∗i − ε if i ∈ V −

p∗i otherwise
p−i =

⎧⎪⎨
⎪⎩

p∗i − ε if i ∈ V +

p∗i + ε if i ∈ V −

p∗i otherwise

Obviously, for all i ∈ V , p∗i = 1
2

(
p+

i + p−i
)
. To complete the proof, we will

show that both p+
(·) and p−(·) are optimal assignments. Let the “revenue” variables

corresponding to p∗(·), p+
(·) and p−(·) be denoted by π∗

(·), π+
(·) and π−

(·). For the sake of
contradiction assume w.l.o.g. that

∑
(i,j)∈E π−

ij <
∑

(i,j)∈E π∗
ij . We aim to show

that
∑

(i,j)∈E π+
ij >

∑
(i,j)∈E π∗

ij , which will contradict the optimality of π∗
(·).

We first set ε = 1
4 min{ε1, ε2, ε3} where:

ε1 = min{|p∗i − p∗j | : p∗i �= p∗j , (i, j) ∈ E and cij = C},

ε2 = min{C − 1 − p∗i : (i, j) ∈ E and cij = C},

ε3 = min
{
|1 −

p∗i + p∗j
C − 1

| : p∗i + p∗j �= C − 1, (i, j) ∈ E,

and cij = 1
}
.

Note that for (i, j) ∈ E such that i, j �∈ V + ∪ V −, π∗
ij = π+

ij = π−
ij . Let us now

consider an edge (i, j) ∈ E with at least one end point in V + ∪ V −. To finish
the proof, we will show that

π+
ij − π∗

ij = −
(
π−

ij − π∗
ij

)
. (8)

First assume that i �= j and cij = C. In this case, π∗
ij = 1 + min(p∗i , p

∗
j),

π+
ij = 1 + min(p+

i , p+
j ) and π−

ij = 1 + min(p−i , p−j ). If p∗i = p∗j , then by the
definitions of ε, p+

(·) and p−(·), (8) is satisfied. If p∗i �= p∗j , then by the definition
of ε if p∗i (p∗j ) is the minimum price for (i, j), then so are p+

i (p+
j ) and p−i (p−j ).

Again by the definitions of p+
(·) and p−(·), (8) is satisfied.

Now let us consider the case when i �= j and cij = 1. We now consider two
subcases. First if p∗i +p∗j �= C −1, then by the definitions of ε, p+

(·) and p−(·), (8) is
satisfied. Now if p∗i + p∗j = C − 1 then either p∗i ∈ V + and p∗j ∈ V − or p∗i ∈ V −

and p∗j ∈ V +. In all these cases, π∗
ij = π+

ij = π−
ij , which in particular implies that

(8) is satisfied.
Similarly, one can show that for self loops, (8) is also satisfied.
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2.2 A Rounding Algorithm

Consider the following randomized algorithm, where τ > 0 is a parameter (to
be chosen later).

Algorithm Algo(τ):

1. Solve the LP in Figure 1 and obtain an optimal basic feasible solution
with prices variables {pi}i∈V .

2. For every i ∈ V , independently assign a price of C with probability(
pi

C−1

)τ and a price of 1 with probability 1 −
(

pi

C−1

)τ .

We now analyze the performance of the rounding algorithm above.

Theorem 1. For every C > 1, there is τ > 0 such that Algo(τ) is a (3C −
1)/(2C) approximation for the pricing problem with unit-demand bidders, k = 2,
and budgets from B = {1, C}. That is, the expected revenue of Algo(τ) is at least

2C
3C−1 fraction of the optimum for UD2({1, C}).

Proof. Set τ = 1
2 log

(
3C−1
C−1

)
. For notational convenience, we will denote Algo(τ)

by Algo. Let the optimal (extremal) solution of the LP assign prices p∗i to every
vertex i and obtains a revenue of π∗

ij from every edge (i, j). We will show that
for every edge (i, j) ∈ E, the expected revenue of Algo from that edge is at least

2C
3C−1 ·π∗

ij . The result follows from the linearity of expectation. For the rest of the

proof, it will be convenient to define, for every i ∈ V , qi = p∗
i

C−1 . By Proposition 1,
we have qi ∈ {0, 1

2 , 1}.
Let us first consider the case when i �= j. We have two subcases.

Case 1a: cij = 1. In this case π∗
ij ≤ min(1, 2− qi − qj), while Algo obtains an

expected revenue of 0 ·(qτ
i qτ

j )+1 ·(1−qτ
i qτ

j ) = 1−(qiqj)τ . When qi = qj = 1 then
both the LP and Algo obtain a revenue of 0. When qi + qj = 3

2 then the ratio
of the revenue obtained by Algo to π∗

ij (which is 1/2) is 2(1 − 1
2τ ) > 1 − 1

22τ .3

Finally, when qi + qj ≤ 1, then π∗
ij = 1, while Algo obtains the least revenue

when qi = qj = 1
2 , which implies a ratio of at least 1 − 1

22τ = 2C
3C−1 in all the

possibilities.
Case 1b: cij = C. In this case π∗

ij ≤ 1+(C−1)min(qi, qj), while Algo obtains
an expected revenue of C · (qτ

i qτ
j ) + 1 · (1 − qτ

i qτ
j ) = 1 + (C − 1)(qiqj)τ . W.l.o.g.

assume that qj ≥ qi. Thus, the ratio of the revenue obtained by Algo and π∗
ij is

at least:

min
qi,qj∈{0, 1

2 ,1},qj≥qi

1 + (C − 1)(qiqj)
τ

1 + (C − 1) min(qi, qj)
≥ min

qi∈{0, 1
2 ,1}

1 + (C − 1)q2τ
i

1 + (C − 1)qi

=
1 + C−1

22τ

1 + C−1
2

=
2C

3C − 1
. (9)

3 To see why this is true set a = 2−τ and note that we have to show that 2−2a > 1−a2,
which is true for a > 1. The latter inequality is true as τ > 0.
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We now consider the case i = j. Again we have two sub cases.
Case 2a: cii = 1. In this case π∗

ii ≤ min(1, 1 − qi) = 1 − qi, while Algo gets a
revenue of 0 · qτ

i + 1 · (1 − qτ
i ) = 1 − qτ

i . Thus, the ratio of the revenue of Algo
to π∗

ii is at least

min
qi∈{0, 12 ,1}

1 − qτ
i

1 − qi
= min(1, 2 − 21−τ ) ≥ 1 − 1

22τ
=

2C

3C − 1
.

Case 2b: cii = C. In this case πii ≤ 1 + (C − 1)qi. The expected revenue for
Algo is 1 · (1 − qτ

i ) + C · qτ
i = 1 + (C − 1)qτ

i ≥ 1 + (C − 1)q2τ
i . Thus, from (9),

the ratio is at least 2C
3C−1 .

Thus, in all cases for every edge (i, j) ∈ E, Algo obtains an expected revenue
of at least 2C

3C−1 · π∗
ij , as desired.

2.3 Derandomization

Algorithm Algo(τ) can be derandomized in a straightforward way using stan-
dard techniques. In particular, observe that the analysis of the randomized
rounding step only required pairwise independence among the random choices.
One can use a small family of pairwise independent random variables (see the
survey [14] for such constructions) and exhaustively try all the possibilities in
this space.

Alternatively, one can employ the method of conditional expectation [15,6],
since the expected revenue after randomized rounding is an easy formula to
calculate (given the probabilities).

2.4 A Tight Integrality Gap

Next, we show that Theorem 1 is the best one can hope from any algorithm that
rounds the LP. Formally, we prove the following.

Proposition 2. There exist an instance of UD2({1, C}) for which the the inte-
grality gap of the LP in Figure 1 is at least 3C−1

2C .

Proof. Consider the graph with two vertices and C parallel edges– one of which
has a cost of C and the rest have a cost of 1. (This assumes that C is integral;
if however C is not integral, we need to choose an appropriate number of cost
1 edges and cost C edges such that their ratio is C.) The optimal revenue is C.
However, the LP can set a price of C+1

2 on both the vertices to get a revenue
of C+1

2 from the cost C edge and a revenue of 1 from each of the cost 1 edges.
Thus, the integrality gap is at least

1 · (C+1
2 ) + (C − 1) · 1

C
=

3C − 1
2C

.
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2.5 The General Case

The results presented for k = 2 in the previous sections can be suitably modified
to work for the general case. The LP relaxation for general k is the natural one.
For example, the constraint (4), the sum pi +pj will be replaced by

∑k
j=1 pij for

the hyperedge (pi1 , pi2 , . . . , pik
). The “half-integrality” gap result will now say

that the prices are in the set {0, (1 − 1/k)(C − 1), C − 1}. Finally, we can prove
the following counterparts of Theorem 1 and Proposition 2 by straightforward
generalizations of their proofs.

Theorem 2. For every C > 1, there an algorithm that is a (2k−1)C−k+1
kC ap-

proximation for the pricing problem with unit-demand bidders with demand size
at most k and budgets from B = {1, C}.

Proposition 3. There exist an instance of UDk({1, C}) for which the the in-
tegrality gap of the LP used above is at least (2k−1)C−k+1

kC .

2.6 Budget Range [1, C]

Another interesting restriction on the range of buyer’s budgets is to an interval
B = [1, C], which clearly generalizes the previous doubleton case {1, C}. For this
case, denoted UD2([1, C]), we obtain the following approximation. The proof
proceeds by considering the best single price (same price for all the goods) in
the range [1, C], and is deferred to the full version.

Proposition 4. For every C > 1, there is a polynomial time 1 + lnC approx-
imation algorithm for the unit-demand pricing problem with k = 2 and budgets
from B = [1, C].

One can try a natural extension of our LP-relaxation technique for {1, C} to
this more general case [1, C]. However, it turns out that the resulting LP has
integrality gap 1 + lnC, and thus cannot offer improved approximation.

3 Single-Minded Buyers in Commoditized Markets

We now consider the pricing problem for single minded bidders when all the
bidders have the same budget, which can be assumed w.l.o.g. to be 1. That is,
we are interested in pricing schemes for the SM2({1}) model. We extend our
techniques from Section 2 to get a pricing algorithm with an approximation
factor of 6+

√
2

5+
√

2
≈ 1.156 (Theorem 3). As in the case of single-minded bidders,

our rounding procedure is tight (optimal), as we show that this LP relaxation
has a matching integrality gap.

It is not difficult to verify the LP in Figure 2 is a relaxation for our problem
SM2({1}).

As in the UD2({1, C}), we first observe that an optimal basic feasible solution
to the LP relaxation is half integral.
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max
�

(i,j)∈E

πij subject to:

∀(i, i) ∈ E πii ≤ pi (10)

∀(i, j) ∈ E, i �= j πij ≤ pi + pj (11)

∀(i, j) ∈ E, i �= j πij ≤ 2 − pi − pj (12)

∀i ∈ V 0 ≤ pi ≤ 1 (13)

∀(i, j) ∈ E πij ≥ 0 (14)

Fig. 2. LP relaxation for the single-minded bidders setting

Proposition 5. Every optimal basic feasible solution to the LP in Figure 2 is
half integral. That is, every extremal optimal assignment to the variables {p∗i }i∈V

satisfies the following: p∗i ∈ {0, 1
2 , 1}.

The proof is very similar to that of Proposition 1 and is omitted (the only possible
“tight” edge can be for an edge (i, j) ∈ E, such that i �= j and p∗i + p∗j = 1).

We next analyze the following randomized algorithm.

Algorithm AlgoSM :

1. Solve the LP in Figure 2 to obtain an optimal basic feasible solution
with price variables {pi}i∈V .

2. Fix prices according to the three schemes below and pick the one
that generates the maximum revenue.
(a) Assign a price pi to vertex i.
(b) If pi �= 1, assign a price of pi to vertex i, else assign a price of

1/2.
(c) If pi �= 1/2, assign a price of pi to vertex i, else assign a price of 0

with probability 1/
√

2 and a price of 1 with probability 1−1/
√

2.

Theorem 3. AlgoSM achieves 6+
√

2
5+

√
2

approximation for the pricing problem
with single-minded bidders, desired sets of size at most 2, and unit budgets.
That is, expected revenue of AlgoSM is at least 5+

√
2

6+
√

2
fraction of the optimum

for SM2({1}).

The proof is deferred to the full version. The rounding procedure above is tight
(optimal), as the following proposition shows (proof in the full version).

Proposition 6. There exist an instance of SM2({1}) for which the the inte-
grality gap of the LP in Figure 2 is at least 6+

√
2

5+
√

2
.
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4 An Online 4-Approximation

In this section, we consider the following online version of the UD2(·) and SM2(·)
problems. Buyers are assumed to be “in the system” at the beginning and the
goods arrive in an online fashion. When a good arrives, any buyer who is inter-
ested submits a bid and the seller has to price this good before the next good
arrives. We assume that every buyer is interested in at most two items and the
seller knows the identity of each buyer. Further, the seller knows about the exact
set of elements the buyer is interested in only after the buyer had bid for both the
items he is interested in. The price that a buyer pays follows the same rules as in
UD2(·) and SM2(·) models respectively. In the graph abstraction of the UD2(·)
and SM2(·), the online model has the following interpretation. At every step,
a vertex in the underlying graph arrives. Once a vertex appears, all the edges
incident on it (along with the edge weights) are revealed to the seller. The only
way the seller knows about the other end point of an edge is if that vertex had
arrived earlier. Under these constraints, the seller has to price every vertex as it
arrives, so as to make as much revenue as possible. For the rest of the section,
we will only talk about the UD2(·) model. The discussion holds equally well for
the SM2(·) model (just replace the prices of ∞ by 0).

The algorithm in [4] works in this model if when an vertex arrives, the seller
has the full information about the edge. That is, if the other end point is in the
“future” then the seller also knows about this other end point. We now restate
the algorithm in [4] that works in this scenario. Initially with probability 1/2
decide on “left” or “right”. For the ease of exposition, assume that the algorithm
chose left. When a vertex (say i) arrives, with probability 1/2 tag it as a left
vertex or a right vertex (unless it is already assigned a tag). If i is a right vertex
then assign it a price ∞. Otherwise look at the set of neighbors of i (recall that
the seller knows everything about the edge incident on i). If some neighbor j has
not arrived yet then assign j one of the tags with equal probability. Let N ′(i)
denote the set of neighbors of i that are tagged right. Now consider all edges
between i and N ′(i) and set the price of i to be the best fixed price given that
the vertices in N ′(i) are priced at infinity By the analysis in [4], this algorithm
is 4-competitive.

We now consider the more general model, where the seller has no information
about the vertices that are yet to arrive. For this model, we consider the following
refinement of the algorithm in [4]. For any vertex i, let p∗i denote the best fixed
price for vertex i, given that all of its neighbors are priced at ∞. Recall that in
our online model, once a vertex arrives, the seller knows the weights of all the
incident edges. Thus, the seller can calculate the price p∗i . Given this, the online
algorithm is very simple.

Algorithm: When each vertex i arrives,

– Compute its best fixed price p∗i .
– With probability 1/2 set its price pi = ∞ and with probability 1/2

set pi = p∗i .
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We have the following performance guarantee (proof in the full version).

Theorem 4. For the online UD2(·) model, the algorithm above is 4-competitive
in the expected sense.
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Abstract. One of the most fundamental results in the field of mech-
anism design states that every utilitarian social choice function admits
a mechanism that truthfully implements it. In stark contrast with this
finding, when one considers a non-utilitarian social choice function, it
turns out that no guarantees can be made, i.e. there are non-utilitarian
functions, which cannot be truthfully implemented. In light of this state
of affairs, one of the most natural and intriguing objectives of research is
to understand the inherent limitations in the infrastructure of truthful
mechanisms for non-utilitarian social choice functions.

In this paper, we focus our attention on studying the boundaries im-
posed by truthfulness for two non-utilitarian multi-parameter optimiza-
tion problems. The first is the workload minimization in inter-domain
routing problem, and the other is the unrelated machines scheduling
problem. Our main findings can be briefly summarized as follows:

1. We prove that any truthful deterministic mechanism, and any
universal truthful randomized mechanism for the workload mini-
mization in inter-domain routing problem cannot achieve an approx-
imation guarantee that is better than 2. These results improve the
current lower bounds of (1+

√
5)/2 ≈ 1.618 and (3+

√
5)/4 ≈ 1.309,

which are due to Mu’alem and Schapira [SODA ’07].
2. We establish a lower bound of 1 +

√
2 ≈ 2.414 on the achievable

approximation ratio of any truthful deterministic mechanism for the
unrelated machines scheduling problem when the number of ma-
chines is at least 3. This lower bound is comparable to a recent
result by Christodoulou, Koutsoupias and Vidali [SODA ’07]. Nev-
ertheless, our approach is considerably simpler, and thus may shed
some new light on the core of this problem.

1 Introduction

The problems. We study the workload minimization in inter-domain routing
problem. As input to this problem, we are given a directed graph G = (V, E),
such that n = |V |, every edge e ∈ E has a cost ce ∈ R+, and there is a designated
target vertex t ∈ V . An additional ingredient of the input is a set R of connection
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requests in which every request r ∈ R is characterized by a pair (sr, dr) such
that sr is the source vertex of the request, and dr ∈ R+ is the demand or traffic
intensity associated with the request. The objective is to assign a path from sr

to t, for every request r, on which the request’s demand will be sent, such that
all the paths constitute a confluent routing tree. A confluent routing tree is a
tree in which all the traffic arriving at any vertex leaves along a single edge.
In particular, the goal is to determine a routing tree in which the workload
imposed on the “busiest” vertex is minimized, that is a tree T that minimizes
maxu∈V cT

u

∑
r∈RT

u
dr, where RT

u and cT
u denote the set of requests that route

their demand using a path that goes through u in T and the cost of the single edge
that leaves vertex u in T , respectively. Remark that the original formulation of
the problem [11] is slightly different, e.g. the problem is defined with respect to an
undirected graph in which every vertex has a cost function on its outgoing edges.
Nevertheless, it is not hard to validate that both formulations are essentially
equivalent.

We also consider the unrelated machines scheduling problem. An instance of
this problem consists of n machines, and m tasks such that the execution time
of task j on machine i is determined by the tij entry of an n × m matrix t. The
objective is to generate an allocation of the tasks to the machines that minimizes
the makespan, i.e. the maximum completion time of the machines. This goal is
equivalent to generating an n×m allocation matrix x in which every xij entry is
an {0, 1}-indicator such that xij = 1 if and only if task j is allocated to machine
i, every task is assigned to exactly one machine, i.e.

∑
i∈[n] xij = 1 for every

j ∈ [m], and maxi∈[n]

∑
j∈[m] xijtij is minimized.

The setting. In the present paper, we study the aforementioned problems from
an algorithmic mechanism design [12] point of view. Algorithmic mechanism
design studies the design of protocols or mechanisms for algorithmic problems in
scenarios where the input is presented by strategic agents. Strategic agent might
declare a fallacious input in order to manipulate the protocol in a way that will
maximize its own utility. A primary interest of algorithmic mechanism design
is in the development of incentive compatible or truthful protocols, which are
robust against manipulation by agents, i.e. every agent is rationally motivated
to truthfully report its input. Particulary, in this paper, we concentrate on lower
bounding the achievable approximation guarantee of any truthful protocol for the
problems under consideration. Note that in the workload minimization in inter-
domain routing problem, every vertex is assumed to be controlled by a strategic
agent, which may be dishonest about the costs of the vertex’s outgoing edges,
and in the unrelated machines scheduling problem, every machine is assumed to
be controlled by a strategic agent, which may be untruthful about the execution
times of the tasks on the corresponding machine.

1.1 Our Results

Workload minimization in inter-domain routing. We establish that any
truthful deterministic mechanism for the workload minimization in inter-domain
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routing problem cannot achieve an approximation guarantee that is better than
2. Additionally, we reinforce this inapproximability result by demonstrating that
no randomized mechanism, which is truthful in the universal sense, can obtain
an approximation ratio better than 2. These results improve upon the lower
bounds presented by Mu’alem and Schapira [11], which are (1 +

√
5)/2 ≈ 1.618

and (3+
√

5)/4 ≈ 1.309, respectively. The specifics of these findings are presented
in Section 3.

Unrelated machines scheduling. We prove that any truthful deterministic
mechanism for the unrelated machines scheduling problem cannot yield an ap-
proximation guarantee that is better than 1 +

√
2 ≈ 2.414 for input instances

that have at least 3 machines. This result is equal to the lower bound exhibited
recently by Christodoulou, Koutsoupias and Vidali [4]. Notwithstanding, our ap-
proach is significantly simpler. In particular, we demonstrate how to bypass the
so-called geometrical structure of mechanisms, which seems to be imperative in
their proof. This result appears in Section 4.

1.2 Related Work

The workload minimization in inter-domain routing problem models one of the
most fundamental problems in the design of routing protocols. Specifically, it
captures the problem of establishing a routing tree for a network (e.g. the In-
ternet), in which no single autonomous system (AS) is excessively congested.
This problem was introduced by Mu’alem and Schapira [11], who posed it as a
natural extension to the inter-domain routing problem, which was formulated
by Feigenbaum, Papadimitriou, Sami, and Shenker [7]. Mu’alem and Schapira
proved that this problem cannot be approximated to within factors of (1+

√
5)/2

and (3 +
√

5)/4 by any truthful deterministic mechanism and any randomized
mechanism that is truthful in the universal sense, respectively. In addition, they
designed a simple truthful deterministic mechanism that obtains an approxima-
tion ratio of n. They also considered the single-parameter variant of the problem,
in which all the outgoing edges of a vertex have the same cost, and demonstrated
that this variant can be solved in an optimal way by a truthful deterministic
exponential-time mechanism.

The problem of unrelated machines scheduling is one of the most classical
and general variants in the field of scheduling and as such, it has been given
extensive attention in past years, both from an algorithmic point of view and
from a game-theoretic one. From a pure algorithmic point of view, the prob-
lem is known to admit 2-approximation algorithms (see e.g. [10,14,1]), and is
known to be 3

2 -hard to approximate in polynomial time, unless P = NP [10].
The mechanism design version of the problem originates in the pioneering work
of Nisan and Ronen [12]. They proposed a polynomial-time truthful determin-
istic mechanism, which is a member of the VCG family [15,5,8], that achieves
an approximation guarantee of n, and also proved that no deterministic mecha-
nism can obtain an approximation ratio that is better than 2. They also conjec-
tured that this gap will be resolved by showing that no deterministic mechanism
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can attain approximation ratio better than n. Finally, they demonstrated that
randomization may help to obtain better outcome by presenting a randomized
truthful mechanism for a two machines scenario, which has an approximation
ratio of 7

4 . Recently, Mu’alem and Schapira [11] extended the last result, and
devised a randomized truthful mechanism for any n machines, which achieves
an approximation ratio of 7n

8 . In the same work, they also established a lower
bound of 2 − 1

n on the achievable approximation guarantee of any randomized
mechanism. Correspondingly, Christodoulou, Koutsoupias and Vidali [4] proved
that any truthful deterministic mechanism cannot yield an approximation guar-
antee that is better than 1 +

√
2 for 3 machines or more. A concurrent line of

work, initiated independently by Christodoulou, Koutsoupias and Kovács [3] and
Lavi and Swamy [9], studied special variants of the unrelated machines schedul-
ing problem. Christodoulou, Koutsoupias and Kovács considered the fractional
variant of the problem, and devised a deterministic polynomial-time truthful
mechanism that attains an approximation ratio of n+1

2 , while proving that this
fractional variant cannot be truthfully approximated within a factor better than
2 − 1

n . Lavi and Swamy researched the “low-high” variant of the problem, in
which the execution time of every tasks is either “low” or “high”, and designed
a 3-approximation truthful-in-expectation mechanism. They also presented a
truthful deterministic 2-approximation mechanism for the case that all the tasks
share the same “low” and “high” values, and demonstrated that in this case
no truthful deterministic mechanism can achieve an approximation ratio better
than 1.14.

2 Preliminaries

In this section, we present a brief introduction to the field of algorithmic mech-
anism design, and then turn to describe a key property, which every truthful
deterministic mechanism must satisfy. This property is fundamental to our ap-
proach as our lower bound proofs are built upon it. Remark that this section
strives to provide a succinct description of the relevant definitions and results
of Bikhchandani et al. [2], and hence the keen reader is encouraged to refer to
the aforesaid paper for a more comprehensive presentation of the underlying
concepts.

We begin by outlining the nature of questions that algorithmic mechanism
design studies. In an algorithmic mechanism design problem setup, there is a
set of n strategic agents and a finite set of outcomes A. Every agent i has a
private type represented by a valuation function vi : A → R+, where vi ∈ Vi,
and Vi denotes the domain of all valid types of agent i. Note that each agent
is only interested to maximize its own gain, and thus may be dishonest when
reporting its type. The main interest of algorithmic mechanism design is to
generate a social choice mechanism that is truthful. Essentially, the goal is to
design an allocation algorithm f : V1 × . . . × Vn → A, and a payment scheme
p : V1 × . . . × Vn → R

n such that each agent’s dominant strategy is to truthfully
report its type to the mechanism M = (f, p).
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We now turn to describe a property that every truthful deterministic mecha-
nism must satisfy. Notice that this reduces the goal of establishing a lower bound
on the achievable approximation ratio of truthful deterministic mechanisms to
that of proving a lower bound for a restricted class of allocation algorithms,
which constitute truthful mechanisms. Note that we will henceforth refer to
such allocation algorithms as truthful allocation algorithms.

Definition 1. Let v = (v1, . . . , vn) be a tuple of valuations, and v′ = (v′i, v−i)
be the tuple of valuations obtained by replacing the valuation function of agent i
in v from vi to v′i. In addition, let f be an allocation algorithm such that a = f(v)
and b = f(v′). The allocation algorithm f is said to be weakly monotone if

vi(a) + v′i(b) ≤ v′i(a) + vi(b) ,

for every i ∈ [n], and every valid valuations tuples v and v′.1

Theorem 2 ([2]). If M = (f, p) is a truthful mechanism then f must be weakly
monotone.

Remark that Saks and Yu [13] proved that the weak monotonicity property is
not only necessary for truthfulness, but for convex domains is also sufficient.
Nonetheless, this fact will not be utilized in the context of this paper.

3 Workload Minimization in Inter-domain Routing

In this section, we study the workload minimization in inter-domain routing
problem, and establish a lower bound of 2 on the achievable approximation
guarantee of any truthful deterministic mechanism, and any universal truthful
randomized mechanism. Prior to describing the finer details of our approach, we
provide an interpretation of the weak monotonicity theorem, i.e. Theorem 2, to
the problem under consideration. Bear in mind that the valuation function of
the agent that controls vertex u satisfies vu(a) = d ·ce, where d is the total traffic
that goes through u in the routing tree defined by the outcome a, e is the single
edge that leaves vertex u in that routing tree, and ce is its cost.

Corollary 3. Suppose we are given two input instances for the workload mini-
mization in inter-domain routing problem, which only differ in the cost functions
on the edges. Specifically, suppose that the cost functions c and c′ only disagree on
vertex u’s outgoing edges costs. Every truthful allocation algorithm must satisfy
that if

– e and e′ are two outgoing edges of u,
1 Note that this definition applies for cases in which the valuation function of every

agent represents cost induced on that agent, and the interest of every agent is to
minimize its cost, e.g. it applies for the problems under consideration. For cases in
which the valuation function of every agent corresponds to profit, the inequality is
in the opposite direction, i.e. ≥ instead of ≤.
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– d units of traffic are routed through e in the routing tree generated w.r.t. c,
– d′ units of traffic are routed through e′ in the routing tree generated w.r.t. c′,

then
d(ce − c′e) + d′(c′e′ − ce′) ≤ 0 .

We now turn to argue about the deterministic lower bound. In particular, we
prove that any truthful allocation algorithm has a “poor” input instance, for
which it generates a routing tree whose workload value is bounded away from
the optimal workload value by a factor of at least 2.

Theorem 4. The approximation ratio of any truthful deterministic mechanism
for the workload minimization in inter-domain routing problem cannot be better
than 2.

Proof. Consider a truthful allocation algorithm for the problem under consider-
ation, and suppose that its input is the directed graph schematically described
in Figure 1(a), and the set of requests is R = {r1, r2} = {(s1, 1), (s2, 1)}.

0
2

(b)

1

1 + ε

u t

s1

s2

t

s1

s2

1

0

0
1

1

1

(a)

u

Fig. 1. The deterministic lower bound instances

Notice that if the algorithm routes both requests using the vertex u, the
obtained routing tree has a workload value of 2. Also notice that an optimal
routing tree for this instance has a workload value of 1, e.g. the routing tree,
which consists of the edge set {(s1, t), (s2, t)}. Therefore, in such case, we infer
that the algorithm cannot have an approximation ratio better than 2. Conse-
quently, we will assume, throughout the remainder of this proof and without loss
of generality, that the algorithm routes the request r1 through the edge (s1, t).
Now, suppose the algorithm is given as input the directed graph schematically
described in Figure 1(b), and the same set of requests as before. Remark that
the only difference between this input instance, and the aforementioned input
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instance is the costs of the edges that leave s1. Specifically, c(s1,t) = 2, and
c(s1,u) = 1 + ε, where 0 < ε < 1 is constant. We claim the algorithm, given
this input instance, must also route the request r1 through the edge e = (s1, t).
This follows from the observation that if the request r1 is routed through the
edge e′ = (s1, u), we yield a contradiction to Corollary 3, since d = 1, d′ = 1,
ce = 1, c′e = 2, c′e′ = 1 + ε and ce′ = 0. Consequently, the workload value of
the routing tree generated by the algorithm is at least 2, whereas the optimal
routing tree has a workload value of 1+ε, e.g. the routing tree that comprises the
edge set {(s1, u), (u, t), (s2, t)}. This establishes that the algorithm cannot have
an approximation guarantee better than 2

1+ε . Since one can select any positive
constant ε → 0, the theorem follows.

In the following, we reinforce the last theorem by establishing a lower bound of
2 for universally truthful randomized mechanisms. Note that such mechanisms
are defined as a probability distribution over truthful deterministic mechanisms
[12,6]. Our approach is based on Yao’s minimax principle [16]. In the context
of our setting, this principle states that the approximation ratio of the best
universal truthful randomized mechanism is equal to the approximation ratio of
the best deterministic truthful mechanism under a worst-case input distribution.
Accordingly, we exhibit a probability distribution over input instances for which
any deterministic truthful mechanism cannot attain an approximation guarantee
better than 2.

Theorem 5. The approximation ratio of any universal truthful randomized
mechanism for the workload minimization in inter-domain routing problem can-
not be better than 2.

Proof. Let I denote the input instance, which consists of the directed graph
schematically described in Figure 2, and the set of requests R={r1, r2, . . . , rk} =
{(s1, 1), (s2, 1), . . . , (sk, 1)}. Additionally, let Ij be the input instance that is
nearly I, but has different costs to the edges that leave sj . Specifically, the
costs of the corresponding edges in Ij are c(sj ,t) = 2, and c(sj ,u) = 1 + ε, where
0 < ε < 1 is constant. Finally, let P be a probability distribution over the set of
instances {I, I1, . . . , Ik} such that every instance is picked with probability 1

k+1 .

..
.

sk

s2

s1

1

s3
0

0

1

1

t

0

0

1

1

u

Fig. 2. The randomized lower bound instance
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Consider a truthful allocation algorithm for the problem under consideration,
and let us analyze its performance on the set of input instances {I, I1, . . . , Ik}
with probability distribution P . We now consider two cases, depending on the
structure of the routing tree generated by the algorithm for the instance I.

Case I: The algorithm does not route any of the requests through u.
Notice that the algorithm generates a routing tree T =

⋃k
i=1(si, t) whose work-

load value is optimal for I. However, one can apply arguments similar to those
used in Theorem 4, and yield that the algorithm cannot obtain an approxima-
tion guarantee better than 2

1+ε for any of the instances {I1, . . . , Ik}. In par-
ticular, one can easily verify that given the input instance Ij , the algorithm
must route the request rj using the edge (sj , t). Consequently, the expected
approximation ratio of the algorithm on the input distribution P is at least
1 · 1

k+1 + 2
1+ε · k

k+1 > 2 k
(k+1)(1+ε) . Since one can utilize graph instances for which

k → ∞, and may select any constant ε → 0, the theorem follows for this case.

Case II: The algorithm routes 1 ≤ q ≤ k requests through u. Let Q ⊆ R
be the set of requests that the algorithm routes through u. Notice that the work-
load value of the routing tree generated by the algorithm is q, and accordingly
the approximation ratio of the algorithm is q. Additionally, one can apply argu-
ments similar to those used in Theorem 4, and yield that the algorithm cannot
attain a better than 2

1+ε -approximation for any of the instances {Ij : rj ∈ R\Q}.
Hence, the expected approximation ratio of the algorithm on the input distribu-
tion P is at least q · 1

k+1 + 2
1+ε · k−q

k+1 +1 · q
k+1 > 2 k

(k+1)(1+ε) , and thus the theorem
follows also for this case.

4 Unrelated Machines Scheduling

In this section, we establish a lower bound of 1+
√

2 on the approximation ratio
of any truthful deterministic mechanism for the unrelated machines scheduling
problem when the number of machines is at least 3. Before we turn to portray the
details of our approach, we provide an abstraction of the weak monotonicity the-
orem, i.e. Theorem 2, to the problem under consideration. Remark that the valu-
ation function of the agent that controls machine i satisfies vi(a) =

∑
j∈[m] xijtij ,

where xij indicates if task j is allocated to machine i in the outcome a, and tij
is the execution time of task j on machine i.

Corollary 6. Let t and t′ be input matrices for the unrelated machines schedul-
ing problem, which differ only in the execution times of machine i. Every truthful
allocation algorithm that generates the allocation matrices x and x′ w.r.t. t and
t′ must satisfy ∑

j∈[m]

(xij − x′
ij)(tij − t′ij) ≤ 0 .

In the following, we exploit Corollary 6 to derive two simple lemmas, which will
later enable us to demonstrate the desired lower bound. Remark that the first
lemma extends Lemma 1 of [4].
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Lemma 7. Let x and x′ be allocation matrices generated by a truthful allocation
algorithm w.r.t. input matrices t and t′, which differ only in the execution times
of machine i. If every task realizes one of the following cases

– Case I: task j can only be allocated to machine i w.r.t. both t and t′.2

– Case II: t′ij > tij and xij = 0.
– Case III: t′ij < tij and xij = 1.

then x and x′ must agree on the allocation of machine i.

Proof. If task j can only be allocated to machine i, then clearly xij = x′
ij = 1.

Also notice that this implies that the corresponding weak monotonicity term,
i.e. (xij − x′

ij)(tij − t′ij), equals 0, and hence it does not contribute to the left
hand side of the requirement in Corollary 6, that is

∑
j∈[m](xij − x′

ij)(tij − t′ij).
Focusing on the other two cases, one can easily validate that every corre-

sponding weak monotonicity term can only be nonnegative. For example, if task
j satisfies t′ij > tij and xij = 0 then the corresponding weak monotonicity term
reduces to (0 − x′

ij)(tij − t′ij). This term is nonnegative as (tij − t′ij) < 0, and
xij ∈ {0, 1}. Consequently, in order to satisfy the weak monotonicity theorem,
it must follow that x′

ij = xij for all the corresponding tasks.

Lemma 8. Let x and x′ be allocation matrices generated by a truthful allocation
algorithm w.r.t. input matrices t and t′, and let {k, �} be a set of two tasks. If
tik = ti� = a for some a > 1, t′ik = t′i� = 1, all other execution times of t and t′

are identical, and x assigns exactly one of the tasks in {k, �} to machine i, then
x′ must assigns at least one of the tasks in {k, �} to machine i.

Proof. Notice that in order to satisfy Corollary 6 in the aforesaid settings, x′
ik

and x′
i� must fulfill (1 − x′

ik − x′
i�)(a − 1) ≤ 0. Accordingly, x′ must assign at

least one of the tasks in {k, �} to machine i.

We are now ready to prove the aforementioned lower bound. Essentially, we prove
that any truthful allocation algorithm has a “bad” input matrix, for which it
generates an allocation whose makespan value is bounded away from the optimal
makespan value by a factor of at least 1+

√
2. Remark that for ease of presenta-

tion, we may apply Lemma 7 to input matrices t and t′, in which some execution
times of machine i are the same. Nevertheless, the understanding between us is
that there is a tiny change in these execution times, which we neglect in order to
keep the expressions simple, that satisfies the restrictions imposed by the lemma.

Theorem 9. The approximation ratio of any truthful deterministic mechanism
for the unrelated machines scheduling problem with at least 3 machines cannot
be better than 1 +

√
2.

2 We say that task j can only be allocated to machine i w.r.t. t if tij �= ∞, and t�j = ∞
for every � ∈ [n] \ {i}.
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Proof. Consider a truthful allocation algorithm for the unrelated machines
scheduling problem, and suppose that its input is the following 3-machines 5-
tasks matrix

t =

⎛
⎝ 0 ∞ ∞

√
2

√
2

∞ 0 ∞
√

2
√

2
∞ ∞ 0

√
2

√
2

⎞
⎠ .

Note that this input matrix admits two distinct task allocations up to symme-
tries, i.e. name changes of the machines. These two possible tasks allocations
are

x =

⎛
⎝ 0∗ ∞ ∞

√
2
∗ √

2
∗

∞ 0∗ ∞
√

2
√

2
∞ ∞ 0∗

√
2

√
2

⎞
⎠ , and y =

⎛
⎝ 0∗ ∞ ∞

√
2
∗ √

2
∞ 0∗ ∞

√
2

√
2
∗

∞ ∞ 0∗
√

2
√

2

⎞
⎠ ,

where every superscript ∗ denotes an assignment of the column corresponding
task to the row corresponding machine. We now consider two cases, depending
on which allocation is generated by the algorithm.

Case I: x is generated by the algorithm. Lets consider the matrix t′, which
is identical to t with a single exception that is t′11 =

√
2. By Lemma 7, we know

that the allocation generated by the algorithm for the first machine when t′ is
the input matrix cannot change. Namely, the tasks allocation is⎛

⎝
√

2
∗ ∞ ∞

√
2
∗ √

2
∗

∞ 0∗ ∞
√

2
√

2
∞ ∞ 0∗

√
2

√
2

⎞
⎠ .

This allocation has a value of 3
√

2, while it is easy to verify that the optimal
allocation has a value of

√
2. Consequently, this proves that the algorithm cannot

have an approximation ratio better than 3 > 1 +
√

2.

Case II: y is generated by the algorithm. Lets consider the matrix t′ that
has the same execution times as t with two exceptions, which are t′14 = t′15 = 1.
By Lemma 8, we know that the allocation generated by the algorithm when t′ is
the input matrix must assign at least one of the tasks {4, 5} to the first machine.
Accordingly, the tasks allocation, up to symmetry, is either

x′ =

⎛
⎝ 0∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞
√

2
√

2
∞ ∞ 0∗

√
2

√
2

⎞
⎠ , or y′ =

⎛
⎝ 0∗ ∞ ∞ 1∗ 1

∞ 0∗ ∞
√

2
√

2
∗

∞ ∞ 0∗
√

2
√

2

⎞
⎠ .

Again, we regard two cases, depending on which allocation is generated.

Case IIa: x′ is generated by the algorithm. Lets consider the matrix t′′,
which is identical to t′ with a single difference that is t′′11 =

√
2. By Lemma 7, we
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know that the allocation generated by the algorithm for the first machine when
t′′ is the input matrix cannot change. Consequently, the tasks allocation is⎛

⎝
√

2
∗ ∞ ∞ 1∗ 1∗

∞ 0∗ ∞
√

2
√

2
∞ ∞ 0∗

√
2

√
2

⎞
⎠ .

Notice that this allocation has a value of
√

2+2, whereas the optimal allocation
has a value of

√
2. Therefore, this establishes that the algorithm cannot have an

approximation guarantee better than
√

2+2√
2

= 1 +
√

2.

Case IIb: y′ is generated by the algorithm. Lets consider a two-step tran-
sition. First, consider the input matrix t′′ that is alike t′ with a single exception,
which is t′′14 = 0. By Lemma 7, we know that the allocation generated by the
algorithm for the first machine cannot change. Hence, the tasks allocation, up
to symmetry, is ⎛

⎝ 0∗ ∞ ∞ 0∗ 1
∞ 0∗ ∞

√
2

√
2
∗

∞ ∞ 0∗
√

2
√

2

⎞
⎠ .

Second, consider the input matrix t′′′, which is identical to the matrix t′′ with a
single change that is t′′′22 = 1. Again, by Lemma 7, we know that the allocation
generated by the algorithm for the second machine cannot change. Hence, the
tasks allocation for the second machine is⎛

⎝ 0 ∞ ∞ 0 1
∞ 1∗ ∞

√
2

√
2
∗

∞ ∞ 0
√

2
√

2

⎞
⎠ .

This allocation has a value of 1+
√

2, while it is easy to validate that the optimal
allocation has a value of 1. Thus, this proves that the algorithm cannot have an
approximation guarantee better than 1 +

√
2.
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Abstract. In a buyer-supplier game, a special type of assignment game,
a distinguished player, called the buyer, wishes to purchase some combi-
natorial structure. A set of players, called suppliers, offer various compo-
nents of the structure for sale. Any combinatorial minimization problem
can be transformed into a buyer-supplier game. While most previous
work has been concerned with characterizing the core of buyer-supplier
games, in this paper we study optimization over the set of core vectors.
We give a polynomial time algorithm for optimizing over the core of any
buyer-supplier game for which the underlying minimization problem is
solvable in polynomial time. In addition, we show that it is hard to deter-
mine whether a given vector belongs to the core if the base minimization
problem is not solvable in polynomial time. Finally, we introduce and
study the concept of focus point price, which answers the question: If we
are constrained to play in equilibrium, how much can we lose by playing
the wrong equilibrium?

1 Introduction

In this paper, we study the core of a large set of games, a subset of assignment
games, which we term buyer-supplier games [3,22] [23, Chapter 6]. We are pri-
marily concerned with efficient computations over the set of vectors belonging
to the core of buyer-supplier games. Before diving into an overview of buyer-
supplier games, we present some connections between our work and the existing
literature.

1.1 Related Work

Though suggested by Edgeworth as early as 1881 [8], the notion of the core was
formalized by Gillies and Shapley [11,21], extending von Neumann and Morgen-
stern’s work on coalitional game theory [24]. Recently, Goemans and Skutella
studied the core of a cost sharing facility location game [12]. In their paper, Goe-
mans and Skutella are primarily interested in using core vectors as a cost sharing
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indicator, to decide how much each customer should pay for opening the facility
used by the customer. Goemans and Skutella show that, in general, the core of
the cost sharing facility location game they study is empty. In contrast, for the
buyer-supplier games we study, the core is always nonempty. Additionally, in our
work we do not view vectors in the core as an indication of cost shares but rather
as rational outcomes of negotiation amongst the players in the buyer-supplier
game. Pál and Tardos extend the work of Goemans and Skutella by developing
a mechanism for the cost sharing facility location game which uses the concept
of an approximate core [15].

There has been great interest in comparing the game’s best outcome to the
best equilibrium outcome, where the term best is based on some objective func-
tion. For example, one may wish to compare the outcome maximizing the net
utility for all players in the game against the best possible Nash equilibrium,
with respect to net utility. Papadimitriou termed one such comparative measure
as the price of anarchy [16]. Roughgarden and Tardos have studied the price of
anarchy in the context of routing [18,19,20].

In this paper, we introduce a quantity with a similar motivation to that of
the price of anarchy. Solution concepts often yield multiple predictions, or equi-
libria. In actual game play, however, only one of the equilibria can be chosen by
the game’s players. Experiments show that conditions outside the game, such
as societal pressures or undue attention to a specific player, focus the players’
attention on the point of a single equilibrium, which then becomes the outcome
of the game. This is a common notion in game theory called the focus point.
A player may receive different payoffs in different equilibria. How much is the
player willing to pay for a good focus point? We define the focus point price with
respect to a given player as the difference between the maximum and minimum
equilibrium payoffs to the player. Stated succinctly, focus point price answers
the question: If we are constrained to play in equilibrium, how much can we lose
by playing the wrong equilibrium?

Recently, Garg et al. studied transferable utility games they call coalitional
games on graphs [10]. Coalitional games on graphs are a proper subset of buyer-
supplier games, which can be derived by setting the buyer’s internal cost, Bcost,
to zero (see Section 1.3 and Lemma 1). For some buyer-supplier games, for
example the buyer-supplier facility location game, it does not appear that the
game can be described with Bcost fixed to zero.

Garg et al. study the concepts of “frugality” and “agents are substitutes.”
They show that suppliers are substitutes if and only if the core of the game
forms a lattice. In buyer-supplier games, suppliers are not always substitutes. In
Lemma 4, we show that if suppliers are substitutes, we can optimize over the core
by solving a polynomially sized linear program. Garg et al. and, more recently,
Karlin et al. study and characterize the frugality certain auction mechanisms;
the focus point price concept introduced in this paper is quite different from
frugality [13].

A third difference between Garg et al. and this work comes from the fact that,
similarly to the economics literature, Garg et al. are mainly concerned with the
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characterization of the core: When does the core form a lattice? How do core
vectors relate to auctions? We, on the other hand, are mainly concerned with
characterizing optimization over the core. Our main results are in the flavor
of Deng and Papadimitriou, in that we are interested with the complexity of
computing using game theoretic characterizations [6].

Faigle and Kern study optimization over the core for submodular cost par-
tition games [9]. Faigle and Kern exhibit a generic greedy-type algorithm for
optimization of any linear function over the core of partition games whose value
function is both submodular and weakly increasing, a property they define.

The greedy framework of Faigle and Kern captures certain buyer-supplier
games, such as the buyer-supplier minimum spanning tree game. However, even
some buyer-supplier games derived from problems that admit greedy solutions,
such as the buyer-supplier shortest path game, are not amenable to the approach
of Faigle and Kern. In this paper, we do not restrict ourselves to greedy algo-
rithms. By making use of the ellipsoid method, we are able to give polynomial
time algorithms for optimization over the core of any buyer-supplier game for
which the underlying minimization problem is solvable in polynomial time.

To provide the reader with a simple, concrete example of optimization over
the core of a buyer-supplier game, towards the end of this paper, we focus our
attention on the buyer-supplier minimum spanning tree game. We give a sim-
ple greedy algorithm for this problem, which is a minor extension of Kruskal’s
minimum spanning tree algorithm. A greedy algorithm is provided by the work
of Faigle and Kern, but their exposition involves a good deal of machinery. Our
exposition is completely elementary.

Several methods, apart from buyer-supplier games, are known for transform-
ing a combinatorial optimization problem into a game. The cores of these trans-
formations have also been extensively studied. For example, Deng et al. show
results on core non-emptyness, distinguishability of core vectors, and finding core
vectors for one such transformation [5]. Caprara et al. continue the work of Deng
et al. by considering a certain optimization over the set of core vectors for this
alternate transformation [4].

1.2 Main Contributions

There has been increased interest from the theoretical computer science commu-
nity in game theory. While problem-specific solutions may give us insight, to lever-
age the full power of decades of study in both research areas, we must find generic
computational solutions to game theoretic problems. Indeed, others have already
realized this need [1,17]. In this paper, we continue this line of work by deriving
generic results for computing with core solutions in a large class of games.

The core of buyer-supplier games in the transferable utility setting is charac-
terized by Shapley and Shubik [22]. As a minor contribution, we extend their
result by showing that the core in the non-transferable utility setting is the same
as the core with transferable utilities. Our primary contributions are as follows:

1. While previous work in the economics literature has concentrated on char-
acterizing the core of buyer-supplier games and relating core vectors to
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auctions, our main interest is in optimizing over the set of core vectors [3].
We provide a generally applicable algorithm, based on the ellipsoid method,
for optimizing over the core. If the original minimization problem is solvable
in polynomial time, we show that it is possible to optimize linear functions
of core vectors in polynomial time.

2. We fully characterize optimization over the core of buyer-supplier games by
using a polynomial time reduction to show that if the original minimization
problem is not solvable in polynomial time, it is impossible, in polynomial
time, to test if an arbitrary vector is in the core of the buyer-supplier game.

3. We introduce the concept of focus point price. Our positive computational re-
sults give a polynomial time algorithm for computing the buyer’s focus point
price in buyer-supplier games when the underlying minimization problem is
solvable in polynomial time. When the underlying minimization problem is
not solvable in polynomial time, we show that it is impossible to approximate
the buyer’s focus point price to within any multiplicative factor.

1.3 Overview of Buyer-Supplier Games

The definition of a buyer-supplier game, given in Section 2.1, is self-contained
and does not require an argument. However, it is also possible to transform
a combinatorial minimization problem into a buyer-supplier game. Consider a
combinatorial minimization problem of the following form. We have some finite
set of elements C. We designate some subsets of C as feasible. To capture fea-
sibility, we use a predicate P : 2C → {0, 1}, where the predicate is one on all
feasible subsets of C. With each feasible set A ⊆ C, we associate a nonnegative
cost f(A). The combinatorial minimization problem can then be captured by
the function MinProb : 2C → �+ defined by

MinProb(B) = min
A ⊆ B

P (A) = 1

f(A)

where �+ denotes the nonnegative real numbers.
To transform the above minimization problem into a buyer-supplier game, we

associate a player with each element of C; we call such players suppliers. We also
add another player whom we call the buyer. In the game, the buyer wishes to
purchase a feasible subset of C. The suppliers, on the other hand, are offering
their membership to the buyer’s set at a price.

To fully specify the game’s model of a realistic interaction, we let M designate
the maximum investment the buyer is willing to spend on a feasible set. We
decompose f such that f(A) = Bcost(A)+

∑
a∈A τ(a), where τ(a) is the internal

cost for supplier a to be present in the buyer’s set and Bcost(A) is the internal
cost to the buyer for purchasing this specific feasible set. In general, many such
decompositions are possible, and they produce different games. However, when
specifically applying the core solution concept, Lemma 1 shows that all such
decompositions are equivalent. Though it is not necessary, to remove special
cases in our statements, it is convenient to let Bcost(A) = M when A = ∅ or A
is not feasible.
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Now that we have determined the internal costs for the buyer and the suppli-
ers, we can specify the game. The buyer-supplier game is specified by the tuple
(C, τ, Bcost). The strategy set for the buyer is the power set of C. By playing
A ⊆ C, the buyer chooses to purchase the membership of the suppliers in A. The
strategy set for every supplier a ∈ C is the nonnegative real numbers, indicating
a bid or payment required from the buyer for the supplier’s membership.

For any supplier a ∈ C, we let β(a) denote the associated bid. Let A be the
set of suppliers chosen by the buyer. The payoff for the buyer is M −Bcost(A)−∑

a∈A β(a). The payoff for a supplier not in A is 0. The payoff for a supplier a
in A is β(a) − τ(a).

Since we are applying the solution concept of the core, one may think of the
game play as follows. All the players in the game sit down around a negotiating
table. All the players talk amongst themselves until they reach an agreement
which cannot be unilaterally and selfishly improved upon by any subset of the
players. Once such an agreement is reached, game play is concluded. Since no
subset of the players can unilaterally and selfishly improve upon the agreement,
rationality binds the players to follow the agreement.

The fully formal definition of a buyer-supplier game is given in Section 2.1.
The transformation process described above can be used to create buyer-supplier
games from most combinatorial minimization problems. For example, minimum
spanning tree, Steiner tree, shortest path, minimum set cover, minimum cut,
single- and multi-commodity flow can all be used to instantiate a buyer-supplier
game. As a concrete example and interpretation of a buyer-supplier game, con-
sider the buyer-supplier minimum spanning tree game. In this game, a company
owns factories on every node of a graph. The company wishes to connect the
factories by purchasing edges in the graph. Each edge is owned by a unique sup-
plier player. Each supplier has an internal cost associated with the company’s
usage of the edge. The company has a maximum amount of money it is willing to
spend on purchasing edges. Depending on the transportation conditions of a par-
ticular edge, the company may have some internal cost associated with choosing
that particular edge. The buyer-supplier game paradigm yields similarly natural
games when applied to other minimization problems.

In this paper we will be concerned with efficient computation over the set of
core vectors. For the rest of the paper, when we say polynomial time, we mean
time polynomial in the size of the parameter C, which is also polynomial in the
number of players of the buyer-supplier game.

1.4 Organization of the Paper

In Section 2 we define buyer-supplier games and the core of a game. In Section 3
we characterize the core of buyer-supplier games. In Section 4 we give positive
computational results, namely the generic algorithm for optimizing over the set
of core vectors. In Section 5 we give negative computational results by showing
polynomial time equivalence between several related problems. In Section 6 we
give the problem-specific combinatorial algorithm for the buyer-supplier game
arising from the minimum spanning tree problem.
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2 Definitions

2.1 Buyer-Supplier Games

Let C be a finite set and M be a nonnegative real number. Let τ be a function
from C to �+. Let Bcost be a function from 2C to �+ such that Bcost(∅) =
M . The simplifying condition that Bcost(∅) = M is not required. We explain
the condition’s purpose later in this section. For A ⊆ C, let Eval(τ, Bcost, A)
denote Bcost(A) +

∑
a∈A τ(a). For A ⊆ C, let MinEval(τ, Bcost, A) denote

minB⊆A Eval(τ, Bcost, B). We will omit the parameters τ and Bcost from the
functions Eval(τ, Bcost, A) and MinEval(τ, Bcost, A) when the value is clear.

Given a tuple (C, τ, Bcost), we proceed to define a buyer-supplier game. Asso-
ciate a player with each element of C. Call the players in C suppliers. Let there
also be another player, μ, whom we call the buyer. Let P = C ∪ {μ} be the set
of players for the buyer-supplier game.

The strategy for supplier a is a tuple (β(a), pa) with β(a) ∈ �+ and pa : P →
�+. The first element, β(a), represents supplier a’s bid to the buyer, requiring
the buyer to pay β(a) for using the supplier’s services. The second element,
pa, represents the nonnegative side payments supplier a chooses to make to the
game’s players. By pa(b) we denote the side payment a makes to player b.

The strategy for the buyer, μ, is a tuple (A, pμ) where A ∈ 2C and pμ :
P → �+. The first element, A, represents the suppliers chosen by the buyer
for a purchase. Similarly to a supplier, the second element, pμ, represents the
nonnegative side payments the buyer chooses to make to the game’s players.

For each player a ∈ P we denote the player’s strategy set by Sa. For a set of
players A ⊆ P , we denote the set of strategies

⊗
a∈A Sa by SA. We call elements

of SA strategy vectors. We index strategy vectors from SA by the elements of A.
We now define the utility function for each player. Suppose strategy s ∈ SP

is played. Specifically, suppose that (A, pμ) ∈ Sμ and (β(a), pa) ∈ Sa for each
a ∈ C are played. The utility function for buyer is uμ(s) = M − [Bcost(A) +∑

a∈A β(a)] + [
∑

b∈P pb(μ) −
∑

b∈P pμ(b)]. The utility for a supplier a in A is
ua(s) = β(a) − τ(a) + [

∑
b∈P pb(a) −

∑
b∈P pa(b)]. The utility for a supplier a

not in A is ua(s) = [
∑

b∈P pb(a) −
∑

b∈P pa(b)].
Interpreting, the buyer begins with a total of M utility and chooses to make

a purchase from each supplier in A. The buyer gives β(a) to each supplier a ∈ A
and loses an extra Bcost(A) from the initial M utility. Each supplier a in A
receives the bid payment from the buyer and loses τ(a) because the supplier must
perform services for the buyer. The distribution of sidepayments completes the
utility functions. The requirement that Bcost(∅) = M lets the strategy ∅ stand
as a “don’t play” strategy for the buyer. To remove the requirement, we could
introduce a specific “don’t play” strategy to the buyer’s strategy set, however
this creates a special case in most of our proofs.

Let the sidepayment game we have defined be denoted SP. Let NOSP denote
the same game with the additional requirement that all sidepayments be fixed
to zero. In other words, in NOSP we restrict the strategy set for each a ∈ P so
that pa is identically zero.
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2.2 Game Theoretic Definitions

All of the definitions in this section closely follow those of Shubik [23, Chapter 6].
We call a vector in �|P|, indexed by a ∈ P , a payoff vector.
Let π be a payoff vector and s be a strategy vector in SA for A ⊆ P . Let t be

any strategy vector in SP such that the projection of t onto the coordinates in
A is equal to s. If for all t and for all a ∈ A we have πa ≤ ua(t), we say that the
players in A can guarantee themselves payoffs of at least π by playing s.

We use Shubik’s alpha theory to define our characteristic sets [23, pp. 134-
136]. Thus for a set of players A ⊆ P , we define the characteristic set, V (A),
to be the set of all payoff vectors π such that there is a strategy vector s ∈ SA,
possibly dependent on π, with which the players in A can guarantee themselves
payoffs of at least π. In the transferable utility setting, SP, the characteristic sets
can be replaced with a characteristic function. Given the definitions of the utility
functions in Section 2.1, the characteristic function Ṽ (A) for a set of players A
is equal to M − MinEval(τ, Bcost, A − {μ}).

We say that a set A ⊆ P of players are substitutes if Ṽ (P) − Ṽ (P − B) ≥∑
a∈B Ṽ (P) − Ṽ (P − {a}) for all B ⊆ A.
We say that a payoff vector π dominates a payoff vector ν through a set A ⊆ P

if πa > νa for all a ∈ A. In other words, π dominates ν through A when each
player in A does better in π than in ν.

For a set of players A ⊆ P , we define D(A) as the set of all payoff vectors
which are dominated through A by a payoff vector in V (A). Interpreting, the
players in A would never settle for a payoff vector π ∈ D(A) since they can
guarantee themselves higher payoffs than those offered in π.

The core of a game consists of all π ∈ V (P) such that π /∈ D(A) for all A ⊆ P .

3 A Characterization of the Core

The characterazation of the core of buyer-supplier games in the transferable
utility setting was done by Shapley and Shubik [22]. In this seciton, we show the
surprising result that the same characterization holds in the non-transferable
utility setting. In general, it is not the case that the core of the transferable utility
and non-transferable utility versions of a game are the same. For example, the
buyer may be able to use bribes to alter the bidding strategies of some suppliers,
and thus reduce the bids of other suppliers. The following theorem characterizes
the core of buyer-supplier games.

Theorem 1. A payoff vector π is in the core of a buyer-supplier game defined
by (C, τ, Bcost) if and only if it satisfies

πa ≥ 0 for all a ∈ P, (1)∑
a∈A

πa ≤ MinEval(τ, Bcost, C − A) − MinEval(τ, Bcost, C) for all A ⊆ C, (2)

πμ = M − MinEval(τ, Bcost, C) −
∑
a∈C

πa. (3)
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Because of space considerations, here and in the rest this paper we choose to
present the intuition and a proof sketch for most of the stated results. Fully
detailed proofs of all results are presented in the companion technical report [7].

We take as a given the result by Shapley and Shubik, which shows that under
transferable utilities, the core is characterized by Theorem 1.

The intuition for the equivalence of the transferable utility core and the non-
transferable utility core is as follows. Consider a payoff vector π satisfying Equa-
tion (1). A set of suppliers can only guarantee zero payoffs for themselves. Thus,
for a set of players A to be able to truly improve upon the payoffs given in π, the
buyer must be in A. However, if the buyer is in A, the players in A can simulate
sidepayments amongst themselves by having the suppliers in A alter their bids
to the buyer. Thus, the sidepayments do not add any additional power to the
set of players A.

As a corollary to Theorem 1, we have the following lemma, which shows
that the core does not change depending on the decomposition chosen in the
transformation from a combinatorial minimization problem to a buyer-supplier
game.

Lemma 1. Let Bcost∗(A) =
∑

a∈A τ(a) + Bcost(A). The core of the buyer
supplier-games defined by (C, τ, Bcost) and (C, 0, Bcost∗) is the same.

4 Polynomial Time Optimization over the Core Vectors

We define the separation problem on a set of linear inequalities A as follows.
Given a vector π, if π satisfies all of the inequalities in A, then do nothing; oth-
erwise, output a violated inequality a ∈ A. It is well known that the separation
problem is polynomial time equivalent to linear function optimization over the
same set of inequalities [14, p. 161].

Let (C, τ, Bcost) define a buyer-supplier game. In this section, to simplify the
notation, we will omit the parameter Bcost from Eval and MinEval since it is
fixed by the buyer-supplier game.

In this section, we will analyze an algorithm to solve the separation problem
for the exponentially sized set of inequalities given in Equations (1), (2), and
(3). We now give the algorithm, which we call the separation algorithm. Given
the payoff vector π as input,

1 Iterate over Equations (1) and (3) to check that they hold. If some equation
does not hold, output that equation and halt.

2 Compute F ⊆ C such that Eval(τ, F) = MinEval(τ, C). If there is some a ∈
C − F with πa > 0, output the inequality from Equation (2) corresponding
to {a} and halt.

3 Define τ̂ (a) = τ(a) + πa for a ∈ C. Now, compute F̂ ⊆ C such that
Eval(τ̂ , F̂) = MinEval(τ̂ , C). If Eval(τ̂ , F̂) < Eval(τ̂ , F), output the inequal-
ity from Equation (2) corresponding to F − F̂ . Otherwise, halt.

Theorem 2. If given an input τ̂ : C → �+ it is possible to compute both
Eval(τ̂ , A) for any A ⊆ C and F ⊆ C such that Eval(τ̂ , F) = MinEval(τ̂ , C)
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in polynomial time, then the separation problem for Equations (1), (2), and (3)
is solvable in polynomial time. By the equivalence of separation and optimiza-
tion, optimizing any linear function of π over Equations (1), (2), and (3) is also
possible in polynomial time.

Proof. It is clear that given the theorem’s assumptions, the separation algorithm
runs in polynomial time. The statement follows from Lemmas 2 and 3.

Lemma 2. If the separation algorithm returns an inequality on input π, then π
violates the returned inequality.

Proof. If the algorithm returns an inequality in step 1, then the inequality is
violated since the algorithm performed a direct check.

If the algorithm returns an inequality in step 2, then the inequality is violated
since πa > 0, but MinEval(τ, C − a) = MinEval(τ, C) = Eval(τ, F).

Suppose the algorithm returns an inequality in step 3. Thus, Eval(τ̂ , F̂) <
Eval(τ̂ , F). By applying the definitions of Eval and τ̂ , we have

∑
a∈F̂ πa +

Eval(τ, F̂) <
∑

a∈F πa + Eval(τ, F).
Since the algorithm reaches step 3, we know that πa = 0 for all a ∈ C − F .

Thus, we have
∑

a∈F̂∩F πa + Eval(τ, F̂) <
∑

a∈F πa + Eval(τ, F), which in turn
gives Eval(τ, F̂) − Eval(τ, F) <

∑
a∈F−F̂ πa.

Let A = F − F̂ . From the algorithm, we know that the set F satisfies
Eval(τ, F) = MinEval(τ, C). Since F̂ ⊆ C − A, the definition of MinEval im-
plies that MinEval(τ, C − A) ≤ Eval(τ, F̂). Thus, we have MinEval(τ, C − A) −
MinEval(τ, C) ≤ Eval(τ, F̂) − Eval(τ, F) <

∑
a∈A πa, which shows that the in-

equality output by the algorithm is violated.

Lemma 3. If π violates some inequality in Equations (1), (2), and (3), then
the separation algorithm run on input π returns an inequality.

Proof. If the violation is in Equations (1) or (3), the violated inequality will be
output by the direct check in step 1. If some inequality is output by step 2, we
are done. Otherwise, since steps 1 and 2 output no inequality, we know that
πa = 0 for all a ∈ C − F , where F is as computed in the algorithm.

Now, suppose the inequality from Equation (2) for set A ⊆ C is violated. In
other words, we have,

∑
a∈A πa > MinEval(τ, C − A) − MinEval(τ, C). Let B be

such that Eval(τ, B) = MinEval(τ, C − A).
Thus, we have

∑
a∈A πa > MinEval(τ, C − A) − MinEval(τ, C) = Eval(τ, B) −

Eval(τ, F).
Since πa = 0 for all a ∈ C −F , we have Eval(τ, F)+

∑
a∈F∩A πa > Eval(τ, B).

Adding
∑

a∈F−A πa to both sides of the above inequality and substituting
the definition of Eval, we have Bcost(F) +

∑
a∈F τ(a) +

∑
a∈F πa > Bcost(B) +∑

a∈B τ(a) +
∑

a∈F−A πa.
Since πa = 0 for all a ∈ C − F and B ⊆ C − A, we can alter the right

hand side of the above inequality to get Bcost(F) +
∑

a∈F τ(a) +
∑

a∈F πa >
Bcost(B) +

∑
a∈B τ(a) +

∑
a∈B πa +

∑
a∈F−A−B πa.
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By applying the definition of τ̂ and Eval, we have Eval(τ̂ , F) > Eval(τ̂ , B) +∑
a∈F−A−B πa. We know that πa ≥ 0 for all a ∈ P since the algorithm does not

output anything in step 1. Thus, Eval(τ̂ , F) > Eval(τ̂ , B) ≥ MinEval(τ̂ , C) =
Eval(τ̂ , F̂), where F̂ is as computed in the algorithm. So, step 3 outputs an
inequality.

The following lemma illustrates a key difference between Garg et al. and this
work.

Lemma 4. If suppliers are substitutes, then all but the |C| singleton equations of
Equation (2) are not constraining. Thus, if suppliers are substitutes, optimization
over the core of the buyer-supplier game is reduced to solving a polynomially sized
linear program.

Proof. Suppose that the suppliers are substitutes. By the definition of suppliers
are substitutes, we have that Ṽ (P) − Ṽ (P − A) ≥

∑
a∈A[Ṽ (P) − Ṽ (P − {a})]

for all A ⊆ C. By the definition of Ṽ , we have MinEval(τ, Bcost, C − A) −
MinEval(τ, Bcost, C) ≥

∑
a∈A[MinEval(τ, Bcost, C − {a})−MinEval(τ, Bcost, C)]

for all A ⊆ C. This implies that if the singleton equations in Equation (2) are
satisfied, then so are all equations in Equation (2). Thus, if suppliers are sub-
stitutes, we may drop all non-singleton equations from Equation (2) and reduce
the number of inequalities to a polynomial in the number of players.

5 Inapproximability of Optimization over Core Solutions

Consider a buyer-supplier game defined by (C, τ, Bcost). We introduced the con-
cept of the focus point price in the introduction. The concept leads us to ask
the natural question: What is the difference between the best and worst core
outcome for the buyer? In other words, the value of interest is the solution to
the linear program: maximize

∑
a∈C πa subject to Equations (1), (2), and (3).

This natural question leads us to define the focus point price (FFP) problem as
follows: on input (C, τ, Bcost), output the optimal value of the afore mentioned
linear program.

Define the Necessary Element (NEL) problem as follows. Given parameters
(C, τ, Bcost) return TRUE if there exist an element a ∈ C such that for all F ⊆ C
satisfying Eval(τ, Bcost, F) = MinEval(τ, Bcost, C) we have a ∈ F . Otherwise,
return FALSE.

Define the OPT-SET problem as follows. Given parameters (C, τ, Bcost), re-
turn F such that Eval(τ, Bcost, F) = MinEval(τ, Bcost, C).

In this section, we will show that the FPP problem, the OPT-SET problem
and the NEL problem are polynomial time equivalent. Again, because of space
considerations we choose to present some intuition and a proof sketch. For the
fully detailed proofs, see the companion technical report [7].

For a fixed tuple (C, τ, Bcost) we say we extend the tuple to contain a shadow
element for an element a ⊆ C by creating the extended tuple (Ĉ, τ̂ , Bcost∗), where
Ĉ = C ∪ b with b /∈ C; τ̂ is the same as τ with the addition that τ̂ (b) = τ(a);
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and for A ⊆ Ĉ, if b /∈ A, then Bcost∗(A) = Bcost(A), otherwise Bcost∗(A) =
Bcost((A − {b}) ∪ {a}). We call b the shadow element corresponding to a.

The full shadow extension of (C, τ, Bcost) is the tuple (Ĉ, τ̂ , Bcost∗) resulting
from extending (C, τ, Bcost) to contain a shadow element for each element in C.

First, we reduce OPT-SET to NEL. To show the result, we analyze the fol-
lowing algorithm, which we call the shadow algorithm.

On input (C, τ, Bcost),

1 Let (Ĉ, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost).
2 For each a ∈ C

– Remove a’s corresponding shadow element from Ĉ.
– Run NEL on (Ĉ, τ̂ , Bcost∗).
– If the return value is TRUE, then add the shadow element back to Ĉ.
– If the return value is FALSE, then remove a from Ĉ.

3 Return Ĉ ∩ C. In other words, we return all elements from C remaining in Ĉ,
disregarding any shadow elements.

Lemma 5. Let (C, τ, Bcost) be the input to the shadow algorithm. Also, let
(Ĉ, τ̂ , Bcost∗) be the full shadow extension of (C, τ, Bcost). If for all A ⊆ Ĉ the
NEL problem on input (A, τ̂ , Bcost∗) is solvable in polynomial time, then the
OPT-SET problem on input (C, τ, Bcost) is solvable in polynomial time.

Given the lemma assumptions, a simple analysis shows that the shadow al-
gorithm runs in polynomial time. The rest of the proof comes in two steps.
First, the shadow algorithm maintains the invariant MinEval(τ, Bcost, C) =
MinEval(τ̂ , Bcost∗, Ĉ). This is true because we only remove an element from
Ĉ if there is an optimal set that does not contain the element. Second, if a re-
mains in Ĉ at the end of the iteration associated with a, then it can be shown
that a is contained in all subsets of Ĉ ∩ C that are solutions to the OPT-SET
problem on input (C, τ, Bcost).

The following lemma captures the relationship between the FPP problem and
the NEL problem.

Lemma 6. The solution to the FPP problem on input (C, τ, Bcost) is 0 if and
only if the solution to the NEL problem on input (C, τ, Bcost) is FALSE. Thus,
if it is possible to approximate the the FPP problem on input (C, τ, Bcost) within
any multiplicative factor in polynomial time, then the NEL problem on input
(C, τ, Bcost) is solvable in polynomial time.

The intuition behind this lemma is that if the solution to NEL is TRUE, then
there is some element a that is in all OPT-SET solutions on input (C, τ, Bcost). In
this case, the solution to the FPP problem is at least the difference between the
value of an OPT-SET solution on input (C, τ, Bcost) and the value of an OPT-
SET solution on input (C − {a}, τ, Bcost). On the other hand, if the solution
to NEL is FALSE, then the right hand sides of all singleton equations from
Equation (2) are zero, and thus the FPP problem solution is also zero.
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A set of (C, τ, Bcost) instances is proper if the following conditions hold:

– Given that (C, τ, Bcost) is in the set, then so is (C, τ̂ , Bcost), where τ̂(a) =
τ(a) + πa for a vector π ∈ �|C|

+ .
– Given that (C, τ, Bcost) is in the set, then so is (A, τ̂ , Bcost∗), where A is a

subset of Ĉ and (Ĉ, τ̂ , Bcost∗) is the full shadow extension of (C, τ, Bcost).

The definition of proper instances has a natural interpretation when applied
to the transformations of combinatorial minimization problems to buyer-supplier
games. For example, for the shortest path problem, the first condition implies
that the set of instances is closed with respect to lengthening the edges of the
graph. On the other hand, the second condition implies that the set of instances
is closed with respect to adding parallel edges or removing a subset of the edges.

The results of Section 4 and the relationships we have given in this section
lead us to the following theorem.

Theorem 3. On a proper set of instances, the separation problem over Equa-
tions (1), (2), and (3), the NEL problem and the OPT-SET problem are poly-
nomial time equivalent.

Lemma 6 in combination with Theorem 3 gives us the following inapproxima-
bility result.

Lemma 7. On a proper set of instances, if it is not possible to solve the OPT-
SET problem in polynomial time, it is not possible to approximate the solution
to the FPP problem to within any multiplicative factor in polynomial time.

6 A Complementary Combinatorial Algorithm

In this section, we present an efficient combinatorial algorithm for solving the
FPP problem for the buyer-supplier minimum spanning tree (MST) game.

Let a graph G = (V , E) and edge weights w : E → �+ be given. Let MSTVal :
2E → �+ be a function that takes as input a set of the edges A ⊆ E and returns
the weight of the minimum spanning tree of the graph induced by the edges of
A. If no spanning tree exists, MSTVal returns ∞.

By the transformation in Section 1 and Lemma 1 in the buyer-supplier mini-
mum spanning tree game, we have C = E , τ(a) = w(a), and Bcost(A) = M if A
does not connect all nodes in V , or 0 otherwise. We omit the parameters τ and
Bcost from MinEval, since they are fixed by the game.

Call the linear program from the FPP problem for the given game LP1, and let
its optimal value be O1. Consider the linear program: maximize

∑
b∈C πb subject

to
∑

b∈A πb ≤ MinProb(C − A) − MinProb(C) for all A ⊆ C and πb ≥ 0 for
all b ∈ C. Call the linear program from the previous sentence LP2, and let its
optimal value be O2.

We are able to prove the following relationship between LP1 and LP2. If
MinProb(C) ≥ M , then O1 = 0. If MinProb(C) < M and O2 ≤ M −MinProb(C),
then O1 = O2. If MinProb(C) < M and O2 > M − MinProb(C), then
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O1 = M − MinProb(C). When considering the FPP problem arising from the
buyer-supplier game for a specific minimization problem, it may often be helpful
to consider LP2 instead of LP1. In fact, the combinatorial algorithm we present
finds the optimal value for LP2.

The key insight behind the combinatorial algorithm for the FPP problem for
the buyer-supplier MST game is the following. Let T be an MST of G. Suppose
edges e1 and e2 are edges in T . Suppose the removal of the individual edge e1 (e2)
increases the MST cost by λ1 (λ2). Then, the removal of both edges increases
the MST cost by at least λ1 +λ2. This insight leads Bikhchandani et al. to show
that for the buyer-supplier MST game, suppliers are substitutes [2]. Their result
along with Lemma 4 shows that the singleton inequalities of LP2 are an optimal
basis. Thus, all our combinatorial algorithm must calculate is the increase in the
MST cost associated with the removal of each edge in T .

We give a modified Kruskal Algorithm which can be used to compute the
optimal value of LP2. The modifications are as follows. Throughout the algo-
rithm’s execution we will keep an auxiliary set of edges, A, which is initially
empty. When edge e is added to the minimum spanning forest, also add e to the
set A. Suppose edge e is rejected from addition to the minimum spanning forest
because it creates a cycle. Let the cycle created be H = (V ′, E ′). For each edge
a ∈ E ′ −{e}, if a ∈ A, label a with w(e)−w(a) and remove a from A. The labels
computed by the algorithm are the required increases in the MST cost.
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Abstract. We study the problem of minimizing the makespan on m
parallel machines. We introduce a very large-scale neighborhood of ex-
ponential size (in the number of machines) that is based on a matching
in a complete graph. The idea is to partition for every machine the set
of assigned jobs into two sets by some fixed rule and then to reassign
these 2m parts such that every machine gets exactly two parts. The split
neighborhood consists of all possible reassignments of the parts and a
best neighbor can be calculated in O(m log m) by determining a perfect
matching with minimum maximal edge weight.

We examine local optima in the split neighborhood and in combined
neighborhoods consisting of the split and other known neighborhoods
and derive performance guarantees for these local optima.

1 Introduction

In this paper, we consider the following multiprocessor scheduling problem.
Given are n jobs each of which has to be scheduled on one of m identical par-
allel machines. The time it takes for a job j to be fully processed is denoted by
pj . A machine can process at most one job at a time, and a job may not be
preempted. The goal is to schedule the jobs in such a way that the makespan
is minimized, i.e., we want the last job to complete as early as possible. In the
standard notation of [9], this problem is denoted as P ||Cmax.

This problem is known to be strongly NP-hard for m being part of the input
[8]. Therefore, we search for approximate solutions. If an algorithm is guaranteed
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to deliver a solution that has value at most ρ times the optimal solution value,
we call it a ρ-approximation algorithm; the value ρ is called the (worst-case)
performance guarantee. A well known approximation algorithm for the problem
under consideration is the LPT-algorithm due to Graham [10]: starting from
an empty schedule, we select the job with longest processing time among the
unscheduled jobs and schedule this job on the machine with currently minimal
workload. This LPT-algorithm has a performance guarantee of 4/3 − 1/3m.

Another way to find approximate solutions is through local search, see e.g. [1].
These methods iteratively search through the set of feasible solutions. Starting
from an initial solution, a local search procedure moves from one feasible solution
to a neighboring one until some stopping criteria are met. The choice of a suitable
neighborhood function has an important influence on the performance of local
search. The simplest form of local search is iterative improvement, also called
local improvement or, in the case of minimization problems, descent algorithms.
This method iteratively chooses a better solution in the neighborhood of the
current one, and it stops when no better solution is found. The final solution is
called a local optimum.

Recently, there has been an increasing interest in the quality of local optima
and the time needed to obtain these local optima through iterative improve-
ment. For the parallel machine scheduling problem under consideration, Finn
and Horowitz [7] showed that a so-called move-optimal solution is guaranteed
to deliver a solution with value no more than 2 − 2/(m + 1) times the opti-
mal makespan. Moreover, this bound is tight [12]. Brucker et al. [3] showed
that the iterative improvement procedures needs O(n2) moves to come to a
local optimal solution, and this bound is tight [11]. For performance guar-
antees of local search methods regarding makespan minimization, we refer to
[12,11]. For the objective of minimizing total weighted completion time, Bruegge-
mann et al. [4] give a performance guarantee of 3/2 − 1/2m for move-optimal
schedules.

Over the last years, very large-scale neighborhoods have received considerable
attention. These neighborhoods mostly contain up to an exponential number
of solutions, but allow a polynomial exploration. A survey about very large-
scale neighborhood techniques is given by Ahuja et al. [2] and Dĕıneko and
Woeginger [6] present an overview of very large-scale neighborhoods for the
traveling salesman and quadratic assignment problem.

In Section 2, we define a very large-scale neighborhood, the so-called split-
neighborhood, and in the following sections we investigate its worst-case
behavior. In Section 3, we show that a split-optimal solution has the same per-
formance guarantee as a simple move-optimal solution. In Sections 4 and 5,
we give performance guarantees on combined move-optimal and split-optimal
solutions. If we combine the two neighborhoods in the most straightforward
way, we show that the performance guarantee marginally improves but is still
essentially 2, whereas a better combination leads to a performance guarantee
of 3/2.
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2 Neighborhoods

As mentioned in the introduction, an important part of local search algorithms
is the definition of the neighborhood on which the method operates. Before dis-
cussing the neighborhoods, we first describe the used representation of a sched-
ule. As the sequence in which the jobs are processed does not influence the
makespan of a schedule for a given assignment, we represent a schedule by such
an assignment of jobs to machines, A : J → {1, . . . , m}, where J = {1, . . . , n}
denotes the set of jobs. Each assignment leads to a partition of the set of jobs
into m disjoint subsets MA

1 , . . . , MA
m, where MA

i = {j ∈ J : A(j) = i} is the set
of jobs scheduled on machine i. Abusing terminology, we use “schedule A” for
any schedule complying to the assignment A. If there is no ambiguity, we write
Mi for MA

i . The workload of machine i is denoted by

LA
i =

∑
j∈Mi

pj ,

and this workload is equal to the completion time of the last job scheduled on
machine i. Again, if there is no ambiguity, we write Li for LA

i . Hence, for a given
assignment A of jobs to machines, the makespan is equal to the machine with
maximum workload:

CA
max = max

i
LA

i .

We call such a machine with maximum workload a critical machine.

The move-neighborhood. Probably the most basic neighborhood is the move-
neighborhood. Given a schedule A, we select a job j, scheduled on machine h,
and a machine i �= h. The move neighbor, A′, is obtained by moving job j to
machine i, i.e., MA′

h = MA \{j}, MA′

i = MA ∪{j}, and MA′

k = MA for k �= h, i.
The set of all move neighbors of schedule A is denoted by Nmove(A) = {A′ :
A′ is a move neighbor of A}. We call an assignment A move-optimal if for all
move neighbors A′, CA

max ≤ CA′

max and, in case of CA
max = CA′

max, the number of
critical machines in A is at most the number of critical machines in A′. Finn
and Horowitz [7] gave the following upper bound on the performance guarantee
of move-optimal assignments.

Theorem 1 ([7]). Let A be a move-optimal assignment, and let C∗
max denote

the optimal makespan. Moreover, let nk = max{ |Mi| : Li = CA
max } denote the

maximum number of jobs on a critical machine in the assignment A. Then

CA
max ≤ nkm

(nk − 1)m + 1
C∗

max.

Moreover, if nk = 1, then CA
max = C∗

max.

The bound in Theorem 1 attains its maximum for nk = 2, yielding a performance
guarantee of 2 − 2/(m + 1). This bound has been proven tight by Schuurman
and Vredeveld [12], see Figure 1 for the assignments attaining this bound.
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11

m × pj = 1/m

1

1

Fig. 1. Worst-case move-optimal schedule

The split-neighborhood. The split-neighborhood is of exponential size in the
number of machines. The basis of this neighborhood is a split-operator that
partitions the set of jobs assigned to a machine i into two disjoint sets, i.e.,
split(Mi) = (Mi1, Mi2), where Mi denotes the set of jobs scheduled on machine i
and (Mi1, Mi2) is a partition of the set Mi into two disjoint subsets. We assume
w.l.o.g. that Li1 =

∑
j∈Mi1

pj ≥
∑

j∈Mi2
pj = Li2. We refer to the sets Mi1 and

Mi2 of a machine i (or a set Mi) as the left and right part, respectively.
If we use the split-operator on all sets Mi given by an assignment A, we obtain

2m parts Mi1 and Mi2 for i = 1, . . . , m. Abusing notation, we denote the set of
these 2m parts by

split(A) =
{

Mi1, Mi2 : split(Mi) = (Mi1, Mi2) for i = 1, . . . , m
}
.

We call an assignment A′ a split-neighbor of A, if A′ can be obtained by assigning
the jobs of exactly two of the 2m parts from split(A) to each machine. The
neighborhood Nsplit of an assignment A is denoted by

Nsplit(A) := { A′ : A′ is neighbor of A }.

Although the size of the neighborhood is exponentially large in the number
of machines, the following fact tells us that the best neighbor, one with lowest
makespan and fewest number of critical machines among all neighbors with
lowest makespan, can be found in O(m log m) time.

Fact 1. Given 2m numbers a1 ≥ . . . ≥ a2m. A perfect matching of these num-
bers such that the maximum of the sum of two matched numbers is minimized,
is obtained by matching ai to a2m+1−i. Moreover, this matching minimizes the
number of matched pairs whose sum equals this maximum.

In other words, an optimal solution for the bottleneck assignment problem is ob-
tained by ordering the cost-matrix of the assignment problem, so that it fulfills
the bottleneck Monge property. Thus, we obtain the best neighbor of the neigh-
borhood Nsplit(A) by first rearranging the 2m parts T1, . . . , T2m in split(A),
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so that for the sum of processing times of the parts holds LT1 ≥ . . . ≥ LT2m

and, then, assigning the jobs of the parts Ti and T2m+1−i to machine i for
i = 1, . . . , 2m.

We call an assignment split-optimal if for all A′ ∈ Nsplit(A), CA
max ≤ CA′

max

and in case CA
max = CA′

max the number of critical machines in A is at most
the number of critical machines in A′. Of course, the quality of a split-optimal
solution depends on the split-operator. For most of the presented results, we
only assume that the split-operator produces a move-optimal partition. That is,
for any job j ∈ Mi1, we have that Li2 + pj ≥ Li1. Such a split-operator we call
a move-optimal split-operator.

Combinations of move and split-neighborhood. As we will see in the following
section, a split-optimal assignment needs not to be move-optimal. Hence, we
also consider assignments that are both move- and split-optimal. These local
optima may however be improved by first applying a move-operator leading to a
schedule with the same makespan and, then applying a split-operator leading to
a better schedule. Therefore, we define a lexicographic-move-optimal assignment.
For a given assignment A and A′ ∈ Nmove(A), we reorder the machines in A and
A′ so that

LA
1 ≥ . . . ≥ LA

m and

LA′

1 ≥ . . . ≥ LA′

m .

The assignment A′ is called lexicographically better than A, if there exists a
machine k such that

LA′

i = LA
i for i = 1, . . . , k − 1,

LA′

k < LA
k .

(1)

We say that A is lexicographic-move-optimal, or lexmove-optimal, if there ex-
ists no move neighbor A′ ∈ Nmove(A) that is lexicographically better than A.

Note that the move-optimal assignment A in Figure 1 is also lexmove-optimal.
Therefore, the move-optimal and the lexmove-optimal assignments have the same
performance guarantee. As will be seen in the following, the performance guar-
antee of an assignment that is both, lexmove-optimal and split-optimal, is better
than that of a move- and split-optimal assignment.

3 Performance Guarantee on Split-Optimal Assignments

Recall that we assume that a split-operator on a set Mi produces two parts Mi1

and Mi2 satisfying Li1 ≥ Li2. Moreover, for a critical machine k in a split-optimal
schedule, we have the following property for any machine i:

if Li1 ≥ Lk1 then Li2 ≤ Lk2 holds,
if Li1 < Lk1 then Li2 ≥ Lk2 holds.

(2)
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The first statement follows from the fact that k is a critical machine, and the
second statement holds since A is split-optimal.

The performance guarantee of a split-optimal assignment, using a move-
optimal split-operator, does not improve on the bound obtained by move-optimal
assignment.

Theorem 2. Let A be a split-optimal assignment using a move-optimal split-
operator. Then the makespan of A is bounded by CA

max ≤ (2 − 2
m+1 )C∗

max, where
C∗

max denotes the value of the optimal makespan.

Proof. W.l.o.g. we assume that CA
max = 1. Let k be a critical machine, i.e. Lk = 1.

If
∑

j pj ≥ mLk1 +Lk2, then the optimal makespan can be bounded from below
by C∗

max ≥ 1
m

∑
j pj ≥ Lk1 +Lk2/m. Using the fact that Lk1 +Lk2 = 1, we have

CA
max

C∗
max

≤ m

(m − 1)Lk1 + 1
≤ 2m

m + 1
= 2 − 2

m + 1
,

as the above expression is maximized for minimal Lk1 and by Lk1 ≥ Lk2 we
know that Lk1 ≥ 1/2.

On the other hand, if
∑

j pj < mLk1 + Lk2, then a machine l with minimal
load satisfies

Ll ≤
∑
i�=k

Li/(m − 1) < Lk1. (3)

Moreover, by (2), we know that (3) implies Ll2 ≥ Lk2. Hence,

Lk1 > Ll ≥ 2Ll2 ≥ 2Lk2. (4)

From the fact that a move-optimal split-operator is used to obtain the sets Mk1

and Mk2, we know that for all j ∈ Mk1, Lk2 + pj ≥ Lk1. Therefore, from (4) it
follows that pj > 1

2Lk1 for all j ∈ Mk1. Hence, Mk1 contains only one job and

CA
max = Lk = Lk1 + Lk2 <

3
2
Lk1 ≤ 3

2
C∗

max,

as C∗
max ≥ pj for all j ∈ J and thus C∗

max ≥ Lk1.
For m ≥ 3, the theorem is proven, as 3

2 ≤ 2− 2/(m+1). For m = 2, it follows
from (4) that

C∗
max ≥ 1

2

∑
j

pj ≥ 1
2
(Lk + 2Ll2) ≥ 1

2
(Lk1 + 3Lk2) =

3
2

− Lk1,

where the last equality follows from the fact that Lk2 = 1 − Lk1. Moreover, as
C∗

max ≥ Lk1 due to the fact that Mk1 contains only one job, we have

C∗
max ≥ max{Lk1,

3
2

− Lk1},

which is minimal for Lk1 = 3
4 . Therefore, for m = 2, we have

CA
max ≤ 4

3
C∗

max. �	
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To show that the analysis is tight, consider the following instance consisting
of m jobs with processing time 1 and m jobs with processing time 1/m. In
the split-optimal assignment A, we schedule on every machine one job with
processing time 1 and on the first machine all jobs with processing time 1/m are
scheduled. It is easy to check that this assignment is split-optimal for a move-
optimal split-operator and it has makespan CA

max = 2. In an optimal assignment
A∗, we schedule on every machine one job with processing time 1 and one with
processing time 1/m. The optimal makespan is C∗

max = 1 + 1/m, and thus
CA

max = 2m/(m + 1)C∗
max. See Figure 2 for an illustration.

1

1

m × pj = 1/m

1

1

Fig. 2. A split-optimal assignment

4 Split-Optimal and Move-Optimal Assignments

The worst-case instance for split-optimal assignments, showing the tightness of
the analysis in the previous section, is obviously not move-optimal. This raises
the question whether a combination of the two neighborhoods gives a better
performance guarantee, which is answered in Theorem 3, for move-optimal split-
operators.

Lemma 1. Let A be a move-optimal and split-optimal assignment using a move-
optimal split-operator. If there exists a critical machine k such that∑

j

pj < mLk1 + Lk2,

then CA
max = C∗

max, where C∗
max denotes the optimal makespan.

Proof. Let l be a machine with minimal load. Then, we know by (3) that Ll <
Lk1. By move-optimality of the assignment A, we know that for any job j ∈ Mk

Ll + pj ≥ Lk = Lk1 + Lk2.

Hence, pj > Lk2 for j ∈ Mk, and thus Mk2 contains no job at all, i.e., Lk2 = 0.
It follows from the move-optimal split-operator, that whenever Mk2 is empty,
Mk1 contains only one job, j1. Hence, CA

max = Lk = pj1 ≤ C∗
max. �	
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From this lemma, it follows that we only have to consider cases in which the
total load on all machines is large enough. Moreover, if Lk1 is large enough, we
can actually prove a bound on the makespan of this local optimal assignment,
which is better than the guarantee in Theorem 3.

Lemma 2. Let A be a move-optimal and split-optimal assignment obtained by
using a move-optimal split-operator. If there exists a critical machine k, satisfy-
ing Lk1 ≥ 2

3Lk, then the makespan of A can be bounded by

CA
max ≤ 3m

2m + 1
C∗

max,

where C∗
max denotes the optimal makespan.

Proof. By Lemma 1, we only have to consider the case that
∑

j pj ≥ mLk1+Lk2.
Hence, the optimal makespan can be bounded from below by C∗

max ≥ 1
m

∑
j pj ≥

(m−1)Lk1+Lk

m . As, CA
max = Lk, we thus have

CA
max

C∗
max

≤ m

(m − 1)Lk1 + Lk
≤ 3m

2m + 1
,

where the last inequality is due to Lk1 ≥ 2/3Lk. �	

Let k be a critical machine. Before we prove the performance guarantee on a
move- and split-optimal assignment A, we first partition the set of machines
into several classes.

S< = { i : Li1 < Lk1 },
S≥ = { i : Li1 ≥ Lk1 },
Smulti = { i ∈ S≥ : |Mi1| ≥ 2 },
Ssingle = S≥ \ (Smulti ∪ { k }).

(5)

That is, S< is the set of machines that have a left part which is smaller than
Lk1. This set of remaining machines is again partitioned in one set containing
all machines that have at least two jobs in the left part and the remaining
machines in S≥ \ {k} containing exactly one job in the left part. Note that,
S≥ \ {k} = Smulti ∪ Ssingle.

The load of a machine in each of the above classes can be bounded as follows.

Lemma 3. Let A be a move-optimal and split-optimal schedule, for a move-
optimal split-operator and let k be a critical machine in this assignment. More-
over, let S< and Smulti be as defined in (5). Then:

Li ≥ 2(CA
max − Lk1) for i ∈ S<,

Li ≥ 3
2Lk1 for i ∈ Smulti.

Proof. Consider a machine i ∈ S<. Then by property (2), we know that Li1 <
Lk1 implies that Li2 ≥ Lk2. Moreover, as Li1 ≥ Li2, we have that Li ≥ 2Li2 ≥
2Lk2 = 2(1 − Lk1).
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For i ∈ Smulti let js ∈ Mi1 be the smallest job in the left part of machine i.
As Mi1 contains at least two jobs, we know that pjs ≤ 1

2Li1. Due to the move-
optimality of the split-operator, we also know that Li2 ≥ Li1 − pjs ≥ 1

2Li1.
Hence, Li ≥ 3

2Li1 ≥ 3
2Lk1. �	

Lemma 4. Let A be a move-optimal and split-optimal assignment for a move-
optimal split-operator and k be a critical machine in A. Moreover, let S< be as
defined in (5). If Lk1 ≤ 2/3Lk and |S<| ≥ 1, then

CA
max

C∗
max

≤
{ 2m

m+2 for m ≥ 4,
3m

2m+1 for m ≤ 3,

where C∗
max denotes the optimal makespan.

Proof. Using Lemma 3, we can bound the optimal makespan by

mC∗
max ≥

∑
j

pj ≥ CA
max + 2|S<|(CA

max − Lk1) + (m − 1 − |S<|)Lk1

≥ CA
max + (2CA

max − 3Lk1)|S<| + (m − 1)Lk1 ≥ 3CA
max + (m − 4)Lk1,

(6)

where the last inequality is due to Lk1 ≤ 2/3Lk = 2/3CA
max. For m ≥ 4, the ex-

pression in (6) is minimized for Lk1 minimal, whereas for m ≤ 3, it is minimized
for Lk1 maximal. Using the fact that 1/2CA

max ≤ Lk1 ≤ 2/3CA
max, we have

CA
max

C∗
max

≤
{ 2m

m+2 form ≥ 4,
3m

2m+1 form ≤ 3.
�	

Lemma 5. Let A be a move-optimal and split-optimal assignment for a move-
optimal split-operator and k be a critical machine in A. Moreover, let Smulti be
as defined in (5). If Lk1 ≤ 2/3Lk and |Smulti| ≥ 2, then

CA
max

C∗
max

≤ 2m

m + 2
,

where C∗
max denotes the optimal makespan.

Proof. Consider a move-optimal and split-optimal assignment A for a move-
optimal split-operator and let S<, Smulti, and Ssingle be as defined in (5). For
Lk1 ≤ 2/3Lk, we know from Lemma 3 that for i ∈ S<, Li ≥ Lk1. Hence, using
Lemma 3, we can bound the optimal makespan by

C∗
max ≥ CA

max + (|Smulti|/2 + m − 1)Lk1

m
≥ CA

max + mLk1

m
≥ 2 + m

2m
CA

max,

where the second inequality is due to |Smulti| ≥ 2 and the last to Lk1 ≥ CA
max/2.

�	

Theorem 3. A move-optimal and split-optimal assignment, obtained by a
move-optimal split-operator, has a performance guarantee of 2 − 4

m+3 .
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Proof. Let A be a move-optimal and split-optimal assignment for a move-optimal
split-operator and let k be a critical machine in A. Assume that CA

max = 1. Since
3m

2m+1 ≤ 2 − 4
m+3 , by Theorem 1 we only need to consider assignments A in

which a critical machine k contains exactly two jobs. Moreover, by Lemma 2, we
may restrict ourselves to the case that Lk1 ∈ [12 , 2

3 ], and by Lemma 1, we may
assume that

∑
j pj ≥ mLk1 + Lk2.

As max{ 2m
m+2 , 3m

2m+1} ≤ 2− 4
m+3 , due to Lemma 4 we can restrict ourselves to

the case that there is no machine i with Li1 < Lk1. Due to Lemma 5 we assume
that there is at most one machine i with |Mi1| ≥ 2. Note that if no such machine
exists, there are m jobs of length at least Lk1 and one job of length 1−Lk1 ≤ Lk1.
Then, by the pigeonhole principle C∗

max = CA
max. Hence, we assume that there is

exactly one machine s with |Ms1| ≥ 2.
Let j1 be the smallest job in Ms1. If pj1 ≥ m+3

2m+2 − Lk2, then there are m − 1
jobs of length Lk1, one job of length Lk2 = 1−Lk1 ≤ Lk1 and at least two jobs of
length m+3

2m+2 −Lk2, and by the pigeonhole principle, we know that C∗
max ≥ m+3

2m+2 .
On the other hand, if pj1 ≤ m+3

2m+2 − (1 − Lk1), we can bound the load of the
right part of machine s by Ls2 ≥ Ls1 −pj1 Hence, using the fact that Lk1 ≥ 1/2,
we can bound the total workload by∑

j

pj ≥ Ls +
∑
i�=s

Li ≥ (m − 1)Lk1 + 1 − Lk1 + Ls1 + Ls2

≥ (m − 2)Lk1 + 1 + 2Ls1 − pj1 ≥ mLk1 + 1 − pj1

≥ (m − 1)Lk1 + 2 − m + 3
2m + 2

≥ m − 1
2

+ 2 − m + 3
2m + 2

=
m2 + 3m

2m + 2
.

This implies that the optimal makespan can be bounded by

C∗
max ≥ 1

m

∑
j

pj ≥ m + 3
2m + 2

,

and thus we obtain
CA

max

C∗
max

≤ 2m + 2
m + 3

. �	

For instances with an odd number of machines, the analysis of the previous the-
orem is tight. If we schedule m jobs of length 1 and m jobs of length 2/(m + 1)
as illustrated by the assignment A in Figure 3, we obtain a move-optimal and
split-optimal assignment for a move-optimal split-operator, with makespan
CA

max = 2. In the optimal schedule, all machines have the same workload and
C∗

max = 1 + 2
m+1 . For the split-optimality of this example, we need that the left

part of machine M2 has workload equal to 1. Therefore, this example only works
for an odd number of machines. For even number of machines, a lower bound
on the performance guarantee is 2m

m+2 . This bound is obtained by an instance
with m jobs of size 1 and m − 1 jobs of size 2/m. In the move-optimal and
split-optimal assignment, these jobs are scheduled simular as in Figure 3.
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1 1

1

1

m × pj = 2/(m + 1)

Fig. 3. A split and move-optimal assignment for odd number of machines

5 Split-Optimal and Lexicographic-Move-Optimal
Assignments

In the previous section, we have seen that the performance guarantee of a move-
optimal and split-optimal assignment marginally improves on the performance
guarantee of only a move-optimal or only a split-optimal assignment. Moreover,
the example, showing the tightness of the guarantee for an odd number of ma-
chines, is not lexicographic-move-optimal. Therefore, in this section we consider
the lexmove-optimal and split-optimal assignments.

For lexmove-optimal assignments, we have the following fact.

Fact 2. Let A be an assignment of the jobs to the machines and let l be a
machine with minimal workload. A schedule represented by A is lexmove-optimal
if and only if, for all machines i and all jobs j ∈ Mi it holds

Ll + pj ≥ Li.

In this section, we only consider the LPT-algorithm as the split-operator. Re-
member that the LPT-algorithm sorts the jobs in non-increasing size and then
iteratively assigns a job to the set with minimal workload. In this way, we ob-
tain a partition LPT(Mi) = (Mi1, Mi2) that is move-optimal. Therefore, we can
apply Lemma 1–5.

Lemma 6. Let A be a lexmove-optimal and split-optimal assignment for a
move-optimal split-operator. Let k be a critical machine and l be a machine
with minimal load. Moreover, let C∗

max denote the optimal makespan. Then, if
l ∈ S< ∪ Smulti,

CA
max

C∗
max

≤ 3m

2m + 1
.

Proof. Assume w.l.o.g. that CA
max = 1. By Lemmas 1 and 2, we can restrict

ourselves to the case that
∑

j pj ≥ mLk1 + Lk2 and Lk1 ≤ 2/3.
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If l ∈ S<, we know from Lemma 3 that Ll ≥ 2(1−Lk1) ≥ 2/3 and if l ∈ Smulti,
it follows from Lemma 3 that Ll ≥ 3

2Lk1 ≥ 3/4 ≥ 2/3. Hence, we have

C∗
max ≥ 1

m

(
1+

2(m − 1)
3

)
=

2m + 1
3m

. �	

By this lemma, we know that in order to prove the performance guarantee of
3/2 in Theorem 4, we can restrict ourselves to local optimal schedules with
l ∈ Ssingle. Moreover, as Ll ≥ 2/3CA

max implies that C∗
max ≥ 2/3CA

max, we assume
in the remainder of this section that Ll < 2/3CA

max.
In the proof of Theorem 4, we use the concept of blocking jobs.

Definition 1. We call a job j a blocking job, if pj + Lk1 ≥ 2/3CA
max, where

Lk1 is the load of the left part of a critical machine.

Note that if, in some schedule, a blocking job is assigned to the same machine
as a job of size at least Lk1, then the makespan of this schedule will be at least
2/3CA

max. The idea of the proof of the following theorem is that the total volume
of blocking jobs is large enough so that if no blocking job is assigned on the same
machine as a job of size at least Lk1, then the makespan of the schedule is also
at least 2/3CA

max.

Theorem 4. Let A be a lexmove-optimal and split-optimal assignment using
the LPT-algorithm as split-operator. Then,

CA
max ≤ 3

2
C∗

max,

where, C∗
max denotes the optimal makespan.

Proof. Let A be a lexmove-optimal and split-optimal assignment and let k be
a critical machine and l a machine with minimal load. By Theorem 1 we may
assume w.l.o.g. that |Mk| = 2. Moreover, by Lemma 1 and 2, we restrict ourselves
to the case that

∑
j pj ≥ mLk1 + Lk2 and Lk1 ≤ 2/3Lk. Finally, we define the

sets S<, Smulti, and Ssingle as in (5). Then, by Lemma 6 we assume that l ∈ Ssingle

and Ll < 2/3CA
max.

Under these assumptions, we claim that for a machine i ∈ S< ∪ Smulti the
sum of processing times of blocking jobs, scheduled on this machines is at least
2/3CA

max. None of the blocking jobs, which A assigns to a machine in S< ∪Smulti,
can be scheduled together with a job of size at least Lk1 in a schedule with
makespan smaller than 2/3CA

max. Thus, in such a schedule all these jobs need
to be distributed over |S< ∪ Smulti| machines, as each machine in Ssingle ∪ {k}
processes at least one job with processing time at least Lk1. From our claim,
it now follows that in every feasible schedule the blocking jobs lead on at least
one machine to a workload of at least 2/3CA

max. Hence, we always have C∗
max ≥

2/3CA
max, and the theorem is proven.

To prove our claim, first consider a machine i ∈ S<. From Lemma 3 and
lexmove-optimality of A, it follows that a job j ∈ Mi has processing time pj ≥
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Li − Ll ≥ 4/3CA
max − 2Lk1. Hence, pj + Lk1 ≥ 4/3CA

max − Lk1 ≥ 2/3CA
max, as

Lk1 ≤ 2/3Lk = 2/3CA
max, and j is a blocking job. As each job j ∈ Mi is a

blocking job, the total load of blocking jobs scheduled on machine i ∈ S< is
Li ≥ 2(CA

max − Lk1) ≥ 2/3CA
max.

Now, consider a machine i ∈ Smulti, with |Mi1| ≥ 3. The smallest job in the
left part, say j0 ∈ Mi1 has length at most pj0 ≤ Li1/|Mi1|. By move-optimality
of the split-operator, we know that the load of the right part can be bounded by

Li2 ≥ Li1 − pj0 ≥ |Mi1| − 1
|Mi1|

Li1 ≥ 2
3
Li1.

Hence, by lexmove-optimality of the assignment, we know that any job j ∈
Mi has processing time pj ≥ Li − Ll ≥ 5

3Li1 − 2/3CA
max. Thus pj + Lk1 ≥

8
3Lk1 − 2/3CA

max ≥ 2/3CA
max. Hence, each job j ∈ {i ∈ Smulti : |Mi1| ≥ 3} is

a blocking job, and the total processing times of the blocking jobs assigned to
such a machine i is Li ≥ 2/3CA

max.
Finally, consider a machine i ∈ Smulti, with |Mi1| = 2, say Mi1 = {j1, j2} with

pj1 ≥ pj2 . By move-optimality of the split-operator, we know that Li2 ≥ pj1 , and
by lexmove-optimality of the assignment A, we also know that Ll ≥ Li − pj2 =
Li2 + pj1 ≥ 2pj1 . Hence, pj1 ≤ Ll/2 ≤ 1/3CA

max.
This implies that pj2 = Li1 − pj1 ≥ Lk1 − 1/3CA

max ≥ 1/6CA
max and pj2 is a

blocking job, as Lk1 + 1/6CA
max ≥ 2/3CA

max. Moreover, due to the fact that the
LPT-algorithm is used as a split-operator, we know that there exists at least one
job j ∈ Mi2 in the right part of machine i with pj ≥ pj2 . Hence, Mi contains at
least three blocking jobs, j1, j2, and j3, and the total processing time of these
three jobs is at least

pj1 + pj2 + pj3 ≥ Lk1 + 1/6CA
max ≥ 2/3CA

max,

which completes the proof. �	

A lower bound on the performance guarantee is given in Figure 4. Let δ = 1
3m−4

and consider the instance consisting of 2m− 2 jobs with processing time 3δ, one

2 − δ

2 − δ

2 − δ

1 + δ

(2m − 2) × pj = 3δ

δ = 1/(3m − 4)

Fig. 4. A lexmove- and split-optimal schedule A
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job of size 1 + δ and m − 1 jobs of length 2 − δ. The assignment A as depicted
in Figure 4 is lexmove-optimal and split-optimal and has makespan CA

max = 3,
whereas the optimal makespan is C∗

max = 2+2δ. This yields a ratio of The ratio
between the lexmove- and split-optimal schedule depicted in this figure and the
optimal makespan is CA

max
C∗

max
= 3m−4

2m−2 = 3
2 − 1

2m−2 .
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Abstract. We study the two-machine flow shop problem with minimum
delays. The problem is known to be strongly NP-hard even in the case of
unit processing times and to be approximable within a factor of 2 of the
length of an optimal schedule in the general case. The question whether
there exists a polynomial-time algorithm with a better approximation
ratio has been posed by several researchers but still remains open. In
this paper we improve the above bound to 3

2 for the special case of the
problem when both operations of each job have equal processing times
(this case of flow shop is known as the proportionate flow shop). Our
analysis of the algorithm relies upon a nontrivial generalization of the
lower bound established by Yu for the case of unit processing times.

1 Introduction

In the two-machine flow shop problem with minimum delays there are two ma-
chines available from time zero onwards for processing n independent jobs. Each
machine can process at most one job at a time. Each job j consists of two opera-
tions; the second operation can start at least lj time units after the completion of
the first operation. The first (second) operation has to be executed by machine 1
(machine 2) and processing the first (second) operation takes time aj (bj). All
input numbers aj , bj , and lj are assumed to be nonnegative integers. The objec-
tive is to minimize the makespan, or the schedule length, that is the maximum
job completion time. As in [13], we denote this problem by F2 | lj | Cmax.

The problems with minimum delays arise, in particular, in manufacturing
where there may be a transportation time from one production facility to an-
other, and in computer systems where the output of a task on one processor may
require a communication time so as to become the input to a subsequent task
on another processor.

Related results. The first result related to F2 | lj | Cmax is due to Johnson [6]
who presents an O(n log n) algorithm for solving the problem without delays.
Kern and Nawijn [8] consider a single-machine problem with two operations
� Supported by the Russian Foundation for Basic Research (project codes 06-01-00255,

05-01-00960).
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per jobs and intermediate minimum delays. Following the extension [13] of the
three-field notation scheme introduced by Graham et al. [5] we denote this prob-
lem by 1 | lj | Cmax. Yu et al. [12,13] show that this problem is equivalent to
F2 | lj | Cmax. Kern and Nawijn [8] show that 1 | lj | Cmax is NP-hard in the
ordinary sense. This result is strengthened to NP-hardness in the strong sense
for F2 | lj | Cmax by Lenstra [9], for F2 | lj, aj = bj | Cmax by Dell’Amico
and Vaessens [4], and for F2 | lj ∈ {0, l}, aj = bj | Cmax by Yu [12]. Yu et
al. [13] prove that F2 | lj , ai = bj = 1 | Cmax is NP-hard in the strong sense.
Dell’Amico [3] presents several 2-approximation algorithms with running time
O(n log n) where n is the number of jobs. The question whether there exists a
polynomial-time algorithm with a better approximation ratio has been posed by
several researchers (see, for example, Strusevich [11]) but still remains open. It
is also an open question whether F2 | lj | Cmax is APX-hard.

The two-machine flow shop problem with minimum delays is closely related
to the two-machine flow shop problem with exact delays, which differs from the
former only by the requirement that the second operation of each job j ∈ J must
start processing exactly lj time units after the first operation has been completed.
In [1,2], we refer to this problem as F2 | exactlj | Cmax. In [2], in particular, it
is proved that F2 | exact lj | Cmax admits a 3-approximation while its special
case F2 | exact lj , aj = bj | Cmax can be solved by a 2-approximation algorithm,
which in fact provides a 2-approximation for F2 | lj , aj = bj | Cmax as well. In [2],
we also show that F2 | exact lj , aj = bj | Cmax cannot be approximated within a
factor of 1.5 − ε provided that P �=NP. In [1], F2 | exact lj , aj = bj = 1 | Cmax is
shown to be approximable within a factor of 3

2 . Since we prove it over the lower
bound that is also valid for F2 | lj , aj = bj = 1 | Cmax, the algorithm provides
a 3

2 -approximation for this problem as well. Unfortunately, this algorithm does
not admit a constant-factor extension even to the case when aj ≡ bj ≡ a.

Our result. It can be shown that F2 | lj | Cmax admits a simple α-approximation
where

α = 1 +
min{

∑
j aj ,

∑
j bj}

max{
∑

j aj ,
∑

j bj}
.

Note that α = 2 if and only if
∑

j aj =
∑

j bj . So this provides no improvement of
Dell-Amico’s approximations even for the important case of identical machines,
i.e., for problem F2 | lj, aj = bj | Cmax, which the subject of this paper. Our
main result is that F2 | lj, aj = bj | Cmax can be approximated within a factor
of 3

2 , which provides a substantially improved approximation for this problem.
The algorithm is simple and can be implemented in O(n2) time.

Overview of the paper. It is clear that in problem F2 | lj | Cmax we may restrict
ourselves by searching just for the schedules in which both machine continuously
execute the jobs (in the paper we refer to them as continuous schedules). If a
continuous schedule cannot be shorten by a parallel shifting of the operations,
then we call it an early schedule. The early schedules are uniquely defined by
the orders in which the machines execute jobs. These orders can be represented
by a pair of job permutations [(i1, . . . , in), (j1, . . . , jn)]. In any feasible schedule
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some job j can be critical, i.e., its second operation starts exactly lj time units
after the completion of the first operation. The importance of critical jobs is
that given the starting time of such a job on machine 1 and the pair of job
permutations, we are able to compute the length of the schedule.

Our algorithm first orders the jobs in non-decreasing order of aj+lj. Assuming
that the jobs are indexed in this order it then constructs n early schedules σk

generated by the permutations [(k + 1, . . . , n, 1, . . . , k), (1, . . . , n)], k = 1, . . . , n,
and finally outputs a shortest schedule among them.

The schedules σk have a remarkable property: either job k, or job n is critical
in σk. This fact leads to an exact formula (Lemma 4) expressing the length of σk

as a function of k and the instance data. The function has the form max{Xk, Yk},
where (roughly speaking) Xk is the length of the schedule σk if job n is critical
while Yk is that when job k is critical. The proof of Theorem 1 is based on the fact
that Xk, Yk, and Xk −Yk are monotone functions of k, which implies that either
Yk ≥ Xk for all k (Case 1) or there exists a threshold r ∈ {1, . . . , n−1} such that
such that Yr < Xr and Yk ≥ Xk for all k = r+1, . . . , n (Case 2). When analyzing
these cases we heavily rely upon our nontrivial generalization of the lower bound
established by Yu for the case of unit processing times (Lemma 2). This lemma is
a key ingredient of our approach. Its proof is based on a “relaxation” of problem
F2 | lj, aj = bj | Cmax by problem F2 | lj , aj = bj = 1 | Cmax with unit
processing times. The final part of the argument of Case 2 makes use of a trick
similar to that used in the analysis of the 3

2 -approximation in [1].

2 Definitions, Notation, and Helpful Observations

Before proceeding to the main part we introduce the basic notation and make
some observations and assumptions that do not restrict generality. An instance
of F2 | lj | Cmax includes a set of jobs J = {1, . . . , n}. Each job j ∈ J consists of
two operations O1,j and O2,j whose processing tomes will be denoted by aj and
bj, respectively. We assume that aj and bj are positive integers for all j ∈ J . For
each j ∈ J operation O2,j is separated from O1,j by a delay of length at least
lj time units. For any j ∈ J , we denote by σ(1, j) and σ(2, j) the starting times
of O1,j and O2,j , respectively. Sometimes we will represent jobs j ∈ J by the
triples (aj , lj , bj).

Note that a schedule σ is feasible if and only if

σ(2, j) ≥ σ(1, j) + aj + lj

for all j ∈ J . For a schedule σ = (σ(1, 1), σ(2, 1), . . . , σ(2, n)), denote by Cj(σ)
the completion time of job j in σ; then Cj(σ) = σ(2, j) + bj . The length of a
schedule σ is defined as Cmax(σ) = maxj∈J Cj(σ). Denote by C∗

max the length
of a shortest schedule.

We set A =
∑

j∈J aj , B =
∑

j∈J bj , and L = maxj∈J lj . When considering
problem F2 | lj , aj = bj | Cmax we assume that for each job j ∈ J the processing
times of both operations are aj and so A =

∑
j∈J aj =

∑
j∈J bj .
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Let σ be a schedule of F2 | lj | Cmax. We say that a job j is critical in
σ if σ(2, j) = σ(1, j) + aj + lj . Observe that if a schedule σ does not contain
critical jobs, i.e., σ(2, j) > σ(1, j) + aj + lj for all jobs j ∈ J , then by setting
σ′(j) := σ(j), σ′(2, j) := σ(2, j) − min{σ(2, j) − σ(1, j) − aj − lj : j ∈ J} we get
another feasible schedule σ′ with

Cmax(σ′) = Cmax(σ) − min{σ(2, j) − σ(1, j) − aj − lj : j ∈ J} < Cmax(σ).

Thus any optimal schedule has a critical job.
Any feasible schedule σ generates a pair of permutations (ϕ, ψ) of the set of

jobs J such that ϕ specifies the order of operations on machine 1 and ψ specifies
that on machine 2. More specifically, ϕ(k) (ψ(k)) is the k-th job executed by
machine 1 (machine 2). Note that for any j ∈ J , ϕ−1(j) (ψ−1(j)) means the
order number in which job j is processed on machine 1 (machine 2). We will fur-
ther represent the permutations ϕ and ψ by the sequences (ϕ(1), . . . , ϕ(n)) and
(ψ(1), . . . , ψ(n)). It is obvious that any feasible schedule σ can be transformed
into another feasible schedule σ with Cmax(σ) ≥ Cmax(σ) and such that in σ
the jobs on both machines are processed continuously in the same order as in
σ. We shall call such schedules continuous schedules. By the definition if σ is a
continuous schedule with job permutations (ϕ, ψ), then for any k = 2, . . . , n,

σ(1, ϕ(k)) = σ(1, ϕ(k − 1)) + aϕ(k−1),

σ(2, ψ(k)) = σ(2, ψ(k − 1)) + bψ(k−1).

A continuous schedule associated with a pair (ϕ, ψ) is depicted in Fig 1. A
continuous schedule in which machine 1 starts processing at time 0 and at least
one job is critical is called early. Observe that given a pair of orders (ϕ, ψ), the

ϕ

ψ(1)

(1) ϕ (2)

ψ(2)

(3)ϕ

ψ(3)

ϕ (n)

ψ(n)

t=0 t

Fig. 1.

early schedule is uniquely defined by the pair and has minimum length among all
feasible schedules associated with (ϕ, ψ). We will denote this schedule by [ϕ, ψ].
From the above it follows that the set of early schedules contains an optimal
schedule.

Note that given a pair of permutations (ϕ, ψ), the early schedule σ = [ϕ, ψ] can
be found in linear time. Indeed, to find σ it suffices to determine the time when
machine 2 starts executing, i.e., x = σ(2, ψ(1)). Since σ is a feasible continuous
schedule, for any k = 1, . . . , n we have

σ(2, ψ(k)) = x +
k−1∑
i=1

bψ(i) ≥ σ(1, ϕ(k)) + aϕ(k) + lϕ(k).
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Thus

x = min{σ(1, ϕ(k)) + aϕ(k) + lϕ(k) −
k−1∑
i=1

bψ(i) : k = 1, . . . , n},

which can be found in linear time.

3 Lower Bound

Before proceeding to the algorithm we present a lower bound for C∗
max that will

play a crucial role in establishing an upper bound on the approximation ratio of
our algorithm. We deduce it from a lower bound for F2 | lj , aj = bj = 1 | Cmax

due to Yu et al. [12,13] (see Lemma 2 in [13]). For completeness we provide it
with a proof in this section.

Lemma 1 (Yu et al.[12]). For any instance of F2 | lj , aj = bj = 1 | Cmax,

C∗
max ≥ n + 1 +

⌈∑
j∈J lj

n

⌉
(1)

Proof. Let σ be a feasible continuous schedule with the jobs permutations ϕ and
ψ. Then for any j ∈ J ,

Cmax(σ) ≥ σ(1, j) + aj + lj +
n∑

k=ψ−1(j)

bψ(k)

=
ϕ−1(j)∑

k=1

aϕ(k) + lj +
n∑

k=ψ−1(j)

bψ(k).

By taking into account that aj = bj ≡ 1, it follows that

Cmax(σ) ≥ 1
n

( ∑
j∈J

( ϕ−1(j)∑
k=1

aϕ(k) + lj +
n∑

k=ψ−1(j)

bψ(k)

))

=
1
n

( ∑
j∈J

ϕ−1(j)∑
k=1

aϕ(k) +
∑
j∈J

n∑
k=ψ−1(j)

bψ(k)

)
+

∑
j∈J lj

n

=
1
n

( ∑
j∈J

ϕ−1(j) +
∑
j∈J

(n − ψ−1(j) + 1)
)

+

∑
j∈J lj

n

=
1
2n

(
n(n + 1) + n(n + 1)

)
+

∑
j∈J lj

n

= n + 1 +

∑
j∈J lj

n
.
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It is easy to see that the above argument does not extend to problem F2 | lj, aj =
bj | Cmax. Nevertheless, the following result shows that the above lemma gener-
alizes to this problem.

Lemma 2. For any instance of F2 | lj , aj = bj | Cmax and J ′ ⊆ J ,

C∗
max ≥

∑
j∈J′

aj +
⌈∑

j∈J′ a2
j∑

j∈J′ aj
+

∑
j∈J′ aj lj∑
j∈J′ aj

⌉
. (2)

Proof. Indeed, since any lower bound for the contracted instance on a subset of
jobs J ′ ⊆ J is a lower bound for the original instance, it suffices to prove the
lemma for the case of J ′ = J , i.e., to show that

C∗
max ≥ A + 1 +

∑
j∈J a2

j

A
− 1 +

∑
j∈J aj lj

A

= A + 1 +

∑
j∈J aj(aj + lj − 1)

A
.

Let I be an instance of F2 | lj , aj = bj | Cmax. Consider an instance
I1 of F2 | lj , aj = bj = 1 | Cmax that is obtained from I by the follow-
ing transformation: replace each job j ∈ J by the set of aj identical jobs
{
∑j−1

i=1 ai + 1, . . . ,
∑j

i=1 ai} with parameters (1, aj + lj − 1, 1). Thus the set of
jobs J1 in I1 is

J1 =
⋃
j∈J

{
j−1∑
i=1

ai + 1, . . . ,

j∑
i=1

ai} = {1, . . . , A}.

Let σ be an early schedule of I with permutations ϕ and ψ. Construct a schedule
τ of I1 by setting

τ(1, i) = σ(1, j) + i −
j−1∑
k=1

ak − 1,

τ(2, i) = σ(2, j) + i −
j−1∑
k=1

ak − 1

for all i ∈ {
∑j−1

k=1 ak + 1, . . . ,
∑j

k=1 ak} and j ∈ J . Fig. 2 shows an example
of a schedule σ of three jobs (4, 4, 4), (3, 7, 3), and (2, 0, 2) and the schedule τ
of 9 jobs with parameters (1, 7, 1), (1, 9, 1), and (1, 0, 1) obtained from σ. By
the construction the lengths of σ and τ coincide. It follows that the length of a
shortest schedule in I is at least the length of a shortest schedule in I1. However,
by the construction of I1 and Lemma 1 the latter is bounded from below by

A + 1 +

∑
j∈J aj(aj + lj − 1)

A
,

which proves the lemma.
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t=0

t

Fig. 2. An example of a schedule σ and the schedule τ obtained from σ

4 Algorithm

In this section we present our algorithm for F2 | lj, aj = bj | Cmax. Remind
that this case of the problem remains strongly NP-hard even if lj ∈ {0, l} or
aj = bj = 1 for all j ∈ J [12,13]. We now proceed to the description of the
algorithm.

Algorithm Min Delay

Step 0. Sort the jobs in nondecreasing order of aj + lj . For convenience, we
further assume that

a1 + l1 ≤ a2 + l2 ≤ . . . ≤ an + ln. (3)

Step k (k = 1, . . . , n). Construct the schedule σk = [ϕk, ψ] where ψ =
(1, 2, . . . , n) and ϕk = (k + 1, . . . , n, 1, . . . , k) if k ≤ n − 1 and ϕn = (1, . . . , n).
(The schedule σk is depicted in Fig. 3.)

Output a schedule σ having the shortest length among those in {σ1, . . . , σn}.

t=0 t

1 knk+1

1 k k+1 n

Fig. 3.

Note that Step 0 takes O(n log n) time. As it was shown in Section 2, the
early schedule σk for each k = 1, . . . , n can be constructed in linear time. Thus
the total running time of the algorithm is O(n2).

5 Approximation Ratio

We first present a helpful observation that will be used in evaluating the lengths
of the schedules σk constructed by algorithm Min Delay.



62 A.A. Ageev

Lemma 3. Let the jobs in J be indexed according to (3). Let σ be a feasible con-
tinuous (not necessarily early) schedule with job permutations ϕ = (1, 2, . . . , n)
and ψ = (1, 2, . . . , n). If some job j ∈ J in σ is critical, then job n is critical.

Proof. Let j ∈ J be a job in σ. Then by the definition of σ

Cmax(σ) ≥ σ(1, 1) +
j∑

i=1

ai + lj +
n∑

i=j

aj = σ(1, 1) + aj + lj + A.

and the inequality holds with equality if and only if j is critical in σ. In view of
(3) it follows that

Cmax(σ) ≥ σ(1, 1) + an + ln + A.

Thus if some job j is critical in σ, then aj + lj = an + ln and job n is critical in
σ as well.

The following lemma establishes a crucial formula expressing the length of the
schedule σk as a function of the index k and the instance data.

Lemma 4. For any k = 1, . . . , n,

Cmax(σk) = max{Xk, Yk}

where Xk =
∑n

j=k+1 aj + an + ln and Yk = A +
∑n

j=k aj + lk.

Proof. Consider first the case of k = n. Since σn is an early schedule, some job
j ∈ J is critical in σn. By Lemma 3 it follows that job n is critical in σn. Then
by the construction of σn,

Cmax(σn) =
n∑

j=1

aj + an + ln = Yn.

Now let 1 ≤ k ≤ n − 1. Remind that

σk = [(k + 1, . . . , n, 1, . . . , k), (1, . . . , k, k + 1, . . . , n)].

By the feasibility of σk

σk(1, k) + ak + lk ≤ σk(2, k).

Since σk(1, k) + ak =
∑n

j=1 aj and Cmax(σk) = σk(2, k) +
∑n

j=k ak, it follows
that

Cmax(σk) ≥ σk(1, k) + ak + lk +
n∑

j=k

ak = A +
n∑

j=k

ak + lk = Yk.

By a similar way it can be shown that Cmax(σk) ≥ Xk. Thus we have

Cmax(σk) ≥ max{Xk, Yk}. (4)
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Observe now that σk consists of two continuous schedules: a schedule τ ′ of
the set of jobs {1, . . . , k} with job permutations (1, . . . , k) and (1, . . . , k), and a
schedule τ ′′ of the set of jobs {k +1, . . . , n} with job permutations (k +1, . . . , n)
and (k + 1, . . . , n). Since σk is an early schedule, at least one of τ ′ and τ ′′ has
a critical job. Since both schedules τ ′ and τ ′′ satisfy (3), by Lemma 3 either k,
or n is a critical job in τ ′ or τ ′′, respectively, and therefore at least one of these
jobs is critical in σk. If job k is critical in σk, then

Cmax(σk) = σk(1, k) + ak + lk +
n∑

j=k

ak = A +
n∑

j=k

ak + lk = Yk.

If job n is critical in σk, then a similar computation shows that Cmax(σk) = Xk.
Thus we arrive at the inequality Cmax(σk) ≤ max{Xk, Yk}, which together with
(4) proves the lemma.

Theorem 1. Let I be an instance of the problem and σ be a schedule output by
algorithm Min Delay. Then

Cmax(σ) ≤ 3
2
C∗

max. (5)

Proof. For k = 1, . . . , n, set θ(k) = Xk − Yk. By Lemma 4

θ(k) = an + ln − ak − lk − A.

Since ak + lk is a nondecreasing function of k, it follows that θ(k) is a non-
increasing function of k. Note that θ(n) = −A < 0. Thus the following two
cases are possible: either Yk ≥ Xk for all k = 1, . . . , n, or there exists an index
r ∈ {1, . . . , n − 1} such that Yr < Xr and Yk ≥ Xk for all k = r + 1, . . . , n.

Case 1: Yk ≥ Xk for all k = 1, . . . , n. Then by Lemma 4,

Cmax(σk) = Yk

for all k = 1, . . . , n. By the construction of σ, it follows that

Cmax(σ) ≤
∑n

k=1 akCmax(σk)
A

=
∑n

k=1 akYk

A

=

∑n
k=1 ak(A +

∑n
j=k aj + lk)

A

= A +

∑n
k=1

∑n
j=k akaj +

∑n
k=1 aklk

A

= A +
(
∑n

i=1 ai)2 +
∑n

i=1 a2
i

2A
+

∑n
k=1 aklk

A

=
(A

2
−

∑n
i=1 a2

i

2A

)
+

(
A +

∑n
i=1 a2

i

A
+

∑n
k=1 aklk

A

)
,
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which by Lemma 2, does not exceed

C∗
max

2
+ C∗

max ≤ 3
2
C∗

max.

Case 2: There exists an index r ∈ {1, . . . , n−1} such that Yr < Xr and Yk ≥ Xk

for all k = r + 1, . . . , n. By Lemma 4 this implies that Cmax(σk) = Yk for
k = r+1, . . . , n and Cmax(σk) = Xk for k = 1, . . . , r. Since Xk is a non-increasing
function of k and by the construction of σ

Cmax(σ) ≤ min
{∑n

k=r+1 akCmax(σk)∑n
i=r+1 ai

, Cmax(σr)
}

≤ min{S1, S2} (6)

where

S1 =
∑n

k=r+1 akYk∑n
i=r+1 ai

=

∑n
k=r+1 ak(A +

∑n
j=k aj + lk)∑n

i=r+1 ai
, (7)

S2 = Xr =
n∑

j=r+1

aj + an + ln. (8)

Set Ar =
∑n

i=r+1 ai. By using the identity

2
n∑

k=r+1

n∑
j=k

akaj = A2
r +

n∑
i=r+1

a2
i

rearrange the right-hand side of (7) in the following way:

S1 = A +
∑n

k=r+1

∑n
i=r+1 akaj

Ar
+

∑n
k=r+1 aklk

Ar

= A +
A2

r +
∑n

i=r+1 a2
i

2Ar
+

∑n
k=r+1 aklk

Ar

= A −
∑n

i=r+1 a2
i

2Ar
+

Ar

2
+

∑n
i=r+1 a2

i

Ar
+

∑n
k=r+1 aklk

Ar

≤ A +
Ar

2
+

∑n
i=r+1 a2

i

Ar
+

∑n
k=r+1 aklk

Ar

= A + βμ +
1
2
(Ar + β) + β(

1
2

− μ) (9)

where

β =

∑n
i=r+1 a2

i

Ar
+

∑n
j=k aj lk

Ar
,

and

μ =
Ar

A
.



A 3/2-Approximation for the Proportionate Two-Machine Flow Shop 65

By Lemma 2, Ar + β ≤ C∗
max and

A + βμ = A +
∑n

i=r+1 a2
i

A
+

∑n
j=k aj lk

A

≤ A +
∑n

i=1 a2
i

A
+

∑n
j=1 ajlk

A
≤ C∗

max.

Thus (9) implies

S1 ≤ Cmax +
1
2
Cmax + β(

1
2

− μ). (10)

On the other hand, by using the trivial lower bound

C∗
max ≥ max{2aj + lj : j ∈ J}

from (8) we have

S2 = 2an + ln +
n−1∑

j=r+1

aj ≤ C∗
max(1 + μ). (11)

Now from (10), (11) we see that if μ ≥ 1
2 , then S1 ≤ 3

2Cmax and if μ < 1
2 , then

S2 < 3
2Cmax. Taking into account (6) this completes the proof.

References

1. Ageev, A.A., Baburin, A.E.: Approximation algorithms for UET scheduling prob-
lems with Exact Delays. Oper. Res. Letters 35, 533–540 (2007)

2. Ageev, A.A., Kononov, A.V.: Approximation algorithms for scheduling problems
with exact delays. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS,
vol. 4368, pp. 1–14. Springer, Heidelberg (2007)

3. Dell’Amico, M.: Shop problems with two machines and time lags. Operations Re-
search 44, 777–787 (1996)

4. Dell’Amico, M., Vaessens, R.J.M.: Flow and open shop scheduling on two machines
with transportation times and machine-independent processing times is NP-hard.
Materiali di discussione 141, Dipartimento di Economia Politica, Università di
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Abstract. We consider the online scheduling problem of parallel jobs on
parallel machines, P |online − list, mj |Cmax. For this problem we present
a 6.6623-competitive algorithm. This improves the best known 7- com-
petitive algorithm for this problem. The presented algorithm also applies
to the special case where machines are ordered on a line and only ad-
jacent machines can be assigned to a job and, therefore, also to online
orthogonal strip packing. Since previous results for online orthogonal
strip packing assume bounded rectangles, the presented algorithm is the
first with a constant competitive ratio.

1 Introduction

Consider the following online machine scheduling problem. Jobs j = 1, 2, ..., n
are presented one by one to the decision maker and are characterized by their
processing time and the number of machines simultaneously required for process-
ing. Job j has processing time pj and requires simultaneously mj out of the
available m machines. As soon as a job becomes known, it has to be scheduled
irrevocably (i.e. its start time has to be set) without knowledge of successive
jobs. Preemption is not allowed and the objective is to minimize the makespan.

Using the three-field notation introduced in [2], this problem is denoted by
P |online − list, mj |Cmax, see also [5,6]. Note that sometimes sizej is used instead
of mj to denote the parallel machine requirement of job j.

The quality of an online algorithm is measured by its competitive ratio. An
online algorithm is called ρ-competitive if for any sequence of jobs it produces a
schedule with makespan at most ρ times the makespan of the optimal schedule.
For background on online scheduling see [6].

The problem P |online − list, mj |Cmax gained considerable attention in the
last few years. It was pointed out by Johannes [5] that a greedy algorithm which
schedules the jobs as early as possible, has a competitive ratio of m. She was
also the first to design an online algorithm with a constant competitive ratio,
which has a competitive ratio of 12. This result was successively improved by
Ye and Zhang, first to an 8 and later to a 7-competitive algorithm [7,8]. For
the special case with only 2 machines an greedy algorithm is optimal [4], i.e.

� Part of this research has been funded by the Dutch BSIK/BRICKS project.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 67–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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no online algorithm for P2|online − list, mj |Cmax with competitive ratio strictly
less than 2 exists.

Far less is known about lower bounds for the general m machine case. In [4]
an ILP formulation is presented to derive lower bounds, and by means of an ILP
solver a lower bound of 2.43 is derived. The best analytical lower bound is the
bound of 2 from the two machine case.

In the literature also semi-online cases have been studied, e.g. jobs appear
with non-increasing processing times, jobs appear with non-increasing machine
requirement or the largest processing time is known. For these semi-online prob-
lems the gap between the lower and the upper bound on the competitive ratio
is much smaller, see [7,8]. Variations on the scheduling model, where jobs are
malleable or preemption is allowed, or with different online paradigms such as
non-clairvoyance and online-time, are also considered in the literature. For an
overview of these various models see [5,6,8].

The problem P |online − list, mj |Cmax resembles online orthogonal strip pack-
ing. The difference lies in the following. In the scheduling problem any choice of
mj machines for processing job j is allowed, where in strip packing rectangles
cannot be split. If the machines were to be ordered on a line and job j requires
mj adjacent machines for its processing, the problems become the same. As it
turns out, the analysis of the online algorithm presented in this paper also hold
in the presence of such a machine ordering and adjacency requirement. There-
fore, the presented online algorithm applies to online orthogonal strip packing
as well. Till now, the performance ratio of the best online algorithm for online
orthogonal strip packing is 6.99, which is due to Baker and Schwarz [1]. It is
worthwhile to mention, that the existing bounds for orthogonal strip packing
are attained under the assumption that the rectangles have height at most 1.
Analogous, the processing time of the jobs is bounded by 1. To the best of our
knowledge, the presented algorithm is the first online algorithm with constant
competitive ratio for orthogonal strip packing without knowledge of the overall
maximum processing time of a job.

The presented approach in this paper leads to a new online algorithm for
P |online − list, mj |Cmax. The algorithm takes two parameters, one parameter
defines the borderline between big jobs (jobs with large mj) and small jobs,
and the second parameter defines classes of processing times. Small jobs with
processing times of the same class get scheduled in parallel. A proper choice of
the two parameters leads to an online algorithm that has a competitive ratio of
at most 7

2 +
√

10(≈ 6.6623).
In Section 2, we present the online algorithm and prove that it has a com-

petitive ratio of at most 6.6623. In Section 3, we show that the algorithm also
applies to the online orthogonal strip packing problem.

2 The Online Algorithm

Before we present the algorithm and the proof of its competitive ratio, we intro-
duce some notation and basic results.
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Given a sequence of jobs σ = (1, 2, ..., n) we can derive two lower bounds on
the makespan of the optimal offline schedule, denoted by OPT (σ). On the one
hand, the optimal makespan is bounded by the length of the longest job in σ,
i.e. OPT (σ) ≥ maxn

j=1{pj}. On the other hand, if the work load of a job j is
given by mj · pj , then the total work load divided by m is a lower bound on
OPT (σ), i.e. OPT (σ) ≥ 1

m

∑n
j=1 mj · pj .

Let S(σ) be the schedule created by an online algorithm and denote its
makespan by ON(σ). For a collection of disjoint intervals X from [0, ON(σ)],
we denote by |X | the cumulative length of the intervals in X .

The next lemma follows directly from the above presented lower bounds on
OPT (σ).

Lemma 1. If [0, ON(σ)] can be partitioned in X and Y such that |X | ≤ x ·
maxn

j=1{pj} and |Y | ≤ y · 1
m

∑n
j=1 mj · pj, then ON(σ) ≤ (x + y) · OPT (σ).

In the following, we design an online algorithm for P |online − list, mj|Cmax such
that the constructed schedules can be partitioned in X and Y as in Lemma 1
such that x+y is small. To do this, we distinguish between two types of jobs; jobs
with a large machine requirement and jobs that require only a few machines for
processing. A job j is called big if it has machine requirement mj ≥ �α ·m� with
α ∈ (0, 1

2 ], and called small otherwise. This is a generalization of the distinction
between big and small jobs found in [5,7,8], where α is a priori fixed to either
1
2 or 1

3 . Furthermore, the small jobs are classified according to their length. A
small job j belongs to job class Jk if βk ≤ pj < βk+1, where β > 1 is the second
parameter of the algorithm. Note that k may be negative. Similar classifications
can be found in Shelf Algorithms for Strip Packing [1], which are applied to
group rectangles of similar height. The online algorithm to be described in the
following, takes α and β as parameters and is denoted by ONα,β .

In the schedules created by the online algorithm ONα,β , big jobs are never
scheduled in parallel to other jobs, and (where possible) small jobs are put in
parallel to other small jobs of the same job class. The intuition behind the online
algorithm ONα,β is the following. Big jobs have a relative high average load and
small jobs are either grouped together to a high average load or there is a small
job with a relative long processing time. In the proof of Theorem 1, the intervals
with many small jobs, together with the intervals with big jobs will be compared
to the work load bound for OPT (σ) (the Y part for Lemma 1), and the intervals
with only a few small jobs are compared to the longest job bound for OPT (σ)
(the X part for Lemma 1).

The following gives a precise description of the algorithm ONα,β . The algo-
rithm creates schedules with sparse intervals Sk and dense intervals Di

k for the
small jobs of class Jk. With nk we count the number of dense intervals created
for Jk. All small job scheduled in such an interval [a, b) start at a. As a conse-
quence, job j fits in interval [a, b) if the machine requirement of the jobs already
in [a, b) plus mj is at most m.
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Algorithm ONα,β:
When scheduling job j and

1. job j is small, i.e. mj < �α ·m�, and belongs to job class Jk. Try in the given
order:
– Schedule job j in the first Di

k where it fits.
– Schedule job j in Sk.
– Let nk := nk + 1 and Sk becomes Dnk

k . Create a new interval Sk at the
end of the current schedule with length βk+1. Schedule job j in Sk.

2. job j is big, i.e. mj ≥ �α · m�. Schedule job j at the end of the current
schedule.

The structure of the schedule created by ONα,β is illustrated by Fig. 1. Note
that at any time for each job class Jk there is at most one sparse interval Sk.

a big job

βk βk

small jobs with another big job

βk+1 βk+1

Dnk
k Sk

m
m

ac
h
in

es

length in [βk, βk+1)

Fig. 1. Part of a schedule created by ONα,β

In the proof of Theorem 1 we will use the fact that the dense intervals Di
k

contain quite some load, i.e. there is a small job from job class Jk that did not
fit in the dense intervals and had to be scheduled in a newly created sparse
interval. When considering the length of the dense intervals, we take the load
of both the dense and sparse intervals into account. Lemma 2 formalizes this.
Slightly abusing notation, we will also refer to Sk and Di

k as the set of jobs that
are scheduled in intervals Sk and Di

k.

Lemma 2. For any α ∈ (0, 1
2 ] and β > 1, the total work load in the dense

and sparse intervals of schedule S(σ) created by ONα,β, is at least 2m
3β times the

length of all dense intervals.



Online Algorithm for Parallel Job Scheduling and Strip Packing 71

Proof. Let σ be an arbitrary list of jobs and let S(σ) be the corresponding
schedule constructed by the online algorithm ONα,β . Consider all dense intervals
in S(σ) corresponding to one job class Jk. Since all jobs in Di

k are scheduled to
start at the beginning of interval Di

k and have a processing time of at least βk,
the interval Di

k has
∑

j∈Di
k
mj machines in use for at least the first 1

β fraction
of Di

k. If α ≤ 1
3 this number of machines in use is larger than 2m

3 , and we are
done. If α ∈ (1

3 , 1
2 ], we claim that for each job class Jk this number of machine

in use is for at most one dense interval less than 2m
3 .

Let α ∈ (1
3 , 1

2 ] and let Dl
k be the first dense interval of job class Jk for which∑

j∈Di
k
mj < 2m

3 . After the creation of this dense interval, all newly created
dense intervals for job class Jk, contain only small jobs with machine requirement
mj > m

3 (otherwise these jobs would have been scheduled in Dl
k or in an earlier

dense interval). This implies that all successively created dense intervals for job
class Jk have at least 2m

3 machines in use. More precisely, they contain two
small jobs with machine requirement mj > m

3 . Furthermore, the existence of Dl
k

implies that Sk contains at least one job with machine requirement mj > m
3 .

So, for each job class Jk there is either one Dl
k with machine usage less than

2m
3 and Sk contains a job with mj > m

3 , or all Di
k have machine usage of at least

2m
3 . Thus, the total load of the small jobs in job class Jk is at least 2m

3β times
the total length of all dense intervals corresponding to this job class. 	


Next we will prove the upper bound on the performance guarantee of the online
algorithm ONα,β .

Theorem 1. For any α ∈ (0, 1
2 ] and β > 1 the competitive ratio of the online al-

gorithm ONα,β for the problem P |online − list, mj|Cmax is at most max{ 1
α , 3β

2 }+
β2

β−1 .

Proof. Let σ be an arbitrary list of jobs and let S(σ) be the corresponding
schedule constructed by the online algorithm ONα,β . We partition [0, ONα,β(σ)]
into three parts: The first part B consists of the intervals in which big jobs are
scheduled, the second part D consists of the dense intervals, and finally the third
part S contains the sparse intervals.

Since part B contains only jobs with machine requirement mj ≥ �α · m�, the
total work load in B is at least α ·m · |B|. According to Lemma 2, the total work
load in D and S is at least 2m

3β · |D|. This work load is also in the optimal offline
schedule. Therefore, min{α · m, 2m

3β } · (|B| + |D|) ≤ m · OPT (σ), or equivalently

|B| + |D| ≤ max{ 1
α

,
3β

2
} · OPT (σ) . (1)

To simplify the arguments for bounding |S|, we normalize the jobs in S(σ)
by letting J0 be the smallest job class, i.e. the smallest processing time of the
small jobs is between 1 and β. Then |Sk| = βk+1. Let k̄ be the largest k for which
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there is a sparse interval in S(σ). Since there is at most one sparse interval for
each job class Jk, the length of S is bounded by

|S| ≤
k̄∑

k=0

|Sk| =
k̄∑

k=0

βk+1 =
βk̄+2 − β

β − 1
.

On the other hand, since Sk̄ is not empty, we know that there is a job in S(σ)
with processing time at least |Sk̄|

β = βk̄. Thus,

|S| ≤ β2

β − 1
· OPT (σ) . (2)

Using Lemma 1, (1) and (2) lead to the following bound on the makespan of
the schedule created by online algorithm ONα,β :

ONα,β(σ) ≤
(

max{ 1
α

,
3β

2
} +

β2

β − 1

)
· OPT (σ) .

Thus, ONα,β has a competitive ratio of at most max{ 1
α , 3β

2 } + β2

β−1 . 	


To find the best possible performance bound of ONα,β , we have to find values
of α and β which minimize the competitive ratio from Theorem 1.

Corollary 1. The worst case bound for ONα,β is minimal if α ≥ 10
3(5+

√
10)

(≈
0.4084) and β = 1+

√
10
5 (≈ 1.6325), leading to a competitive ratio of 7

2 +
√

10 (≈
6.6623).

Proof. If 1
α > 3β

2 then by increasing the value of α, the value of max{ 1
α , 3β

2 } can
be decreased. Therefore, it is best to choose 1

α ≤ 3β
2 . The competitive ratio then

becomes 3β
2 + β2

β−1 . The optimal value for β can be found by differentiating this
term. 	


It is interesting to note that there is not just one setting of α and β that gives
the best performance guarantee, but for β = 1.6325 all α ∈ [0.4084, 0.5] result
in 6.6623-competitiveness of ONα,β .

3 Machines on a Line and Orthogonal Strip Packing

The presented online algorithm also applies to scheduling problems where the
machines are ordered on a line and only adjacent machines can be assigned to a
specific job. To let the presented algorithm apply to this case, we simply specify
that whenever a job j is assigned to some interval, it is scheduled not only at the
start of the interval, but also assigned to the first mj machines available (first
with respect to the line ordering of the machines). This way we can guarantee
that each job j gets assigned to mj adjacent machines and the algorithm still
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gives the same schedule as before. To the best of our knowledge the presented
online algorithm is the first with constant competitive ratio for this problem.
For previous developed online algorithms for P |online − list, mj |Cmax no such
adaptation makes them applicable to this special case.

Since the presented online algorithm also applies to this special case, it ap-
plies to the online orthogonal strip packing problem. The online orthogonal strip
packing problem is a two-dimensional packing problem. Without rotation rec-
tangles have to be packed on a strip with fixed width and unbounded height. The
objective is to minimize the height of the strip used. In the online setting one
rectangle is presented after the other and has to be assigned without knowledge
of successive rectangles.

To see that these problems are equivalent, let the machines correspond to the
width of the strip, and time to the height of the strip. The width of a rectangle j
corresponds to the machine requirement of job j and its height to the processing
time. Minimizing the height of the strip used is equivalent to minimizing the
makespan of the machine scheduling problem.

Although most of the research on online orthogonal strip packing focuses on
asymptotic performance ratios, Baker and Schwarz [1] developed a Shelf Algo-
rithm that has competitive ratio 6.99 under the assumption that the height of a
rectangle is at most 1. So, the presented algorithm not only improves the best
known competitive ratio for online orthogonal strip packing, but also does not
require the assumption on the bounded height.

4 Conclusions

In this paper we presented a new online algorithm for P |online − list, mj |Cmax

with a competitive ratio of 6.6623. Due to the optimization of the parameters
of ONα,β a better online algorithm can only be found by employing new ideas,
both in the design and analysis. There is room for improvement since the gap
with the best lower bound (2.43) is large.

The presented algorithm also applies to the problem where the machines are
ordered on a line and to online orthogonal strip packing. It is an interesting open
question whether or not the additional requirement of a line ordering will lead
to a different competitive ratio of the problem.

Note
In the independent work of Han et al. [3] the same results where obtained in the
setting of online orthogonal strip packing.
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Abstract. Given an integer k ≥ 2, we consider the problem of comput-
ing the smallest real number t(k) such that for each set P of points in the
plane, there exists a t(k)-spanner for P that has chromatic number at
most k. We prove that t(2) = 3, t(3) = 2, t(4) =

√
2, and give upper and

lower bounds on t(k) for k > 4. We also show that for any ε > 0, there
exists a (1 + ε)t(k)-spanner for P that has O(|P |) edges and chromatic
number at most k. Finally, we consider an on-line variant of the problem
where the points of P are given one after another, and the color of a
point must be assigned at the moment the point is given. In this setting,
we prove that t(2) = 3, t(3) = 1 +

√
3, t(4) = 1 +

√
2, and give upper

and lower bounds on t(k) for k > 4.

1 Introduction

Let P be a set of n points in the plane. A geometric graph with vertex set P is
an undirected graph whose edges are line segments that are weighted by their
Euclidean length. For a real number t ≥ 1, such a graph G is called a t-spanner
if the weight of the shortest path in G between any two vertices p and q does not
exceed t|pq|, where |pq| is the Euclidean distance between p and q. The smallest
t having this property is called the stretch factor of the graph G. Thus, a graph
with stretch factor t approximates the

(
n
2

)
distances between the points in P

within a factor of t. The problem of constructing t-spanners with O(n) edges for
any given point set has been studied intensively; see the book by Narasimhan
and Smid [6] for an overview.

In this paper, we consider the problem of computing t-spanners whose chro-
matic number is at most k, for some given value of k. The goal is to minimize
the value of t over all finite sets P of points in the plane. We call a spanner
whose chromatic number is at most k a k-chromatic spanner.

Problem 1. Given an integer k ≥ 2, let t(k) be the infimum of all real numbers t
with the property that for every finite set P of points in the plane, a k-chromatic
t-spanner for P exists. Determine the value of t(k).
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Observe that in the definition of t(k), there is no requirement on the number
of edges of the chromatic spanner. This is not a restriction, because, as shown
by Gudmundsson et al. [5], any t-spanner for P contains a subgraph with O(n)
edges which is a ((1 + ε)t)-spanner for P .

We show how to obtain a 2-chromatic 3-spanner for any point set P , thus
showing that t(2) ≤ 3. We also give an example of a point set P such that any
2-chromatic graph with vertex set P has stretch factor at least three. Thus, we
have t(2) = 3.

Next, we show how to compute a 3-chromatic 2-spanner of any point set P ,
thereby proving that t(3) ≤ 2. We also show, by means of an example, that
t(3) ≥ 2. Thus, we obtain that t(3) = 2. For k = 4, we show how to compute a
4-chromatic

√
2-spanner of any point set P ; thus t(4) ≤

√
2. Again by means of

an example, we also show that t(4) ≥
√

2. Therefore, we have t(4) =
√

2.
For k > 4, we are not able to obtain the exact value of t(k). Inspired by the

ordered Θ-graph of Bose et al. [2], we show that t(k) ≤ 1 + 2 sin π
2(k−1) . We also

show that the vertex set of the regular (k + 1)-gon gives t(k) ≥ 1/ cos π
k+1 .

In the second part of the paper, we consider an on-line variant of the problem
where the points of P are given one after another, and the color of a point
must be assigned at the moment when the point is given; thus, later on, the
color of a point cannot be changed. This makes the problem more difficult.
Consequently, the bounds are higher, but still tight for k = 2, 3, 4. All our bounds
are summarized in Table 1.

Problem 2. Given an integer k ≥ 2, let t′(k) be the infimum of all real numbers
t with the property that for every finite set P of points in the plane, which is
given on-line, a k-chromatic t-spanner for P exists. Determine the value of t′(k).

A simple variant of the ordered Θ-graph shows that t′(k) ≤ 1 + 2 sin(π/k).
Thus, we have t′(2) ≤ 3, t′(3) ≤ 1+

√
3 and t′(4) ≤ 1+

√
2. Since t′(2) ≥ t(2) = 3,

it follows that t′(2) = 3. We also give examples showing that t′(3) ≥ 1 +
√

3 and
t′(4) ≥ 1 +

√
2. We finally show that, for k ≥ 5, t′(k) ≥ 1/ cos π

k .
The rest of this paper is organized as follows: in Section 2, we define the

t-ellipse property and show its relationship to our problem. In Section 3, we
give upper and lower bounds for the off-line problem (Problem 1). In Section 4,
we give give upper and lower bounds for the on-line problem (Problem 2). We
conclude in Section 5. In Table 1, we summarize our results. We now motivate
our work.

Motivation: In a recent paper, Raman and Chebrolu [7] proposed a new pro-
tocol, called 2P, allowing to address rural Internet connectivity in a low-cost
manner using off-the-shelf 802.11 hardware. Since their infrastructure uses sev-
eral directional antennae at one node rather than one single omnidirectional
antenna, simultaneous communications are possible at one node. However, due
to restrictions inherent in the 802.11 standard, backbone nodes have to commu-
nicate with each other using a single channel. While simultaneous transmissions
and simultaneous receptions are possible, it is not physically possible for one
node to both transmit and receive at the same time. Therefore, backbone nodes
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Table 1. Summary of our results

number of colors t(k) (off-line) t′(k) (on-line)

k lower bound upper bound lower bound upper bound

2 3 3 3 3

3 2 2 1 +
√

3 1 +
√

3

4
√

2
√

2 1 +
√

2 1 +
√

2

k 1/ cos π
k+1 1 + 2 sin π

2(k−1) 1/ cos π
k

1 + 2 sin π
k

have to alternate between the send and receive states. This forces the backbone
to be a bipartite graph, i.e., to have chromatic number two.

The backbone creation algorithm of Raman and Chebrolu [7] outputs a tree,
which is obviously bipartite. However, the tree structure presents the following
disadvantage: it is possible that the path that a message has to follow is much
longer than the distance (either Euclidean or in terms of hops) between the
originating node and its destination.

Note that the physical constraint preventing nodes to simultaneously receive
and transmit can be met even if the graph is not bipartite. In fact, any graph
with chromatic number k would meet this requirement: all one has to do is
to prevent two nodes that have different colors to transmit simultaneously. A
degenerate case is when each node has its own color, in which case at most
one node can transmit at any given moment. This case is undesirable, since the
amount of time during which a node can transmit decreases as the size of the
network increases.

For these reasons, it is desirable to have geometric graphs that have both
small chromatic number and small stretch factor.

2 The t-Ellipse Property

In this section, we show that Problem 1, i.e., determining the smallest value of
t such that a k-chromatic t-spanner exists for any point set P , is equivalent to
minimizing the value of t such that any point set can be colored using k colors
in a way that satisfies the so-called t-ellipse property.

Definition 1 (t-ellipse property). Let k ≥ 2 be an integer, let P be a finite
set of points in the plane and let c : P → {1, . . . , k} be a k-coloring of P . We
say that that the coloring c satisfies the t-ellipse property if, for each pair of
distinct points p and q in P with c(p) = c(q), there exists a point r ∈ P such
that c(r) �= c(p) and |pr| + |rq| ≤ t|pq|.

Thus, if p and q have the same color, then the ellipse {x ∈ R
2 : |px|+|xq| ≤ t|pq|}

contains a point r of P whose color is different from that of p and q.

Proposition 1. Let k ≥ 2, let P be a set of points in the plane, and let G be
a k-chromatic t-spanner of P with k-coloring c. Then c satisfies the t-ellipse
property.
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Proof. Let p, q ∈ P be two points with c(p) = c(q). Since G is a t-spanner, there
exists a t-spanning path Π in G from p to q. Let r be the point on Π that is
adjacent to p. Since the length of Π is at most t|pq|, we note that |pr| + |rq| is
at most t|pq|. Since the edge (p, r) is in G, it follows that c(p) �= c(r). Therefore,
c satisfies the t-ellipse property. �	
Proposition 2. Let k ≥ 2, let P be a set of points in the plane, and let c : P →
{1, . . . , k} be a k-coloring of P that satisfies the t-ellipse property. Then, there
exists a k-chromatic t-spanner of P .

Proof. Let Kc(P ) be the complete k-partite graph with vertex set P in which
there is an edge between two points p and q if and only if c(p) �= c(q). By
definition, Kc(P ) is k-colorable. We show that Kc(P ) is a t-spanner of P . Let
p and q be two distinct points of P such that (p, q) is not an edge in Kc(P ).
This means that c(p) = c(q). Since c has the t-ellipse property, there exists a
point r in P such that c(r) �= c(p) and |pr| + |rq| ≤ t|pq|. Since c(r) �= c(p) (and
consequently, c(r) �= c(q)), the edges (p, r) and (r, q) are both in Kc(P ). This
means that (p, r, q) is a t-spanner path in Kc(P ) between p and q. �	
From this point on, unless specified otherwise, we define the stretch factor of a
k-coloring of a point set to be the stretch factor of the complete k-partite graph
induced by this coloring. By Propositions 1 and 2, the problem of determining
t(k) is equivalent to determining the minimum stretch factor of any k-coloring
of any point set.

We conclude this section by showing why it is sufficient to focus on the col-
oring problem without worrying about the number of edges in the spanner. The
following theorem is due to Gudmundsson et al. [5]; its proof is based on the the
well-separated pair decomposition of Callahan and Kosaraju [3].

Theorem 1. [5] Let ε > 0 and t ≥ 1 be constants, let P be a set of n points in
the plane, and let G be a t-spanner of P . There exists a subgraph G′ of G, such
that G′ is a ((1 + ε)t)-spanner of P and G′ has O(n) edges.

Proposition 3. Let k ≥ 2, let P be a set of n points in the plane, and let
c : P → {1, . . . , k} be a k-coloring of P that satisfies the t-ellipse property.
Then, for any constant ε > 0, there exists a k-chromatic ((1 + ε)t)-spanner of P
that has O(n) edges.

Proof. By Proposition 2, there exists a k-chromatic t-spanner G of P . By The-
orem 1, G contains a subgraph G′ with O(n) edges, such that G′ is a ((1 + ε)t)-
spanner of P . Since G is k-chromatic, G′ is k-chromatic as well. �	

3 Upper and Lower Bounds on t(k)

The structure of this section is as follows: For k = 2, 3, and 4, we give coloring
algorithms whose outputs have bounded stretch factor. Then, we show that these
stretch factors are tight by providing point sets for which no coloring algorithm
can achieve a better stretch factor. Then we present our upper and lower bounds
for t(k), when k > 4. We now give the coloring algorithm for k = 2.
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Algorithm 1. Offline 2 Colors
Input: P , a set of points in the plane
Output: c, a 2-coloring of P
1: Compute a Euclidean minimum spanning tree T of P
2: c ← a 2-coloring of T

Lemma 1. For any point set P , the 2-coloring computed by Algorithm 1 has
stretch factor at most 3. Thus, we have t(2) ≤ 3.

Proof. It is sufficient to show that the 2-coloring c computed by Algorithm 1
has the 3-ellipse property. Let p and q be two distinct points in P such that
c(p) = c(q). Observe that (p, q) is not an edge in the minimum spanning tree T .
Let r be the nearest neighbor of p. Since the edge (p, r) is in T , we have r �= q
and c(r) �= c(p). Since r is closer to p than q, we have

|pr| + |rq| ≤ |pr| + |rp| + |pq| = 2|pr| + |pq| ≤ 2|pq| + |pq| = 3|pq|. �	

Lemma 2. For every ε > 0, there exists a point set P such that every 2-coloring
of P has stretch factor at least 3 − ε. Thus, we have t(2) ≥ 3.

Proof. Let n be an odd integer, and let P = {p1, . . . , pn} be the set of vertices
of a regular n-gon given in counter-clockwise order. Let c be an arbitrary 2-
coloring of P . By the pigeonhole principle, there are two points in P which are
adjacent on the n-gon and that have the same color. We may assume without
loss of generality that these two points are p1 and p2. Also, we may assume that
|p1p2| = 1 (see Figure 1, left). Let t be any real number such that c satisfies the
t-ellipse property. Then |p1p3| + 1 ≤ t. But |p1p3| = 2 sin((n − 2)π/2n), which
tends to 2 as n goes to infinity. �	

We now consider the case when k = 3. Our strategy is to construct a graph such
that any coloring of that graph has the 2-ellipse property. We then show that
this graph is 3-colorable.

Lemma 3. The graph G computed by Algorithm 2 is triangle-free.

Proof. Assume that G contains a triangle with vertices p, q, and r. We may
assume without loss of generality that (p, r) was the last edge of this triangle
that was considered by the algorithm. This means that (p, r) is the longest edge
of the triangle. When ei = (p, r) = (pi, qi) in line 4, G already contains the edge
(p, q). Since |pip|+ |pqi| = |pp|+ |pr| ≤ 2|pr| and |piq|+ |qqi| = |pq|+ |qr| ≤ 2|pr|,
the edge (p, r) is not added to G. This is a contradiction and, therefore, G is
triangle-free. �	

Lemma 4. The graph G computed by Algorithm 2 is plane.

Due to space constrains, we omit the proof of this lemma, which can be found
in [1].
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Fig. 1. Left, lower bound of 3 − ε for k = 2. Right, lower bound of 2 − ε for k = 3.

Algorithm 2. Offline 3 Colors
Input: P , a set of n points in the plane
Output: c, a 3-coloring of P , and G, a 3-chromatic graph whose vertex set is P
1: Let G be the graph with vertex set P and whose edge set is empty
2: Let e1, . . . , e(n

2)
be the pairs of points of P in sorted order of their distances

3: for i = 1 to
�

n
2

�
do

4: Let ei = (pi, qi)
5: if G contains no edge (p, q) where |pip|+ |pqi| ≤ 2|piqi| and |piq|+ |qqi| ≤ 2|piqi|

then
6: add the edge ei to G
7: end if
8: end for
9: //assertion: G is 3-colorable (see Lemma 5)

10: c ← a 3-coloring of G

Lemma 5. The graph G computed by Algorithm 2 is 3-colorable.

Proof. By Lemmas 3 and Lemma 4, G is plane and triangle-free. It is known
that such a graph is 3-colorable; see [4],[8]. �	

Lemma 6. For any point set P , the 3-coloring of P computed by Algorithm 2
has stretch factor at most 2. Thus, we have t(3) ≤ 2.

Proof. It is sufficient to show that the 3-coloring c produced by Algorithm 2 has
the 2-ellipse property. Let p and q be points in P such that c(p) = c(q). Let E be
the ellipse whose boundary is the set of points e such that |pe|+|eq| = 2|pq|. Since
(p, q) is not an edge in G, G must contain an edge (s, t) whose two endpoints
are inside E. Since c(s) �= c(t), at least one of s and t has a different color than
p and q. Without loss of generality, s is that point. Since s is inside E, we have
that |ps| + |sq| ≤ 2|pq|. �	

Lemma 7. For every ε > 0, there exists a point set P such that every 3-coloring
of P has stretch factor at least 2 − ε. Thus, we have t(3) ≥ 2.
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Proof. Let n be an odd integer, and let P = {p1, . . . , pn, q1, . . . , qn} where the pi’s
are the vertices of a regular n-gon given in counter-clockwise order, and the qi’s
are such that the triangles Ti = (qi, pi, pi+1) are equilateral with interior lying
outside the n-gon (indices are taken modulo n); see Figure 1, right. Now consider
the set of triangles T = {T1, . . . , Tn, U1, . . . , Un}, where Ui = (qi−1, pi, qi). A
simple parity argument shows that, for any 3-coloring of P , there is at least
one triangle of T that has two vertices u and v that are assigned the same
color. If this triangle is a Ti, then the stretch factor between u and v is at least
2. If this triangle is a Ui, then the stretch factor between u and v is at least
1/ sin((n + 6)π/6n), which tends to 2 as n goes to infinity. �	

Next, we consider the case when k = 4. For this case, we simply use the Delaunay
triangulation to find a 4-coloring. We then show that this coloring satisfies the√

2-ellipse property.

Algorithm 3. Offline 4 Colors
Input: P , a set of points in the plane
Output: c, a 4-coloring of P
1: Compute the Delaunay triangulation D of P
2: c ← a 4-coloring of D

Lemma 8. For any point set P , the 4-coloring of P computed by Algorithm 3
has stretch factor at most

√
2. Thus, we have t(4) ≤

√
2.

Proof. It is sufficient to show that the coloring c computed by Algorithm 3 has
the

√
2-ellipse property. Let p and q be points of P such that c(p) = c(q). Since

(p, q) is not an edge in the Delaunay triangulation, the circle C whose diameter
is pq contains at least one point of P . For a point r inside C, let D(r) be the
circle through p and r whose center is on pq (see Figure 3, left). Let r0 be the
point inside C such that D(r0) has minimum diameter. Then, D(r0) is an empty
circle with p and r0 on its boundary, which means that (p, r0) is a Delaunay edge.
Therefore, c(r0) �= c(p), and since r0 is in C, we have |pr0| + |r0q| ≤

√
2|pq|. �	

Lemma 9. For every ε > 0, there exists a point set P such that every 4-coloring
of P has stretch factor at least

√
2 − ε. Thus, we have t(4) ≥

√
2.

Proof. Let n be an odd integer, and let P = {p1, . . . , pn, q1, . . . , qn}, where the
pi’s are the vertices of a regular n-gon, the qi’s are the vertices of a larger regular
n-gon with the same center, and |qipi| = |pipi+1| for all i; refer to Figure 3, right.
Let Qi be the quadrilateral (pi, pi+1, qi+1, qi). A simple parity argument shows
that for any 4-coloring of P , there is at least one Qi that has two vertices u and
v that are assigned the same color. The stretch factor between u and v is then
at least 1/ sin((n + 2)π/4n), which tends to

√
2 when n goes to infinity. �	

Our general algorithm for values k > 4 uses ideas from the ordered Θ-graph of
Bose et al. [2]. We take advantage of the fact that we are in an off-line context,
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Fig. 2. Left, upper bound of
√
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√

2 − ε for k = 4.

so that we can sort the points according to their y-coordinates. We process the
points one by one from the lowest to the highest, splitting the half-plane below
the current point p being processed into k−1 cones of angle π/(k−1) and having
their apex at p. For each such cone cj , we take the point rj in cj that is closest
to p. Then we assign p a color that has not been assigned to any of the rj ’s. The
fact that this algorithm uses at most k colors is straightforward, since there are
at most k − 1 such rj .

Algorithm 4. Offline k Colors
Input: P , a set of points in the plane
Output: c, a k-coloring of P
1: Let p1, . . . , pn be the points of P sorted in non-decreasing order of y-coordinates
2: for i = 1 to n do
3: partition the half-plane below pi into k − 1 cones of angle θ = π/(k − 1) and

apex pi

4: for each cone cj , let rj be the point in cj that is closest to pi

5: c(pi) ← min{l > 0 : ∀rj , c(rj) �= l}
6: end for

Lemma 10. For k > 4, we have t(k) ≤ 1 + 2 sin(π/(2k − 2)).

Proof. Let p and q be points of P such that c(p) = c(q). We may assume without
loss of generality that qy ≤ py. Let c be the cone with apex at p that contains
q in line 4 of Algorithm 4, let r be the nearest neighbor of p in c, let r′ be the
intersection between the ray emanating from p through r and the circle centered
at p with radius |pq|, and let α = ∠rpq (see Figure 3). Then,

|pr| + |rq| ≤ |pr| + |rr′| + |r′q| = |pq| + |r′q|
= |pq| + 2 sin

α

2
|pq| ≤ (1 + 2 sin

π

2(k − 1)
)|pq|.
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Fig. 4. Illustration of the proof of Lemma 11

It follows that the coloring computed by Algorithm 4 has the (1 + 2 sin(π/(2k −
2))-ellipse property. The result follows from the fact that c(r) �= c(p) and that
Algorithm 4 uses at most k colors. �	

Lemma 11. Let p, q, r be three distinct vertices of a regular (k + 1)-gon. Then
the ratio (|pr| + |rq|)/|pq| is at least 1/ cos( π

k+1 ) and this value is achieved when
p, r, and q are consecutive vertices.

Proof. For fixed p and q, the ratio (|pr| + |rq|)/|pq| is minimized when r is
adjacent to either p or q. In that case, the angle α = ∠qpr = π/(k+1). We show
that for a fixed point p and three consecutive vertices pi−1, pi and pi+1 of the
regular (k + 1)-gon such that |ppi−1| < |ppi| < |ppi+1| (see Figure 4) the ratio
(|ppi−1| + |pi−1pi|)/|ppi| is smaller than (|ppi| + |pipi+1|)/|ppi+1| and the result
follows.

Without loss of generality, pi−1, pi and pi+1 are in clockwise order. Let p′i−1

and p′i be the rotation of pi−1 and pi around p by a clockwise angle of α. Also, let
p∗i be the intersection of ppi with the parallel line to pipi+1 through p′i. Triangle
pp∗i p

′
i is similar to triangle ppipi+1. Therefore,

(|ppi| + |pipi+1|)/|ppi+1| = (|pp∗i | + |p∗i p′i|)/|pp′i|
= (|pp′i−1| + |p′i−1p

∗
i | + |p∗i p′i|)/|pp′i|

> (|pp′i−1| + |p′i−1p
′
i|)/|pp′i|

= (|ppi−1| + |pi−1pi|)/|ppi|.

Therefore, the ratio (|ppi−1|+ |pi−1pi|)/|ppi| is minimized when pi−1 is adjacent
to p. �	
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Lemma 12. For k > 4, we have t(k) ≥ 1/ cos( π
k+1 ).

Proof. Let P = {p1, . . . , pk+1} be the vertex set of a regular (k + 1)-gon. By
Lemma 11, for any three distinct points p, q, and r in P , the ratio (|pr|+|rq|)/|pq|
is at least 1/ cos( π

k+1 ) and this value is achieved when p, r, and q are consecutive
vertices.

By the pigeonhole principle, any k-coloring of P has to assign the same color
to at least two points, say p and q. By the argument above, the stretch factor
between p and q is at least 1/ cos( π

k+1 ). �	

The constructions we have shown in this section use a quadratic number of edges
since we consider the complete k-partite graph induced by the coloring of the
points. To reduce this to a linear number of edges we apply Proposition 3, which
slightly increases the stretch factor, giving us the following:

Theorem 2. The following are true:

1. For any point set P in the plane, the complete k-partite graph induced by
the k-coloring of P computed by the above algorithms has a stretch factor
at most 3, 2,

√
2, and 1 + 2 sin π

2(k+1) for k = 2, k = 3, k = 4, k > 4,
respectively.

2. For any ε > 0, there exist point sets such that no coloring algorithm can
compute a k-coloring that has the t-ellipse property for t smaller than 3 − ε,
2 − ε,

√
2 − ε, and 1/ cos π

k+1 for k = 2, k = 3, k = 4, k > 4, respectively.
3. Thus, we have t(2) = 3, t(3) = 2, t(4) =

√
2, and 1 + 2 sin π

2(k+1) ≥ t(k) ≥
1/ cos π

k+1 for k > 4.
4. It is possible to obtain a ((1 + ε)t(k))-spanner that has O(|P |) edges, from

the coloring computed by the above algorithms.

4 Upper and Lower Bounds on t′(k)

Recall that in the on-line setting, the algorithm receives the points of P one at
a time and assigns a color to a point as soon as it receives it. It cannot change
the color of a point after this assignment. Naturally, this setting is more difficult
which is reflected by higher bounds for t′(3) and t′(4). However, we are still able
to give the exact value of t′(k) for k = 2, 3, 4 and provide upper and lower bounds
when k > 4. In the online setting, we actually provide a general algorithm that
is the same for all values of k ≥ 2. Although it is similar to Algorithm 4, there
are at least two important differences. First, since we are in an on-line setting, we
cannot process the points in the order of their y-coordinates. Therefore, we have
to use cones with an angle greater than π/(k − 1). If we choose the cones a priori
as we do in Algorithm 4, we obtain cones whose angle is 2π/(k − 1). However, by
aligning the cone’s bisectors on the points that are chosen to be neighbors, we can
get a slightly better stretch factor, since in this case, the angle is reduced to 2π/k.

Lemma 13. For k ≥ 2, Algorithm 5 computes a k-coloring that has the t-ellipse
property for t = 1 + 2 sin(π/k). Thus, we have t′(k) ≤ 1 + 2 sin(π/k).
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Algorithm 5. Online k Colors
Input: P , an arbitrarily ordered list of points in the plane
Output: c, a k-coloring of P
1: Let p1, . . . , pn be the points of P in the given order
2: for i = 1 to n do
3: Pi ← {p1, . . . , pi−1}
4: j ← 0
5: while Pi �= ∅ do
6: j ← j + 1
7: rj ← a nearest neighbor of pi in Pi

8: Pi ← Pi \ {rj}
9: for each q ∈ Pi do

10: if ∠qpirj ≤ 2π/k then
11: Pi ← Pi \ {q}
12: end if
13: end for
14: end while
15: c(pi) ← min{l > 0 | ∀rj , c(rj) �= l}
16: end for

Proof. Algorithm 5 produces a k-coloring, because each pi selects at most k − 1
points rj . If there were more than k − 1 such points, then two of them would
form an angle of 2π/k or less around pi. However, this situation cannot occur
because of lines 10 and 11. The proof on the stretch factor is identical to the one
given in Lemma 10. �	

Corollary 1. We have t′(2) ≤ 3, t′(3) ≤ 1 +
√

3 and t′(4) ≤ 1 +
√

2.

Since an off-line lower bound also provides an on-line lower bound, we have
t′(2) ≥ t(2) = 3. It follows that t′(2) = 3. We now prove that Algorithm 5 is also
optimal for k = 3 and 4.

Lemma 14. Let A be an arbitrary on-line coloring algorithm that guarantees a
3-coloring that has the t-ellipse property. Then its stretch factor, t, is at least
1 +

√
3.

Proof. The proof is by an adversarial argument, where the adversary forces a
stretch factor of at least 1 +

√
3. The main objective of the adversary is to force

A to assign different colors to the vertices of an equilateral triangle. Then, the
next point is placed in the center of this triangle (see Figure 5(a)). This results
in a stretch factor of 1 +

√
3.

Consider Figure 5(b), where the points are numbered by the order of insertion.
Up to symmetry, there is only one way to assign colors to points p1 to p6 such that
t < 1 +

√
3 (e.g., c(p1) = red, c(p2) = blue, c(p3) = red, c(p4) = green, c(p5) =

green, c(p6) = green). The key property is that the points p3, p4 and p5 must
be assigned the same color that is different from the colors assigned to the first
three points. If any of these conditions is violated, then the spanning ratio is at
least 1 +

√
3.



86 P. Bose et al.

(a) (b)
p1 p2

p3

p4

p5 p6

p1 p3

p4

p5

p6 p7

(c)
p2

p8

p9

p11 p10

p12

Fig. 5. Online lower bound of 1 +
√

3 for k = 3

p1 = (0, 4)

p6 = (0, 2)

p3 = (0, 0)

p4 = (2, 2)

p2 = (4, 0)

p7 = (1, 1)

p5 = (2, 0)

Fig. 6. Online lower bound of 1 +
√

2 for k = 4

Next, consider Figure 5(c), where the point set of Figure 5(b) is reproduced
twice. Consider triangles 
(p3, p5, p7), 
(p3, p9, p11) and 
(p3, p7, p11) after the
insertion of p11. At least one of these triangles has to be assigned three different
colors, otherwise, the stretch factor would already be 1 +

√
3. Assume w.l.o.g.

that triangle 
(p3, p7, p11) is assigned three different colors then by the insertion
of point p12 in the center of the triangle, we force a spanning ratio of 1 +

√
3, as

required. �	

Lemma 15. Let A be an arbitrary on-line coloring algorithm that guarantees a
4-coloring that has the t-ellipse property. Then the stretch factor, t is at least
1 +

√
2.

Proof. Consider the point set depicted in Figure 6. A must assign different colors
to p3, p4, p5 and p6, otherwise the stretch factor will already be greater than
1 +

√
2. Upon introduction of p7, A must assign it the same color as one of

p3, p4, p5 or p6. The stretch factor between p7 and that point is 1 +
√

2. �	

Lemma 16. Let A be an arbitrary on-line coloring algorithm that guarantees a
k-coloring that has the t-ellipse property. Then the stretch factor, t, is at least
1/ cos(π

k ).

Proof. Let P = {p1, . . . , pk, q}, where the pi’ are the vertices of a regular k-gon
K and q is the center of the circumcircle of K. If, after processing p1 to pk, A
assigned the same color to two points, then as in Lemma 12, the stretch factor is
1/ cos(π

k ). Otherwise, all pi are assigned different colors. When q is introduced,
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the color A assigns to it has already been assigned to some other point p. In that
case, the stretch factor for the edge (q, p) is 1 + 4 sin(π/2k) > 1/ cos(π

k ). �	

The constructions we have shown in this section use a quadratic number of edges
since we consider the complete k-partite graph induced by the coloring of the
points. To reduce this to a linear number of edges we apply Proposition 3, which
slightly increases the stretch factor, giving us the following:

Theorem 3. The following are true:

1. For any sequence P of points in the plane, the complete k-partite graph
induced by the on-line k-coloring of P computed by the above algorithms has
a stretch factor at most 3, 1 +

√
3, 1 +

√
2, and 1 + 2 sin π

k for k = 2, k = 3,
k = 4, k > 4, respectively.

2. For any ε > 0, there exist point sets such that no on-line coloring algorithm
can compute an on-line k-coloring that has the t-ellipse property for t smaller
than 3 − ε, 1 +

√
3 − ε, 1 +

√
2 − ε, and 1/ cos π

k for k = 2, k = 3, k = 4,
k > 4, respectively.

3. Thus, we have t′(2) = 3, t′(3) = 1 +
√

3, t′(4) = 1 +
√

2, and 1 + 2 sin π
k ≥

t′(k) ≥ 1/ cos π
k for k > 4.

4. It is possible to obtain a ((1 + ε)t′(k))-spanner that has O(|P |) edges, from
the coloring computed by the above algorithms.

5 Conclusion

In this paper, we investigated the problem of computing a spanner of a point set
that has chromatic number k. For small values of k (k ≤ 4), we provided tight
upper and lower bounds on the smallest possible stretch factor of such spanners.
For larger values of k, we provided general upper and lower bounds which, un-
fortunately, are not tight. Our construction algorithms show how to color a point
set with k colors such that the complete k-partite graph induced by this coloring
has the stated stretch factor. The number of edges in these graphs can be reduced
from quadratic to linear with a slight increase in the spanning ratio by applying
the general technique of Gudmundsson et al. [5]. An interesting open problem in
this setting of the problem is to find tight upper and lower bounds when k > 4.

We also considered an on-line variant of this problem where the points are
presented sequentially and our algorithm assigns a color to each point upon
reception such that the complete k-partite graph induced by the coloring is a
constant spanner. Again, for small values of k (k ≤ 4), we provided tight upper
and lower bounds on the smallest possible stretch factor of such spanners and
for k > 4, we provided general upper and lower bounds that are not tight. A
linear-sized spanner can be constructed after all the points have been colored
by applying the technique of Gudmundsson et al. [5]. However, in this case,
our algorithm for computing the linear-sized constant spanner is not on-line.
Therefore, there are two open problems in the on-line setting. First, to close the
gap between the upper and lower bound for k > 4. Second, provide an on-line
algorithm that computes the linear-sized constant spanner.
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Abstract. Assume that a set of imprecise points is given, where each
point is specified by a region in which the point will lie. Such a region can
be modelled as a circle, square, line segment, etc. We study the problem
of maximising the area of the convex hull of such a set. We prove NP-
hardness when the imprecise points are modelled as line segments, and
give linear time approximation schemes for a variety of models, based on
the core-set paradigm.

1 Introduction

In computational geometry, many fundamental problems take a point set as
input on which some computation is done, for example to determine the convex
hull, the Voronoi diagram, or a travelling sales route. These problems have been
studied for decades. The vast majority of research assumes the locations of the
input points to be known exactly. In practice, however, this is often not the case.
Coordinates of the points may have been obtained from the real world, using
equipment that has some error interval, or they may have been stored as floating
points with a limited number of decimals. In real applications, it is important
to be able to deal with such imprecise points.

When considering imprecise points, various interesting questions arise. Some-
times it is sufficient to know just some possible solution, which can be achieved
by applying existing algorithms to some point set that is possibly the true point
set. More information about the outcome can be obtained by computing a proba-
bility distribution over all possibilities, for example using Monte Carlo methods.
In many applications it is also important to know concrete lower and upper
bounds on some measure on the outcome, given concrete bounds on the input.

There are a number of basic geometric measures on point sets, such as the
diameter, the size of the smallest enclosing circle, the area of the convex hull,
etc. For most of these measures the lower and upper bounds can be computed
exactly in an efficient way [15], as is summarised in Table 1. However, there are
a few problems for which no efficient exact algorithm is known.
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Table 1. Exact algorithms for basic geometric measures on imprecise point sets, when
the imprecision of a point is modelled as a square region. The O(n7) result for the
largest area convex hull only applies for disjoint squares, see Table 2.

structure smallest largest

diameter O(n log n) [15] O(n log n) [15]
closest pair O(n log n) [15] NP-hard [6]
smallest enclosing circle O(n) [11] O(n) [15]
convex hull (area) O(n2) [14] O(n7) [14]
minimum spanning tree NP-hard [14] open

Table 2. New and previous results for maximising convex hull area of a set of imprecise
points

model restrictions exact algorithm approximation scheme

line segments parallel O(n3) [14] O(n + η3)

line segments - O(2nn log n) (NP-hard) O(n) + 2O(η2)

squares disjoint O(n7) [14] O(n + η14)
squares equal size O(n5) [14] O(n + η12)
squares disjoint and equal size O(n3) [14] O(n + η12)

squares - O(4nn log n) O(n) + 2O(η2)

k-gons disjoint or equal size nO(k) O(n) + 2O(k log η)

k-gons - O(knn log n) O(n) + 2O(η2 log k)

circles disjoint or equal size O(n) + 2O(
√

η log η)

circles - O(n) + 2O(η2 log η)

In [13,14], we studied a wide range of problems concerning the convex hull of
imprecise points. We varied the imprecision model (line segment, square, circle),
the objective function (area, perimeter), the goal (maximisation, minimisation),
and the restrictions on the input (equal size, disjoint, no restrictions). It appeared
that the maximisation of area variant (see Figure 1(a)) was one of the hardest,
where we found many polynomial time algorithms of rather high degree, and
were unable to find any polynomial time algorithm for several variants.

Here we present linear time approximation schemes for all variants of the
largest area convex hull problem. The algorithms are all of the form O(n+f(η)),
where n is the input size and 1

η = ε is the required precision of the answer. The
dependence on n is linear, provided that the ceiling operation can be performed
in constant time. The dependence on η is polynomial if we have a polynomial time
exact algorithm to solve the problem, and superpolynomial otherwise. We also
prove NP-hardness of one of the problems for which no polynomial time exact
algorithm is known. Our previous exact results and new approximate results are
summarised in Table 2.

A lot of research about imprecision in computational geometry is directed at
computational imprecision [16]. Recently, however, interest in exact approaches
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to deal with data imprecision is growing [1,4,9,12]. A more extensive overview
of related work in this area is given in [14].

The core-set framework, introduced by Agarwal and Har-Peled [2], is a pow-
erful way to obtain approximation algorithms, and still an active research topic
[3,7,8]. In this framework, a point set P is given, and the problem is to maximise
some measure μ(P ). To do this, one constructs a core-set P ′ ⊂ P , such that
μ(P ′) > (1 − ε)μ(P ). The size of the core-set must only depend on ε, and not
on n (or sublinearly on n, depending on the application). Now the total running
time of the algorithm is the time it takes to construct P ′, and the time it takes to
compute μ(P ′), where the second step does not depend on n. If the first part can
be done in linear time, one obtains a linear time approximation scheme (LTAS)
[5]. A good survey on core-sets is provided by Agarwal et al. [3].

We generalise the concept of core-sets to sets of imprecise points. We are not
given a set of points, but a set of regions. A core-set of such a set is still a subset
of bounded size that guarantees a good solution. However, the criteria to include
a region in the core-set become more elaborate; in some cases they depend on the
size and shape of a region as well as its location, rather than only on its location,
as is usually the case. For the classical (precise) convex hull problem it is well
known that a small core-set always exists [3]. This immediately implies that a
core-set for the imprecise convex hull problem exists as well: take a core-set for
the optimal solution. In the remainder of this paper we show how to compute
such core-sets efficiently.

(a)

V

W

XV ′

W ′ Y

M N

(b)

Fig. 1. (a) The maximum area convex hull for a set of imprecise points modelled as
squares. (b) There are vertices in X−V ′, and from these vertices there is an augmenting
path that ends in either V ′ − X or Y − W ′.

2 Preliminaries

Before treating the main results, we first give some small results that are inde-
pendent of the rest of the text, but are needed in some of the proofs.

Let G be a bipartite graph with two sets of vertices V and W , and a set of
edges E ⊂ V ×W . Let M ⊂ E be a maximum matching of G, and let V ′ ⊂ V and
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W ′ ⊂ W be the two vertex sets that are used by M . A matching between two
subsets A ⊂ V and B ⊂ W is called perfect if it consists of exactly min(|A|, |B|)
edges.

Lemma 1. For every subset Y ⊂ W , if there is a perfect matching between V
and Y then there is also a perfect matching between V ′ and Y .

Proof. Suppose the theorem is false. Let Y ⊂ W be a subset of W such that there
exists a perfect matching between V and Y , but no perfect matching between
V ′ and Y . Let N ⊂ E be the matching among all perfect matchings between V
and Y that uses the largest number of vertices of V ′. Let X ⊂ V be the set of
vertices used by N , apart from Y . Then X �⊂ V ′, so there is a vertex x ∈ X with
x /∈ V ′, see Figure 1(b).

Now start an augmenting path from x that uses only edges of M ∪ N . This
path takes alternating edges from N and from M , since no two from the same set
can use the same vertex. Therefore, this path ends either in a vertex v ∈ V ′ −X
or in a vertex w ∈ Y −W ′. In the first case, we have a perfect matching between
X − {x} ∪ {v} and Y , which is in contradiction with the choice of N . In the
second case, we have a perfect matching between V ′ ∪{x} and W ′ ∪ {w}, which
contradicts the maximality of M .

Lemma 2. Let P be a set of n points. The diameter and width of P can be
approximated within a factor

√
2 in O(n) time.

Proof. The proof is elementary, and can be found in the full paper.

3 NP-Hardness

Problem 1. Given a set of line segments, choose a point on each segment such
that the area of the convex hull of the resulting point set is as large as possible.

This problem is NP-hard, and we prove this by reduction from SAT. The full
proof can be found in [13]; here we merely sketch the basic idea. We start with
a large circle, and divide it into enough arcs, see Figure 2(a). We separate these

(a)

t f

Pb
Qb

l r

(b)

s

l r

(c)

Fig. 2. The division of the circle into independent arcs. (b) A variable. (c) A clause.
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arcs by precise points. The solution will contain at least the convex hull of these
precise points. We will make sure never to place any line segments outside this
circle, so maximising the area of the convex hull is now equal to maximising the
sum of the areas within the arcs.

For each Boolean variable b in the SAT instance, we add the configuration of
Figure 2(b) inside an empty arc. We can only use one of the points t and f , so
for a maximal area we need either all points Pb or all points Qb. For each clause
we add a single point s inside an empty arc, see Figure 2(c). We include an edge
between s and every variable in this clause. Now an assignment to the variables
to satisfy the SAT instance can be made if and only if a solution to the convex
hull maximisation problem of maximal area exists. All points can be chosen with
rational coordinates of polynomial complexity.

Theorem 1. Given a set of n arbitrarily oriented, possibly intersecting line seg-
ments, the problem of choosing a point on each segment such that the area of
the convex hull of the resulting point set is as large as possible is NP-hard. The
decision version of the problem is NP-complete.

4 Approximation

We study the problem of finding the largest convex hull for a set of imprecise
points. We are given a set L ⊂ P(R2) of imprecise points; that is, L is a set of
subsets of R

2. We want to find a core-set L′ ⊂ L with respect to the measure
μ, where μ measures the area of the largest possible convex hull. We model the
imprecise points as line segments, squares and circles. We are always looking for
a (1 − ε)-approximation, and we also denote η = ε−1.

4.1 Parallel Line Segments

Problem 2. Given a set of parallel line segments, choose a point on each seg-
ment such that the area of the convex hull of the resulting point set is as large
as possible.

We can solve this problem exactly in O(n3) time, using a dynamic programming
solution [14].

Core-Set Construction. Assume that there are a point pl on the leftmost segment
and a point pr on the rightmost segment that have the same y-coordinate. We
can do this without loss of generality, because we can freely skew the problem
without changing any areas.

Let L be the set of input segments. We will select a core-set L′ ⊂ L of at most
16η segments. Let w be the difference in x-coordinates between pl and pr, and
let h be the maximal difference in y-coordinate between any two vertices of the
optimal solution. Let δ = 1

4ε · w. We will now divide the plane into 4η vertical
strips of width δ, see Figure 3(a). In each strip, we take the two topmost and
the two bottommost endpoints and add the segments they belong to to L′.
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Fig. 3. (a) A set of parallel line segments divided in vertical strips. (b) There is a
solution S with area 1

2wh, so S∗ is at least as large. (c) In one strip, the horizontal
difference between the points in S∗ and S′ is at most δ.

Proof of L′ being a Core-Set. Let S∗ be the optimal solution for L, the original
input, and let S′∗ be the optimal solution for L′. The area of S∗ is at least
1
2wh, see Figure 3(b). We prove that the area difference between S∗ and S′∗ is
a fraction of this area, dependent on ε.

Lemma 3. There exists a solution S′ for L′ with a difference to S∗ of at most
2δh.

Proof. For each vertical strip, let pt be the topmost vertex of S∗ within that strip
and pb the bottommost vertex. Since pt and pb cannot be endpoints of the same
segment, there are points p′t and p′b in L′ such that p′t is equal to or above pt,
and p′b is equal to or below pb, and they are not endpoints of the same segment,
see Figure 3(c). Use these points in S′. If there are no vertices of S∗ in the strip,
we just skip it. We know that S′ is a valid solution for L, so S′ ≤ S∗. On the
other hand, because of the above, S∗ can never be larger than S′ with a strip of
horizontal width δ around it: the Minkowski sum of S′ and the horizontal line
segment from (−δ, 0) to (δ, 0). So S∗ ≤ S′ + 2δh.

Putting it all together, we have S′∗ ≥ S′ ≥ S∗−2δh = S∗− 1
2εwh ≥ S∗−εS∗ =

(1 − ε)S∗.
As mentioned earlier, we assume that the ceiling operation can be performed

in constant time. This is necessary to put the segments into the correct strips
in linear time. Without this assumption, the algorithm can be made to run in
O(n log η) time.

Theorem 2. We can compute a core-set of size O(η) for Problem 2 in O(n)
time.

This problem can be solved exactly in O(n3), and therefore approximated in
O(n + η3) time.

4.2 Arbitrary Line Segments

Problem 3. Given a set of line segments, choose a point on each segment such
that the area of the convex hull of the resulting point set is as large as possible.

As we proved in Section 3, this problem is NP-hard. However, for the core-
set approach, we do need an exact algorithm. There exists an optimal solution
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that has every point on an endpoint of its segment. Therefore we can solve the
problem in O(2nn log n) time by computing the convex hull of every possible set
of endpoints. Of course this can be improved slightly.

Core-Set Construction. For technical reasons, we need to scale the input to
ensure that the width and diameter of the set of endpoints are not too different
(the input is not too narrow). Note that we can freely do this as it does not
influence the relative area of any solution. We can ensure that the ratio between
the width and diameter is at most 4

√
2.

Let lmax be the longest segment in L. We put lmax in L′. Let p and q be two
points of the vertex set of L − {lmax} that approximate its diameter within a
factor 2. Call the direction from p to q e1, and the direction perpendicular to
this e2. Determine the axis-parallel bounding box B of L−{lmax} in the (e1, e2)
axis system. Let w be the width (the maximum extent in the e1 direction) of B,
and h the height (the maximum extent in the e2 direction) of B. Assume that
w ≥ h, and exchange axes otherwise.

Divide B into 1024η by 1024η grid cells, see Figure 4(a). The cells are δ1 =
ε

1024w long in the e1 direction, and δ2 = ε
1024h long in the e2 direction. Consider

the bipartite graph where one set of nodes corresponds to the set of line segments
L − {lmax}, and the other set corresponds to the cells of the grid. There is an
edge between segment l and cell c if one of the endpoints of l is in c. Let M be a
maximum matching of this graph, and add all segments that occur in M to L′.

B

�e1

�e2

(a)

p
qB

r

>
1
2h

>
1
2w

lmax

(b)

S
∗

S
′

lmax

(c)

Fig. 4. (a) A set of line segments divided according to their cells. (b) In the narrow
case, there is a solution with area at least 1

8wh. (c) In one cell, the horizontal difference
between the points in S∗ and S′ is at most δ1, and the vertical difference is at most δ2.

Proof of L′ being a Core-Set. Let S∗ be the optimal solution for L, the original
input, and let S′∗ be the optimal solution for L′, the core-set. Let A denote an
amount of area: A = area(B) + g · w, where g is the distance from the centre
of B to the furthest endpoint of lmax . We will first show that the area of S∗ is
at least a constant fraction of A. Then we will show that the difference in area
between S∗ and S′∗ is only an ε-dependent fraction of A.

Lemma 4. The area of S∗ is at least 1
128 times the area of B.

Proof. We distinguish two cases. If B is narrow, that is, h < 1
16w, see Figure 4(b),

then there exist two points p and q among the endpoints of L−{lmax} such that
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the distance between them is at least 1
2w, and they are not endpoints of the

same segment. There also exists a point r that is an endpoint of lmax that is at
least (2

√
2−1)h away from B, since we know that the width of the original input

was at least 1
8

√
2 times the diameter. Now r has to be at least (2

√
2 − 2)h > 1

2h
away from the line extending pq, so the area of 	pqr is at least 1

8wh.
If B is not narrow, that is, h ≥ 1

16w, there exist three points p, q and r among
the endpoints of L − {lmax} such that the distance between any pair is at least
h, otherwise there would be a smaller bounding box. If they are all endpoint
of different segments, 	pqr is a valid solution of area at least 1

4h2 > 1
64wh.

Otherwise, one of the segments has length at least h, and therefore also lmax

has length at least h. Suppose p and q are endpoints of the same segment. Now
there has to be an endpoint s of lmax such that s is at least 1

2h away from either
the line extending pr or the line extending qr. This means that either 	prs or
	qrs (or both) has area at least 1

8h2 > 1
128wh.

In both cases we have a valid solution with an area of at least 1
128wh, so the

area of the optimal solution will also be at least 1
128wh.

Lemma 5. The area of S∗ is at least 1
128gw.

Proof. There must be at least two points belonging to different line segments in
B that are half the diameter apart. Because the original input was scaled to be
not narrow, there must be one endpoint of lmax far enough away in the direction
perpendicular to the diameter of B. These three points form a triangle with the
required area. The complete proof is in the full paper.

As a consequence of these lemmata, we now know that the area of S∗ is at
least a constant fraction of A: area(S∗) ≥ 1

256A.

Lemma 6. There exists a solution S′ for L′ such that the difference between
the areas of S′ and S∗ is at most ε

256 times A.

Proof. Let Y be the set of grid cells used by the optimal solution S∗. There
exists a perfect matching between L and Y , otherwise S∗ would not be possible.
By Lemma 1, we know that there is also a perfect matching between L′ and Y .
Let S′ be the convex hull of the point set that realises this matching, and uses
the same endpoint of lmax as S∗. Then for each vertex of S∗ there is a point of
S′ in the same grid cell. Going from S∗ to S′, all vertices can move a distance of
δ1 in the e1 direction, and δ2 in the e2 direction, see Figure 4(c). In the worst
case, the transformed solution has a complete ‘band’ around it. The area of such
a band is composed of two triangles incident to lmax , which together are smaller
than (δ1 + δ2)d, and a part that lies completely within B, which is smaller than
2δ1h + 2δ2w. In total this is smaller than ε

256A.
We need that the optimal solution of L′ is at least (1 − ε) times as large as

the optimal solution of L. By Lemma 6, there is a solution S′ of L′ with an area
of at most ε

256A away from the area of S∗. Furthermore, by Lemmata 4 and 5
we know that the area of S∗ is at least 1

256A. Therefore we have S′∗ ≥ S′ ≥
S∗ − ε

256A ≥ S∗ − ε
256256S∗ = (1 − ε)S∗.
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Running Time Analysis. To ensure that the input L is not too skinny, we need
to compute an approximate bounding box of the endpoints, which can be done
in linear time, according to Lemma 2. Again, we need to perform the ceiling
operation to allocate the endpoints of the segments to the right cells of the grid.

To compute a maximum matching, we can use the algorithm by Hopcroft and
Karp [10], which runs in O(

√
|V ||E|) time. In our case, we have n − 1 nodes on

the left side and 220η2 nodes on the right side, and every left node has degree
2. When there are more than two left nodes that are connected to the same
two right nodes, we will never use more than two of them, so we can reduce
the number of left nodes to at most 2 · 240η4 by using radix sort. The number
of edges is twice the number of left nodes. Now we can compute a maximum
matching in O(η6) time. In total this takes O(n + η6) time.

Theorem 3. We can compute a core-set of size O(η2) for Problem 3 in O(n+η6)
time.

The problem is NP-hard, so unless P=NP there is no polynomial time exact
algorithm. A trivial approach takes O(2nn log n) time. Using this, we achieve an
approximation running time of O(n) + 2O(η2).

4.3 Squares

Problem 4. Given a set of axis-parallel squares, choose a point in each square
such that the area of the convex hull of the resulting point set is as large as
possible.

The status of the general version of this problem is open. In the optimal solution,
every point has to be chosen on a corner of its square. Therefore we can solve
the problem in O(4nn log n) time by computing the convex hull of every possible
set of corners.

Under certain conditions, the problem can be solved more efficiently. If the
squares are disjoint, we can solve it exactly in O(n7) time. If the squares all have
the same size, we can solve it in O(n5) time. If the squares are both disjoint and of
the same size, we only need O(n3) time. All of these results can be found in [14].

Core-Set Construction. Let smax be the largest square in L, and smax2 the
second largest square. Put smax and smax2 in L′. Let p and q be two points that
approximate the diameter d of the vertices of L − {smax , smax2} by a factor 2.
Let e1 be the direction from p to q, and e2 the direction perpendicular to this.
Let B be the smallest bounding box of L − {smax , smax2} in the (e1, e2) axis
system, and let w be its width and h its height.

Divide B into 214η by 214η grid cells, see Figure 5(a). The cells will be δ1 =
2−14εw long in the e1 direction, and δ2 = 2−14εh long in the e2 direction.
Consider the bipartite graph where one set of nodes corresponds to the set of
squares L−{smax , smax2}, and the other set of nodes corresponds to the cells of
the grid. There is an edge between square s and cell c if one of the corners of s
is in c. Let M be a maximum matching of this graph, and add all squares that
occur in M to L′.
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Fig. 5. (a) A set of squares divided according to their cells. (b) Triangle �pru has a
larger area than S∗. (c) If all squares are small, the triangle �pqr has a large area.

Proof of L′ being a Core-Set. Let S∗ be the optimal solution for L, the original
input, and let S′∗ be the optimal solution for L′, the core-set. First we show
that the area of S∗ is bounded from below by a constant factor of the area of B.
Then we prove that the difference in area between S∗ and S′∗ is only a fraction
of the area of B, dependent on ε.

Lemma 7. If n ≥ 3, then the width of S∗ is at least 1
8 times the side length of

smax2 .

Proof. Let b be the side length of smax2 , and let w∗ be the width of S∗. Suppose
the lemma is not true, so w∗ < 1

8b. Let p and q be the vertices of S∗ that define
the diameter d of S∗. Then we know that the area of S∗ is a∗ ≤ dw∗ < 1

8db.
Suppose either p or q is not a corner of one of the two largest squares. Then
one of the two largest squares has a corner u that is at least 1

2b away from the
line extending pq, and there exists a solution of area 1

4db > 1
8db, so in this case

S∗ would not be optimal, a contradiction. Now suppose that both p and q are
corners of the largest two squares, see Figure 5(b). Let r �= p, q be an arbitrary
vertex of S∗. Now r is at least 1

2d away from either p or q, say p without loss of
generality. Now the square that has q as a corner has another corner u that is
at least 1

2b away from the line extending pr, and there exists a solution of area
1
8db, so in this case S∗ would not be optimal either. Therefore the assumption
is false, and the lemma is true.

This lemma implies that the area of S∗ is at least 2−8 times the area of smax2 .

Lemma 8. The area of S∗ is at least 2−12 times the area of B.

Proof. Let b be the side length of smax2 . If b ≥ 1
4w, then this square has area at

least 2−4wh. The optimal solution has area at least 2−8 times the second largest
square, so at least 2−12wh. Next, assume that b < 1

4w. If p and q, approximating
the diameter of the vertices of L − {smax , smax2}, would be corners of the same
square, then the width of this square would be at least 1

2d ≥ 1
2w, which is larger

than the diameter of smax2 . So p and q are corners of different squares. Let r
be the point in P furthest from the line extending pq, see Figure 5(c). If r is a
corner of yet another square, then the solution pqr has an area of at least 1

8wh,
and so the optimal solution also has at least that area. If r is a corner of the
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same square as either p or q, say p, then this means that the width of this square
is larger than 1

4

√
2h, so b > 1

4h. The optimal solution S∗ uses some corner p′l of
the same square as pl, the leftmost point in the e1 direction, and some corner p′r
of the same square as pr, the rightmost point in the e1 direction and we know
that the distance between p′l and p′r is at least w − 3b > 1

4w. We also know that
S∗ has a width of at least 1

8b > 1
32h, so the area of S∗ is at least 2−6wh.

Lemma 9. There exists a solution S′ for L′ such that the difference between
the areas of S′ and S∗ is at most 2−12ε times the area of B.

Proof. The proof of this lemma is omitted, and very similar to the proof of
Lemma 6.

This time we have S′∗ ≥ S′ ≥ S∗ − 2−12εwh ≥ S∗ − 2−12ε212S∗ = (1 − ε)S∗.

Running Time Analysis. The computation of B takes linear time, by Lemma 2.
Again, we need to perform the ceiling operation to allocate the corners of the
squares to the right cells of the grid. We can compute a maximum matching in
O(n + η12) time, since we now have four edges per left node.

Theorem 4. We can compute a core-set of size O(η2) for Problem 4 in O(n+η12)
time.

For arbitrary squares, we can solve the problem exactly inO(4nn logn) time; there-
fore we can approximate it in O(n)+4O(η2) time. For unit size squares, we have an
O(n5) exact algorithm so we get a strong linear time approximation scheme that
runs in O(n + η12 + η10) = O(n + η12). We can solve disjoint squares exactly in
O(n7) so we get an O(n + η14) LTAS. For squares that are both unit size and dis-
joint, we have an O(n3) exact algorithm, but this gives no better result than the
general unit size case since the running time is dominated by the term η12.

4.4 Circles

Our exact solution to the convex hull problem for square regions makes use of
the four extreme points in the cardinal directions, which makes it impossible
to extend to circular regions. A second difficulty is of an algebraic kind. Even
if we know which circles have points that contribute to the largest area convex
hull, it is not easy to determine where on the circles the points should be. These
difficulties remain even for disjoint unit size regions [13].

When we model the points as circular regions (discs), we only need to consider
the boundaries, since no vertex of an optimal solution need be chosen in the
interior of a region.

Problem 5. Given a set of circles, choose a point in each circle such that the
area of the convex hull of the resulting point set is as large as possible.

Approximate Circles by k-gons. Let ε be given. Let C be the set of circles, and C′

the set of circles with the same centres but radii a factor (1 − δ) smaller, where
δ = 1

8ε.
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Lemma 10. The area of the optimal solution for C′ is at least (1 − ε) times the
area of the optimal solution of C.

Proof. The proof is omitted due to space constraints and can be found in the
full paper.

We will now approximate the circular imprecise points by k-gons that lie
completely within the band between the original circle and the circle with a factor
(1 − δ) smaller radius. A k-gon fits inside this band when 2k arccos(1 − δ) ≥ 2π,
and this can be estimated by k ≥ 2π

√
η. Let k = 
2π

√
η�, and G the set of

k-gons (with the same orientation) that have their corners on the circles of C.

Theorem 5. The area of the optimal solution for G is a (1 − ε) approximation
for the optimal solution for C.

Exact Algorithms. Again, we have a trivial exponential algorithm that runs in
O(knn log n) time. As in the case of squares, we can achieve a better algorithm
under certain constraints. If the k-gons are either disjoint or unit size, we can
solve the problem in nO(k) instead of kO(n) time. We can adapt the algorithm
described in [13] in a mostly straightforward manner to the k-gon case. We will
briefly discuss the main differences and new ideas that are needed to make these
algorithms work.

For both algorithms, we need to know the k extreme points of the solution.
These are the vertices of the solution that lie furthest in one of the k directions
that are perpendicular to the edges of a k-gon. Trying all possibilities gives a
factor O(nk).

(a) (b) (c)

Fig. 6. (a) The division of the plane for k = 7. (b) There are 11 groups of parallel line
segments. (c) The order in which the groups can be combined.

Suppose the k-gons are disjoint. The k extreme points divide the plane into k
triangular regions, see Figure 6(a). For each k-gon, we only need to consider the
endpoints that are within their respective triangle. Since the k-gons are disjoint,
there can be at most k−2 k-gons that intersect more than two of these triangles.
For these k-gons, we try every possible combination of their candidate endpoints.
This gives a factor O(kk).

The remaining k-gons can now be represented as line segments. There are at
most 2k − 3 groups of line segments, see Figure 6(b). We can solve the problem
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in this situation in O(kn3) time, using a dynamic programming approach as
described in [13]. We start with two consecutive groups that pass over only one
extreme point, for which there is no group between them. For these two groups,
we compute the optimal solution for every pair of points. Then we combine them
with the group that passes over both extreme points. This process is repeated
until we have found the optimal solution, see Figure 6(c).

Now suppose the k-gons have equal sizes (but are not necessarily disjoint).
The algorithm described in [13] still works exactly as described there, only with
k chains instead of four. This gives a running time of O(nk+1) instead of O(n5).

Core-Set Construction. A core-set of a set of regular k-gons can be computed in
exactly the same way as with squares, as long as k ≥ 4. The same proof also applies.

Running Time Analysis. Constructing a core-set of size O(η2) takes O(
√

|V ||E|)
time. In our case, we have O(η2k) nodes at the left side after removing doubles,
and O(η2) nodes at the right side, and each left node has exactly k edges, so
|V | = O(η2k + η2) and |E| = O(η2k+ 1

2 ). This means that the core-set selection
algorithm runs in O(n+η3k+ 1

2 ) = O(n)+2O(
√

η log η) time. Again, provided that
the ceiling operation takes constant time.

Theorem 6. We can compute a core-set of size O(η2) for Problem 5 in O(n)+
2O(

√
η log η) time.

The general problem can be solved exactly in O(knn log n) time. The approxima-
tion algorithm then takes O(n)+2O(

√
η log η)+O(kη2

η2 log η) = O(n)+2O(η2 log η)

time in total.
Under the assumption that the circles are either disjoint or unit size, we have a

better exact algorithm, which runs in nO(k) time. The approximation algorithm
then takes O(n) + 2O(

√
η log η) + ηO(

√
η) = O(n) + 2O(

√
η log η) time.

5 Conclusions

The core-set paradigm has been successfully applied to sets of imprecise points,
to obtain approximation algorithms for computationally hard problems. The
dependence of the running time on the input size is linear and does not multiply
with the dependence on ε, which makes the algorithms suitable for very large
sets of imprecise points. On the other hand, the dependence on ε is often highly
polynomial or exponential, which limits the achievable precision.

Acknowledgements. The authors would like to thank anonymous referees for
their detailed and helpful comments.
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15. van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related
problems on imprecise points. In: Proc. 10th Workshop on Algorithms and Data
Structures, LNCS, vol. 4619, pp. 447–458 (2007)

16. Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.)
Handbook of Discrete and Computational Geometry, ch. 41, pp. 927–952. Chapman
& Hall/CRC (2004)



A 2-Approximation Algorithm for the Metric

2-Peripatetic Salesman Problem

Alexander A. Ageev� and Artem V. Pyatkin��

Sobolev Institute of Mathematics, pr. Koptyuga 4, Novosibirsk, Russia
{ageev,artem}@math.nsc.ru

Abstract. In the m-peripatetic traveling salesman problem (m-PSP),
given an n-vertex complete undirected edge-weighted graph, it is required
to find m edge disjoint Hamiltonian cycles of minimum total weight. The
problem was introduced by Krarup (1974) and has network design and
scheduling applications. It is known that 2-PSP is NP-hard even in the
metric case and does not admit any constant-factor approximation in
the general case. Baburin, Gimadi, and Korkishko (2004) designed a
(9/4 + ε)-approximation algorithm for the metric case of 2-PSP, based
on solving the traveling salesman problem. In this paper we present an
improved 2-approximation algorithm with running time O(n2 log n) for
the metric 2-PSP. Our algorithm exploits the fact that the problem of
finding two edge disjoint spanning trees of minimum total weight is poly-
nomially solvable.

1 Introduction

In the m-peripatetic traveling salesman problem (m-PSP), we are given a com-
plete undirected graph G = (V, E) on n vertices with nonnegative edge weight
function w : E → R+. It is required to find m edge disjoint Hamiltonian cy-

cles C1, . . . , Cm ⊂ E minimizing
m∑

k=1

∑
e∈Ck

w(e). The 1-PSP coincides with the

Traveling Salesman Problem (TSP). Applications of m-PSP include the design
of watchman tours [12] where it is often important to assign a set of edge dis-
joint rounds to the watchman in order to avoid repeating the same tour and
thus enhance security. De Kort [8] cites a network design application where sev-
eral edges-disjoint cycles must be determined in order to protect the network
from link failure. De Kort also mentions a scheduling application of the 2-PSP
where each job must be processed twice by the same machine but technological
constraints prevent the repetition of identical job sequences.

Related results. De Kort [8] proved that the 2-PSP is NP-hard by constructing
a polynomial-time reduction from the Hamiltonian Path Problem. By similar
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arguments one can show that m-PSP is NP-hard for each m > 2. De Brey and
Volgenant [4] identified several polynomially solvable cases of 2-PSP. De Kort
[6,7,8] designed and analyzed lower and upper bounds for 2-PSP as possible
ingredients of branch-and-bound algorithms. Duchenne, Laporte, and Semet [5]
discussed a polyhedral approach for solving m-PSP.

It is easy to show (by using the reduction in [8] and essentially the same argu-
ment that is used for TSP) that 2-PSP admits no constant-factor approximation
algorithm in the case of general edge weights. For the case when the weights sat-
isfy the triangle inequality (the metric 2-PSP) Baburin, Gimadi, and Korkishko
[2] designed a (9

4 + ε)-approximation algorithm.
Like that of TSP, the maximization version of 2-PSP admits constant factor

approximations even in the general case. The currently best result is due Ageev,
Baburin, and Gimadi [1] who presented a 3/4-approximation algorithm for the
problem.

Our result. In this paper we present a 2-approximation algorithm for solving
the metric case of 2-PSP. The algorithm runs in time O(n2 log n).

2 Algorithm: A General Scheme

Since 2-PSP has no feasible solution for n < 5, we further assume that n ≥ 5.
Below we present a general scheme of our algorithm. Recall that a graph G

is outerplanar if it can be drawn at the plane in such a way that no two edges
meet in a point other than a common vertex and all vertices of G lie in the outer
face.

Algorithm. Disj Ham Cycles

Phase 0. By using the algorithm of Roskind and Tarjan [10] find two disjoint
spanning trees T ∗

1 and T ∗
2 of total minimum weight.

Phase 1. Find a Hamiltonian cycle C1 and two disjoint spanning trees T1

and T2 such that
1. T1 ∪ T2 = T ∗

1 ∪ T ∗
2 ;

2. T2 ∩ C1 = ∅;
3. The graph C1 ∪ T1 is outerplanar with the outer face C1.

Phase 2. Find a Hamiltonian cycle C2 such that
1. C1 ∩ C2 = ∅;
2. The graph C2 ∪ T2 is outerplanar with the outer face C2.

Output C1 and C2.

At Phase 0 we use the algorithm of Roskind and Tarjan [10] that finds k edge
disjoint spanning trees of minimum total weight in time O(n2 log n+k2n2). Thus
Phase 0 can be implemented in time O(n2 log n).

The detailed descriptions of Phases 1 and 2 with the related theoretical back-
ground and running time bounds are given in the next two sections.
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The general description of Algorithm Disj Ham Cycles is sufficient to estab-
lish the bound on its approximation ratio:

Lemma 1. The algorithm Disj Ham Cycles outputs a feasible solution of 2-
PSP whose weight is at most twice the weight of the optimal solution.

Proof. Clearly, C1 and C2 are edge disjoint. We show that w(C1) + w(C2) ≤
2(w(C∗

1 )+w(C∗
2 )) where C∗

1 , C∗
2 is an optimal solution of 2-PSP. Clearly, w(C∗

1 )+
w(C∗

2 ) ≥ w(T ∗
1 ) + w(T ∗

2 ). Now let us evaluate w(Ci). Let i ∈ {1, 2} and let e be
an edge of the cycle Ci that does not belong to Ti. Denote by Gi the outerplanar
graph Ci ∪ Ti and by F (e), the edges of the inner face containing e. Due to
the triangle inequality, the weight of the edge e can be bounded by the sum of
the weights of the edges from the unique path in Ti connecting the endpoints
of e. Since Gi is an outerplanar graph and Ti is a spanning tree, each face of
Gi contains exactly one edge not from Ti. Hence, the path in Ti connecting the
endpoints of e consists of all edges of F (e)\{e}. Each chord of Gi belongs to two
inner faces, so its weight is counted twice. Each edge in Ci ∩ Ti lies in one inner
face; so, its weight is counted once for the path, and once for itself (as an edge
of Ci). Therefore w(C1) + w(C2) ≤ 2(w(T1) + w(T2)) = 2(w(T ∗

1 ) + w(T ∗
2 )) ≤

2(w(C∗
1 ) + w(C∗

2 )). 
�

3 Implementation of Phase 1

The general idea is the following: we first split T ∗
1 into a few relatively small

subtrees, then for each of them find an appropriate cycle (exchanging edges
between T ∗

1 and T ∗
2 if necessary), and finally construct a desired cycle C1 from

these cycles.
We first show by a graph theoretical argument that a cycle C1 with the desired

properties does exist and then present a linear-time algorithm that follows from
the proof.

Let H be an undirected graph. By V (H) we denote the vertex set of H . For
a subset V ′ ⊆ V (H), denote by H [V ′] a subgraph of H induced by V ′.

Let T1 and T2 be edge disjoint spanning trees of the input graph G = (V, E).
Suppose that V ′ ⊆ V is such that T = T1[V ′] is a spanning tree of G[V ′],
F = T2[V ′] is a forest in G[V ′], and T and F are edge disjoint. We say that T is
F -walkable if there exist a spanning tree T ′, a forest F ′ and a Hamiltonian cycle
C such that:
1) T ′ ∪ F ′ = T ∪ F ;
2) (T1 \ T ) ∪ T ′ and (T2 \ F ) ∪ F ′ are spanning trees of G;
3) F ′ ∩ C = ∅
4) T ′ ∪ C is an outerplanar graph whose outer face is bounded by C.
The tree T is called walkable if it is F -walkable for every forest F such that F
and T can be extended to edge disjoint spanning trees T1 and T2.

The following theorem is the main result of this section.
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Theorem 1. Every tree on at least 5 vertices is walkable.

The algorithmic proof of this theorem is based on the following lemmas.

Lemma 2. Let D1 and D2 be two walkable trees with disjoint vertex sets. Let
v1 ∈ D1 and v2 ∈ D2 be arbitrary vertices of these trees. Let D be a tree obtained
from D1 and D2 by identifying v1 and v2 into the vertex v (see Fig. 1a). Then
D is walkable.

Proof. Let V = V [D], Vi = V [Di], i = 1, 2 and let F be an arbitrary forest on
V such that D and F can be extended to edge disjoint spanning trees T1 and T2

of G. We show that D is F -walkable. Denote by F1 the restriction of F to V1.
By the assumption, there exist a tree D′

1, a forest F ′
1, and a cycle C1 satisfying

1)–4) in the definition of walkable trees. By 2), (F \ F1) ∪ F ′
1 is a forest and

(D \ D1) ∪ D′
1 is a spanning tree in V [D] and they can be extended to edge

disjoint spanning trees T ′
1 = (T1 \ D1) ∪ D′

1 and T ′
2 = (T2 \ F1) ∪ F ′

1. Denote by
F2 the restriction of F to V1. Since D2 is walkable, there exist a tree D′

2, a forest
F ′

2, and a cycle C2 satisfying 1)–4) in the definition of walkable trees with T ′
1

and T ′
2 standing for T1 and T2 respectively. Let F ′ = (F \ (F1 ∪ F2)) ∪ F ′

1 ∪ F ′
2

and D′ = (D \ (D1 ∪D2))∪D′
1 ∪D′

2. Note that D′ and F ′ satisfy 1) and 2). Now
construct the desired cycle C. Let xi and yi be the neighbors of v in Ci, i = 1, 2.
Then at least one of the edges x1x2, x1y2, y1y2, and y1x2 must be not in F ′. By
symmetry, we may assume that x1x2 
∈ F . Let C = (C1 ∪C2 ∪x1x2)\{x1v, x2v}.
Then C ∪ F ′ = ∅ and C ∪ D′ is outerplanar and C is the boundary of the outer
face of C∪D′, i. e. D is F -walkable. Since F is an arbitrary forest, D is walkable.
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Fig. 1. Induction steps in Lemmas 2 and 3

Lemma 3. Let D1 be a walkable tree, v ∈ D1 and D be a tree obtained from
D1 by adding the vertices v1, v2, v3 and edges vv1, v1v2, v2v3 (see Fig. 1b). Then
D is walkable.

Proof. Let V1 = V (D1) and V = V (D). Denote the path vv1v2v3 by P . Consider
an arbitrary forest F on V (such that D and F can be extended to edge disjoint
spanning trees T1 and T2 of G) and denote by F1 its restriction to V1 and
by F2 the restriction to V (P ). If v3v 
∈ F then P is clearly F2-walkable (just
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take C = P ∪ v3v) and by the same arguments as were used in Lemma 2, D
is F -walkable. Assume that v3v ∈ F . Since D1 is walkable, there exist a tree
D′

1, a forest F ′
1 and a cycle C1 satisfying 1)–4). Let F ′ = (F \ F1) ∪ F ′

1 and
D′ = (D \D1)∪D′

1. Denote by x and y the neighbors of v in C1. If v3x 
∈ F then
let C = (C1 ∪ P ∪ v3x) \ vx. Clearly, F ′, D′ and C satisfy 1)–4). If v3y 
∈ F we
proceed in a similar way. So v3x, v3y ∈ F . Then at least one of the edges v2x, v2y
cannot be in F (say, v2x 
∈ F ). If v3v1 
∈ F then we construct C from C1 by
removing the edge vx and adding the path vv1v3v2x. Again, F ′, D′ and C satisfy
1)–4). Finally, assume that v3 is adjacent to x, y, v, and v1 in F . Then v1x 
∈ F .
Let D′′ = (D′ ∪ v3v) \ v1v, F ′′ = (F ′ ∪ v1v) \ v3v, and C = (C1 ∪ vv3v2v1x) \ vx.
It is clear that D′′, F ′′, and C satisfy 1),3), and 4). In order to see that they
satisfy 2), note that the vertices v3 and v lie in different components of T1 \ vv1;
so the tree T1 ∪ v3v \ v1v is spanning. Note also that the vertices v, v1, and v3

form the unique cycle in T2 ∪ v1v; thus T2 ∪ v1v \ v3v is a spanning tree as well.
So, D is F -walkable. Since F is an arbitrary forest, D is walkable. 
�

For a tree T , a forest F and edges e ∈ T and f ∈ F , by the exchange we mean
the operation of removing this edges from T and F and adding them to F and
T , respectively (i. e. T ′ = (T ∪ f) \ e and F ′ = (F ∪ e) \ f). The exchange is
correct if T ′ and F ′ satisfy 2). The following observation helps to check that the
exchanges used below are correct.

Note 1. An exchange is correct if f lies on a cycle in F ∪ e and the endpoints
of f are in different components of T \ e.

Proposition 1. Every tree on 5 vertices is walkable.

Proof. There are three nonisomorphic trees on 5 vertices. So, three cases arise.
Let F be an arbitrary forest on 5 vertices.

Case 1. T is a path of length 4 (see Fig. 2a). If v1v5 
∈ F then let C = T ∪v1v5,
and T is walkable (for T ′ = T, F ′ = F ). If F contains neither v1v3 nor v3v5 then
we can apply Lemma 2 for trees D1, D2 induced by the sets {v1, v2, v3} and
{v3, v4, v5} respectively. So, we may assume that v1v3, v1v5 ∈ F but v3v5 
∈ F .
If v1v4 
∈ F then we may take the cycle v1v2v3v5v4 as C, and T is walkable.
Finally, if v1v4 ∈ F then let T ′ = (T ∪ v1v4) \ v3v4, F ′ = (F ∪ v3v4) \ v1v4 and
C = v1v2v3v5v4. Clearly, T ′, F ′, and C satisfy 1)–4).

Case 2. T is as in Fig. 2b. If v4v5 ∈ F then either (T ∗
2 ∪ v3v4) \ v4v5 or

(T ∗
2 ∪ v3v5) \ v4v5 is a spanning tree. So, we can exchange the edge v4v5 with

one of the edges v3v4 or v4v5 and reduce the problem to the previous case. So,
v4v5 
∈ F . If v1v4 
∈ F then we may take C = v1v2v3v5v4; if v1v3 
∈ F then the
subtrees T \ {v1, v2} and T \ {v4, v5} are both F -walkable, and by Lemma 2, T
is walkable. So, we may assume that v1v3, v1v4 ∈ F . Then exchange v1v4 with
v3v4 and reduce the problem to Case 1.

Case 3. T is the star K1,4. If none of the edges connecting the leaves of the
star belong to F then T is clearly walkable (an arbitrary cycle can be taken as
C). If some edge e connecting two leaves lies in F then we can exchange this
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Fig. 2. Trees on 5 and 6 vertices

edge with one of the edges connecting an endpoint of e with the center of the
star, thus reducing the problem to the Case 2. 
�

Proposition 2. Every tree on 6 vertices is walkable.

Proof. There are six nonisomorphic trees on 6 vertices. Thus six different cases
arise. Let F be an arbitrary forest on 6 vertices.

Case 1. T is a path of length 5 (see Fig. 2c). If v1v6 
∈ F then T, F, and
C = T ∪ v1v6 satisfy 1)–4). If F does not contain v1v3 then the subtree T \
{v4, v5, v6} is clearly F -walkable and by Lemma 3, T is also walkable. So v1v3 ∈
F , and analogously, v4v6 ∈ F . But then v1v4, v3v6 
∈ F and we can take C =
v1v2v3v6v5v4.

Case 2. T is as in Fig. 2d. If v5v6 ∈ F then, like in Proposition 1, we can
exchange the edge v5v6 with one of the edges v4v5 or v4v6 and reduce the problem
to the previous case. If v5v6 
∈ F , then the subtree T \ {v1, v2, v3} is F -walkable
and by Lemma 3, T is also walkable.

Case 3. T is as in Fig. 2e. At least on of the edges connecting {v1, v2} with
{v5, v6} must be missing in F . We may assume that v1v5 
∈ F . If either v1v2 ∈ F
or v5v6 ∈ F then we reduce the problem to Case 2 in the same way as Case 2
was reduced to Case 1. Otherwise, take C = v1v2v3v4v6v5.
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Case 4. T is as in Fig. 2f. Consider two subcases.
a) Either v1v4 
∈ F or v4v6 
∈ F (assume that the second alternative holds).

If v1v3 
∈ F then both trees T \ {v1, v2} and T \ {v4, v5, v6} are F -walkable, and
by Lemma 2, T is also walkable. If v1v5 
∈ F then T, F, and C = v1v2v3v4v6v5

satisfy 1)–4). Finally, if v1v3, v1v5 ∈ F we can exchange v3v5 with v1v5, arriving
at Case 1.

b) Both v1v4 and v4v6 are in F . Clearly, v1v6 
∈ F . If v2v4 
∈ F (v5v4 
∈ F ) then
T, F, and C = v1v2v4v3v5v6(C = v1v2v3v4v5v6) satisfy 1)–4). If v2v4, v5v4 ∈ F
then v1v5, v2v5 
∈ F . Exchange v5v6 with v4v6 and let C = v1v6v4v3v2v5.

Case 5. T is as in Fig. 2g. If the set {v4, v5, v6} contains at least one edge
from F , then this tree can be reduced to the previous case by the same way as
Case 2 was reduced to Case 1. Otherwise, trees T \{v1, v2} and T \{v1, v2, v4} are
F -walkable. Then by Lemma 2, v1v3 ∈ F and v1v4 ∈ F . Now we can exchange
v3v4 with v1v4 arriving at Case 2.

Case 6. If T is the star K1,5, then it can be reduced to Case 5 by exactly the
same arguments as were used in Case 3 of Proposition 1. 
�
Let v be a vertex of a tree T . Denote by A1, A2, . . . , Ak the components of T \ v
and let ai = |Ai|, i = 1, 2, . . . , k. We may assume that a1 ≥ a2 ≥ . . . ≥ ak. The
vertex v is called a center of T if a1 achieves minimum for all vertices of T . It is
easy to see that if v is a center, then the inequality

a1 ≤ a2 + a3 + . . . + ak + 1 (1)

holds. In particular, a1 ≤ �n/2�.
We say that a vertex v ∈ V (T ) is a bud if it is adjacent to at least two leaves.

Proof of Theorem 1. Suppose that the theorem is false. Then consider coun-
terexamples to it with the minimum number of vertices n. Among them choose
one with the minimum number of leaves adjacent to buds. Denote it by T . By
Propositions 1 and 2, n ≥ 7. Let F be an arbitrary forest nonintersecting with
T .

Claim 1. T has no buds.
Indeed, if u is a bud adjacent to leaves v and w then the tree T \ {v, w} has

at least 5 vertices. By the minimality of T , it is walkable. If vw 
∈ F then the
tree induced by u, v, and w is F -walkable, and by Lemma 2, T is also walkable,
a contradiction. Otherwise, we can exchange the edge vw with either uv or uw,
obtaining a tree T ′ with a smaller number of leaves adjacent to buds. By the
choice of T , we have that T ′ is walkable, and hence T is walkable. Claim 1 is
proved.

Let v be a center of T . By Claim 1, ak−1 ≥ 2.
Claim 2. There is no I ⊂ {1, 2, . . . , k} such that

∑
i∈I ai ≥ 4 and

∑
i�∈I ai ≥ 4.

Indeed, otherwise both trees induced by ∪i∈IAi ∪ {v} and ∪i�∈IAi ∪ {v} have
at least 5 vertices. By minimality of T both of them are walkable. But then by
Lemma 2, T is also walkable. Claim 2 is proved.

In particular, if a1 = 4 then a2 + a3 + . . . + ak ≤ 3. Note that by (1) and
Claim 2, a1 ≤ 4.
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Claim 3. If ai = 3 for some i then n = 7.
Indeed, by Claim 1, the tree induced by Ai ∪ {v} must be a path of length 3.

If n > 7 then |T \Ai| ≥ 5 and by the minimality of T , the tree T \Ai is walkable.
But then by Lemma 3, T is also walkable, a contradiction. Claim 3 is proved.

Only the following special trees satisfy the properties stated in Claims 1–3.
1. Two trees with parameters a1 = 4, a2 = 2, a3 = 1 are depicted in Fig. 3d

and Fig. 3e
2. The tree with parameters a1 = 3, a2 = 3 is depicted in Fig. 3a.
3. The tree with parameters a1 = 3, a2 = 2, a3 = 1 is depicted in Fig. 3b.
4. The tree with parameters a1 = 2, a2 = 2, a3 = 2 is depicted in Fig. 3c.
5. The tree with parameters a1 = 2, a2 = 2, a3 = 2, a4 = 1 is depicted in

Fig. 3f.
Consider each of the special trees separately (the name of the case corresponds

to the name of the graph in Fig. 3).

a) If T = P6 then by Lemma 3, v1v4, v4v7 ∈ F . However, then v1v7 
∈ F and
we can take C = v1v2v3v4v5v6v7.

b) We have v6v7 ∈ F by Lemma 3 and v4v6 ∈ F by Lemma 2 and choice of
T . Then we exchange v4v7 with v6v7 reducing the problem to the previous case.

c) By Lemma 2 and choice of T , v1v3, v3v5, v3v7 ∈ F . Then v1v7, v5v7 
∈ F
and at least one of the edges v1v6, v5v6 is not in F (say, v5v6 
∈ F ). Then T, F,
and C = v1v2v3v4v5v6v7 satisfy 1)–4).

d) By the minimality of T , subtree T \ {v5, v6, v7} is walkable. Then by
Lemma 3, T is also walkable.

e) By Lemma 2 and choice of T , the trees T \ {v5, v6} and T \ {v5, v6, v7}
are walkable; so, v4v6, v6v7 ∈ F . Then exchange v4v7 with v6v7 and reduce the
problem to the previous case.

f) Like in case c), v1v3, v3v5 ∈ F . But then v1v8 
∈ F or v5v8 
∈ F . In any case,
T is walkable by Lemma 2. 
�

It is easy to see that the proof of Theorem 2 in fact contains an algorithm for
finding the cycle C1. The algorithm Phase 1 is recursive and can be described
as follows.

Algorithm Phase 1.

Set T1 := T ∗
1 and T2 := T ∗

2 .
Step 1. If T1 has 5 or 6 vertices or T1 is a graph shown in Fig. 3, then the cycle

C1 can be found straightforwardly as described in the proofs of Propositions of
4.4, 4.5 and in the final part of the proof of Theorem 4.1.

Otherwise, T1 does not satisfy a conclusion of one of the Claims 1–3 in the
proof of Theorem 4.1.

Step 2. Suppose that T1 has a bud x with leafs u, v (i. e., T1 does not satisfy
the conclusion of Claim 1).

If u, v ∈ T2 then transform T1 and T2 by the exchange described in the proof
of Claim 1 into trees T ′

1 and T ′
2, where T ′

1 has less number of leaves adjacent to
buds than T1. Set T1 := T ′

1, T2 := T ′
2 and go to Step 1.



A 2-Approximation Algorithm for the 2-Peripatetic Salesman Problem 111

If u, v 
∈ T2 then applying Phase 1 to the subtree T1 \ {u, v} find the cycle
C′, and construct a cycle C1 for T1 from the cycles C′ and C′′ = xuv using the
procedure described in the proof of Lemma 4.2.

Step 3. Find a center v of T1 (indeed, it is enough to find any vertex satisfying
(1)).

1

5

v

v

4v

v7

v8

v7v8

1v

2v

3v

4v

5v

a) b)
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6v

1v 2v 3v 5v 6v

v7
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3v
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4v

v7

v8
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e) f)

6v
v7

Fig. 3. Special trees

Step 4. If n > 7 and ai = 3 for some i (i. e., T1 does not satisfy the conclusion
of Claim 3), then applying Phase 1 to the tree T1 \ Ai find a cycle C′ for these
tree. Using the procedure described in Lemma 4.3, construct the desired cycle
C1 for T1

Step 5. Find a set S ⊂ {1, 2, . . . , k} such that
∑

i∈S ai ≥ 4 and
∑

i�∈S ai ≥ 4.
(Such a set must exist since T1 does not satisfy the conclusion of Claim 2.) If
n = 7, then S is found by the complete enumeration. Otherwise, either a1 ≥ 4
and then set S = {1} or a1 = 2 and then set S = {1, 2}.

By applying Phase 1 to the subtrees induced by ∪i∈IAi∪{v} and ∪i�∈IAi∪{v},
find the cycles C′ and C′′ for these trees and using the procedure in the proof
of Lemma 4.2, construct a cycle C1 for T1 from these cycles.

It is clear that the running of Phase 1 is dominated by the running time of
Phase 0 (in fact it can be easily verified that Phase 1 can be implemented in
linear time).
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4 Implementation of Phase 2

After the first step, we have a Hamiltonian cycle C1 and spanning tree T2 non-
intersecting with C1. We need to find a cycle C2 non-intersecting with C1 such
that C2 ∪ T2 would be outerplanar with the outer face C2. We use the similar
idea as in previous section (splitting T2 into subtrees), but here we, obviously,
cannot exchange edges between T2 and C1. On the other hand, we can use the
fact that the forbidden graph C1 has maximum degree 2.

By partial tour in this section we mean either a Hamiltonian cycle or a graph
whose connected components are disjoint paths. Let T be a spanning tree. We
say that T is passable if for every partial tour F there exists a cycle C such that

1) F ∩ C = ∅;
2) T ∪ C is an outerplanar graph with the outer face C.

We call a vertex of the tree T a branch vertex if all except one of its neighbors
are leaves. The subtree induced by a branch vertex and all leaves adjacent to it
is called the branch.

C' u

w

w

v

v

v1

2

t

1

2

v

Fig. 4. Induction step in Lemma 4

Lemma 4. Let T be a spanning tree and B be a branch. If T ′ = T \ B is
passable, then T is passable.

Proof. . Let v be a branch vertex of B and v1, v2, . . . , vt be the leaves adjacent
to it. Consider an arbitrary partial tour F . Let C′ be a Hamiltonian cycle for
T ′ and F ′ where F ′ is a restriction of F to the vertex set of T ′. Let u be
a non-leaf neighbor of v in T and denote by w1, w2 the neighbors of u in C′

(see Fig. 4). By the definition of partial tour, if t ≥ 2 then at least one of the
edges v1w1, v1w2, vtw1, vtw2 must be not in F . We may assume that vtw1 
∈ F .
Consider four cases.

1. If t ≥ 4 then we can reorder the vertices of B \ v in such a way that
vivi+1 
∈ F for all i = 1, 2, . . . , t−1. Then remove the edge uw1 from C′ and add
a path uvv1v2 . . . vtw1 instead. The obtained cycle C satisfies 1)–2).

2. If t = 3 then we may assume that v1v2, v2v3 ∈ F (otherwise we do the
same as in the previous case). Then v2u 
∈ F and v1v3 
∈ F since F is a partial
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tour. We remove the edge uw1 from C′ and add a path uv2vv1v3w1 instead. The
obtained cycle C satisfies 1)–2).

3. If t = 2 then we may assume that v1v2 ∈ F (otherwise, do as in the
first case). If uv1 
∈ F then we remove the edge uw1 from C′ and add a path
uv1vv2w1 instead. Otherwise, uv2, v1w1 
∈ F since F is a partial tour. Then in
C′, we replace the edge uw1 by the path uv2vv1w1, and again obtain a cycle C
satisfying 1)–2).

4. If t = 1 and v1wi 
∈ F for some i = 1, 2 the we substitute the path uvv1wi

for the edge uwi in C′. Otherwise, uv1 
∈ F and vwi 
∈ F for some i = 1, 2 and
in C′, we replace the edge uwi by the path uv1vwi. 
�

Now we can prove the main theorem of this section.

Theorem 2. Every tree on at least 5 vertices is passable.

Proof. Suppose that the theorem is false and choose a counterexample T with
the minimum number of vertices n ≥ 5. Let F be an arbitrary partial tour. If T
is the star K1,n−1 then since n−1 ≥ 4, its leaves can be reordered in such a way
that vivi+1 
∈ F for all i = 1, 2, . . . , n − 2. Then we can take C = vv1v2 . . . vn−1

as a desired cycle (v is a center of the star here). If T is not a star then it has
branch vertices. If there is a branch B in T such that |T \ B| ≥ 5 then by the
minimality of T and Lemma 4, T is passable. So, for every branch B, the tree
T \B has at most 4 vertices. It is straightforward to verify that there are exactly
10 such trees (see Fig. 5). We will consider each of these trees separately (the
name of the case corresponds to the name of the graph in Fig. 5).

a) We may assume that v4v5 ∈ F (otherwise we can add the branch B =
T ({v1, v2}) to the cycle C′ = v3v4v5 in the same way as in Lemma 4). If
v1v5 ∈ F then v1v4, v2v5 
∈ F by the definition of partial tour and we can
take C = v1v4v3v5v2. If v2v5 ∈ F then, analogously, C = v2v4v3v5v1. Assume
that v1v5, v2v5 
∈ F . At least one of the edges v2v4, v2v5 (say, v2v4) is also not in
F . Then we can take C = v1v2v4v3v5.

b) As in the previous case, we may assume that v4v5, v5v6 ∈ F . Then v2v5, v4v6


∈ F and v1 is not adjacent to either v4 or v6 in F . Then we can take C =
v1v2v5v3v6v4 or C = v1v2v5v3v4v6 respectively.

c) We may assume that v1v2, v5v6 ∈ F (otherwise we can apply the technique
of Lemma 4). Then there is at most one edge connecting the sets {v1, v2} and
{v5, v6} in F . So, we may assume that v1v5, v2v6 
∈ F and let C = v1v3v2v6v4v5.

d) We can assume that v1v2, v5v6, v6v7 ∈ F and v1v5, v2v6, v5v7 
∈ F . Then
C = v1v3v2v6v4v7v5 satisfies 1)–2).

e) Since v1v2, v2v3, v6v7, v7v8 ∈ F , we can take C = v1v3v4v2v8v6v5v7.
f) If v3v5 
∈ F then we add the branch B = T \ {v3, v4, v5}) to the cycle C′ =

v3v4v5 in the same way as in Lemma 4. So, v3v5 ∈ F . Analogously, v1v3 ∈ F .
Then v1v5 
∈ F , and we can take C = v1v2v3v4v5.

g) As in the previous case, v1v3 ∈ F and F must contain two edges from the
set {v3v5, v3v6, v5v6}. Since the degree of v3 is at most 2 in F , we may assume
that v3v5, v5v6 ∈ F . Then v1v5, v3v6 
∈ F and we take C = v1v2v3v6v4v5.
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Fig. 5. Trees without a good branch

h) As in the previous case, we may assume that v1v2, v2v4, v4v6, v6v7 ∈ F .
Then v1v4, v4v7, v2v6 
∈ F . So, the cycle C = v1v3v2v6v5v7v4 satisfies 1)–2).

i) If v1v4 
∈ F then we add the branch B = T ({v5, v6}) to the cycle C′ =
v1v2v3v4 in the same way as in Lemma 4. So, v1v4 ∈ F . Analogously, v4v6 ∈ F .
Then v1v6, v4v5 
∈ F and we can take C = v1v2v3v4v5v6.

j) As in case f), v1v4, v3v6 ∈ F . If v1v6 
∈ F then C = v1v2v3v4v5v6. Otherwise,
v1v5, v4v6 
∈ F , and so the cycle C = v1v2v3v4v6v5 satisfies 1)–2). 
�

The proof of Theorem 2 can be easily converted into an algorithm for finding
the cycle C2.

Algorithm Phase 2

Set T2 := T ∗
2 .
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Step 1. If T2 is isomorphic to the star K1,n−1 or to one of the trees shown
in Fig. 3, then construct the desired cycle C2 straightforwardly by using the
procedures described in the proof of Theorem 2.

Step 2. If T2 has a branch B in T such that |T \ B| ≥ 5 then by applying
Phase 2 to the tree T ′

2 = T2 \ B find a cycle C′ for these tree. By using the
procedure described in the proof of Lemma 4 construct the desired cycle C2

from C′.

Again, it is clear that the running time of Phase 2 is dominated by the running
time of Phase 0.

So the description of Disj Ham Cycles completed and we have the following

Theorem 3. Algorithm Disj Ham Cycles finds a feasible solution of 2-PSP
whose weight is at most twice the weight of the optimum in time O(n2 log n). 
�
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Abstract. We consider an optimization problem arising in the design
of optical networks. We are given a bipartite graph G = (L, R,E) over
the node set L ∪ R where the edge set is E ⊆ {[u, v] : u ∈ L, v ∈ R},
and implicitly a collection of all four-nodes cycles in the complete graph
over V . The goal is to find a minimum size sub-collection of graphs
G1, G2, . . . , Gp where for each i Gi is isomorphic to a cycle over four
nodes, and such that the edge set E is contained in the union (over all
i) of the edge sets of Gi. Noting that every four edge cycle can be a part
of the solution, this covering problem is a special case of the unweighted
4-set cover problem. This specialization allows us to obtain an improved
approximation guarantee. Whereas the currently best known approxi-
mation algorithm for the general unweighted 4-set cover problem has an
approximation ratio of H4 − 196

390 ≈ 1.58077 (where Hp denotes the p-th
harmonic number), we show that for every ε > 0 there is a polynomial
time ( 13

10 + ε)-approximation algorithm for our problem. Our analysis of
the greedy algorithm shows that when applied to covering a bipartite
graph using copies of Kq,q bicliques, it returns a feasible solution whose
cost is at most (Hq2 −Hq + 1)OPT + 1 where OPT denotes the optimal
cost, thus improving the approximation bound by a factor of almost 2.

Keywords: Approximation algorithms, network design, set cover.

1 Introduction

In the area of designing optical networks, one of the issues is how to pack the
demands on each link into optical channels. At each node there are digital routers
limited in their capabilities and they can only pack demands on a link together if
they arrive from up to q different directions, or go to up to q different directions.
For edge e = [u, v] the demands going through this edge are described in terms of
the paths they follow through the edge, such as {a, e, c} or {b, e, d}, as in Figure 1.
Due to technical limitations of the optical routers this value of q is typically
2 or 3. The problem is to route all demands through an edge with minimum
number of optical routers.
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Fig. 1. A demonstration of a valid packing of demands on one edge in the optical
network design problem with q = 2

Consider an abstraction of this problem for an edge e = [u, v] with a bipartite
graph, B = (V1∪V2, E) that has the set of nodes V1 each representing all the edges
incoming (adjacent) to u except for edge e, and the set of nodes V2 representing
all the edges adjacent to v except for edge e. Each demand going through edge e
is of the form {v1, e, v2} with v1 ∈ V1 and v2 ∈ V2. In this bipartite graph, a valid
channel packing of demands corresponds to a Kq,q biclique (where Kq,q denotes
the complete bipartite graph with q nodes in each side of the bipartition). The
problem of packing all demands using the minimum number of optical channels is
then the problem of covering all the edges of B with a minimum number of Kq,q

bicliques. We call this problem the bipartite Kq,q-covering problem. We note
that the Kq,q bicliques need not be subgraph of B.

The problem of covering a bipartite graph with bicliques is also prominent
within the subject of biclustering and gene expression, [2,16,17]. Biclustering
was defined by Mirkin [16] as the simultaneous clustering of both row and col-
umn sets in a ”data matrix”. The term balanced biclustering refers to finding
a (large) biclique that corresponds to a square submatrix, or a Kq,q biclique.
An application of balanced biclique covering has been used in [18] to identify
leukocyte-serum immunological reaction matrices.

As shown here, the bipartite Kq,q-covering problem is NP-hard, even for
q = 2. For q = 1 the problem is trivial – it is to cover the edges of the bipartite
graph with singleton edges. The fact that the bipartite K2,2-covering prob-

lem (BK2,2C) is NP-hard motivates our search for approximation algorithms.
An α-approximation algorithm for a minimization problem is a polynomial time
algorithm that always returns a feasible solution whose cost is at most α times
the cost of an optimal solution, and α is called the approximation ratio, or ap-
proximation bound, or the performance guarantee of the algorithm. Our focus
here is on BK2,2C, showing it is hard, and devising a (1.3 + ε)-approximation
algorithm for the problem.

The general problem of bipartite Kq,q-covering is formulated here as a set
cover problem. For the set cover problem there is an approximation algorithm
with an approximation bound of Hd =

∑d
i=1

1
d ≈ log d, [3], where d is the largest
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number of elements covered by a set. Since the formulation of the bipartite Kq,q-
covering as an instance of the unweighted set cover has each set with up to q2

elements (the number of edges in Kq,q biclique) this approximation ratio for
the greedy algorithm for this problem is Hq2 . Using the special structure of the
problem we show that the greedy algorithm for this set cover problem returns
a feasible solution whose cost is at most (Hq2 − Hq + 1)OPT + 1 where OPT
denotes the optimal cost. This is an improvement of a factor of (almost) 2 in the
approximation bound.

The problem BK2,2C is defined as follows. The input to the problem is a
bipartite graph G = (L ∪ R, E) with the bipartition of the nodes to L and R
(i.e., each edge in E connects a node from L and a node from R). The problem
is to cover the edges in E using K2,2 bicliques. In other words, BK2,2C is to find
a collection {G1, G2 . . . , Gp} of subgraphs of G, each a biclique K2,2 intersection
with the edges of G, where the union of the edge sets of all these subgraphs is
E. The goal is to find a minimum size collection of such subgraphs that covers
E, i.e., to minimize p.

A H-decomposition of a graph G = (V, E) is a partition of E into subgraphs
isomorphic to H . For a fixed graph H the H-decomposition problem is to de-
termine whether an input graph G admits a H-decomposition. Holyer [9] proved
that H-decomposition problem is NP-complete for (H) a complete graph on at
least three nodes, and also for (H) a cycle on at least four nodes. Since then a
stronger result was proved by Dor and Tarsi [5] showing that if H is connected
with at least three edges, then the H-decomposition problem is NP-complete.

The reduction of Holyer for H-decomposition where H is a four nodes cycle
creates a bipartite graph. Therefore, H-decomposition where H is a four nodes
cycle is NP-complete even when restricted to bipartite graphs. Also, the H-
decomposition problem defined on a bipartite graph, where H is the cycle over
four nodes, is reducible to BK2,2C by checking whether the optimal cost for
BK2,2C equals |E|

4 . We conclude that BK2,2C is also NP-hard. We do not know
whether BK2,2C is APX-hard.

In the weighted set-cover problem we are given a set of elements E =
{e1, e2, . . . , en} and a collection F of subsets of E, where ∪S∈FS = E and
each S ∈ F has a positive cost cS . The goal is to compute a sub-collection
SOL ⊆ F such that

⋃
S∈SOL S = E and its cost

∑
S∈SOL cS is minimum. Such

a sub-collection of subsets is called a cover. When we consider instances of the
weighted set-cover with each Sj having at most k elements (|S| ≤ k for all
S ∈ F), we obtain the weighted k-set cover problem. The unweighted

set cover problem and the unweighted k-set cover problem are special
cases of the weighted set cover and of weighted k-set cover, respectively,
where cS = 1 ∀S ∈ F . Problem BK2,2C can thus be viewed as an instance of
the unweighted 4-set cover problem, by considering the element set to be the
edge set E of the input graph, and the collection F to be the set of all four-edge
cycles over nodes of G. Thus, BK2,2C is precisely the resulting instance of the
unweighted 4-set cover problem.
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Chvátal, in [3], established that a greedy algorithm is a Hk-approximation
algorithm for the weighted k-set cover. This greedy algorithm works by choosing
iteratively a in the cover that maximizes the ratio of the number of remaining
elements it covers to its cost. The k-th harmonic number bound is tight for the
greedy algorithm even for the unweighted k-set cover problem (see, [11,15]). On
the other hand, the unweighted k-set cover problem is known to be NP-complete
[12] and MAX SNP-hard for all k ≥ 3 [4,13,19].

Goldschmidt, Hochbaum and Yu [7] modified the greedy algorithm for the un-
weighted k-set cover and showed that the resulting algorithm has a performance
guarantee of Hk− 1

6 . Halldórsson [8] presented an algorithm based on local search
that has an approximation ratio of Hk − 1

3 for the unweighted k-set cover, and a
(1.4+ε)-approximation algorithm for the unweighted 3-set cover. Duh and Fürer
[6] further improved this result and presented a (Hk − 1

2 )-approximation algo-
rithm for the unweighted k-set cover. The current best approximation guarantee
for the unweighted k-set cover problem is Hk − 196

390 (for all k ≥ 4) [14] (see [1] for
some improvement of this for values of k ≥ 6). Therefore, prior to this study the
best known approximation ratio for problem BK2,2C is H4− 196

390 ≈ 1.58077. This
best known previous result is significantly improved here for problem BK2,2C.
The algorithm of [7] as well as all the other known improvements of the greedy
approximation algorithm [8,6,14] are not greedy algorithms, and require much
higher running times, though still polynomial.

To motivate our improvement we show in Section 2 that the greedy algorithm
for the set cover problem has a better (asymptotic) performance guarantee when
it is applied to problem BK2,2C (H4− 1

2 instead of H4). For the general bipartite
Kq,q-covering problem we show that the greedy algorithm has an asymptotic
performance guarantee of Hq2 − Hq + 1 instead of Hq2 . Then, in Section 3, we
show our improved (13

10 + ε)-approximation algorithm for BK2,2C.

Our results. We show that the greedy algorithm when applied to covering a
bipartite graph using copies of Kq,q bicliques, returns a feasible solution whose
cost is at most (Hq2 − Hq + 1)OPT + 1 where OPT denotes the optimal cost.
We also present an improved (13

10 + ε)-approximation algorithm for BK2,2C.

2 The Approximation Ratio of the Greedy Algorithm

We show here that the greedy algorithm is a (H4 − 1
2 )-approximation algorithm

for BK2,2C. In fact the main result shown in this section is more general – it
is a (H4 − 1

2 )-approximation algorithm for the problem of covering the edges of
any graph by a 4-cycle, C4. Since the running time of the greedy algorithm is
much faster than the algorithms of [6,14] as well as the algorithm of the next
section, the result of this section presents an improvement over the other results
in either its approximation ratio or its time complexity. The key idea in the
improved approximation ratio of the greedy algorithm for this problem is that
greedy uses singletons (sets that cover exactly one new previously uncovered
element) at most once, as shown next.
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We consider an unweighted set cover instance E = {e1, e2, . . . , en} and F ⊆ 2E

so that each set S ∈ F has at most p elements, and F contains all q-subsets of
E (for some integers q ≤ p). We call such an instance for the unweighted set
cover, a (q, p)-uniform unweighted set cover problem.

The greedy algorithm starts with an empty collection of subsets in the solution
and no element being covered. Then it repeats the following procedure until all
elements of E are covered:

Let nS be the number of elements that are still uncovered in a set S ∈ F , and
the current ratio of S is rS = 1

nS
. Let S∗ be a set such that rS∗ is minimized.

The algorithm adds S∗ to the collection of subsets of the solution, updates the
status of the elements of S∗ as covered, and assigns a price of rS∗ to all the
elements newly covered in this iteration (i.e., the elements of E that were first
covered by S∗).

Theorem 1. The greedy algorithm for (q, p)-uniform unweighted set cover prob-
lem returns a feasible solution whose cost is at most (Hp −Hq +1)OPT +1− 1

q ,
where OPT is the cost of the optimal solution.

Proof. We modify Chvátal’s proof of the Harmonic bound, [3], as follows. First,
note that the cost of the greedy solution equals the sum of prices assigned to the
elements of E. Let OPT be an optimal solution of value OPT , and consider a
subset S that belongs to OPT (S has at most p elements). Then, OPT pays 1 for
S. When the i-th element of S is covered by the greedy algorithm, the algorithm
could select S as a feasible set with a current ratio of 1

|S|−i+1 . Therefore, the
price assigned to this item is at most 1

|S|−i+1 . Thus we have established that
the total price assigned to the elements of S is at most Hp where the q last
elements of S to be covered by the algorithm have at most Hq units of price. We
next argue that this bound can be improved for all S in OPT except perhaps
for one such set. This is so because each of the last q elements of S is covered
by a set with at least q (previously uncovered) elements, and hence its price
is at most 1

q . This argument can be applied to every subset in OPT except
perhaps one subset where the last q uncovered elements may have larger price,
and may be assigned a total price of at most one. It follows that the total price
assigned to the elements of S (for all S in OPT except possibly one set) is at
most

∑|S|−q
i=1

1
|S|−i+1 +q · 1

q =
∑|S|

i′=1
1
i′ −

∑q
i=1

1
i +1 ≤ Hp −Hq +1. We note that

the last set S pays an additional price of at most 1 − 1
q price units (there are at

most q −1 elements that do not fit into the q-subsets selected by the algorithm),
and hence the claim follows. 	


We note that the unweighted set cover instances resulting from bipartite Kq,q-
covering problem are (q, q2)-uniform, and hence we establish the following propo-
sition.

Proposition 1. 1. When the greedy algorithm is applied to the problem of min-
imum cover for the edges of a graph with 4-cycles, it returns a feasible solu-
tion whose cost is at most (H4 − 1

2 ) · OPT + 1
2 where OPT is the cost of an

optimal solution.
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2. When the greedy algorithm is applied for the bipartite Kq,q-covering problem,
it returns a feasible solution whose cost is at most (Hq2 −Hq +1)·OPT + q−1

q
where OPT is the cost of an optimal solution.

3 Improved Approximation Algorithm

In this section we present our (13
10 + ε)-approximation algorithm for problem

BK2,2C. The analysis of this improved algorithm makes use of the fact that the
input graph is bipartite.

Let {G1, G2 . . . , Gt} be a collection of subgraphs, each a biclique K2,2 inter-
section with the edges of G, forming a feasible solution to BK2,2C. We associate
each edge e ∈ E of G with the first subgraph Gi on this ordered list that con-
tains it. We call the subgraphs Gi that have four associated edges cycles of G.
Other subgraphs that have three associated edges we call 3-paths of G. The re-
maining subgraphs Gi have only one or two associated edges, such subgraphs
are not referred to as 3-paths. The end-nodes of a 3-path Gi of G are the two
nodes adjacent to the edge of the biclique of Gi that is not associated with Gi

(this edge is either not in G or it is associated with another subgraph Gj). So
the end-nodes of a 3-path Gi are the end-nodes of the subgraph resulting from
Gi by removing the edge that is not associated with Gi (see Figure 2 for an
illustration).

Fig. 2. The solid edges are associated with G1 whereas the dotted edges are associated
with G2. In this figure G1 is a cycle and G2 is a 3-path. The end-nodes of G2 are u
and v.

A 3-path of G is called a good 3-path if both its end-nodes have odd degrees in
G. A set S of subgraphs G1, G2 . . . , Gi is a good disjoint collection of subgraphs
if the following three conditions hold: 1. All of these subgraphs are edge-disjoint,
2. Each of them is either a cycle of G or a good 3-path of G, and 3. All the
end-nodes of the good 3-paths of G in S are disjoint.
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The first step of our algorithm is a pre-processing step that removes an ap-
proximate maximum size good disjoint collection of subgraphs1. This is done
by applying the local-search based algorithm for packing problems of Hurkens
and Schrijver [10]. This pre-processing step is referred in the sequel as the local-
search phase. The algorithm of [10] has an integer parameter t, and when it is
applied to approximate the maximum size good disjoint collection of subgraphs,
it maintains a current collection that is a good disjoint collection of subgraphs. It
starts with an empty set of subgraphs as the current collection (since an empty
collection is clearly a good disjoint collection of subgraphs we can start with this
initial collection). At each step the algorithm tries to delete t subgraphs from the
current collection and to add t + 1 subgraphs to the collection, while enforcing
the property that the resulting set of subgraphs is a good disjoint collection of
subgraphs. If the process cannot increment the current collection (i.e., it is a
local-maximum size good disjoint collection of subgraphs), then the algorithm
returns the current collection.

The approximation ratio and the time complexity of the local-search algorithm
both depend on t. When t = 2r (for even values of t) the approximation ratio
is (2(k−1)r−2)

(k(k−1)r−2) and for t = 2r − 1 the approximation ratio is (2(k−1)r−k)
(k(k−1)r−k) , where

k is the maximum number of items in an input set. In our case an item can be
either an edge or an end-node. Therefore, each selected graph can have at most
five items (either four associated edges from G, or three associated edges and
two end-nodes). Hence, the approximation ratio of the Hurkens and Schrijver’s
algorithm is 2

5 − ε where ε is O
(

1
4t/2

)
.

The good collection of subgraphs that we found in the local-search phase is
part of our cover. Additional bicliques are added next to attain a feasible solution.
Denoting by Ẽ the set of edges of G that are not covered by the selected good
disjoint collection of subgraphs, we partition the edges of the graph G̃ = (V, Ẽ)
into two parts as follows. The first part is a subgraph of G̃ such that each of
its connected component is Eulerian (i.e., a subgraph of G where the degree of
each node is an even number) denoted as Ge = (V, Ee), and the other parts are
paths P1, P2, . . . , Pk each of them connects two odd-degree nodes (where Pi has
an arbitrary number of edges). Each of these parts is an edge induced subgraph
of G. The partition is chosen so that it has the additional property that the
node set induced by the paths P1, P2, . . . , Pk is disjoint to the node set induced
by Ee. To find such a partition we apply the following procedure. We add to
G̃ a set of fake edges that is a matching over the odd-degree nodes of G̃. Then,
in the resulting graph the degree of each node is even, and for each connected
component of the resulting graph we find an Eulerian tour traversing all its edges
(fake edges or regular edges that belong to G̃). We next remove all the fake edges,
and by doing so some of the Eulerian tours are partitioned into a set of paths
that we select to the partition. The other connected components are Eulerian in

1 In our algorithm two pairs of odd-degree nodes may result in a subgraph Gi with only
two associated edges, and hence we would like to decrease the number of odd-degree
nodes in the subgraph after the pre-processing.
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G̃, and these are node disjoint to the selected paths. We denote these Eulerian
connected components by C1, C2, . . . , Cl, and we let Ge to be their union.

Note that each Ci is an Eulerian tour in a bipartite graph, and hence has an
even number of edges. Our algorithm traverses each of C1, C2, . . . , Cl, as well as
each of P1, P2, . . . , Pk, and partitions them into a set of 3-paths of G each of which
has three consecutive edges along the Eulerian tour or along Pi, and a remainder
of at most two edges called remaining edges from each of C1, . . . , Cl, P1, . . . , Pk.
Each 3-path of G that we find is a part of the output. The remaining edges are
paired up arbitrarily, and each such pair of edges belongs to a common biclique
in the solution returned by the algorithm. If there is an unpaired edge then we
add one biclique to the output that covers this edge.

To see that our algorithm returns a feasible solution we note that any pair of
edges of G can be covered using one copy of K2,2, and any three edges of G that
form a 3-path of G can be covered using one copy of K2,2 (together with the
edge between the two end-nodes of the 3-path of G). Therefore, our algorithm
returns a feasible solution. It runs in polynomial time because given the graph
G, we can find Ge in polynomial time as described above. Therefore, we establish
the following lemma.

Lemma 1. The approximation algorithm runs in polynomial time and returns
a feasible solution.

The time complexity of the algorithm consists of the preprocessing step and a
linear time for the rest of the algorithm. Recall that the time complexity of the
preprocessing step is exponential in 1

ε .
In the rest of this section we analyze the approximation ratio of the algorithm.
Consider a fixed optimal solution denoted by OPT. Denote by CY the number

of cycles of G in OPT, and denote by CH3 the number of 3-paths of G in OPT
where CH stands for chains and 3 stands for the number of edges associated with
such a 3-path. We find a collection of subgraphs in OPT that is maximal with
the property that each node in G has an even degree in the selected collection
(0 is obviously even). This collection forms an Eulerian subgraph. The other
subgraphs in OPT that are 3-paths of G are partitioned as follows: as long as
the following succeeds we identify a set of subgraphs of G such that the set of
associated edges from these subgraphs forms a path between two odd-degree (in
G) nodes. Such a path made of a collection of 3-paths that is not a single good
3-path is called a superchain of OPT. We denote by CHG the number of good
3-paths in OPT, by CHS the number of 3-paths of G that belong to superchains
of OPT, and by CHE the number of 3-paths of G that belong to the Eulerian
subgraph: note that since CHG, CHS and CHE count disjoint sets of 3-paths
of G, we conclude that CH3 ≥ CHG + CHS + CHE but this inequality may be
strict inequality). Denote by CH2 the number of subgraphs of OPT with two
associated edges, and by CH1 the number of subgraphs of OPT with exactly
one associated edges. We denote by no the number of odd-degree nodes in G.

Let the solution APP that the algorithm returns be of cost APP . Denote by A
the number of cycles of G found by the local-search phase and by B the number
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of good 3-paths of G found by the local search phase. Then, by the performance
guarantee of the algorithm of [10] we conclude that A+B ≥ (2

5 −ε)·(CY +CHG).
We allocate next APP-prices to the elements of G. Each edge is assigned

an APP-price of 3
8 and each odd-degree node is assigned an APP-price of 3

16 .
We associate the odd-degree nodes with the different subgraphs of APP in the
following way. For an odd-degree node v such that there is a good 3-path (in
APP) with end-node v, we associate v with this good 3-path. In APP, after the
removal of the good 3-paths of G during the local-search phase there are 2k
odd-degree nodes, and APP has at most 2k remaining edges that do not belong
to the Eulerian subgraph. We associate one odd-degree node with each such
remaining edge. Other odd-degree nodes are ignored when we lower bound the
total APP -price of all items (i.e., we modify the APP -price of such a node to
zero). We next upper bound the cost of APP using the total APP -price.

Lemma 2. The total APP -prices is at least APP + 1
2 · (A + B) + k

8 − 1
2 . I.e.,

APP is at most the total APP -prices minus 1
2 · (A + B) + k

8 − 1
2 .

Proof. Consider a cycle that was removed during the local-search phase. It has
four edges, each of them has an APP -price of 3

8 , and therefore the total APP -
price is 12

8 = 3
2 . Similarly, a good 3-path that was removed during the local-search

phase has a total APP -price of 9
8 + 6

16 = 3
2 . Note that APP pays one unit for

each of these subgraphs (cycle or good 3-path), and therefore the sum of the
total cost of APP for the removed cycles and good paths plus 1

2 · (A + B) is the
total APP -price paid for the elements of the removed cycles and good paths of
APP .

Next, consider a connected component Ci of the Eulerian subgraph. Since
Ci is simple (without parallel edges) and bipartite, it has at least six edges (if
Ci has only four edges, then this contradicts the local optimality of the good
disjoint collection of subgraphs that we find in the local-search phase). Denoting
the number of edges of Ci by ci, if ci is even such that ci ≥ 6 and ci ≡ 0 (mod 3)
or ci ≡ 2 (mod 3), then APP pays � ci

3 
 and 3
8 · ci ≥ � ci

3 
. For every even number
ci such that ci ≡ 1 (mod 3) then APP pays � ci

3 � + 1
2 and since ci ≥ 6 then

3
8 · ci ≥ � ci

3 � + 1
2 .

Next, consider a 3-path of APP that is not part of the Eulerian graph, then
its total APP-price is at least 9

8 that is greater than 1. I.e., for such a 3-path
APP pays less than the total APP-price of the elements of the 3-path.

It remains to consider the remaining edges that do not belong to the Eulerian
subgraph. There are at most 2k such edges, and for each of these edges there is
at least one associated odd-degree node, so that each of these remaining edges
have (together with the odd node) a total APP-price of at least 3

8 + 3
16 = 1

2 + 1
16 .

Since APP pays for such a remaining edge 1
2 (except perhaps the last edge that

is charged one unit), we have an extra of at least 1
16 units of APP-price with

respect to the cost APP for each odd-degree node that is left after we removed
the good 3-paths of G during the local-search phase. Since 2k

16 = k
8 and the last

remaining edge might be charged one unit instead of 1
2 , the claim follows. 	
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We allocate next OPT-prices to the elements of G. Each edge that belongs to
either a cycle of OPT or a good path of OPT is assigned an OPT-price of 3

8 − 1−ε
20 .

Other edges are assigned an OPT-price of 3
8 . We associate the odd-degree nodes

with the different subgraphs of OPT in the following way. For an odd-degree
node v which is an end-node of a good 3-path (in OPT) we associate v with this
good 3-path and let its OPT-price be 3

16 − 1−ε
40 . If a node v is not an end-node

of a good 3-path, then its OPT-price is 1
8 . In that case v is either an end-node

of a 3-path of G (where this 3-path is not part of the Eulerian subgraph) or of a
singleton remaining edge e. We then associate v with either the 3-path subgraph
for which it is an end-node or with the subgraph Gi of OPT that covers e.

We next show that the total OPT -price of the elements of each subgraph of
OPT is at most 13

10 +O(ε). Summing over all subgraphs of OPT we will conclude
that the total OPT -price of all subgraphs of OPT is at most (13

10 + ε
5 )OPT + 1

2 .

Lemma 3. Consider a subgraph Gi of OPT, then the total OPT-price that is
assigned to Gi is at most 13

10 + ε
5 .

Proof. The proof is via case analysis of the different types of subgraphs in OPT.

– Assume that Gi is a cycle. Then it has four associated edges and an OPT-
price of 4 ·

(
3
8 − 1−ε

20

)
= 13

10 + ε
5 .

– Assume that Gi is a 3-path in the Eulerian subgraph of OPT . Then, Gi has
three associated edges and does not have an associated odd-degree nodes.
Therefore, its OPT-price is 3 · 3

8 = 9
8 < 13

10 .
– Assume that Gi is a good 3-path of OPT . Then, the OPT-price of Gi is

3 ·
(

3
8 − 1−ε

20

)
+ 2 ·

(
3
16 − 1−ε

40

)
= 13

10 + ε
5 .

– Assume that Gi is a 3-path in G that is not a good path and also it is not
a part of the Eulerian subgraph. Such Gi has at most one associated odd-
degree node. Note that such odd-degree node that is assigned to Gi is not
an end-node of a good 3-path of OPT , and therefore it has an OPT-price of
1
8 . Therefore, the OPT-price of Gi is at most 3 · 3

8 + 1
8 = 5

4 < 13
10 .

– Otherwise, Gi has at most two associated edges and two associated odd-
degree nodes. Again, the associated odd-degree nodes are not end-nodes of
good 3-paths, and therefore the OPT-price of each such odd-degree node is
1
8 . Therefore, Gi has an OPT-price of at most 2 · 3

8 + 2 · 1
8 = 1.

	


Corollary 1. APP ≤ (13
10 + ε

5 ) · OPT + 1
2 .

Proof. By Lemma 2, APP is at most the total APP-prices minus 1
2 · (A + B) +

k
8 − 1

2 . By Lemma 3, the total OPT-prices is at most
(

13
10 + ε

5

)
· OPT . Next, we

argue that the total APP-price is larger than the total OPT-price assigned to the
elements of G by at most A+B

2 + k
8 . To see this note firstly that the total OPT-

price of the edges and end-nodes of a cycle or a good path of OPT is 1−ε
5 lower

than the total APP-prices of these elements. Secondly, from the performance
guarantee of the local-search phase A + B ≥ 2

5 (CY + CHG). Thirdly, there
are exactly 2k odd-degree nodes that are assigned APP-price of 3

16 (and the



126 D.S. Hochbaum and A. Levin

other odd-degree nodes have zero APP-price), and each of these nodes have an
OPT-price of at least 1

8 . Therefore, the difference between the contribution of
odd-degree nodes to the total APP-price and the total OPT-price is at most
k
8 . 	


We note that if OPT ≤ 1
ε , then we can enumerate all partitions into at most

1
ε subgraphs, and for each of them we test the feasibility of the partition (as
a solution to BK2,2C) and we pick the cheapest feasible solution that we find.
Therefore, we can assume without loss of generality that OPT > 1

ε , and therefore
1
2 < ε

2 · OPT . Hence, we establish the following theorem.

Theorem 2. For every ε > 0, there is an approximation algorithm for BK2,2C
that returns a feasible solution whose cost is at most (13

10 + ε) · OPT .
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Abstract. We consider a min-max version of the previously studied
r-gathering problem with unit-demands. The problem we consider is a
metric facility-location problem, in which each open facility must serve
at least r customers, and the maximum of all the facility and connec-
tion costs should be minimized (rather than their sum). This problem
is motivated by scenarios in which r customers are required for a fa-
cility to be worth opening, and the costs represent the time until the
facility/connection will be available (i.e., we want to have the complete
solution ready as soon as possible).

We present a 3-approximation algorithm for this problem, and prove
that it cannot be approximated better (assuming P �= NP ). Next we
consider this problem with the additional natural requirement that each
customer will be assigned to a nearest open facility, and present a 9-appr-
oximation algorithm. We further consider previously introduced special
cases and variants, and obtain improved algorithmic and hardness results.

1 Introduction

Facility-location has been studied in many forms over the past decades (see, e.g.,
[3,4,6,9,11,12,13,14,16,18,19]). In the classic metric facility-location problem, we
are given a set of customer locations S and a set of potential locations of facilities
F (which may intersect S). Each location fi ∈ F is associated with a cost p(fi)
for opening a facility there. For every si ∈ S and fj ∈ F , there is a cost d(si, fj)
for connecting a customer in si to a facility in fj. These costs are equivalent
to the distances, and satisfy the symmetry and triangle-inequality requirements.
The goal is to open facilities and assign each customer to a facility, such that
the total cost is minimized (i.e., the sum of the facility opening-costs and the
connection-costs should be minimal).

The metric facility-location problem models many realistic scenarios, in which
service-posts of a certain type should be opened to serve a set of customers.
Applications range from classic power-plants or warehouses location problems
to locating servers in computer-networks (see, e.g., [6,18] for surveys). The
current best approximation algorithm for metric facility-location achieves an
approximation-ratio of 1.5 [4]. On the other hand, this problem cannot be ap-
proximated within less than a factor of 1.463, assuming P �= NP [11].

One of the interesting recent variants of metric facility-location is the r-
gathering problem, introduced in parallel by Karger and Minkoff [13] and by

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 128–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Guha et al. [12] (who called it load-balanced facility-location). The basic addi-
tional requirement in the r-gathering problem is that each facility will be assigned
at least r customers (customers are not necessarily assigned to the nearest open
facility in this problem). This variant captures the idea that opening a facility is
economically justified when it serves at least a certain amount of demand (and
this constraint may even be more natural than facility costs in some settings).
Furthermore, in various settings there is an inherent lower bound on the number
of customers in each facility. For example, in secret-sharing schemes (see [15]),
at least r shares are needed to uncover a secret. We may need to locate servers
in the network, to which clients will connect in order to uncover the secret, and
we may want this process to be as fast or as cheap as possible.

Both papers [12,13] considered the generalization of r-gathering in which cus-
tomers have different demands, the connection-costs are the product of the de-
mand and distance, and each facility must serve customers having a total of at
least r demand [12,13]. They both presented a (1+α

1−αβ, α) bicriteria approxima-
tion, for any α < 1, where β is the approximation-ratio of the metric facility-
location problem (currently 1.5 for the classic problem [4] and 1.582 for the
generalization in which customers may have different demands [16]). Namely,
their algorithm guarantees that each open facility in the solution will serve at
least αr demand, and the cost will be at most 1+α

1−αβ times the optimal cost of the
r-gathering problem. Choosing α = r−1

r +ε for the case of unit-demands provides
a 1.5(2r − 1 + ε)-approximate feasible solution. Note that we cannot hope for
a significant improvement in the approximation-ratio due to improvement of β,
since β is lower-bounded by 1.463 [11].

Although the first papers considered minimizing the sum of costs [12,13], a
natural variant is to minimize the maximal cost (in the spirit of the k-center
problem [9]). This may model, for example, the time until all the facilities and
connections will be available (if each cost represents the time until the corre-
sponding facility/connection will be ready). A special case of the min-max ver-
sion of this problem with unit-demands, called “r-gather clustering”, has been
recently considered by Aggrawal et al. [1]. In their special case, motivated by
a clustering application, all the facility costs are zero and all the locations of
customers are included in the set of optional facility locations (S ⊆ F )[1]. Their
paper presented a 2-approximation algorithm for this case, and proved that it
cannot be approximated better, for any r ≥ 7 (assuming P �= NP ). They also
considered a generalization called (r, ε)-gather clustering, in which the solution
can ignore εn of the customers (“outlier points”), and stated that this problem
can be approximated within a factor of 3 if facilities (cluster-centers) can only
be located at customer (input points) locations [1]. We note that unlike the al-
gorithm of [12,13], the algorithm of [1] does not guarantee that each customer
will be assigned to a nearest open facility.

For the basic special case of r = 2, a recent paper of Anshelevich and Kara-
giozova [2] proves that both min-sum 2-gathering without facility-costs and min-
max 2-gathering can be solved in polynomial time.
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Demaine et al. [5] have recently introduced another problem related to min-
max 2-gathering, which they called min-max minimum-movement facility lo-
cation. In our terminology, there are two types of customers in that problem:
Customers from type A (“clients”) must be assigned to a facility having at least
one customer from type B (“server”) assigned to it, while customers from type B
do not have to be assigned. Also, S ⊆ F and there are no facility costs. Demaine
et al. [5] asked whether this problem can be approximated within less than a
factor of 2. We prove that the answer is negative, assuming P �= NP .

In this paper we focus on min-max r-gathering in the basic case of unit-
demands - our results refer to this problem unless stated otherwise. In addi-
tion to the basic r-gathering problem, we consider the version in which there
is an additional proximity requirement: Each customer in the solution must be
assigned to the nearest open facility. This is clearly a plausible quality of a so-
lution in many facility-location settings, and also in clustering scenarios (e.g.,
in geographic data-mining, see [10]). We manage to obtain a constant-factor
approximation for this problem as well.

1.1 Our Results

We start by presenting a simple 3-approximation algorithm for min-max r-
gathering. On the other hand, we prove that this problem cannot be approx-
imated within less than a factor of 3 (assuming P �= NP ), for any r ≥ 3. By
using a similar reduction, we also show that r-gather clustering cannot be ap-
proximated within less than a factor of 2 for any r ≥ 3, thus improving the
hardness result of [1].

The same approximation algorithm extends to provide a 3-approximate so-
lution for a generalization considered by [12,13], in which each fi ∈ F has a
different lower-bound ri on the number of customers required. Furthermore, it
extends to provide the same approximation-ratio for the generalization in which
there are several types of customers, and each open facility fi must have at least
rij customers of type j (this may be useful for example for achieving “p-Sensitive
k-Anonymity”[17] in publishing information from databases, similarly to the use
of r-gather clustering for achieving “k-Anonymity”[1]).

By using another extension of this algorithm, we provide a 3-approximation for
the generalization of min-max r-gathering in which an ε-fraction of the customers
can be ignored. We thus match the approximation-ratio stated in [1] for the
special case of (r, ε)-gather clustering.

Interestingly, practically the same algorithm also provides a 2r approxima-
tion for the min-sum version of the problem, if there are no facility costs. For
this case, this improves upon the 1.5(2r − 1) + ε approximation implied by the
bicriteria algorithm of [12,13].

Next we consider the proximity requirement, and present a 9-approximation
algorithm for min-max r-gathering which satisfies it (i.e., each customer is as-
signed to a nearest open facility). For the special case of r-gather clustering,
our technique provides a 6-approximation algorithm. In addition, we provide a
2-approximation algorithm for 2-gather clustering which satisfies the proximity
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requirement. We show that this approximation factor cannot be improved: An
algorithm for r-gather clustering which guarantees the proximity requirement
cannot guarantee an approximation-ratio smaller than 2.

Finally, we show that although min-max 2-gathering is polynomial [2], the
related min-max minimum-movement facility-location [5] is NP-hard and cannot
be approximated within less than a factor of 2 (assuming P �= NP ). This resolves
the open-question recently posed by Demaine et al. [5].

All our algorithms are based on discrete combinatorial techniques. Our hard-
ness results use reductions from Exact-k-cover and SAT.

The rest of this paper is organized as follows. In Section 2 we present formal
problem definitions and notations. Section 3 presents our simple approximation
algorithm for min-max r-gathering, and analyzes its use for other versions. Sec-
tion 4 considers the requirement of assigning each customer to a nearest open
facility. The hardness results are provided in Section 5. We conclude with some
concluding remarks and open problems.

2 Problem Definitions and Notations

We now formally state the basic problems we consider and introduce some of
the notations we use. (we use slightly different notations from those of [12,13]).

The input for an r-gathering problem consists of a set of customer-locations
S = {s1, ..., sn}, a set of potential facility-locations F = {f1, ..., fm} with open-
ing costs p : F → R+

⋃
{0}, and distances (connection-costs) d : (S

⋃
F ) x

(S
⋃

F ) → R+
⋃

{0}. The input also consists of a positive integer r > 1.
A solution is an assignment of the n customers to (not necessarily distinct)

facilities, t1, ..., tn, which are considered open, such that customer i is assigned
to facility ti ∈ F , and the number of customers assigned to each open facility
is at least r. In the min-max version of the problem, the goal is to minimize
max1≤i≤n(max(d(si, ti), p(ti))) (we refer to this as the cost of the solution). In
the min-sum version, the goal is to minimize

∑n
i=1 d(si, ti)+

∑
fi∈{t1,...,tn} p(fi)

(each cost of an open facility is considered once in this sum).
A special case of min-max r-gathering is r-gather clustering [1], where S ⊆ F ,

and there are no facility costs (p(fi) = 0, for 1 ≤ i ≤ m).

3 Approximating Min-Max r-Gathering

Definition 1. The “min-cost” of customer i, denoted c(i), is the minimum
cost of assigning r customers, including customer i, to a single facility (consid-
ering both the facility-cost and the customers’ connection-costs). The location
of this min-cost assignment, gi ∈ F , is called “the best facility” of customer
i. The “partners” of customer i are the r-1 customers, other than customer
i, who participate in this min-cost assignment. (If there are several options we
arbitrarily prefer locations and customers with smaller indices).

We now provide a simple approximation algorithm for the problem, Best-or-
Rest (see Figure 1).
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Algorithm Best-or-Rest
1. For each customer, find his min-cost, best facility and partners.
2. Sort the customers in non-decreasing min-cost order.
3. For each customer i in this sorted order:

If customer i and all his partners have not been assigned yet - assign them
to the best facility of customer i (open this facility if it is not open yet).
Otherwise, do nothing and continue to the next customer.

4. Assign any unassigned customer to the nearest open facility. (In case of
a tie, arbitrarily choose the location with smallest index).

Fig. 1. A 3-approximation algorithm for min-max r-gathering

Lemma 1. The cost of the solution found by algorithm Best-or-Rest for min-
max r-gathering is at most thrice the maximal min-cost.

Proof. First, observe that the cost of a customers’ assignment at stage (3) is the
min-cost of one of the customers assigned at this stage (customer i), which is at
most the maximal min-cost of any of the n customers.

Now consider a customer i assigned at stage (4). This customer was not as-
signed at stage (3), which means that when customer i was considered at stage
(3), at least one of his partners, say customer j, had already been assigned
to another facility, tj = gk (the best facility of some customer k �= i). Cus-
tomer i can also be assigned to tj, with a cost of d(si, tj). Clearly, d(si, tj) ≤
d(si, sj) + d(sj , tj). Observe that d(si, sj) ≤ 2c(i), since d(si, gi) ≤ c(i) and
d(gi, sj) ≤ c(i) (as j is one of the partners of customer i and gi is the best-
facility of customer i). Also, d(sj , tj) = d(sj , gk) ≤ c(k), since customer j is one
of the partners of customer k. Since we performed stage (3) in a non-decreasing
order of min-cost, c(k) ≤ c(i). So taken together, for each customer assigned at
stage (4), d(si, ti) ≤ 3c(i) (the customer is assigned to a nearest open facility,
and we saw that there exists an open facility which satisfies this). This yields
the required result.

Theorem 1. Algorithm Best-or-Rest finds a 3-approximate solution for min-
max r-gathering, and can be implemented to run in O(n(m+r)+(n+mr) log n)
time.

Proof. The cost of an optimal solution for the problem is clearly at least the max-
imal min-cost (since there is a customer whose assignment requires at least that
cost in any solution). Therefore, the previous lemma proves that the algorithm
finds a 3-approximate solution.

For implementing the first stage efficiently, we can first find for each t ∈ F
the sorted list of r customers closest to t. This can be done in O(n + r log n)
time for each facility (using a binary heap). Let Dt be the distance from t of
the r-th customer in that (non-descending) list. Thus, for each customer i, the
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minimal cost of assigning him along with r-1 other customers to location t is
max(Dt, d(si, t), p(t)). So computing these costs for each customer and for each
t ∈ F takes an overall time of O(m(n + r log n)). We now find the best facility
of each customer according to these costs (in an overall time of O(mn)). The
partners of customer i are clearly the first other r-1 customers in the list of his
best facility, and noting them for each customer requires a total of O(nr) time (nr
may be higher than m(n + r log n)). Thus, stage (1) can be implemented to run
in O(nr +m(n+ r log n)) time. Stage (2) clearly requires O(n log n) time (which
may be higher than O(mr log n)). The next stages are less time-consuming than
the first one, and thus the total running time is as stated.

Algorithm Best-or-Rest can also be used for the generalization in which an
ε-fraction of the customers may be ignored (ε is specified in the input). We can
simply ignore the εn customers with highest min-costs (in case of ties we ignore
only those whose min-cost is strictly higher than the min-cost of (1 − ε)n other
customers), and then run this algorithm. This guarantees an approximation-
ratio of 3 for this generalization of the problem, since the optimal cost must
be at least the highest min-cost of the customers we considered (note that the
customers we ignored are not partners of customers we haven’t ignored, since
their min-cost is higher). As mentioned in the Introduction, this matches the
approximation-ratio stated in [1] for a special case of this generalization.

It is also easy to see that algorithm Best-or-Rest can be used to achieve
the same approximation-ratio even if there is a different lower-bound ri on the
number of customers for each facility fi ∈ F , a generalization considered by
[12,13]. This should simply be taken into account in the definitions of min-cost,
best-facility and partners, and the first stage of the algorithm will change ac-
cordingly (and will be similarly implemented). Furthermore, it can be used to
achieve the same approximation-ratio for the generalization in which there are
several types of customers, and each open facility fi must have at least rij cus-
tomers of type j (again, this should simply be taken into account in Definition 1,
changing the first stage of the algorithm accordingly).

We next prove that algorithm Best-or-Rest can be used to provide a 2r
approximation for min-sum r-gathering (with unit demands), in the basic case
introduced by [13] where there are no facility costs. We call this case unweighted
min-sum r-gathering. This improves upon the ratio of 1.5(2r − 1)+ ε implied by
the algorithm of [12,13] for this case of the problem.

We define the min-cost, best-facility and partners in the corresponding way
for the min-sum problem (the cost of an assignment to a facility is the sum of
the connection-costs of the customers rather than their maximum).

Lemma 2. The cost of the solution found by algorithm Best-or-Rest for un-
weighted min-sum r-gathering is at most twice the sum of the min-costs of all
the customers.

Proof. The proof is similar to Lemma 1, and is omitted from this version.

Lemma 3. The cost of an optimal solution for unweighted min-sum r-gathering
is at least a (1/r)-fraction of the sum of the min-costs of all the customers.
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Proof. Consider a facility t ∈ F opened by an optimal solution OPT . Let x =
yr + z be the number of customers assigned to t in this solution (where y, z
are integers such that y ≥ 1, r > z ≥ 0). Now divide these customers into
(y + 1) sets in the following way. For each customer a assigned to t, calculate
d(sa, t)/c(a), i.e., the fraction of his min-cost that his connection costs in this
solution. The first set, B0, will contain the z customers for which the above
calculated value was maximal. The other customers are arbitrarily divided into
y sets of r customers, B1, ..., By.

Consider a set Bi, 1 ≤ i ≤ y. For each customer a ∈ Bi, c(a) ≤
∑

b∈Bi
d(sb, t)

(since this is the cost of assigning r customers, including customer a, to facility
t in OPT ). Summing this over all the customers in Bi, we get

∑
a∈Bi

c(a) ≤
r ·

∑
a∈Bi

d(sa, t). This is true for every 1 ≤ i ≤ y, which means that the cost
of assigning the customers of

⋃y
i=1 Bi in OPT is at least a (1/r)-fraction of the

sum of their min-costs.
Now consider a customer a ∈ B0. If we replace one of the customers of B1

by customer a, then the previous argument still holds for this modified set of r
customers. So the total cost of assigning the customers in this modified set to t
is at least a (1/r)-fraction of the sum of their min-costs. From the way B0 has
been selected, it follows that d(sa, t)/c(a) ≥ 1/r (otherwise this ratio must have
been smaller than 1/r for all the customers in this set, and thus also for the
sums). Since this is true for any customer in B0, it is true for the whole B0, i.e.,
the cost of assigning these customers to t is at least a (1/r)-fraction of the sum
of their min-costs.

All the above is true for any facility t opened by an optimal solution, which
means that the cost of an optimal solution is at least a (1/r)-fraction of the sum
of min-costs, as required.

Theorem 2. Algorithm Best-or-Rest finds a 2r-approximate solution for un-
weighted min-sum r-gathering, and can be implemented to run in O(n(m + r) +
(n + mr) log n) time for this problem.

Proof. The approximation-ratio follows from combining the last two lemmas. It
is easy to see that the running-time is the same as in Theorem 1, since we can
similarly implement the first stage of the algorithm.

4 Assigning to a Nearest Open Facility

In this section we consider the min-max r-gathering problem with the additional
constraint that each customer should be assigned to the nearest open facility (or
to one of the nearest open facilities in case of a tie). We start by presenting a
9-approximate algorithm which satisfies this constraint.

In the following we say that a customer prefers a facility if there is no other
open-facility nearer to his input location. We use the term unsatisfied for a
customer who is not assigned to a nearest open facility. We use algorithm Move-
to-Solid, described in Figure 2, for finding an approximate solution.
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Algorithm Move-to-Solid
1. Run algorithm Best-or-Rest. If there are no unsatisfied customers, we

are done. Otherwise, re-assign customers according to the following stages
(initially no customer is considered re-assigned).

2. For each customer who has not been re-assigned yet, check which of the
existing open facilities he prefers (in case of a tie choose the facility with
smallest index). If a facility is preferred by at least r such customers, we
say that it became solid.

3. Move to each solid facility all the customers who prefer it that have not
been re-assigned yet. All the customers in solid facilities are now consid-
ered re-assigned.

4. If there are non-solid facilities which contain less than r customers now,
re-assign their remaining customers to the facilities they most prefer out
of the solid ones (and close these empty facilities).

5. If there are any non-solid facilities left, return to (2).
6. If there are unsatisfied customers, move them to the facilities they prefer

out of the remaining (solid) facilities.

Fig. 2. A 9-approximation algorithm for min-max r-gathering, in which each customer
is assigned to a nearest open facility

Theorem 3. Algorithm Move-to-Solid finds a 9-approximate solution for
min-max r-gathering, in which each customer is assigned to a nearest open fa-
cility. It requires O(n3/r + m(n + r log n)) time.

Proof. We first observe that the algorithm runs in the stated polynomial time.
We call an execution of stages (2)-(5) an iteration. Clearly, there are at most n/r
open facilities after stage (1), so there can be at most n/r iterations in which
facilities become solid. Note that since there are at least r customers in each
facility after stage (1), there must be at least one solid facility. If at a certain
iteration no facility becomes solid, it means that at least one customer assigned
to a non-solid facility preferred one of the solid facilities at that iteration, and
was therefore re-assigned to it (the customers in non-solid facilities have not been
re-assigned yet, and if they all prefer non-solid facilities in (2) then at least one of
these facilities must be preferred by at least r such customers). Since customers
re-assigned to solid facilities are not re-assigned again until stage (6), there
can be at most n such iterations. Thus the number of iterations is smaller than
n+n/r. Clearly, each iteration requires O(n2/r) time (this is what stage (2) may
require at the worst case). Stage (1) requires O(n(m + r) + (n + mr) log n) time
according to Theorem 1, and stage (6) can clearly be implemented in O(n2/r)
time. Summing these bounds yields the time bound stated in the theorem (as
r ≤ n).

We next explain why the algorithm indeed finds a solution for the problem.
Since each solid facility has at least r customers who preferred it over all the other
remaining facilities, at least r customers are left at each of the open facilities
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at the end (note that facilities are only canceled and not created, so a cheaper
assignment option cannot appear later). Since each customer is assigned at stage
(6) to a facility that he most prefers out of the remaining open facilities, each is
assigned to a nearest open facility (by definition). We thus turn to considering
the cost.

We proved that algorithm Best-or-Rest finds a 3-approximate solution. We
denote its cost by C. We now prove that the re-assignments of Move-to-Solid
increase the cost of the solution by a factor of at most 3. Note that the cost of
open facilities does not increase (since we only close facilities), so we only need
to consider the increase in the customers’ connection-costs (distances).

Clearly, moving unsatisfied customers to a facility they prefer can only de-
crease their connection-cost. A customer’s connection-cost can increase only
when he is moved from a canceled facility (a facility found at stage (1) which
was left with less than r customers) to the solid facility that he most prefers
(at stage (4)). Let u be such a canceled facility. If u was canceled, then one of
the customers assigned to it at stage (1) must have preferred one of the solid
facilities at that iteration, v, and was moved to it. Let customer i be the first
such customer.

It is clear that d(u, v) ≤ 2C, since d(u, si) ≤ C, and d(si, v) ≤ d(si, u) (since
customer i preferred v). Thus, moving any customer assigned to u at stage (1)
to the solid facility that he most prefers adds at most 2C to his connection-
cost, which is therefore at most 3C. After reaching a solid facility, the cost of
a customer does not increase again (he is re-assigned again only if he is unsat-
isfied at the end, which may only decrease his cost). Therefore, the maximum
connection-cost of any customer in this solution is at most 3C, which is at most
9 times the optimum. Thus, the theorem is proven.

We note that the procedure described in the last proof can be used to transform
any solution into a solution in which each customer is assigned to a nearest
open facility, while increasing the total cost by a factor of at most 3. Thus,
by applying it to a 2-approximate solution found by the algorithm of [1] for r-
gather clustering, we can obtain a 6-approximate solution for r-gather clustering
which satisfies the proximity requirement. In the context of [1], it is a clustering
solution in which each object is assigned to a nearest cluster center (which is
clearly a plausible quality of a clustering solution).

4.1 Improved Results for r = 2

Recall that min-max r-gathering is polynomial for r = 2 [2]. However, the solu-
tion found by [2] does not guarantee anything regarding the proximity require-
ment. We start by showing that for any r ≥ 2, there are problem instances of
r-gather clustering, for which the minimal cost solution that satisfies the prox-
imity requirement costs almost twice the optimum. We then provide algorithm
Nearest-Neighbor, that indeed finds a 2-approximate solution which satisfies
the proximity requirement for 2-gather clustering.
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Algorithm Nearest-Neighbor
1. For each customer i, find the customer j closest to him (his nearest-

neighbor), and let c(i) = d(si, sj). (In case of a tie, pick the customer
with smallest index).

2. Consider the customers’ c(i) values in non-increasing order, and do the
following for each such value x:
(a) Build a graph G = (V, E), where V contains a vertex for each customer
i who satisfies c(i) = x that was not assigned yet. For every u, v ∈ V ,
(u, v) ∈ E iff d(u, v) = x.
(b) Remove isolated vertices from G. Repeatedly remove edges whose
both endpoints have a degree > 1 as long as there are such edges, i.e.,
until the graph becomes a set of vertex-disjoint stars.
(c) Open facilities in the star centers, and assign the customers in the
remaining vertices of G to their star’s center (in case of a single edge,
arbitrarily pick one of its endpoints to be the center)
(d) For each customer in V which was not assigned so far, open a facility
at the input location of his nearest-neighbor, and assign that customer
and his nearest neighbor to that facility.

Fig. 3. Finding a 2-approximate solution for 2-gather clustering, in which each cus-
tomer is assigned to a nearest open facility

Claim. For every r > 1 and ε > 0, there are instances of r-gather clustering such
that the minimal cost solution which satisfies the proximity requirement costs
at least (2 − ε) times the optimum.

Proof. Omitted from this version due to space limitations.

For the approximation we use algorithm Nearest-Neighbor, described in
Figure 3.

Theorem 4. Algorithm Nearest-Neighbor finds a 2-approximate solution for
2-gather clustering, in which each customer is assigned to a nearest open facility.
It requires O(n2) time.

Proof. We start by showing that the algorithm finds a solution for the problem,
which costs at most the maximum of the customers’ c(i) values. The cost of
assigning a customer i at stage 2(c) is clearly at most c(i), since the assignment
described uses at most one edge of E for each customer. Each open facility is
assigned at least two customers at this stage (those who are at the same star).

At stage 2(d), an unassigned customer i is assigned to the input location sj

of his nearest neighbor j. We observe that if customer j is the nearest neighbor
of customer i then c(j) ≤ c(i) (since customer i is at a distance of c(i) from
customer j). If c(j) < c(i), then clearly customer j was not assigned yet, and
it is assigned to the same location sj by the algorithm (with zero cost). So
this is a valid assignment, and the cost of assigning customer i is exactly c(i).
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If c(j) = c(i), then customer j must have been previously assigned to his own
location sj , when another customer, k (satisfying c(k) > c(j)), has been assigned
to it (otherwise si would not have been isolated in G, and customer i would have
already been assigned at stage 2(c)). So this is again a valid assignment, which
costs c(i). Thus all the customers are assigned, and each facility contains at least
2 customers.

All this is true for each of the c(i) values and for each of the customers.
Therefore, the total cost of the assignment is at most the maximum of the
customers’ c(i) values. Clearly, the optimal solution costs at least half of this
(the customers might be able to meet at the middle of a shortest path between
them).

Finally, we explain why each customer is indeed assigned by the algorithm to
a nearest open facility. Facilities are only opened by the algorithm in locations
of customers, and each customer is either assigned to his own location or to the
location of one of his nearest neighbors (in which case there is no facility in his
own location). As the algorithm progresses, there can only be less assignment
options (since some of the customers are already assigned to locations of other
customers). Therefore, at the end there can be no nearer open facility for any of
the customers. It is easy to see that each stage of the algorithm requires a total
of at most O(n2) time.

5 Hardness Results

We match the approximation-ratio for min-max r-gathering with the following
hardness result.

Theorem 5. For any r ≥ 3, it is NP-hard to approximate min-max r-gathering
within less than a factor of 3, even if there are no facility costs.

Proof. We prove the theorem by a reduction from the Exact-k-Cover problem
(also called Exact-Cover by k-Sets), which is known to be strongly NP-hard for
any k ≥ 3 [7,8]. The input consists of a set of elements S = {x1, ...xkn}, and m
subsets of this set of elements, S1, ..., Sm, where |Si| = k for every 1 ≤ i ≤ m.
The question is whether there exists a collection of n subsets Si1 , ..., Sin , such
that each element is included in exactly one of them. Our reduction first proves
that min-max r-gathering is NP-hard, and we later see that this implies that it
is NP-hard to approximate within less than a factor of 3.

We construct the following input for min-max r-gathering. The set of customer
locations is S = {s1, ...skn}, i.e., there is one customer for each element xi,
1 ≤ i ≤ kn. There is one potential facility location fi ∈ F for each subset
Si (1 ≤ i ≤ m), with p(fi) = 0. For every xi ∈ Sj , d(si, fj) = 1. The other
distances are those implied by this definition (i.e., the distances in the graph
G = (S

⋃
F, E), where (u, v) ∈ E iff d(u, v) = 1 and the weight of each edge is 1).

We set r = k. We now prove that the cost of an optimal solution for this problem
is 1 iff the answer to the Exact-k-Cover problem is “yes”.
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Assume the answer to the Exact-k-cover problem is“yes”. Opening facilities in
the locations corresponding to the cover subsets Si1 , ..., Sin , and assigning each
customer to the facility corresponding to the subset which covers his correspond-
ing element, provides a solution in which each facility is assigned r customers
and the cost is 1 for each customer. Thus, the optimal cost is indeed 1.

On the other hand, if the optimal cost is 1, then the answer to the Exact-
k-Cover problem is “yes”. A solution with a cost of 1 can only exist if each
customer is assigned to a facility which corresponds to a subset containing his
corresponding element. Thus, there are exactly r such customers assigned to
each open facility in that solution, since each facility has only r customers at a
distance of 1. Therefore there must be n such facilities, since all the customers
are assigned. These facilities correspond to n subsets, each of them containing
r different elements. Thus these subsets form an Exact-k-Cover. So both sides
of the reduction are proven. Since Exact-k-Cover is NP-hard for any k ≥ 3, it
proves that our problem is NP-hard for any r ≥ 3.

Clearly, the cost is at least 3 iff the answer is “no”, since there is no potential
facility location at distance 2 from a customer. Thus, the theorem is proven.

The problem remains hard to approximate even for the following special case.

Theorem 6. For any r ≥ 3, the special case of min-max r-gathering in which
S = F and there are no facility costs, is NP-hard to approximate within less
than a factor of 2.

Proof. Proving NP-hardness for the special case where S=F requires a change in
the reduction described in the previous proof. Instead of having only one location
fi corresponding to each subset Si, r locations correspond to each subset Si:
fi1 , ..., fir . For each xj ∈ Si we define d(sj , fi1) = 1. Also, for every 1 ≤ j < r,
we define d(fij , fir ) = 1. Again, the other distances are those implied by those
we defined. Each location both contains a customer and is a potential location
of a facility (S = F ).

It is not difficult to see that a solution has cost 1 iff the customers corre-
sponding to each subset Si are assigned to fir , and customers who correspond
to elements are assigned to neighboring locations of type fi1 (i.e., the new loca-
tions and customers have no influence on them). Otherwise the cost is at least
2. Therefore the reduction holds due to the same arguments, and the problem
cannot be approximated within less than a factor of 2, assuming P �= NP .

Since r-gather clustering is a generalization of the problem mentioned in the last
theorem, this hardness result also holds for r-gather clustering, thus matching
the approximation-ratio obtained by[1]. Previously this was known for r-gather
clustering only for r ≥ 7 [1].

Corollary 1. For any r ≥ 3, it is NP-hard to approximate the r-gather cluster-
ing problem within less than a factor of 2.

We next prove the hardness of a related problem described in the Introduction,
min-max minimum-movement facility-location, which was introduced by [5].
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They observed that this problem is approximable within a factor of 2, and we
prove a matching lower bound on the approximability, thus resolving an open
question they presented [5].

Theorem 7. It is NP-hard to approximate the min-max minimum-movement
facility-location problem within less than a factor of 2.

Proof. (sketch) The reduction is from SAT. We build an unweighted graph
with the following vertices: A “server” for each variable, a “client” for each
clause, and an empty vertex for each literal, connected to the clauses which
contain it and to its variable (a facility may be opened at any vertex). The
connection-costs are defined according to the distances in this graph. Thus, there
is a satisfying assignment to the formula iff there is a solution of cost 1 to the
minimum-movement facility-location problem (facilities are opened in vertices
corresponding to true literals).

6 Concluding Remarks and Open Problems

We considered the min-max version of the r-gathering problem, and provided
constant-approximation algorithms and hardness-of-approximation results for
several variants, some of which are tight. Some of our results improve previous
results for special cases or related problems, including an improved approxi-
mation for min-sum r-gathering without facility costs and improved results for
r-gather clustering and min-max minimum-movement facility-location.

Obvious remaining open problems are providing improved approximation al-
gorithms or hardness results for min-max r-gathering with the proximity require-
ment and for min-sum r-gathering. Other problems which remain for future
research are the generalizations in which each customer may have a different
demand and each facility must serve a total demand of at least r, while the
connection-costs are the product of distance and demand (previously considered
by [12,13] for the min-sum version).
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Abstract. We consider max coloring on hereditary graph classes. The
problem is defined as follows. Given a graph G = (V, E) and positive
node weights w : V → [1, ∞), the goal is to find a proper node coloring

of G whose color classes C1, C2, . . . , Ck minimize
k�

i=1
maxv∈Ci w(v). We

design a general framework which allows to convert approximation algo-
rithms for standard node coloring into algorithms for max coloring. The
approximation ratio increases by a multiplicative factor of at most e for
deterministic offline algorithms and for randomized online algorithms,
and by a multiplicative factor of at most 4 for deterministic online al-
gorithms. We consider two specific hereditary classes which are interval
graphs and perfect graphs.

For interval graphs, we study the problem in several online environ-
ments. In the List Model, intervals arrive one by one, in some order. In
the Time Model, intervals arrive one by one, sorted by their left endpoint.
For the List Model we design a deterministic 12-competitive algorithm,
a randomized 3e-competitive algorithm, and prove a lower bound of 4
on the (deterministic or randomized) competitive ratio. For the Time
Model, we use simplified versions of the algorithm and the lower bound
of the List Model, to achieve a deterministic 4-competitive algorithm, a
randomized e-competitive algorithm, and lower bounds of φ ≈ 1.618 on
the deterministic competitive ratio and 4

3 on the randomized competi-
tive ratio. The former lower bounds hold even for unit intervals. For unit
intervals in the List Model, we obtain a deterministic 8-competitive algo-
rithm, a randomized 2e-competitive algorithm and lower bounds of 2 on
the deterministic competitive ratio and 11

6 ≈ 1.8333 on the randomized
competitive ratio.

Finally, we employ our framework to obtain an offline e-approximation
algorithm for max coloring of perfect graphs, improving and simplifying
a recent result of Pemmaraju and Raman.

1 Introduction

The (offline) max coloring problem is defined as follows: Given a graph G =
(V, E) and positive node weights w : V → [1, ∞), the goal is to find a proper
node coloring of G (i.e., each pair of adjacent nodes are assigned distinct colors)
whose color classes C1, C2, . . . , Ck minimize

∑k
i=1 maxv∈Ci w(v).
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An interval graph has the property that its nodes can be presented as intervals
on the real line so that two nodes share an edge if and only if their respective
intervals intersect. Motivated by a design of dedicated memory managers prob-
lem, Pemmaraju, Raman and Varadarajan introduced the max coloring problem
[19]. They designed a 2-approximation algorithm for the max coloring problem
on interval graphs. Further, they showed that the First-Fit algorithm, which col-
ors nodes in the first available color in a order in which they are given, when the
intervals are considered in a monotone non-increasing order of their weights, is a
10-approximation algorithm for the max coloring problem on interval graphs. In
that paper it is mentioned that the problem is actually interesting in the online
environment, but it is not studied in that context.

In the online max coloring problem the nodes arrive one by one, and each time
a node v arrives the set of edges connecting v to the earlier nodes is revealed. In
this paper we consider the online max coloring problem where G is an interval
graph. In this case we assume the graph is given via its intervals representation.
The intervals are presented to the algorithm one by one clairvoyantly, that is, all
information regarding the interval is revealed upon arrival. That is, we assume
that each time an interval arrives its two endpoints are revealed. Each interval is
to be colored before the next one is presented and this color assignment can not
be changed afterwards. We are interested in two online versions of the problem.
In the List Model, the intervals are given in an arbitrary order. In the Time
Model, the intervals arrive sorted by their left endpoints. The study of the Time
Model is motivated by the application of the design of memory managers in
which each interval corresponds to memory requests that arrives along time (so
the requests are ordered according to their left endpoints).

For an algorithm A, we denote its cost by A as well. The cost of an optimal
offline algorithm that knows the complete sequence of intervals is denoted by
OPT. Since the problem is scalable, we consider the absolute competitive ratio
and the absolute approximation ratio criteria. For an online algorithm we use
the term competitive ratio whereas for an offline algorithm we use the term
approximation ratio. The competitive ratio of A is the infimum R such that for
any input, A ≤ R · OPT. If A is randomized, the last inequality is replaced by
E(A) ≤ R · OPT. If the competitive ratio of an online algorithm is at most R
we say that it is R-competitive. If an algorithm has an unbounded competitive
ratio, we say that it is not competitive. The approximation ratio of a polynomial
time offline algorithm is defined similarly to be the infimum R such that for any
input, A ≤ R · OPT. If the approximation ratio of a polynomial time offline
algorithm is at most R we say that it is a R-approximation.

In [17] Pemmaraju, Raman and Varadarajan designed an approximation al-
gorithm with an approximation ratio of O(log n) for the (offline) max coloring
of chordal graphs. They also analyzed empirically several heuristics.

In [18] Pemmaraju and Raman presented a 4-approximation algorithm for
the (offline) max coloring of perfect graphs. Since every chordal graph is also a
perfect graph, this result improves the earlier O(log n)-approximation algorithm
of [17] for chordal graphs. We recall that perfect graphs are such that the graph
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can be colored using ω colors, where ω is the size of the largest clique in the
graph. Note that ω is a clear lower bound on the chromatic number of the graph.
An algorithm that finds such a coloring is implied using the ellipsoid algorithm
[7] (see also chapter 67 in [20]). Further results on the max coloring problem are
provided in [8,3,15,5].

Coloring interval graphs has been intensively studied, Kierstead and Trotter
[13] constructed an online algorithm which uses at most 3ω −2 colors where ω is
the maximum clique size of the interval graph. They also presented a matching
lower bound of 3ω−2 on the number of colors in a coloring of an arbitrary online
algorithm. Note that the chromatic number of interval graphs equals to the size
of a maximum clique, which is equivalent in the case of interval graphs to the
largest number of intervals that intersect any point (see [10,6]). This means that
the optimal offline algorithm can color every interval graph with ω colors. This
can be actually done by applying First-Fit to the intervals sorted by their left
end points. Therefore, a 1-competitive algorithm exists for this problem in the
Time Model. Many papers studied the performance of First-Fit for this problem
[11,12,19,2]. The last paper shows that the performance of First-Fit is strictly
worse than the one of the algorithm of [13].

Interval coloring received much attention recently. In [19], a simple reduc-
tion from offline max coloring to online interval coloring was shown. The upper
bounds in this paper were shown by exploiting the algorithm of [13] (which be-
comes a 2-approximation instead of the 3-competitive algorithm, since a part of
the computation can be done offline), and First-Fit (this paper first improved the
known bound on First-Fit and then used it). The reduction simply applies the
online algorithm to the set of intervals, sorted by non-increasing order of weight.
Adamy and Erlebach [1] introduced the interval coloring with bandwidth prob-
lem. In this problem each interval has a bandwidth requirement in (0, 1]. The
intervals are to be colored so that at each point, the sum of bandwidths of in-
tervals colored by a certain color does not exceed 1. This problem was studied
also in [16,4].
Our results: We first present the positive results of this paper. I.e., we present
a randomized online algorithm that uses as a sub-routine a node coloring al-
gorithm. This sub-routine is applied to color graphs that are subgraphs of the
original graph. We then show how to choose the parameters of our algorithm to
obtain a deterministic online algorithm though with inferior competitive ratio.
Note that though we reduce the max coloring problem to an interval coloring
problem, which is also done in [19]. However our reduction does not require
pre-sorting of the intervals, and therefore our algorithms for interval graphs
are online. Using known results for online minimum coloring of interval graphs
we obtain the following results. For the List Model we design a deterministic
12-competitive algorithm, a randomized 3e-competitive algorithm, and prove a
lower bound of 4 on the deterministic or randomized competitive ratio. For the
Time Model, we use simplified versions of the algorithm and lower bound of
the List Model, to achieve a deterministic 4-competitive algorithm, a random-
ized e-competitive algorithm, a lower bound of φ ≈ 1.618 on the deterministic



On the Max Coloring Problem 145

competitive ratio, and a lower bound of 4
3 on the randomized competitive ra-

tio. The lower bound holds even for unit intervals. For unit intervals and the
List Model, we obtain a deterministic 8-competitive algorithm, a randomized
2e-competitive algorithm and improved lower bounds of 2 and 11

6 ≈ 1.8333 on
the deterministic and randomized competitive ratios, respectively. Our upper
bounds for online algorithms are based on using a general reduction which we
introduce in this paper, that allows to convert a r-competitive algorithm for stan-
dard coloring into a 4r-competitive (e·r-competitive) deterministic (randomized)
algorithm for max coloring. Finally, we use our randomized algorithm with a de-
randomization procedure to obtain an offline (deterministic) e-approximation
algorithm for max coloring of perfect graphs. We present the algorithms in Sec-
tion 2, and the lower bounds in Section 3.

2 Algorithms

Before we define our algorithms, we would like to discuss the performance of
First-Fit. This is clearly a natural algorithm for coloring. As shown in a sequence
of papers [11,12,19], applying First-Fit to interval graphs for the standard col-
oring problem results in a constant competitive algorithm, though First-Fit is
worse than the algorithm of Kierstead and Trotter [13,2]. However, we can show
that First-Fit is not competitive for the max coloring problem.

Proposition 1. First-Fit is not competitive even in the Time Model and unit
intervals.

Proof. Let M be a large constant fixed later. We introduce the input in blocks,
all intervals are of length 2. Block i (i ≥ 0) consists of i copies of the interval
[4i, 4i + 2], with weight 1 each, and one interval [4i + 1, 4i + 3] of weight M .
Clearly, the i intervals are colored using colors 1, . . . , i, since they arrive first,
and do not overlap with any previous intervals. The next interval which has
larger weight is colored with color i + 1. Therefore, the cost of the algorithm
after block j −1 is M · j. An optimal offline algorithm would use one color for all
intervals with larger weight, and j − 1 colors for all other intervals. This results
in the cost M + (j − 1). Taking M = j2 we get a competitive ratio of j3

j2+j−1 .
When j grows to infinity, this competitive ratio becomes arbitrarily bad. ��

We design a framework for converting a deterministic C-competitive algorithm
for online coloring of a given class of graphs into a randomized e ·C-competitive
algorithm for max coloring on the same class of graphs. Our framework applies
to hereditary class of graphs (i.e., if a graph belongs to this class, then every
induced subgraph belongs to this class). We apply the scheme using deterministic
algorithms only. This results in deterministic algorithms using a deterministic
reduction scheme and in randomized algorithms using a randomized reduction
scheme. Clearly, the randomized scheme can be used for converting a randomized
algorithm to a randomized one.

Our algorithm has a positive integer parameter k and another (real value)
parameter α > 1. Our algorithm chooses uniformly at random an integer value
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0 ≤ � < k. Upon arrival of a new node we round down its weight as follows. We
find the largest integer value t such that αkt+� is no larger than the weight of
the new node. The rounded weight of the node becomes αkt+�. Let OPT be the
total weight (i.e., cost) of an optimal offline solution for the original sequence.
For a given color, the weight of this color is defined to be the largest weight of
any node which is colored by OPT with this color. Let OPTi be the number of
colors that OPT uses which have weight in the interval

[
αi−1, αi

)
. Denote by

p the largest integer, such that OPT opens colors with weight in the interval[
αk(p−1), αkp

)
. Note that p is unknown to the algorithm and is used only for the

analysis.

Lemma 1. OPT satisfies OPT ≥
∑kp

i=1 αi−1 · OPTi.

The input is partitioned into subsequences (also called classes), such that each
one of them is colored independently, using its own set of colors. The subsequence
S0 consists of all nodes with weight that is smaller than α�. The subsequence Si

for i ≥ 1 contains all nodes whose weight is in the interval
[
α�+(i−1)k, α�+ik

)
.

Once we are coloring such a class Si, all weights are considered as identical
weights and the problem is reduced to the classical online coloring problem. We
use a C-competitive algorithm to color such a class.

Lemma 2. The number of colors that are used to color Si is at most C ·∑kp
j=�+(i−1)k+1 OPTj for i ≥ 1 and at most C ·

∑kp
j=1 OPTj for i = 0.

Proof. For i ≥ 1, OPT can use the colors with weight at least α�+(i−1)k to color
the nodes of Si. Therefore, there are at most

∑kp
j=�+(i−1)k+1 OPTj colors that

are used by OPT to color Si. Since we use a C-competitive algorithm to color
Si, the claim follows. For i = 0, OPT uses at most OPT =

∑kp
j=1 OPTj colors

to color S0, and the claim follows similarly. ��

It remains to analyze the (randomized) algorithm.

Lemma 3. Assuming the existence of a C-competitive algorithm for online col-
oring, the randomized online algorithm has a competitive ratio of at most C·αk+1

k(α−1) .

Proof. Since each color that our algorithm uses to color Si has a weight of at most
α�+ik, by Lemma 2, we conclude that for a given value of � the cost of the solution
returned by the algorithm is at most C ·

∑p
i=1 α�+ik

∑kp
j=�+(i−1)k+1 OPTj + C ·

α� ·
∑kp

j=1 OPTj . We now consider the expected cost of the returned solution
(the expectation is over the randomized value of �). Since � is chosen uniformly
in the set {0, 1, . . . , k − 1}, the expected cost is at most the following:∑k−1

�=0

(
C ·

∑p
i=1 α�+ik

∑kp
j=�+(i−1)k+1 OPTj + C · α� ·

∑kp
j=1 OPTj

)
k

=

C
∑kp

j=1 OPTj ·
∑j+k−1

t=0 αt

k
≤

C
∑kp

j=1 OPTj · αj+k−1 ·
∑∞

t=0

(
1
α

)t

k
=

C
∑kp

j=1 OPTj · αj+k · 1
α−1

k
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where the first equation holds by changing the order of summation, and the
inequality holds since OPTj ≥ 0 for all j. Recall that by Lemma 1, OPT ≥∑kp

j=1 αj−1 · OPTj . We next note that the coefficients of OPTj in the lower

bound of OPT is at most C·αk+1

k(α−1) times the coefficient of OPTj in the upper
bound on the expected cost of the solution returned by the algorithm, and thus
the claim follows. ��
Theorem 1. Assuming the existence of a C-competitive algorithm for online
coloring in one of the models, and a given hereditary graph class, there is a
(randomized) online algorithm for max coloring (in the same model) with com-
petitive ratio at most e · C for the same graph class.

Proof. By setting k = ∞ in the algorithm, we carry the algorithm where αk = e.
Instead of choosing � to be a uniformly random integer, we set � = u · k where
u is randomly chosen real number in the interval [0, 1], and in this case α� = eu.
Then, by Lemma 3, where α = 1+ 1

k and k approaches ∞, the claim follows. ��
Theorem 2. Assuming the existence of a C-competitive algorithm for online
coloring in one of the models, and a given hereditary graph class, there is a
deterministic online algorithm for max coloring (in the same model) with com-
petitive ratio at most 4 · C for the same graph class.

Proof. By Lemma 3, and setting α = 2 and k = 1. We note that for k = 1 our
algorithm is deterministic as � has a unique possible value of 0. ��
For max coloring of interval graphs we can use the following results: For the List
Model, we use the 3-competitive algorithm of Kierstead and Trotter [13]. For the
List Model with unit intervals, we use the 2-competitive algorithm of Epstein
and Levy [4]. For the Time Model, we color each class optimally using First-Fit
[10]. Therefore, we establish the following:

Corollary 1. For online max coloring of interval graphs there is a randomized
algorithm whose competitive ratio is 3e in the List Model, 2e in the List Model
with unit intervals and e in the Time Model.

For online max coloring of interval graphs there is a deterministic algorithm
whose competitive ratio is 12 in the List Model, 8 in the List Model with unit
intervals, and 4 in the Time Model.

We next note that for an offline algorithm, we can use a derandomization pro-
cedure to transform the (online) randomized algorithm into a deterministic ap-
proximation algorithm. To obtain the derandomization note that for each node
v, v belongs to at most two adjacent classes Si and Si+1 for the different values
of �. Therefore, there are at most n threshold values S that can be found in
advance. We choose α = 1+ 1

k and k is a huge integer number, and then we have
to calculate only n solutions (the ones that correspond to the threshold values
S), and pick the best solution. Therefore, we establish the following theorem.

Theorem 3. Given a hereditary class of graphs that has a ρ-approximation al-
gorithm for the (offline) minimum node coloring problem, then there is a (e · ρ)-
approximation algorithm for the offline max coloring problem.
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Note that for perfect graphs (which are known to be hereditary class of graphs)
there exists such an optimal algorithm for the minimum node coloring (see [7]).
Using a classification as above, and running a node coloring algorithm for each
class, we obtain an e-approximation algorithm for perfect graphs improving the
4-approximation algorithm of [18].

Corollary 2. There is a deterministic e-approximation algorithm for (offline)
max coloring of perfect graphs.

3 Lower Bounds

We start with a lower bound for the Time Model.

Theorem 4. The competitive ratio of any deterministic online max coloring
algorithm of interval graphs in the Time Model is at least φ ≈ 1.618, which holds
even if the input is restricted to unit intervals. For randomized algorithms, the
competitive ratio is at least 4

3 .

Proof. The input consists of a large enough number of blocks N , unless it stops
earlier. Let a < 1 be a parameter (fixed to be a =

√
5−1
2 = φ − 1 ≈ 0.618 in the

deterministic case, and a = 1
2 in the randomized case). A block is a clique, where

block i (for some i ≥ 1) consists of i − 1 intervals of weight a (regular intervals)
and one interval of weight 1 (the expensive interval). An incomplete block has
only the regular intervals. The sequence is either processed till the end, or stops
in a situation where some number i ≥ 1 of blocks is complete, and the last block
i + 1 is incomplete.

All the regular intervals of a block i are identical copies of the interval [4i, 4i+2],
and the expensive interval of the same block is the interval [4i+1, 4i+3]. Clearly,
intervals of different blocks do not intersect. All intervals in one block should re-
ceive distinct colors, but any pair of intervals from different blocks can receive the
same color. We now compute the optimal offline cost for t blocks. If all blocks are
complete, there are N blocks, and each has one expensive interval. We color all ex-
pensive intervals using one color, and at most one regular interval per block with
each one of N −1 additional colors. This gives a total cost of 1+a(N −1). If there
are i ≥ 1 complete blocks, and one incomplete block, there are at most i intervals
in each block. Therefore OPT needs only i colors, where one of these colors is used
for all expensive intervals (in the incomplete block, it is used for a regular interval).
We get the cost OPT = 1 + a(i − 1).

Next, we consider the behavior of the algorithm. In the deterministic case, we
make sure that the algorithm uses exactly i colors immediately after i complete
blocks have arrived (if they indeed arrive) . Note that the regular intervals in
each block arrive first. If the algorithm uses at least one new color, we stop the
sequence. Otherwise, it uses a single new color for the expensive block. Consider
first the case that N complete blocks arrive. This means that the algorithm used
a new color for each expensive interval. Its cost is therefore N . Otherwise, let
i + 1 be the index of the incomplete block. The algorithm used i distinct colors
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for the expensive intervals of blocks 1, . . . , i. It uses a new color for one regular
interval of block i + 1. Therefore its cost is i + a.

Consider the competitive ratio if all blocks are complete. The ratio is N
aN+1−a .

For large enough N , the ratio tends to 1
a =

√
5+1
2 = φ ≈ 1.618. If the sequence

stopped at an incomplete block i + 1, the ratio is i+a
ia+1−a = φ (for any value

of i). The result for randomized algorithm is shown in the full version of the
paper. ��

The lower bound for the List Model is based on blocks as well, however blocks
are not simple cliques, and their construction is similar to the construction of
the lower bound of 3 in [13].

Theorem 5. The competitive ratio of any deterministic or randomized online
max coloring algorithm of interval graphs in the List Model is at least 4.

Proof. We start with a proof of the deterministic lower bound and later show how
to extend it for randomized algorithms. To prove the theorem, we use gadgets.
We describe them now, and afterwards we show how to obtain them.

Let b < 1 be a constant (later chosen to be 1
2 ). A full (k, i) gadget is a

construction of intervals, all contained in the interval (i − 1, i) (so that intervals
of different gadgets do not intersect), where the minimum number of colors
needed to color them is at most ki. Out of these colors, at most k(i − 1) are of
weight b. If there are exactly k(i − 1) colors using weight b, there are at most k
additional colors which use weight 1. The numbers k and i are known in advance
to an online algorithm. Any online algorithm is forced to use exactly (3k − 2)i
colors for this gadget. (Note that it is possible to actually force it to use a slightly
larger amount of colors which is 3ki−4 for i > 1, but the amount we use is large
enough for our purposes and makes the analysis more convenient.) A partial
(k, i) gadget is the same as a full (k, i) gadget, only it does not contain any
intervals of weight 1. It will be created in the same way as a full gadget, but the
construction will stop before any intervals of weight 1 are presented. To color a
partial gadget, the minimum number of colors needed is at most k(i − 1) (all of
weight b), and any online algorithms can be forced to use (3k − 2)(i − 1) colors
(Again, this is a convenient amount for our calculations, we can actually force
it to use 3k(i − 1) − 2 colors.) We call this set of colors “the colors used in the
gadget”. If a set of (3k−1)i colors is used at some point during the construction,
we stop the construction immediately. In the randomized version of the lower
bound, we do not stop the construction, but we charge the algorithm for (3k−1)i
of the colors it uses in a full (k, i) gadget, and treat the rest of the colors as new
in the future. We describe the case in which we construct only a partial gadget
later.

It is left to describe how to obtain a gadget. We use a construction which is
very similar to the lower bound of 3 in [13]. A difference with [13], already used
in [4] is the assumption that some information on the optimal cost (which is
either k(i − 1) or ki in our case) is known in advance.

The construction of a gadget consists of ki phases, where in the first k(i − 1)
phases, all intervals are of weight b, whereas the last k phases consist of intervals
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of weight 1. If the gadget is partial, the last k phases are not introduced. If it
is full, all the phases are given. Let U = (3k − 2)i > 3 be the number of colors
we would like to force in this gadget. Let S = U3ki be the initial number of
intervals presented in the first phase. As mentioned above, all intervals presented
are contained in (i − 1, i). It is possible to introduce these intervals of length 1

2S
starting from point i−1+ 1

4S with distances of 1
2S between them. In each phase,

the number of intervals which can be used for the next phase decreases by a
factor of at most U3 (actually at most 4(U)3

6 ).
After a phase is defined, we shrink some parts of the line into single points.

Given a point p, that is a result of shrinking an interval [a, b]. Every interval
presented in the past which is contained in [a, b] is also shrunk into p and there-
fore the point p inherits a list of colors that such intervals received. These colors
cannot be assigned to any interval that contains the point p. The shrinking is
done only for simplification purposes. In practice it means that for a given point
p that is the result of shrinking, every future interval either contains this point
or not, i.e., it either contains all intervals that were shrunk into this point, or
has no overlap with any of them.

If an algorithm uses more than U colors, we can stop the construction. There-
fore we assume that the algorithm is initially given a palette of U colors. As
soon as all these colors are used, the proof is complete. This is just one stopping
condition, we may stop the sequence earlier as well, after the partial gadget has
been constructed.

Since the algorithm is using at most U colors, this means that there exists a
set of S

U intervals that share the exact same color c. We shrink all intervals into
single points. Later phases result in additional points.

We now define phase j (for j ≥ 2). The phases are constructed in a way that in
the beginning of phase j there is a set of at least U3(ki−j+1) points that contain
a given subset of the U colors. These points are called points of interest.

There exist some other points containing other subsets of colors. All these
points are called void points. At this time, we partition the points of interest into
consecutive sets of four. At most three points of interest that do not participate
in the partition become void points.

We next define additional intervals, increasing the size of the largest cardi-
nality clique (with respect to the number of intervals, i.e., ignoring weights) by
exactly one. Given a set of four points listed from left to right a1, a2, a3, a4, let b1

be the leftmost void point on the right hand side of a1, between a1 and a2. If no
such point exists, then let b1 = a1+a2

2 , i.e., the point which is halfway between
a1 and a2. Similarly, let d be the rightmost void point between a3 and a4, and if
no such point exists then d = a3+a4

2 . Let f be a point between a2 and a3 that is
not a void point. We introduce the intervals I1 = [a1,

a1+b1
2 ] and I2 = [d+a4

2 , a4].
If they both receive the same color, we introduce the intervals I3 = [a1+b1

2 , f ]
and I4 = [f, d+a4

2 ]. The interval I3 intersects with a2, and with I1. The second
interval I4 intersects I3, a3 and I2, therefore two new colors must be used. In
total, three new colors were used.
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If I1, I2 receive distinct colors, we introduce the interval I5 = [a1+b1
2 , d+a4

2 ].
Interval I5 intersects with I1, I2, a2, a3, and thus gets a new color. In total, three
new colors were used.

We shrink every such interval [a1, a4] into a single point. Each of the new
shrunk points received three new colors.

Note that we do not use more than U colors, and each new shrunk point
receives three new colors. Four intervals are introduced only if the first two
received the same color. There are less than U3

6 options to choose from the set
of three new colors. We can choose at least 6 · U3(ki−j) points having the same
set of used colors. The points containing these exact sets of colors become the
points of interest of the next phase, and the others become void points of the
next phase. Points that are void points of previous phases and are not contained
in shrunk intervals remain void points. Note that the points where the new
intervals intersect are points with no previous intervals, and therefore the clique
size increases by exactly 1.

After the first k(i−1) phases, we start presenting intervals of weight 1 instead
of b. The first phase of intervals of larger weight is different from all other phases,
as we would like the set of all intervals of weight 1 to be k colorable. Thus, the first
such phase we introduce has a clique size of exactly 1. Therefore, we introduce
single intervals [a1, a4] instead of the construction above, in this phase only. In
this phase the algorithm uses a single new color.

Recall that multiple gadgets are used, but they are built in a way that no
two intervals from different gadgets can intersect. Specifically, we can replace
the single intervals from the proof of Theorem 4 by gadgets. A complete block i
is replaced by a full (k, i) gadget for a large value of k. An incomplete block is
replaced by a partial (k, i) gadget. However, the decision which defines a block
as complete or incomplete is different. We again use at most N blocks.

Recall that in a full gadget i, the online algorithm is forced to use exactly
(3k−2)i colors. After the construction of a partial gadget, it is possible to count
the total number of colors that were ever used, mi ≤ (3k − 2)i. Since the total
number of colors in block i must be (3k − 2)i, we define ni = (3k − 2)i − mi to
be the number of new colors needed to make block i a full gadget.

We define the construction as follows. When block i + 1 is presented, the
partial gadget is presented first. If the algorithm used at least (3k − 2)i + 2k
colors by that time, the sequence terminates. Otherwise, the gadget is presented
in full. The analysis of this construction is left for the full version. ��

Finally, the lower bound for unit intervals can be improved in the List Model.

Theorem 6. The competitive ratio of any deterministic online max coloring
algorithm of unit interval graphs in the List Model is at least 2. For randomized
algorithms, the competitive ratio is at least 11

6 ≈ 1.8333.

Proof. We first define a base block of size i. This is a set of intervals, where
the largest clique size is 2i, all weights in this block are the same. There is no
overlap between intervals of this block and intervals of other blocks. We consider
the deterministic case first.
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We force the algorithm to use at least 3i colors for this block, no matter what
their weight is, or which intervals or what weights appeared previously in the
sequence. Another feature is that there exists a range of length 1, [x, x + 1],
where the largest clique size is 2i, and all 3i colors are represented in this range,
i.e., given the 3i colors the algorithm was forced to use in the block, every one of
them is used to color some interval that overlaps [x, x + 1] at least in one point.

The construction is similar to the lower bound of 3
2 , shown in [4] for online

coloring of unit intervals.
The construction of the block is partitioned into three phases. In the initial

phase we provide i identical requests for an interval [4i, 4i+ 1]. The online algo-
rithm has to color these intervals with exactly i colors, denote those colors by
c1,...,ci and the set of those colors by C.

In the next phase we present at most 2i intersecting intervals. These intervals
are presented one by one in a way that all intervals colored by some color, c,
where c ∈ C are slightly shifted to the right with respect to any interval that is
colored by a color c̄, where c̄ /∈ C. We present intervals until exactly i of them
are colored by colors that are not in C. We now show how this goal is achieved.

Let I1 = [a, a + 1] be the rightmost interval colored by c̄ /∈ C and let I2 =
[d, d+1] be the leftmost interval colored by c ∈ C among intervals introduced so
far in the current phase (not in the initial phase or in another block). If there is
no interval colored c̄ we say that I1 is empty and if there is no interval colored c
we say that I2 is empty. Let ε = 1

64i . A new interval, I, is presented as follows.
1. If both I1 and I2 are empty (this holds only when we introduce the first

interval) then I = [4i + 3
2 , 4i + 5

2 ]. 2. If only I1 is empty, I = [d − ε, d + 1 − ε].
3. If only I2 is empty, I = [a + ε, a + 1 + ε]. 4. If I1 and I2 are not empty then,
I = [d+a

2 , d+a
2 + 1] , i.e. the interval is halfway between I1 and I2 with unit

length, intersecting all previous intervals presented in this step.
Note that none of the intervals in this phase intersect intervals of the initial

phase. Moreover, the left endpoints of all the intervals in the phase are located
within a distance of less than 1 from the right endpoints of the intervals of the
initial phase. Also note that the algorithm stops after introducing at most 2i
intervals, at that time, if it is reached, there are exactly i intervals with a color
that is not in C, since |C| = i.

Assume now that [yi + 1, yi + 2] is the rightmost interval with color c̄ /∈ C
(from the construction we have 4i + 1

4 < yi < 4i + 3
4 ) after all intervals from

phase 2 were presented. We present i requests for the interval [yi, yi + 1]. This
interval intersects all the intervals with color not in C from the previous phase.
They also intersect all the intervals from the initial phase.

To complete the analysis, note that the intervals presented in the last phase all
intersect with intervals of exactly 2i different colors. There are i colors in C and
i colors not in C from the second phase. This gives a coloring of 3i colors while
the largest clique has cardinality 2i. The range [yi, yi + 1] intersects intervals of
all 3i colors as needed.

Let 0 < α < 1. We now define the lower bound sequence. The sequence
consists of at most N extended blocks, where an extended block contains a base
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block i of size i where all weights are α, and two additional requests for the
interval [yi, yi + 1], of weight 1 (thus the cardinality of largest clique becomes
2i + 2). This forces the algorithm to use two additional colors. We call a block
without the extension a base block, and the pair of intervals of unit weight is
called the extension. The algorithm is forced to use a total of 3i + 2 colors for
the extended block.

The very first block, which is called extended block 0 has a different structure,
but is still called a block of size 0. This is simply a base block of size 1, where
all weights are 1. The block is started with requests for [0, 1] (instead of [4, 5]),
and the first interval of the second phase is [32 , 5

2 ]. In this extended block, the
algorithm must use 3 colors.

The sequence consists of at most N +1 blocks, each time a new block is built,
its size is larger by 1 than the previous block. The first block is an extended
block 0, and each other block i is of size i.

In a block of size i (i ≥ 1), we first construct the base block, and check the
set of colors which was used for this block. Before the block is presented, the
algorithm was forced to use at least 3i− 1 colors (the only exception is for i = 1
where the algorithm was already forced to use 3 colors). Consider the previous
set of 3i − 1 colors that the algorithm uses. (If i > 1 and there are already more
than 3i − 1 colors, we only make the algorithm pay for three new colors in each
extended block 1 < j < i, which overlap the range [yj , yj + 1], and consider the
set of colors that is built inductively in this way.) In block 0 the number of colors
is exactly three, and if block 1 is extended then the number of colors it is charged
for is exactly 5. If the new base block uses at least three new colors compared to
the previous set of colors, we stop the construction (in block 1, since in block 0
three colors are used, we stop the construction after the base block if it contains
two new colors). Otherwise we add the extension, and build the next base block
(unless i = N).

We compute the optimal cost of the sequence up to base block i. The largest
clique has size 2i. Every block has two intervals of weight 1 and all others of
weight α. Clearly, the very first block can be colored using two colors of weight
1. Therefore, to color the sequence, two colors of weight 1 and 2i − 2 colors of
weight α are needed. This gives a cost of 2+2(i−1)α. If the sequence terminates
at phase N with an extended block, then the cost is the same as if the base block
N + 1 were presented, i.e. 2 + 2Nα.

After block 0 is presented, the algorithm uses three colors of weight 1. If the
sequence terminates after base block i ≥ 1, three additional colors of weight α
were used in this phase, and therefore the cost increases by at least 3α. Otherwise,
still three new colors are used in this phase, and therefore the cost must increase
by at least the cost of these colors. At least one of them is of weight 1, thus
the cost increases by at least 1 + 2α. To make these calculations correct also for
block 1, we charge block 0 only by 3 − α. Each base block is charged by α for a
new color it must have, and either by an additional 2α if it has three new colors,
or by an additional α + 1 if it has at most two new colors.
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Therefore, if the sequence terminates after base block i, the cost of the al-
gorithm is at least 3 − α + (2α + 1)(i − 1) + 3α = 2 + (2α + 1)i, whereas the
optimal cost is 2 + 2(i − 1)α. The cost of the algorithm if the sequence is com-
pleted is 3 − α + (2α + 1)N , whereas the optimal cost is 2 + 2Nα. We get the
ratio 3+2α+(2α+1)(i−1)

2+2(i−1)α in the first case, and 3−α+(2α+1)N
2+2Nα in the second case. We

choose a value of α such that 2α+3
2 = 1+2α

2α . The value α = 1
2 = 0.5 satisfies this

requirement. The ratio in the first case is 4+2(i−1)
i+1 = 2. The ratio in the second

case tends to the same value for large enough values of N . The claim follows.
We provide the extension of this proof for randomized algorithms (which is

similar to the proof for deterministic algorithms) in the full version of the paper.
��

4 Concluding Remarks

We presented a framework for converting a deterministic C-competitive algo-
rithm for online coloring of a given hereditary class of graphs into a deterministic
4C-competitive algorithm for max coloring on the same class of graphs, and a
randomized e ·C-competitive algorithm. For example, consider bipartite graphs.
Lovász, Saks and Trotter [14] showed a deterministic online algorithm which
colors such a graph on n nodes (which is 2 colorable) using O(log n) colors. Note
that Gyárfás and Lehel [9] proved a deterministic lower bound of Ω(log n) on
the online coloring of bipartite graphs (this holds already for trees). This imme-
diately implies a deterministic O(log n)-competitive algorithm for max coloring
of bipartite graphs. Note that the deterministic lower bound of Ω(log n) holds
for max coloring since node coloring is a special case of max coloring (using a
common weight 1 for all nodes). The best offline approximation unless P = NP
for bipartite graphs has an approximation ratio of 8

7 [18,3,15].
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Abstract. We consider the following distributed optimization problem:
three agents i = 1, 2, 3 are each presented with a load drawn indepen-
dently from the same known prior distribution. Then each agent decides
on which of two available bins to put her load. Each bin has capacity
α, and the objective is to find a distributed protocol that minimizes
the probability that an overflow occurs (or, equivalently, maximizes the
winning probability).

In this work, we focus on the cases of full information and local infor-
mation, depending on whether each agent knows the loads of both other
agents or not. Furthermore, we distinguish between the cases where the
agents are allowed to follow different decision rules (eponymous model)
or not (anonymous model). We assume no communication among agents.

First, we present optimal protocols for the full information case, for
both the anonymous and the eponymous model.

For the local information, anonymous case, we show that the winning
probability is upper bounded by 0.622 in the case where the input loads
are drawn from the uniform distribution.

Motivated by [3], we present a general method for computing the
optimal single-threshold protocol for any continuous distribution, and
we apply this method to the case of the exponential distribution.

Finally, we show how to compute, in exponential time, an optimal
protocol for the local information, eponymous model for the case where
the input loads are drawn from a discrete-valued, bounded distribution.

1 Introduction

In a distributed optimization problem there are n agents, each of whom is pre-
sented with a private input. Then each agent decides on an output, and her
decision depends on her private input as well as on any information she has
about the inputs presented to all or a subset of the other agents. All agents have
the same objective, which is to maximize a common function, but they are not
allowed to cooperate in order to reach their objective.

Naturally, the more information the agents have about the inputs of the other
agents, the better decisions they can make. On the other hand, sharing such
information among the agents induces a communication cost to the solution of
the problem. A natural problem arising then is to evaluate this trade-off between
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the quality of the solution and the computational resources needed to achieve
it, i.e. to understand the value of information.

In this work, we focus on a load balancing problem, where there are three
agents, each presented with a load with size drawn from the same known prior
distribution on [0, α]. Each agent must then decide on which of two available bins
(bin 0 and bin 1) to put her load. Each bin has capacity α, and the objective
is to put the loads on the bins so that the probability that no overflow occurs
(referred to as the winning probability) is maximized. We assume no cooperation
among the agents.

Related work. The distributed optimization problem studied in this work was
originally introduced by Papadimitriou and Yannakakis [3] in an effort to under-
stand the crucial economic value of information [1] as a computational resource
in a distributed system (e.g. in the context of Computational Complexity [4]).
In order to understand how the optimum solution achieved by the agents varies
as a function of the amount of information available to them, Papadimitriou and
Yannakakis [3] considered each possible communication pattern and discovered
the corresponding optimal decision protocol to be unexpectedly sophisticated.
For the special case where no communication is allowed, i.e. when each agent
i is aware of only her own load xi, it was conjectured that the simple decision
rule Q: “if xi ≤ (1 − 1√

7
)α then put xi on bin 0 else put xi on bin 1” is optimal;

however no proof has been found until now verifying or rejecting this conjecture.
Georgiades et al. [2] studied the extension of the load balancing problem to the
case of n agents. Their work was focused on the special cases of oblivious decision
rules, for which agents do not “look at” their inputs, and non-oblivious decision
rules, for which they do. In either case, optimality conditions were derived in
the form of combinatorial polynomial equations.

Contribution. In this work, we re-examine the load balancing distributed opti-
mization problem for the case of three agents. First of all, we distinguish the
case where the agents know their ids (eponymous model) and the case where the
agents do not know their ids (anonymous model). If an agent is aware of her id,
then her decision rule need not be identical to that of any other agent. We show
that knowing one’s id allows for better, with respect to the winning probability,
optimal protocols.

Furthermore, we introduce randomization on decision rules, i.e. we allow for
an agent to put her load on bin 0 with some probability p > 0 and on bin 1 with
probability 1 − p > 0. We show that, in some cases, randomization indeed helps
in maximizing the winning probability.

We give optimal protocols for the full information setting, i.e. when each
agents knows not only her own load, but also the loads of the other agents; we
do so both for the anonymous and the eponymous model.

Next we focus on the case where only local information is provided, i.e. when
each agent is aware of only her own load. We show that the winning probability
is upper bounded by 0.622 in the case where the input loads are drawn from
the uniform distribution. Furthermore, we present a general method for com-
puting the threshold t∗ for which the winning probability of the parameterized
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(single-threshold) protocol Qt: “if xi ≤ t then put xi on bin 0 else put xi on bin
1” is maximized for any continuous distribution. We apply this method to the
case of the exponential distribution.

We conclude by studying the eponymous case of the local information set-
ting, for which we give an exponential-time algorithm that computes an opti-
mal, deterministic protocol for the case where the input loads are drawn from a
discrete-valued, bounded distribution.

2 Framework

2.1 Setting

Three non-cooperating agents with ids 1, 2 and 3 are each presented with a load
xi ∈ [0, α] (i ∈ {1, 2, 3}) for some α ∈ R+. The loads x1, x2 and x3 are indepen-
dent, identically distributed random variables drawn from a known distribution
F on [0, α]. Denote Δ the set of all distributions on [0, α].

Each agent i must then decide on which one of two available bins (bin 0 and
bin 1) to put her load. Each bin has capacity α. Let pi(xi) ∈ {0, 1} denote the
decision of agent i when presented with the load xi. The agents win if the total
load on each bin does not exceed its capacity α, i.e. if

∑
i:pi(xi)=0 xi ≤ α and∑

i:pi(xi)=1 xi ≤ α.
Note that the agents are not allowed to communicate, so the objective is to

find a distributed protocol (i.e. a procedure that defines for each possible xi a
bin pi(xi) ∈ {0, 1}, for all agents i = 1, 2, 3) that maximizes the probability of
winning, defined in the following subsection.

2.2 The Winning Probability

Suppose that the input loads are independently drawn from the same distribution
F ∈ Δ. The performance of a protocol M for a distribution F ∈ Δ of the input
loads is measured by means of its probability of winning Pw(M; F ):

Pw(M; F ) =
∫
x∈[0,α]3

Pr{x} Pr{M wins |x}

where the integration is over all possible ordered triples of input loads x =
〈x1, x2, x3〉 ∈ [0, α]3.

2.3 Models of Information

As already mentioned, the agents are not allowed to cooperate in order to max-
imize their probability of winning. So each agent’s decision should only depend
on the information provided to her regarding the triple of the input loads. Thus
if each agent knows only her own load xi, then her decision must depend only
on xi. On the other hand, if she is also aware of the loads xj , xk presented to
both other agents, then her decision can depend on the triple of input loads
x = {xi, xj , xk}.
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Furthermore, if we assume that the agents do not know their ids, then any two
agents i, j presented with the same input must make their decisions according
to exactly the same rule (i.e. in this setting the agents are indistinguishable). In
contrast, if an agent knows her id then she can base her decision on it, so in this
case any two agents presented with the same input could decide on which bin to
put it according to different rules.

Hence we distinguish the following four models of information:

Local information, anonymous. Each agent knows only her own load (and not
her id).

Local information, eponymous. Each agent knows her own load and her own id.
Full information, anonymous. Each agent knows her load as well as the loads

of both other agents, but not their ids.
Full information, eponymous. Each agent knows her load and id, as well as the

loads and ids of both other agents.

Let LA, LE , FA, FE denote the families of protocols for the local information
anonymous, local information eponymous, full information anonymous and full
information eponymous model respectively.

For any T ∈ {LA, LE , FA, FE}, a protocol M ∈ T is deterministic if it decides
on the same bin (0 or 1) whenever executed with the same input. Clearly, if M is
a deterministic protocol then, for any fixed x, Pr{M wins |x} is either 0 or 1.

On the other hand, M is randomized if there exists an input y and an agent i
for which it decides pi(y) = 0 with some probability p > 0 (that depends on M,
i and y) and pi(y) = 1 with probability 1 − p > 0. Observe that any randomized
protocol in LA or LE is a probability distribution over the protocols in LE .
Similarly, any randomized protocol in FA or FE is a probability distribution
over the protocols in FE .

2.4 A Conjecture on the Local Information Model

In [3] it is conjectured that protocol Q, described in Fig. 1, is optimal for the
local information model, when the distribution of the input loads is the uniform
distribution on [0, α]. In fact it was shown that, in this case, Q is indeed optimal
among all (single-threshold) protocols that involve at most one “switch” of bins
per agent. i.e. among all protocols of the form “if xi ≤ t then put xi on bin 0
else put xi on bin 1”.

Protocol Q
Input: The agent’s load xi

Output: A bin p(xi) ∈ {0, 1}
1. if xi ≤

�
1 − 1√

7

�
α then p(xi) = 0

2. else p(xi) = 1

Fig. 1. Protocol Q for the local information, anonymous model



160 P.N. Panagopoulou and P.G. Spirakis

3 Full Information, Anonymous Model

In this section we focus on the case where each agent is aware of her own load
as well as of the loads of both other agents, but she does not know her or any
of the other agents’ id. We show how to construct a randomized protocol that
maximizes the probability of winning for this full information, anonymous case.

Protocol RA

Input: The agent’s load xi and the loads xj , xk of both other agents
Output: A bin p(xi) ∈ {0, 1}
1. if xi = max{xi, xj , xk} �= max{xj , xk} then p(xi) = 0
2. else if xi = max{xi, xj , xk} = max{xj , xk} then

p(xi) = 0 with probability 1/2
p(xi) = 1 with probability 1/2

3. else p(xi) = 1

Fig. 2. Protocol RA for the full information, anonymous model

For this full information and anonymous model, we should seek for a protocol
that does not depend on the agents’ ids; in other words, all agents must decide on
the same bin when introduced with the same unordered triple of input loads x =
{x1, x2, x3}. Consider the simple randomized protocol RA described in Fig. 2.

Theorem 1. RA is an optimal protocol for the full information, anonymous
model.

Proof. It suffices to prove that whenever protocol RA fails, then any full in-
formation, anonymous protocol fails as well. Consider a triple of input loads
{xi, xj , xk}. Without loss of generality assume that xi = max{xi, xj , xk}. As-
sume that xi �= max{xj , xk}. Then loads xk and xj are put on bin 1, while
load xi is put on bin 0. Since RA fails, it holds that xk + xj > α. But then
xi + xk > xj + xk > α and xi + xj > xk + xj > α hence any protocol would fail
as well. Assume now that xi = max{xj , xk}. Without loss of generality assume
that xi = xj = max{xi, xj}. If xk < xi, then xi is put on bin 0 with probability
1/2, xj is put on bin 0 with probability 1/2 and xk is put on bin 1. An optimal
protocol would maximize the probability that the two maxima loads xi and xj

are put on separate bins. Since we are in the anonymous model and xi = xj ,
any protocol puts xi and xj on bin 0 with the same probability. Let p be the
probability that the optimal protocol puts xi on bin 0. Then the probability that
xi and xj are put on separate bins is p(1 − p) + (1 − p)p = −2p2 + 2p. Observe
that this probability is maximized for p = 1/2, thus in this case RA behaves
optimally. Finally, if xi = xj = xk then RA puts each load on bin 0 with prob-
ability 1/2. An optimal protocol would maximize the probability that not all
loads are put on the same bin. This probability is 1− p3 − (1− p)3 = −3p2 +3p.
Again, this is maximized for p = 1/2. Thus RA is optimal. ��
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The proof of the above theorem immediately implies:

Corollary 1. If the input loads are drawn from a discrete valued distribution,
then an optimal protocol for the full information, anonymous model can not be
deterministic1.

4 Full Information, Eponymous Model

In this section we focus on the case where each agent is aware of her own load
and id as well as of the loads and ids of both other agents. We show how to con-
struct a protocol that maximizes the probability of winning for this full informa-
tion, eponymous case. Suppose that each agent executes protocol RE described in
Fig. 3. Then:

Protocol RE

Input: The agent’s load xi, the agent’s id i,
and the loads xj , xk and ids j, k of both other agents

Output: A bin pi(xi) ∈ {0, 1}
1. if xi = max{xi, xj , xk} �= max{xj , xk} then pi(xi) = 0
2. else if xi = max{xi, xj , xk} = xt for some t ∈ {j, k}

and i < t then pi(xi) = 0
3. else pi(xi) = 1

Fig. 3. Protocol RE for the full information, eponymous model

Theorem 2. RE is an optimal protocol for the full information, eponymous
model.

Proof. It suffices to prove that whenever protocol RE fails, then any (determin-
istic or probabilistic) protocol fails as well. Suppose that RE fails for a triple
of input loads 〈xi, xj , xk〉. Without loss of generality assume that agent i is the
agent with the minimum index among all agents of maximum load. Note that,
under all circumstances, protocol RE will put load xi on bin 0 and loads xj and
xk on bin 1. Thus RE will fail if and only if xj + xk > α. In this case however,
since xi ≥ xj and xi ≥ xk, it holds that xi + xj > α and xi + xk > α as well,
hence any protocol would also fail. ��

5 Local Information, Anonymous Model

In this section we focus on the case where each agent knows her own load but
not her id (thus the agents are indistinguishable).

1 The reason why this conclusion does not hold for continuous distributions is that,
in such cases, the probability that two input loads are equal is zero.
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5.1 Bounds on the Winning Probability for the Uniform
Distribution

Theorem 3. Assume that the three loads are independent random variables,
uniformly distributed on [0, 1], and the capacity of each bin is α = 1. Then for
any local information, anonymous protocol P,

1
6

≤ Pr{P wins} < 0.622 .

Proof. Consider an arbitrary protocol P . Denote x, y and z the loads of the
three agents. Assume that the sum of the three loads is less or equal to 1. Then
P wins, so the joint probability that P wins and the sum of the three loads is
not greater than 1 is

Pr{P wins, x + y + z ≤ 1} = Pr{x + y + z ≤ 1}

=
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

1 dz dy dx

=
1
6

.

Thus
Pr{P wins} ≥ Pr{P wins, x + y + z ≤ 1} ≥ 1

6
.

Assume now that x + y > 1 and y + z > 1 and z + x > 1. Then P fails, so

Pr{P fails, x + y > 1, y + z > 1, z + x > 1}

= Pr{x + y > 1, y + z > 1, z + x > 1} = 6
∫ 1

1
2

∫ x

1
2

∫ y

1−y

1 dz dy dx =
1
4

.

Now define S0, S1 ⊆
[
1
2 , 1

]
as

S0 =
{

w ∈
[
1
2
, 1

]
: P puts w on bin 0

}
,

S1 =
{

w ∈
[
1
2
, 1

]
: P puts w on bin 1

}
.

Denote by s0 and s1 the total length of S0 and S1 respectively, and let s = s0.
Then s1 = 1/2 − s. Similarly, define T0, T1 ⊆

[
1
4 , 1

2

)
as

T0 =
{

w ∈
[
1
4
,
1
2

)
: P puts w on bin 0

}
,

T1 =
{

w ∈
[
1
4
,
1
2

)
: P puts w on bin 1

}
.

Denote by t0 and t1 the total length of T0 and T1 respectively, and let t = t0.
Then t1 = 1/4 − t.
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We call a triple (x, y, z) ∈ [0, 1]3 of input loads feasible if x+y ≤ 1 or y+z ≤ 1
or z + x ≤ 1. Observe that

Pr{P fails, x + y + z > 1, (x, y, z) feasible}

≥ Pr
{

P fails, (x, y, z) feasible, 2 loads ∈
[
1
2
, 1

] }

+ Pr
{

P fails, 1 load ∈
[
1
2
, 1

]
and 2 loads ∈

[
1
4
,
1
2

)}
.

Now,

Pr
{

P fails, (x, y, z) feasible, 2 loads ∈
[
1
2
, 1

] }

≥ 3
∫

S0

∫
S0

∫ max{1−x,1−y}

0

1 dz dy dx + 3
∫

S1

∫
S1

∫ max{1−x,1−y}

0

1 dz dy dx

= 3
∫

S0

∫
S0

∫ 1−min{x,y}

0

1 dz dy dx + 3
∫

S1

∫
S1

∫ 1−min{x,y}

0

1 dz dy dx

= 3
∫

S0

∫
S0

(1 − min{x, y}) dy dx + 3
∫

S1

∫
S1

(1 − min{x, y}) dy dx

= 3s2
0 + 3s2

1 − 3
∫ 1

1/2

∫
S0

min{x, y} + 3
∫

S1

∫
S0

min{x, y} dy dx

−3
∫

S1

∫ 1

1/2

min{x, y} dy dx + 3
∫

S1

∫
S0

min{x, y} dy dx

= 3s2 + 3
(

1
2

− s

)2

− 3
∫ 1

1/2

∫ 1

1/2

min{x, y} dy dx + 6
∫

S1

∫
S0

min{x, y} dy dx

= 6s2 − 3s +
1
4

+ 6
∫

S0

∫
S1

min{x, y} dy dx

≥ 6s2 − 3s +
1
4

+ 6
∫ 1/2+s

1/2

∫ 1

1/2+s

xdy dx

= −3s3 +
9
2
s2 − 3

2
s +

1
4

.

Moreover,

Pr{P fails, 1 load ∈
[
1
2
, 1

]
and 2 loads ∈

[
1
4
,
1
2

)
}

≥ 3s0t
2
0 + 3s1t

2
1

= 3st2 + 3
(

1
2

− s

) (
1
4

− t

)2

=
3
2
t2 +

3
2
st − 3

4
t − 3

16
s +

3
32

.
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Thus

Pr{P fails, x + y + z > 1, (x, y, z) feasible}

≥ −3s3 +
9
2
s2 − 3

2
s +

1
4

+
3
2
t2 +

3
2
st − 3

4
t − 3

16
s +

3
32

= −3s3 +
9
2
s2 +

3
2
t2 +

3
2
st − 27

16
s − 3

4
t +

11
32

.

In order to lower bound the joint probability

Pr{P fails, x + y + z > 1, (x, y, z) feasible}

it suffices to minimize

f(s, t) = −3s3 +
9
2
s2 +

3
2
t2 +

3
2
st − 27

16
s − 3

4
t +

11
32

subject to s ∈ [0, 1/2], t ∈ [0, 1/4]. It can be proved that the minimum is achieved
at t = 1+

√
37

48 , s = 11−√
37

48 and equals 521−37
√

37
2304 . Thus, for any protocol P ,

Pr{P fails} = Pr{P fails, x + y + z > 1, (x, y, z) feasible}
+ Pr{P fails, (x, y, z) not feasible}

≥ 521 − 37
√

37
2304

+
1
4

> 0.378 ,

and therefore
Pr{P wins} < 1 − 0.378 = 0.622 . ��

5.2 Optimal Single-Threshold Protocols for Continuous
Distributions

We deal with the problem of computing the optimal single-threshold protocol for
the general case where the three input loads are independent, identically distrib-
uted random variables drawn from the same arbitrary continuous distribution D
on [0, ∞). Let f(x) be the probability density function of an input load x, and let
F (x) =

∫ x

0 f(w) dw. Let x, y, z be three random variables corresponding to the
three input loads. The joint probability density function of these three random
variables is f(x, y, z) = f(x)f(y)f(z), since x, y and z are mutually independent.
Assume again that each bin has capacity α.

We seek for a t ∈ [0, α] that maximizes the probability of winning of the
single-threshold protocol Qt: “if x ≤ t then put x on bin 0, else put x on bin 1”.
Note that there are 4 possible outcomes: (a) two loads are put on bin 0 and the
other on bin 1, (b) one load is put on bin 0 and the other two on bin 1, (c) all
three loads are put on bin 0 and (d) all three loads are put on bin 1. Thus the
winning probability can be expressed as the following sum of joint probabilities:

Pw(Qt; D) = Pr{(a) occurs, Qt wins} + Pr{(b) occurs, Qt wins}
+ Pr{(c) occurs, Qt wins} + Pr{(d) occurs, Qt wins} .
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We consider the following cases.

Case 1: 0 ≤ t < α
3 . In this case, both outcome (a) occurs and the agents win

if and only if the load on bin 1 lies in (t, α] and the other two loads lie in [0, t].
The former occurs with probability F (α) − F (t), while the latter occurs with
probability

∫ t

0

∫ t

0 f(x)f(y) dy dx, since their sum can be at most 2t < α. Since
there are 3 ways for outcome (a) to occur (depending on which of the three loads
is put on bin 1),

Pr{(a) occurs, Qt wins} = 3 · (F (α) − F (t)) ·
∫ t

0

∫ t

0

f(x)f(y) dy dx .

Outcome (b) occurs and the agents win if and only if one load lies in [0, t] and
the other two lie in (t, α], while their sum does not exceed α. Thus

Pr{(b) occurs, Qt wins} = 3 · (F (t) − F (0)) ·
∫ α−t

t

∫ α−x

t

f(x)f(y) dy dx ,

where the integral denotes the probability that two random variables exceed t
while their sum is no more than α. Outcome (c) occurs and the agents win if
and only if all three loads lie in [0, t], since their sum can not exceed 3t < α.
Thus

Pr{(c) occurs, Qt wins} =
∫ t

0

∫ t

0

∫ t

0

f(x)f(y)f(z) dz dy dx .

Outcome (d) occurs and the agents win if and only if all three loads lie in (t, α]
while their sum does not exceed α. Thus

Pr{(d) occurs, Qt wins} =
∫ α−2t

t

∫ α−x−t

t

∫ α−x−y

t

f(x)f(y)f(z) dz dy dx .

Thus the (total) winning probability of Qt when 0 ≤ t < α
3 is

P 1 = 3 · (F (α) − F (t)) ·
∫ t

0

∫ t

0

f(x)f(y) dy dx

+3 · (F (t) − F (0)) ·
∫ α−t

t

∫ α−x

t

f(x)f(y) dy dx

+
∫ t

0

∫ t

0

∫ t

0

f(x)f(y)f(z) dz dy dx

+
∫ α−2t

t

∫ α−x−t

t

∫ α−x−y

t

f(x)f(y)f(z) dz dy dx .
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Case 2: α
3 ≤ t < α

2 . Similar reasoning as above yields

P 2 = 3 · (F (α) − F (t)) ·
∫ t

0

∫ t

0

f(x)f(y) dy dx

+3 · (F (t) − F (0)) ·
∫ α−t

t

∫ α−x

t

f(x)f(y) dy dx

+
∫ t

0

∫ t

0

∫ t

0

f(x)f(y)f(z) dz dy dx

−
∫ t

α−2t

∫ t

α−x−t

∫ t

α−x−y

f(x)f(y)f(z) dz dy dx .

Case 3: α
2 ≤ t < α. Using again similar arguments as in case 1, the winning

probability in this case is

P 3 = 3 · (F (t) − F (α)) ·
(∫ t

0

∫ t

0

f(x)f(y) dy dx −
∫ t

α−t

∫ t

α−x

f(x)f(y) dy dx

)

+
∫ t

α−t

∫ α−x

0

∫ α−x−y

0

f(x)f(y)f(z) dz dy dx

+
∫ α−t

0

∫ α−x−t

0

∫ t

0

f(x)f(y)f(z) dz dy dx

+
∫ α−t

0

∫ t

α−x−t

∫ α−x−y

0

f(x)f(y)f(z) dz dy dx .

Thus

Pw(Qt; D) =

⎧⎨
⎩

P 1 if 0 ≤ t < α
3

P 2 if α
3 ≤ t < α

2
P 3 if a

2 ≤ t ≤ α
,

and the optimal threshold is t∗ = argmaxt{Pw(Qt; D)}.

The Exponential Distribution. We apply the previous analysis to the case where
the input loads are independently drawn from the exponential distribution E .
The probability density function of E is g(x) = 1

λe−
x
λ for all x ∈ [0, ∞), for some

parameter λ > 0. Then P 1, P 2 and P 3 are as follows:

P 1 = P 2 = −3e−
α+2t

λ +
(

9 +
3α − 6t

λ

)
e−

α+t
λ

+
(

6αt − 9t2 − α2

2λ2
+

9t − 4α

λ
− 7

)
e−

α
λ + 1

P 3 = −6e−
2t
λ +

(
3α − 6t

λ
+ 9

)
e−

α+t
λ +

(
6t − 3α

λ
− 3

)
e−

2α
λ

+
(

2α2 − 6αt + 3t2

2λ2
+

2α − 3t

λ
− 1

)
e−

α
λ + 1 .
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Fig. 4. (a) Optimal threshold as a function of λ (b) Optimal probability of winning
as a function of λ

Figure 4(a) shows the optimal threshold for the exponential distribution as
a function of its parameter λ, for α = 1. Observe that, for large values of λ,
the optimal threshold approaches the optimal threshold 1 − 1√

7
for the uniform

distribution, since in this case g(x | x ≤ α) approaches the uniform distribution.
Figure 4(b) shows the winning probability (corresponding to the optimal thresh-
old) as a function of λ. As expected, larger values of λ (and thus larger input
loads) give lower winning probabilities.

6 Local Information, Eponymous Model

Suppose now that each agent knows her own load as well as her id. In this case
any two agents are allowed to decide on a different bin when presented with the
same load. We focus on the following, wide class of input distributions Φr ⊆ Δ:

Φr = {F ∈ Δ : ∃n ∈ N and β1 = 0 < β2 < . . . < βn−1 < βn = α

such that Pr{βi} ∈ Q ∀i ∈ {1, . . . , n} and
n∑

i=1

Pr{βi} = 1}.

Theorem 4. The optimal deterministic protocol for the local information, ano-
nymous model when the input loads are independent, identically distributed ran-
dom variables drawn from some F ∈ Φr, can be constructed in time Θ

(
n323n

)
,

i.e. in exponential time.

Proof. Observe that any deterministic protocol P in LE can be fully described by
a 3×n matrix BP ∈ {0, 1}3×n, such that BP(i, k) is the bin that agent i puts her
load when introduced with load βk. Hence there are 23n possible deterministic
protocols Pt, t = 1, . . . , 23n, and each Pt is represented by a matrix Bt.
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Given any possible protocol Pt, the total load on bin 0 and the total load on
bin 1 for the triple of input loads 〈βk1 , βk2 , βk3〉 are, respectively,

Λt
0(k1, k2, k3) =

3∑
i=1

(
1 − Bt(i, ki)

)
· βki

and

Λt
1(k1, k2, k3) =

3∑
i=1

Bt(i, ki) · βki .

Let λt(k1, k2, k3) be a variable indicating whether Pt wins when the triple of
input loads is 〈βk1 , βk2 , βk3〉, i.e.

λt(k1, k2, k3) =
{

1 if Λt
0(k1, k2, k3) ≤ α and Λt

1(k1, k2, k3) ≤ α
0 else .

Now, for each protocol Pt, we can compute (in time Θ(n3)) its winning proba-
bility as follows:

Pw(Pt; F ) =
n∑

k1=1

n∑
k2=1

n∑
k3=1

Pr{βk1} Pr{βk2} Pr{βk3} · λt(k1, k2, k3) .

Hence, by exhaustive search, we can find the protocol which gives the maximum
winning probability in time Θ

(
n323n

)
. ��

7 Concluding Remarks and Directions for Future
Research

We re-examined here the distributed decision making problem in the context of
a, seemingly simple, special load-balancing setting, which is nevertheless quite
complex.

It is clear that the distinction between anonymous and eponymous models
is essential in order to derive optimal protocols, since, as observed, if we as-
sume that the agents are aware of their ids then we can achieve higher winning
probability. Moreover, the fact that an optimal protocol for the full information,
anonymous case can not be deterministic shows that randomization indeed helps
in maximizing the winning probability. It is interesting to examine whether this
holds for the local information case as well.

For the local information, anonymous case, we showed how to compute the op-
timal single-threshold protocol for any known continuous distribution on [0, ∞).
However, just as in the special case of the uniform distribution, it remains open
whether such single-threshold protocols are globally optimal. For the epony-
mous case, it would be interesting to derive more efficient, optimal protocols for
discrete-valued input distributions.

The extension of all the above to more agents and bins is also a matter of
future research.
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Abstract. In this paper we consider the problem of covering a set of
strings S with a set C of substrings in S, where C is said to cover S if
every string in S can be written as a concatenation of the substrings in
C. We discuss applications for the problem that arise in the context of
computational biology and formal language theory. We then proceed to
show that this problem is at least as hard as the Minimum Set Cover

problem. In the main part of the paper, we focus on devising approx-
imation algorithms for the problem using two generic paradigms – the
local-ratio technique and linear programming rounding.

1 Introduction

In a covering problem we are faced with the following situation: We are given
two (not necessarily disjoint) sets of elements, the base elements and the cov-
ering elements, and the goal is to find a minimum (weight) subset of covering
elements that “covers” all the base elements. The exact notion of covering differs
from problem to problem, yet this abstract setting is common to many classical
combinatorial problems in various application areas. Two famous examples are
Minimum Set Cover – where the covering elements are subsets of the base el-
ements and the notion of covering corresponds to set inclusion – and Minimum

Vertex Cover – where the setting is graph-theoretic and the notion of cov-
ering corresponds to incidence between vertices and edges. Ever since the early
days of combinatorial optimization, research on covering problems such as the
two examples above proved extremely fruitful in laying down fundamental tech-
niques and ideas. The early work of Johnson [1] and Lovász [2] on Minimum Set
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Cover pioneered the greedy analysis approach, while Chvátal [3] gave the first
analysis based on linear programming (LP) while tackling the same problem.
The first LP-rounding algorithm by Hochbaum [4] was also designed for Min-

imum Set Cover, while Bar-Yehuda and Even gave the first Primal-Dual [5]
and Local-Ratio [6] algorithms for Minimum Vertex Cover.

In this paper we introduce a new covering problem which resides in the realm
of strings. A string c is a substring of a string s, if c can be obtained by deleting
any number of consecutive letters from both ends of s. In our covering problem,
the base elements are strings and the covering elements are their substrings.
The notion of covering corresponds to string-factorization, or to the generation of
strings by substring concatenation. More formally, for a given set of strings S, let
C(S) denote the set of all substrings of strings in S. We define a cover of S to be
a subset C ⊆ C(S) such that any string s ∈ S can be written as a concatenation
of strings in C. If each string in S can be written as a concatenation of at
most � strings in C, we say that C is an �-cover of S. Given a weight function
w : C(S) → Q

+, we are interested in computing an �-cover of S with minimum
possible weight:

Minimum Substring Cover

Instance: A set of strings S, a weight function w : C(S) → Q
+, and an

integer � ≥ 2.
Solution: An �-cover C of S. That is, a set of strings C ⊆ C(S), where

for each s ∈ S there exist c1, . . . , cp ∈ C, p ≤ �, with s = c1 · · · cp.
Measure: Total weight of the cover, i.e. w(C) =

∑
c∈C w(c).

Example 1. Consider the set of strings S = {‘a’, ‘aab’, ‘aba’}. Then C(S) = {‘a’,
‘b’, ‘aa’, ‘ab’, ‘ba’, ‘aab’, ‘aba’}, and C1 = {‘a’, ‘b’} and C2 = {‘a’, ‘ab’} are
covers of S. The cover C1 is a 3-cover of S, while C2 is a 2-cover.

Throughout the paper, we use n to denote the number of strings in S, and m to
denote the maximum length of any string in S, i.e. n = |S| and m = max{|s| :
s ∈ S}.

Note that in case � ≥ m, there is no actual bound on the concatenation length
of the required cover, and this case is denoted by � = ∞. An ∞-cover is referred
to simply as a cover. Another interesting special case is when � = 2. In this case,
we are required to cover S with a set of prefixes and suffixes in S, where a prefix
(resp. suffix ) of a string s is a substring of s which is obtained by removing
consecutive letters only from the end (resp. beginning) of s. As we will see, these
two extremal cases both give a certain amount of combinatorial leverage, and
therefore deserve particular consideration. We also wish to point out that our
use of general weight functions w : C(S) → Q

+ allows for more robustness in
modeling different scenarios. For instance, when w is the unitary function, i.e.
w(c) = 1 for every c ∈ C(S), this corresponds to the situation where we want
to minimize the size of a cover of S. When w(c) = |c|, i.e. the weight of every
substring is its length (w is the length-weighted function), this corresponds to
the case where we want to minimize the total length of the cover. Often some
sort of middle ground between these two situations might also be desirable.
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Example 2. Consider the two covers C1 and C2 of the set of strings S in Exam-
ple 1. If w is the unitary function, then w(C1) = w(C2) = 2. However, if w is
the length-weighted function, we have w(C1) = 2 < w(C2) = 3.

Our initial inspiration for studying Minimum Substring Cover came from a
paper by Bodlaender et al. [7], who described an application for this problem in
the context of protein folding (The authors of [7] actually referred to our prob-
lem as the Dictionary Generation problem, and considered its unweighted
variant under the parameterized complexity framework.) Protein folding is the
problem of determining the folding structure of proteins using their amino-acid
sequential description. This problem is extremely important, since most of the
functionally of a protein is determined by its folding structure, and because
current biological methods for extracting the sequential description of a given
protein exceed by far the methods for extracting the folding structure of the pro-
tein. In [7], it is argued that since all known approaches for protein folding are
NP-hard, a possible heuristic for this problem is to break the protein sequence
into small segments, small enough for allowing efficient folding computation.
This heuristic is justified by the fact that many proteins seem to be composed
of relatively small regions which fold independently of other regions. The theory
of exon shuffling proposes that all proteins are concatenations of such regions,
where the regions are drawn from a common ancestral dictionary [8,9].

Minimum Substring Cover can also model interesting computational is-
sues which arise in formal language theory, and in particular, in the area of
combinatorics of words. Our notion of cover actually corresponds to the notion
of combinatorial rank, an important parameter of a set of words (cf. [10]). Ner-
aud [11] studied the problem of determining whether a given set of words is
elementary, where a set of strings is said to be elementary if it does not have
a cover of size strictly less than its own. Neraud describes a direct application
of this notion to the famous D0L-sequence equivalence problem (cf. [12]) via
so-called elementary morphisms [13]. He also argues that this notion appears
frequently in numerous sub-areas such as test sets, code theory, representation
of formal languages, and the theory of equations in free monoids. His main re-
sult is in showing that deciding whether a given set of words is elementary is
coNP-complete, which implies that Minimum Substring Cover is NP-hard.

Apart from the work of Bodlaender et al. [7] and Neraud [11], there has also
been some recent work on problems closely related to Minimum Substring

Cover, especially for the case of � = 2. The Minimum Set Cover with

Pairs problem introduced by Hassin and Segev in [14], is a variant of Minimum

Set Cover where base elements are now covered by pairs of sets, and the goal is
to cover all base elements using a minimum weight collection of sets. Hassin and
Segev gave an O(

√
n lg n) approximation algorithm for the unweighted version of

this problem, along with a few other algorithms for special cases of this problem.
Another closely related problem is the Haplotype Inference by Maximum

Parsimony, an important problem in computational biology. Huang et al. [15]
gave an algorithm for this problem, which translates to an O(m2 lg n) algorithm
for Minimum Substring Cover with � = 2. Hajiaghayi et al. [16] introduced
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the Minimum Multicolored Subgraph problem within the same context,
and gave an algorithm which in our terms obtains a performance ratio of O(lg n ·√

m) with high probability. We discuss this algorithm and how to extend it to
Minimum Substring Cover with general values of � in Section 4.

The rest of this paper is organized as follows. In Section 2 we present some
lower bounds on the approximation factors of polynomial-time algorithms for
Minimum Substring Cover. We show that, in general, the problem is NP-
hard to approximate within a factor of c ln n for some c > 0, and within 	m/2
−
1 − ε and all ε > 0. We also show that the problem remains APX-hard even
when m is constant, and the given weight function is either the unitary or the
length-weighted function. Following this, in Section 3, we apply the local-ratio
technique [17,6] to obtain three approximation algorithms with performance ra-
tios

(
m+1

2

)
− 1, m − 1, and m, where the last two are specializations of the first

to the cases of � = 2 and � = ∞ (the latter only applies for restricted types
of weight functions). Finally, we present in Section 4 an algorithm based on
rounding the linear programming relaxation of the problem, which achieves a
performance ratio of O(lg1/� n · m(�−1)2/�) with high probability. This algorithm
is an extension of an algorithm of Hajiaghayi et al. [16], with a slightly tighter
analysis.

2 Approximation Lower Bounds

We begin our discussion by presenting some lower bounds on the performance
ratios of polynomial-time approximation algorithms for Minimum Substring

Cover. We show that in general, Minimum Substring Cover is NP-hard to
approximate within factors of c ln n and 	m/2
 − 1 − ε, for some c > 0 and all
ε > 0 (recall that n = |S| and m = maxs∈S |s|). We also show that the problem
is APX-hard even when all strings in S have length at most 4, and the given
weight function w : C(S) → Q

+ is either the unitary or the length-weighted
function.

To prove our approximation lower bounds, we present an L-reduction [18]
from the Minimum Hypergraph Vertex Cover problem, which is no more
than the Minimum Set Cover problem when the roles of the covering and
base elements are reversed. In Minimum Hypergraph Vertex Cover, we are
given a vertex-weighted hypergraph H = (V (H), E(H)), wH : V (H) → Q

+, and
the goal is to find a minimum weight vertex cover of H . That is, a subset of
vertices V ⊆ V (H) of minimum weight, such that V ∩ e �= ∅ for each hyperedge
e ∈ E(H). It is known that the problem is NP-hard to approximate within a
factor of c ln |E(H)| for some constant c [19], and also NP-hard to approximate
within maxe∈E(H) |e| − 1 − ε for any ε > 0 (assuming maxe∈E(H) |e| > 2) [20].

Let (H, wH) be a given instance of Minimum Hypergraph Vertex Cover.
From (H, wH), we construct an instance (S, w, �) for Minimum Substring

Cover as follows. Let emax denote the largest edge of H . The set of strings
S is defined over an alphabet Σ which consists of two unique letters ‘v’, ‘V’
∈ Σ for each vertex v ∈ V (H), and an additional special unique letter ‘$’ ∈ Σ



174 D. Hermelin et al.

which we use for padding. We refer to the substring ‘vV’ as the encoding of the
vertex v ∈ V (H). For each edge e ∈ E(H), we construct a string se by concate-
nating (in any arbitrary order) the encodings of all vertices v ∈ e. In addition,
we concatenate 2(|emax| − |e|) ‘$’ letters to the end of se. The set of strings S
is defined by S = {se : e ∈ E(H)}. Note that n = |S| = |E(H)|, and that
m = maxs∈S |S| = 2|emax|.

Example 3. Suppose V (H) = {a, b, c, d} and E(H) =
{
{a, b}, {b, d}, {a, c, d}

}
.

The set of strings S is then constructed as S = {‘aAbB$$’, ‘bBdD$$’, ‘aAcCdD’}.

Next, we define the weight function w : C(S) → Q
+ by

w(c) =

⎧⎨
⎩

0 : c ∈ Σ,
wH(v) : c is the encoding of v ∈ V (H),
∞ : otherwise.

Finally, to complete the construction, we set � = m − 1.

Lemma 1. H has a vertex cover with total weight k iff S has an �-cover with
total weight k.

Proof. Suppose V ⊆ V (H) is a vertex cover of H with wH(V ) =
∑

v∈V wH(v) =
k, and consider the set of substrings C = Σ ∪ {‘vV’ : v ∈ V }. Clearly, w(C) = k.
Furthermore, C is an �-cover of S, since C can cover any string se ∈ S using
� − 1 letters and a single encoding of a vertex v ∈ V ∩ e.

Conversely, suppose S has an �-cover C with w(C) = k. Write C = C1 ∪ C2,
where C1 = C ∩ Σ. Then w(C2) = k and C2 consists only of substrings which
are encodings of vertices in H . This is because no �-cover can cover any string in
S using only letters, and all non-encoding substrings of length at least 2 in C(S)
have infinite weight. Let V ⊆ V (H) be the vertices in H corresponding to the
encodings in C2. Then wH(V ) = w(C2) = k. Moreover, since C uses at least one
vertex-encoding in C2 to cover any string se ∈ S, it follows by our construction
that V ∩ e �= ∅ for all e ∈ E(H). ��

The lemma above implies that any α-approximation algorithm for Minimum

Substring cover would give an α-approximation algorithm for Minimum Hy-

pergraph Vertex Cover. Hence, due to the results of [19] and [20], we can
conclude that it is NP-hard to approximate Minimum Substring cover within
c ln n for some constant c, and within 	m/2
− 1− ε for any ε > 0. However, the
construction in the lemma relies on a somewhat unnatural weight function, and
on the fact that the strings in S are allowed to be fairly long. Nevertheless, we
can show that a special case of this construction can be used to relax both these
conditions at the cost of reducing the lower bounds to only a constant.

Consider our construction for the case where H = G = (V (G), E(G)) is a
graph rather than a hypergraph. This special case, better known as the Minimum

Vertex Cover problem, is known to be NP-hard to approximate within some
constant, even in the unweighted case, and even if each vertex in G is incident to
at most three edges in E(G) [21,18]. Note that in this case, any vertex cover of
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G must be of size at least |V (G)|/4. Consider the set of strings {se : e ∈ E(G)}
constructed as defined above. This set consists of four letter strings, each of
which is a concatenation of two encodings of vertices of G (no ‘$’ letters). Now
define the input set of strings S by S = Σ ∪ {se : e ∈ E(G)}. We can prove the
following relationship between the size of a 3-cover of S and the size of a vertex
cover in G.

Lemma 2. G has a vertex cover of size k iff S has a 3-cover of size 2|V (G)|+k.

Proof. Suppose G has a vertex cover V ⊆ V (G) of size k. Then the set of
substrings C = Σ ∪ {‘vV’ : v ∈ V } is a 3-cover of S, and furthermore, |C| =
2|V (G)| + k.

Conversely, suppose S has a 3-cover C. Since Σ ⊆ S, C must include every
letter in Σ. Hence, C is of size 2|V (G)| + k, for some k. Let us say that C is
normalized if it consists solely of letters and vertex-encodings. If C is normalized,
we can write C = Σ ∪ C1, where C1 is the set of |C| − |Σ| = k vertex encodings
in C, and by a similar argument used for Lemma 1, we can show that the set of k
vertices V ⊆ V (G) corresponding to the vertex-encodings in C1 is a vertex cover
of G. Otherwise, if C is not normalized, we can always normalize C at no cost to
its total size. Indeed, note that any string se ∈ S can be covered using a vertex
encoding of a vertex incident to e and two additional letters in Σ. Furthermore,
notice that any non-encoding substring c /∈ Σ can only be used to cover a single
word in S. Hence, if C covers some string se ∈ S using a non-encoding substring
c /∈ Σ, we can replace c with a vertex encoding of some vertex incident to e
without violating the fact that C is a cover and with no increase to its total size.
Doing this for all non-encoding substrings c ∈ C \ Σ, we obtain a normalized
cover of S whose size is at most |C|. ��

Using similar arguments, we can also prove that:

Lemma 3. G has a vertex cover of size k iff S has an 3-cover of total length
2|V (G)| + 2k.

Using the last two lemmas and the fact that any vertex cover of G must be of
size at least |V (G)|/4 it is not hard to see that the above construction consti-
tutes an L-reduction from Minimum Vertex Cover on graphs with bounded
degree to both unweighted Minimum Substring Cover and length-weighted
Minimum Substring Cover. It follows that there is some constant c for which
Minimum Substring Cover for constant length strings and unitary/length-
weighted weight functions is NP-hard to approximate. Combining this with the
implications of Lemma 1, we obtain the main result of this section:

Theorem 1. Minimum Substring Cover is NP-hard to approximate

– within c ln n for some constant c, and within 	m/2
 − 1 − ε for any ε > 0.
– within some constant c, when m and � are constant, and w is either the

unitary or the length-weighted function.
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3 Local-Ratio Algorithms

In the previous section we gave some negative results for the Minimum Sub-

string Cover problem. In this section we show how to apply the local-ratio
technique [17,6] to obtain positive results in the form of approximations algo-
rithms with performance ratios depending on the length of the longest word in
S. In particular, if m is the maximum length of any word in S, we show how
to find in polynomial time an (

(
m+1

2

)
− 1)-approximate �-cover for S for general

values of �. For � = 2, we show how to obtain (m − 1)-approximate covers, and
for � = ∞, we show how to compute m-approximate covers. (The latter case
applies only for a restricted type of weight functions.) We begin by giving a brief
overview of the local-ratio technique.

The local-ratio technique [17] is based on the Local-Ratio Lemma [6], which
in our terms is stated as follows:

Lemma 4 (Local-Ratio). Let C be a cover for S, and let w1 and w2 be weight
functions for C(S). If C is an α-approximate, both with respect to w1 and with
respect to w2, then C is also α-approximate with respect to w1 + w2.

A local-ratio α-approximation algorithm is typically recursive and works as fol-
lows. Given a problem instance with a weight function w, we find a non-negative
weight function w1 ≤ w such that (1) every solution of a certain type is α-
approximate with respect to w1, and (2) there exists some element e in our
input for which w(e) = w1(e). We subtract w1 from w and remove some zero
weight element from the problem instance. Then, we recursively solve the new
problem instance, while assuring that the solution returned can be fixed so that
it becomes of the above mentioned type. If fixing the solution does not increase
its w1 weight, nor its w − w1 weight, the Local-Ratio Lemma guarantees that
this solution is α-approximate with respect to our original weight function w.
The base of the recursion occurs when the problem instance has degenerated
into a trivial instance.

Figure 1 gives an approximation algorithm for Minimum Substring Cover

which is based on the local-ratio technique. We call this algorithm LR. We first
show that algorithm LR computes (

(
m+1

2

)
− 1)-approximate �-covers for general

values of �. Following this, we show that some fine tuning of the algorithm allows
us to achieve approximation ratios of m− 1 and m, for the special cases of � = 2
and � = ∞ respectively.

The general outline of algorithm LR is as follows: First, the algorithm adds all
substrings c ∈ C(S) with zero weight to an initial partial-solution C, since these
do not have effect on the total weight of the optimal solution. Then, if C is not
already a cover of S, LR selects a string s ∈ S not covered by C, and examines
all substrings Cs of s not already in C. It then subtracts ε = min{w(c) : c ∈ Cs}
from the weight of all substrings in Cs, and recurses on the new weight function.
The last line of the algorithm ensures that at least one substring of s will not
be included in C. Such solutions are shown to be (

(
m+1

2

)
− 1)-approximate with

respect to w1, and also with respect to w2, and therefore due to the Local-Ratio
Lemma, are also (

(
m+1

2

)
− 1)-approximate with respect to w.
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Algorithm LR(S, w, �)
Data : A set of strings S, a weight function w : C(S) → Q

+, and an integer
� ≥ 2.

Result : An �-cover C for S.
begin

1. C ← {c ∈ C(S) : w(c) = 0}.
2. if C is an �-cover of S then return C.
3. Let s ∈ S be a string not �-covered by C of maximum length.
4. Cs ← {c ∈ C(S) \ C : c is a substring of s}.
5. Set ε = min{w(c) : c ∈ Cs}.

6. Define w1(c) =

�
ε c ∈ Cs,

0 otherwise.

7. Define w2 = w − w1.
8. C ← LR(S, w2, �).
9. if C \ {s} is an �-cover for S then C ← C \ {s}.
return C.

end

Fig. 1. A local ratio approximation framework

Note that at each recursive call of the algorithm, at least one substring in C(S)
which has positive weight with respect to w, will have zero weight with respect
to w2. Hence, the algorithm is guaranteed to terminate, and furthermore, it is
also guaranteed to terminate after at most polynomial-many recursive calls. It
is not difficult to see that each recursive call can be carried out in polynomial-
time. The only problematic line could be line 2, but this can be performed
efficiently using standard dynamic-programming techniques (details omitted).
Finally, observe that by its definition, algorithm LR indeed returns an �-cover of
S. In the following lemma we show that this cover is (

(
m+1

2

)
− 1)-approximate.

Lemma 5. Algorithm LR computes an (
(
m+1

2

)
− 1)-approximate �-cover of S.

Proof. To prove that the cover C returned by algorithm LR is (
(
m+1

2

)
− 1)-

approximate, we apply induction on the number of recursive calls of the algo-
rithm, and show that at any recursive call, C is (

(
m+1

2

)
− 1)-approximate with

respect to the given weight function w of that particular call. At the recursive ba-
sis, C has zero weight with respect to w so it is indeed (

(
m+1

2

)
−1)-approximate.

For the inductive step, consider any recursive call other then the basis, and
assume that the cover C returned at Line 8 is (

(
m+1

2

)
− 1)-approximate with

respect to w2. Note that C also remains (
(

m+1
2

)
− 1)-approximate with respect

to w2 after Line 9.
Let s ∈ S be the string selected at Line 3. Since s is of length at most m, it has

at most
(
m+1

2

)
distinct substrings, and so |Cs| ≤

(
m+1

2

)
. Hence,

∑
c∈C(S) w1(c) ≤(

m+1
2

)
ε. Furthermore, if C includes s after Line 9, then at least one substring

of s is not included in C. This is because, by our selection of s, s can only be
used to cover itself among all strings not covered by zero-weight substrings in
C(S). In any case, after Line 9 we have Cs � C, and so |C ∩ Cs| ≤

(
m+1

2

)
− 1.
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Hence,
∑

c∈C w1(c) ≤ (
(
m+1

2

)
− 1)ε. Furthermore, by our selection of ε, any

cover for S has weight at least ε with respect to w1. It follows that, after Line 9,
C is (

(
m+1

2

)
− 1)-approximate with respect to w1 as well as with respect to

w2. According to the Local-Ratio Lemma, the cover returned is (
(
m+1

2

)
− 1)-

approximate with respect to w, and so the lemma is proved. ��

We next show that with a small modification to algorithm LR, we can achieve
an approximation factor of m−1 for the special case of � = 2. First, when � = 2,
we consider C(S) to be the set of all prefixes and suffixes of strings in S, rather
than the set of all substrings of S. We use algorithm LR with the following
modification. We replace Line 4 of the algorithm with:

Cs ←
{
c ∈ C(S) \ C : ∃c′ ∈ C with s = cc′

}
∪{

c ∈ C(S) \ C : ∃c′ ∈ C(S) with s = c′c
}

∪
{
s
}
.

That is, for every pair of prefix and suffix of s, Cs either includes the suffix if
it is not already in C (i.e. does not have zero weight), or it includes the prefix
if the suffix is already in C. Note that since s ∈ Cs, Cs �= ∅. We denote the
modified version of algorithm LR by LR2.

It is clear that algorithm LR2 can be implemented to run in polynomial-time.
Furthermore, the analysis of the performance ratio of algorithm LR2 is almost the
same as the analysis for algorithm LR. The main difference is in the upper bound
of the total w1 weight of C. First observe that we still have

∑
c∈C w1(c) ≥ ε for

any 2-cover C of S, since any cover must still include at least one string of Cs.
On the other hand, since |Cs| ≤ m, we have

∑
c∈Cs

w1(c) ≤ m · ε. Since after
Line 9 we know that Cs � C, we have in fact

∑
c∈Cs

w1(c) ≤ (m − 1) · ε.

Lemma 6. Algorithm LR2 computes an (m − 1)-approximate 2-cover of S.

We next consider the case of � = ∞ (i.e. � ≥ m). Given a weight function
w : C(S) → Q

+, we say that w is proper if for any c, c1 ∈ C(S), w(c1) ≤ w(c)
whenever c1 is a prefix or a suffix of c. For example, unitary and length-weighted
functions are proper. We show how to modify algorithm LR so that it computes
m-approximate covers for proper weight functions. Note that for length-weighted
functions the problem is trivial since the solution is always the alphabet of S.

Our modified version of algorithm LR for the case of � = ∞ is called LR∞. It
is obtained by replacing Line 9 in algorithm LR with the following line:

while ∃c, c1 ∈ C with c = c1c2 or c = c2c1 do C ← C \ {c} ∪ {c2}.

Note that this while loop requires polynomial-time because the total length of
the substrings in C decreases in every iteration of the while loop. The more
important observation is that, since � ≥ m, C remains an �-cover for S after
the while loop terminates. Furthermore, after line 9, C is both prefix-free and
suffix-free. That is, there are no two strings in C where one is the prefix or suffix
of the other. This implies that |C ∩ Cs| ≤ m, and is precisely the property that
we use to obtain our m-approximation factor.
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Lemma 7. Algorithm LR∞ computes an m-approximate cover of S assuming
the given weight function w : C(S) → Q

+ is proper.

Proof. First observe that if the initial weight function is proper, then all weight
functions throughout the entire recursion of the algorithm are proper. This is
because whenever the weight of a string decreases, the weight of all its prefixes
and suffixes decreases by the same amount. Next note that Line 9 of algorithm
LR∞ does not increase the weight of C with respect to w2, nor with respect to
w1, since both are proper weight functions. The approximation factor promised
by the lemma is therefore obtained due to the observation that 1 ≤ |C ∩Cs| ≤ m
after Line 9, and so ε ≤

∑
c∈C w1(c) ≤ m · ε. ��

Theorem 2. Minimum Substring Cover is approximable within a factor of:

–
(
m+1

2

)
− 1, for general values of �.

– m − 1, for � = 2.
– m, for � = ∞ and proper weight functions.

4 Linear Programming Rounding

In [16], Hajiaghayi et al. considered the Minimum Multicolored Subgraph

problem, which is a generalization of Minimum Substring Cover when the
given factorization length � is set to 2. In this section, we extend the lin-
ear programming rounding algorithm given in [16] to apply for any constant
value of �. We also give a tighter analysis. We obtain a O(lg1/� n · m(�−1)2/�)-
approximation algorithm for our problem, which outperforms the algorithm
given in the previous section when � < 4. This algorithm can also be used for
solving a generalization of the Minimum Multicolored Subgraph problem,
namely the Minimum Multicolored Hypergraph Subgraph problem. Here
� corresponds to the size of the largest hyperedge, and the maximum number
of hyperedges colored by any particular color M replaces O(m�−1). Hence, the
approximation ratio is O(lg1/� n · M (�−1)/�). The original approximation ratio
obtained for the case of � = 2 by Hajiaghayi et al. [16] is O(lg n ·

√
M).

Given a string s, an �-factorization of s is an ordered multiset of substrings
f = (c1, . . . , cp) such that s = c1 · · · cp and p ≤ �. Denote by F�(s) the set of
possible �-factorizations of s, and let F�(S) denote the set of all factorizations
of strings in S, i.e. F�(S) =

⋃
s∈S F�(s). Now, for every substring c ∈ C(S),

we designate a variable xc which associated with c, and for every factorization
f ∈ F�(S), we designate a variable yf which is associated with f . In these terms,
Minimum Substring Cover can be formulated using the following integer
linear program:

min
∑

c∈C(S) w(c)xc

s.t.
∑

f∈F�(s)
yf ≥ 1 ∀s ∈ S∑

c∈f∈F�(s)
yf ≤ xc ∀s ∈ S, ∀c substring of s

xc, yf ∈ {0, 1} ∀c ∈ C(S), ∀f ∈ F�(S)

(IP)
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The variable xc indicates whether the substring c is in the cover C and the vari-
able yf indicates whether C covers s by using the factorization f . The first type
of constraints make sure that every string is factorized by some factorization.
The second type of constraints make sure that if s is covered via the factorization
f , then all substrings participating in this factorization are counted in the ob-
jective function. A linear programming relaxation of IP is obtained by replacing
the integrality constraints by: (i) xc ≥ 0 for every c ∈ C(S), and (ii) yf ≥ 0 for
every f ∈ F�(S). Notice that the LP-relaxation is solvable in polynomial time
since maxs∈S |F�(s)| = O(m�−1), and � is assumed to be constant.

Let μ > 1 be a parameter to be determined later. Given an optimal fractional
solution (x∗, y∗) to the LP-relaxation of IP, we construct an integral solution
(x, y) for IP by picking every substring c with probability p(c) = min{μ · x∗

c , 1}.
That is, xc = 1 with probability p(c), and xc = 0 with probability 1 − p(c). If
there exists some f ∈ F�(s) such that xc = 1 for every c ∈ f we set yf = 1. We
set yf = 0 for any other f ∈ F�(s). The resulting set of substrings is denoted by
C, namely, C = {c : xc = 1}.

The first step is to show that the expected total weight of our solution C is
not much more than the total weight of the optimum cover of S. Let us denote
the total weight of the optimal cover of S by opt. We have:

Lemma 8. E
[
w(C)

]
≤ μ · opt.

Proof. E
[
w(C)

]
= E

[∑
c∈C(S) w(c)p(c)

]
≤

∑
c∈C(S) w(c)(μ · x∗

c) ≤ μ · opt. ��

The next step is to show that with a proper selection of μ, the probability that
a string s ∈ S is not covered by C becomes constant.

Lemma 9. If μ ≥ (ln n + 1)1/� · |F�(s)|(�−1)/� then for any string s ∈ S

Pr
[
C does not cover s

]
≤ (e · n)−1.

Proof. Let s ∈ S be any arbitrary string. We prove the lemma by suggesting an
alternative method for covering s. For this we define the following three families
of boolean random variables:

– {Z(f, c)}c∈f∈F(s), where Pr
[
Z(f, c) = 1

]
= min{μ · y∗

f , 1} = p(f).
– {X(c)}c∈C({s}), where X(c) =

∨
c∈f∈F(s) Z(f, c).

– {Y (f)}f∈F�(s), where Y (f) =
∧

c∈f Z(f, c).

Note that all variables are independent within each family.
Our alternative method for covering s is done according to the variables X(c).

That is, we consider Cs = {c : X(c) = 1} as our candidate set of substrings for
covering s. We first show that the probability that Cs does not cover s is as least
as high as the probability that C does not cover s. We do so by showing that
Pr

[
X(c) = 1

]
≤ p(c) for every substring c of s. Indeed, if p(c) = 1 this is triv-

ial. Also, if p(f) = 1 for some f with c ∈ f , then p(c) = 1. Otherwise, this follows
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by union bound and the feasibility of (x∗, y∗) with respect to the LP relaxation
of IP:

Pr
[
X(c) = 1

]
= Pr

[ ∨
c∈f∈F(s)

Z(f, c) = 1
]

≤
∑

c∈f∈F(s)

Pr
[
Z(f, c) = 1

]

=
∑

c∈f∈F(s)

μ · y∗
f

≤ μ · x∗
c

= p(c) .

We next show that Cs covers s with high probability. First, observe that if Cs

does not cover s, then for any f ∈ F�(s) there exists c ∈ f such that X(c) = 0.
From the definition of X(c) it follows that Z(f, c) = 0 as well, and this means
that Y (f) = 0 for every f ∈ F�(s). Hence, Pr

[
Cs does not cover s

]
≤ Pr

[
∀f ∈

F�(s) : Y (f) = 0
]
.

Now observe that, for any f ∈ F�(s), if p(f) = 1 then Y (f) = 1. Hence, for
the rest of the proof we assume that p(f) < 1. We have,

Pr
[
∀f ∈ F�(s) : Y (f) = 0

]
=

∏
f∈F�(s)

Pr
[
Y (f) = 0

]

≤
∏

f∈F�(s)

(1 − p(f)�)

≤
∏

f∈F�(s)

e−p(f)�

= e
−�f∈F�(s) p(f)�

,

where the second inequality is due to the fact that 1 − x ≤ e−x for x ∈ [0, 1].
Since p(f) = μ · y∗

f < 1 for all f ∈ F�(s), and since (x∗, y∗) is a feasible solution
of the LP relaxation of IP, we have

∑
f∈F�(s)

p(f) = μ ·
∑

f∈F�(s)
y∗

f ≥ μ for
all f ∈ F�(s). Due to this, and the the convexity of the function f(x) = x� for
x ∈ [0, 1], we get that

∑
f∈F�(s)

p(f)� ≥ |F�(s)|
(∑

f∈F�(s)
p(f)

|F�(s)|

)�

≥ μ�

|F�(s)|�−1

≥ (ln n + 1) · |F�(s)|�−1

|F�(s)|�−1

= lnn + 1,
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and so

Pr
[
Cs does not cover s

]
≤ Pr

[
∀f ∈ F�(s), Y (f) = 0

]
≤ e− ln n−1 = (e · n)−1,

and we are done. ��

The previous lemma implies that by setting

μ = (lnn + 1)1/� · max
s∈S

|F�(s)|(�−1)/� = O(lg1/� n · m(�−1)2/�) ,

we cover any string s ∈ S with probability at least (e · n)−1. By using union
bound on Lemma 9 it follows that

Pr
[
∃s not covered by C

]
≤ n

e · n = e−1 .

Hence, we obtain the main result of this section:

Theorem 3. With high probability, Minimum Substring Cover is approx-
imable within a factor of O(lg1/� n · m(�−1)2/�).
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3 Departamento de Ingenieŕıa Matemática, Universidad de Chile, Chile
mmatamal@dim.uchile.cl

Abstract. For a connected graph G, let L(G) denote the maximum
number of leaves in a spanning tree in G. The problem of computing
L(G) is known to be NP-hard even for cubic graphs. We improve on Loryś
and Zwoźniak’s result presenting a 5/3-approximation for this problem
on cubic graphs. This result is a consequence of new lower and upper
bounds for L(G) which are interesting on their own. We also show a
lower bound for L(G) that holds for graphs with minimum degree at
least 3.

1 Introduction

The MaxLeaf consists of the following problem. Given a connected graph G,
find a spanning tree in G with as many leaves as possible. This problem is NP-
hard [3] even for cubic graphs [6], and is known to be MAX SNP-complete [2].
Lu and Ravi [9,10] gave the first approximation algorithms for MaxLeaf. Solis-
Oba [11] described the currently best approximation algorithm: a greedy
2-approximation.

All graphs considered in this paper are connected, unless otherwise specified.
We use n to denote the number of vertices of the graph in question. To the best of
our knowledge, Storer [12] was the first to consider MaxLeaf on cubic graphs.
He showed that every cubic graph has a spanning tree with at least �n/4 + 2�
leaves. Griggs, Kleitman, and Shastri [4] complemented this result by showing
that this bound is tight. As a side note, they also provided a simple polynomial
time algorithm (alternative to Storer’s) that finds a spanning tree with at least
�n/4 + 2� leaves in a cubic graph. As an illustration, Fig. 1(a) presents a graph
that achieves this bound. On the other hand, Linial and Sturtevant [7] proved
that Storer’s lower bound holds even for graphs with minimum degree three.
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Kleitman and West [5] extended the study of Linial and Sturtevant and consid-
ered MaxLeaf on graphs with minimum degree at least k, for arbitrary values
of k and for small values of k as well.

(a) (b)

Fig. 1. (a) A cubic graph and a spanning tree with n/4 + 2 leaves indicated by the
dark edges. (b) A diamond.

For a graph G, we let L(G) denote the maximum number of leaves in a
spanning tree of G. As we mentioned, the result of Storer [12] is constructive
and can be restated as a proof of a lower bound on L(G) for a cubic graph G.
Furthermore, the main result provided by Griggs et al. [4] is a better lower bound
on L(G) for the case of 3-connected cubic graphs. It can actually be seen as a
constructive proof of the fact that every 3-connected and also every triangle-free
cubic graph has a spanning tree with at least �(n + 4)/3� leaves.

A diamond is a complete graph on 4 vertices minus an edge, also denoted
by K4 − e. We say that a subgraph of a given graph G is a cubic diamond if it
is a diamond in which all of its vertices have degree 3 in G (see Fig. 1 (b)). In
graphs with minimum degree at least 3, we want to distinguish those diamonds
that are cubic and those that are not. The 3-dimensional cube graph is denoted
by Q3. Specifically, the previous bound by Griggs et al. [4] holds for all cubic
graphs that do not contain diamonds. In fact, Griggs et al. observed that their
bound is tight for Q3 and that, for any other cubic graph, the sometimes stronger
lower bound of �(n + 5)/3� holds. They also noted that this lower bound is tight
for both 3-connected and triangle-free cubic graphs. (See examples in Fig. 2.)

For the purpose of this paper, it is interesting to point out that Griggs et al.
result implies a 3/2-approximation for MaxLeaf in 3-connected cubic graphs,
since any spanning tree in a cubic graph has at most n/2+1 leaves. More recently,
there has been some interest in obtaining approximation results for cubic graphs.
Indeed, Loryś and Zwoźniak [8] presented a 7/4-approximation for MaxLeaf in
cubic graphs. Very recently, Bonsma [1] proved that if G is a connected graph of
minimum degree at least 3 with d cubic diamonds, then G has a spanning tree
with at least �(2n − d + 12)/7� leaves.

In this paper, we prove a lower bound on L(G) for a cubic graph G that
also takes into account the diamonds present in the graph (but not only their
number). Our lower bound is always at least as good as the one for cubic graphs
derived from Bonsma’s lower bound.

As most previous work, our proof is constructive, so it gives a polynomial
algorithm that produces a spanning tree of the given graph with as many leaves
as the claimed lower bound. Our algorithm uses the one of Griggs et al. [4]
for diamond-free cubic graphs. The better lower bound, together with a related
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(a) (b)

Fig. 2. (a) A triangle-free cubic graph and a spanning tree, indicated by the dark
edges, with n/3 + 2 = �(n + 5)/3� leaves. (b) A 3-connected cubic graph G on n = 12
vertices obtained from K4 by replacing each of its vertices with a triangle. Observe
that L(G) = 6 = �(n + 5)/3�.

upper bound, allows us to improve upon the result of Loryś and Zwoźniak [8],
obtaining a 5/3-approximation for MaxLeaf in cubic graphs.

This paper is organized as follows. In the next section we derive the new lower
bound on L(G), while in Section 3, we prove the new upper bound on L(G). In
Section 4, we present the 5/3-approximation with its analysis. Section 5 discusses
the extension for graphs with minimum degree at least 3. We conclude with some
final remarks in Section 6.

2 A New Lower Bound

The way the diamonds are spread in the graph plays an important role in the
new lower bound. It is expressed by a new parameter whose definition follows.

Call internal the two vertices in a diamond that have all neighbors within the
diamond, and external the other two vertices of the diamond (see Fig. 3 (a)).
For a cubic graph G, let Gr be the graph obtained from G after the removal of
all internal vertices of its diamonds. We denote by c the number of components
of Gr. For instance, if G is the graph in Fig. 1(a) with d diamonds, then Gr

consists of d disjoint edges and c = d in this case.
The new lower bound is given in the next theorem. It depends on the number n

of vertices in the graph and on the parameter c defined above. Recall that Q3 is
the 3-dimensional cube graph.

Theorem 1. Let G �= Q3 be a connected cubic graph with d diamonds. Then G
has a spanning tree with at least max{lb1, lb2} leaves, where lb1 = �(n − d + 5)/3�
and lb2 = 3d − 2c + 2. Moreover, max{lb1, lb2} ≥ �(3n − 2c + 17)/10�.

(a) (b)

Fig. 3. (a) The squares indicate the internal vertices in a diamond. The other two
vertices are the external ones. (b) A double diamond.
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Proof. For the first lower bound lb1 on L(G), let G′ be the graph obtained from G
after replacing each diamond by the graph in Fig. 3 (b), which we call a double
diamond. Because of the structure of G′, from any spanning tree of G′, it is easy
to get a spanning tree of G with at most one leaf less per double diamond. The
number of vertices in G′ is n′ = n + 2d. Observe that G′ is diamond-free. So,
from the result of Griggs et al. [4], we conclude that G′ has a spanning tree T ′

with at least �(n′ + 5)/3� = �(n + 2d + 5)/3� leaves. Thus, from T ′, we can get a
spanning tree T in G with at least �(n + 2d + 5)/3� − d = �(n − d + 5)/3� = lb1

leaves. Therefore L(G) ≥ lb1.
For the second lower bound lb2 on L(G), let F be a forest in G consisting of

spanning trees in each component of Gr. As Gr has 2d vertices of degree one, F
has at least 2d leaves. Extend F in two phases to obtain a spanning tree in G.
In the first phase, add to F edges from c − 1 of the diamonds to connect the c
components of F and all vertices in these c − 1 diamonds. This can be done by
losing two leaves and gaining one for each of the c − 1 diamonds. In the second
phase, add edges from the remaining diamonds to connect its internal vertices
to F , losing one leaf and gaining two per diamond. This results in a tree with
2d − (c − 1) + (d − (c − 1)) = 3d − 2c + 2 = lb2 leaves. Thus, L(G) ≥ lb2.

The maximum of these two lower bounds on L(G) is at least the value they
achieve when they are equal. That is, when (n − d + 5)/3 = 3d − 2c + 2. From
this we deduce that d = (n + 6c − 1)/10 and, plugging it back in one of the two
lower bounds, we get that max{lb1, lb2} ≥ �(3n − 2c + 17)/10�. ��

There are tight examples for the bound on L(G) given by this theorem. For
instance, the graph in Fig. 1(a) is a tight example with c = n/4. Indeed,
Theorem 1 says that there is a spanning tree in this graph that has at least
�(3n − 2c + 17)/10� = �n/4 + 17/10� = n/4 + 2 leaves. The tree of dark edges
in Fig. 1(a) is optimal and has these many leaves. For another tight example,
consider the graph indicated in Fig. 4. It consists of d double diamonds connected
as a chain and forming a circuit, with one of the edges in each double diamond
substituted by a diamond. Call this graph H . The number of vertices in H is
n = 10d and in this case c = 1. Theorem 1 says that there is a spanning tree
in this graph that has at least �(3n − 2c + 17)/10� = �(3n + 15)/10� = 3d + 2
leaves. The spanning tree in dark edges in Fig. 4 is optimal and has exactly
3d + 2 leaves.

Based on the example in Fig. 4, one might suspect that any tight example is
not 3-connected after we replace each diamond by an edge. Note, however, that

Fig. 4. A tight example for Theorem 1



188 J.R. Correa et al.

(a) (b)

Fig. 5. (a) Another tight example for Theorem 1. (b) The 3-connected graph obtained
from the example in (a) after the replacement of each diamond by an edge.

the graph shown in Fig. 5 (a) is a tight example and it remains 3-connected even
after we perform these operations, as one can see in Fig. 5 (b).

2.1 Comparison with Bonsma’s Lower Bound

Bonsma [1] recently proved that if G is a connected graph with d diamonds and
minimum degree at least 3, then L(G) ≥ �(2n − d + 12)/7�. It is natural to ask
how this result specialized to cubic graphs compares with the lower bound we
have given in Theorem 1. To answer this question, let us consider the case d �= 0
(when d = 0 the lower bound given by Griggs et al. [4] is as good as the lower
bound given by Bonsma, and it is better when n > 8).

Let lbB = �(2n − d + 12)/7�. If c = d then n = 4d and in this case lb1 = lb2 =
lbB. If c < d then n > 4d + 1. Adding 6n − 7d + 35 on both sides of the last
inequality, we obtain 7n−7d+35 > 6n−3d+36. Thus, 7(n−d+5) > 3(2n−d+12),
and therefore lb1 ≥ lbb. (If n ≥ 4d + 22, then lb1 > lbb.)

We note that the difference between lb1 and lbB might be not so negligible. For
the tight example shown in Fig. 4, if we take n = 70p, where p is a positive integer
(that is, G is a necklace with 7p double diamonds), we have that lbB = 19p + 2,
while lb1 = lb2 = L(G) = 21p + 2. In this case, lbB is around 10 % smaller
than lb1.

3 New Upper Bound

In this section, we prove a new upper bound on L(G) that involves c. We recall
that c is the number of components of Gr, where Gr is the graph obtained from G
after the removal of all internal vertices of its diamonds. This upper bound will
be useful in the analysis of the proposed approximation, that will be presented
in the next section.

Theorem 2. If G is a connected cubic graph, then any spanning tree of G has
at most �n/2 − c + 2	 leaves.

Proof. Let T be an arbitrary spanning tree in G. As G is cubic, T has (n −
d2 + 2)/2 leaves, where d2 is the number of vertices of degree two in T . Indeed,
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denoting the number of vertices in T of degree i by di, for i = 1, 2, 3, we have
that n = d1 + d2 + d3 and 2(n − 1) = d1 + 2d2 + 3d3. From these two equalities,
we deduce that d1 = (n − d2 + 2)/2.

Now observe that, as Gr has c components, edges of at least c − 1 diamonds
will be used to connect components of Gr in T . Each diamond that is used to
connect a component of Gr to another contributes with at least two different
vertices of degree two in T . (See Fig. 6.) That is, the number of vertices of degree
two in T is at least 2(c − 1). In symbols, d2 ≥ 2(c − 1).

From this and from the previous observation, we deduce that T has at most
�n/2 − c + 2	 leaves. Hence, L(G) ≤ �n/2 − c + 2	. ��

Fig. 6. Possible ways (excluding symmetric cases) to use a diamond to connect com-
ponents of Gr spanning all vertices. The squared vertices have degree two in the graph
of dark edges.

4 The Algorithm

Now we describe an algorithm whose approximation ratio is derived from the
lower and upper bounds presented.

Algorithm A(G)

Input: a connected cubic graph G

Output: a spanning tree of G with at least 3
5L(G) leaves

1 d ← number of diamonds in G

2 G′ ← graph obtained from G by substituting each diamond by a double diamond

3 T ′ ← gks(G′) � T ′ is a spanning tree of G′ given by the algorithm of Griggs et al.

4 T1 ← spanning tree of G obtained from T ′ (see proof of Theorem 1)

5 Gr ← graph obtained from G by removing the internal vertices of each diamond

6 F ← forest consisting of a spanning tree in each component of Gr

7 c ← number of components of Gr

8 D ← set of c − 1 diamonds that, if added back to Gr, make it connected

9 for each diamond h in D

10 add to F the three edges of h incident to a same internal vertex

11 for each diamond h not in D

12 add to F the two edges of h incident to a same external vertex

13 let T2 be the resulting tree

14 let T be the one between T1 and T2 with more leaves

15 return T
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The proof of Theorem 1 gives us immediately an algorithm to construct span-
ning trees with at least max{lb1, lb2} leaves. Just for completeness, we present
it in pseudocode. We use gks to refer to the algorithm of Griggs, Kleitman, and
Shastri [4].

Theorem 3. Algorithm A is a 5/3-approximation for MaxLeaf on cubic graphs.

Proof. First note that, as gks is polynomial, A is a polynomial-time algorithm.
Indeed, all but lines 3 and 8 can be implemented to run in linear time. For line 8,
one can use some disjoint sets data structure and achieve almost linear time. So
the most time consuming step is the execution of gks in line 3.

As for the approximation ratio, let |A(G)| denote the number of leaves in the
tree produced by A with G as input. Indeed, A is a 5/3-approximation, because

L(G)
|A(G)| ≤

(
n − 2c + 4

2

)(
10

3n − 2c + 17

)

= 5
n − 2c + 4

3n − 2c + 17

≤ 5
n − 2c + 4

3n − 2c − 4c + 12

= 5
n − 2c + 4

3(n − 2c + 4)

=
5
3
.

The first inequality holds by Theorems 1 and 2. ��

5 Constructions and Extension for Minimum Degree 3

Our lower bound shown in Theorem 1 calls attention to the fact that diamonds
might not be what makes L(G) smaller, closer to n/4. Indeed, we found inter-
esting the following construction that proves this fact. Let H be a diamond-free
cubic graph, and let T be an arbitrary spanning tree in G. Let G be the graph
obtained from H by substituting every edge not in T by a diamond. Despite the
fact that G has many diamonds, there exist spanning trees in G with n/2 + 1
leaves, where n is the number of vertices of G, which is as much as it could. (The
number of diamonds in G is n/6 + 1/3.)

Another general construction that we found interesting is the one already
exemplified in Fig. 2 (b). Given a cubic graph H , substitute each vertex of H
by a triangle. Let G be the resulting graph. Note that G is (cubic) diamond-
free. Then L(G) = n/3 + 2. The fact that L(G) ≥ n/3 + 2 follows immediately
from the lower bound of Griggs et al. [4] for cubic diamond-free graphs. On the
other hand, let T be an arbitrary spanning tree of G and denote the number
of vertices in T of degree i by di, for i = 1, 2, 3. Then, as already observed,
n = d1 + d2 + d3 and 2(n − 1) = d1 + 2d2 + 3d3. From these two equalities, we
deduce that d1 = d3 + 2. But T has at most one degree 3 vertex per triangle. So
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d3 ≤ n/3 and L(G) ≤ n/3 + 2. (In fact, a similar construction was described by
Griggs et al. [4, p. 671].)

As already mentioned, Bonsma [1] proved that if G is a connected graph of
minimum degree at least 3 with d cubic diamonds, then G has a spanning tree
with at least �(2n − d + 12)/7� leaves. We used this bound to obtain a result
similar to Theorem 1 for graphs of minimum degree at least 3.

Theorem 4. Every connected graph G of minimum degree at least three with
d cubic diamonds has a spanning tree with at least max{lbB, lb2} leaves, where
lbB = �(2n − d + 12)/7� and lb2 = 3d − 2c + 2. Moreover, max{lbB, lb2} ≥
�(3n − c + 19)/11�.

In some cases, the bound lb2 is better than the bound lbB of Bonsma [1]. In fact,
for the example shown in Fig. 4, if we take n = 770p (that is, a necklace with
77p double diamonds) then lbB = 209p + 2 and lb2 = 231p.

Unfortunately, the upper bound for graphs with minimum degree 3 is n − 1
(and is tight), and therefore we cannot derive an approximation algorithm better
than Solis-Oba’s [11] for this case using this lower bound.

6 Final Remarks

Galbiati, Maffioli, and Morzenti [2] proved that MaxLeaf is MAX SNP-
complete, but there is no such proof for cubic graphs. We suspect that this
case is also MAX SNP-complete. It would be nice to settle this question.

Also, we conjecture that there is a 3/2-approximation algorithm for MaxLeaf

on cubic graphs. In fact, in many cases the algorithm described in this paper
achieves this ratio.
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Abstract. We continue the study of the online unit clustering problem,
introduced by Chan and Zarrabi-Zadeh (Proc. Workshop on Approxi-
mation and Online Algorithms 2006, LNCS 4368, p.121–131. Springer,
2006). We design a deterministic algorithm with a competitive ratio of
7/4 for the one-dimensional case. This is the first deterministic algorithm
that beats the bound of 2. It also has a better competitive ratio than
the previous randomized algorithm. Moreover, we provide the first non-
trivial deterministic lower bound, improve the randomized lower bound,
and prove the first lower bounds for higher dimensions.

1 Introduction

In clustering problems, a set of points need to be partitioned into groups, also
called clusters, so as to optimize a given objective function. Clustering problems
are fundamental and have many applications, this includes usage of clustering
for computer related purposes, such as information retrieval and data mining,
and various applications in other fields such as medical diagnosis and facility
location.

In the online model, points are presented one by one to the algorithm, and
must be assigned to clusters upon arrival. This assignment cannot be changed
later. We measure the performance of an online algorithm A by comparing it to
an optimal offline algorithm opt using the competitive ratio, which is defined
as supσ A(σ)/opt(σ). Here, σ is the input, which is a sequence of points, and
alg(σ) denotes the cost of an algorithm alg for this input, which is typically the
number of clusters. For randomized algorithms, we replace A(σ) with E(A(σ)),
and define the competitive ratio as supσ E(A(σ))/opt(σ). An algorithm with
competitive ratio of at most R is called R-competitive.

Charikar et al. [2] considered a problem which is called the online unit covering
problem. In this problem, a set of n points needs to be covered by balls of
unit radius, and the goal is to minimize the number of balls used. They gave
an upper bound of O(2dd log d) and a lower bound of Ω(log d/ log log log d) on
the competitive ratio of deterministic online algorithms in d dimensions. This

� Research supported by the Alexander von Humboldt Foundation.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 193–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



194 L. Epstein and R. van Stee

problem is fully online in the sense that points arrive one by one, each point
needs to be assigned to a ball upon arrival, and if it is assigned to a new ball,
the exact location of this ball is fixed at this time. The tight bounds on the
competitive ratio for d = 1 and d = 2 are 2 and 4 respectively.

In a recent paper [1], Chan and Zarrabi-Zadeh introduced the unit clustering
problem. This problem is still an online problem and is similar to unit covering.
However, it is more flexible and does not require that the exact position of the
balls is fixed in advance. The algorithm needs to make sure that a set of points
which is assigned to one cluster can always be covered by a ball. The goal is
still to minimize the total number of balls used. Therefore, the algorithm may
terminate with clusters that still have more than one option for their location.
In the offline model, this reduces to unit covering. However, in the online model,
an algorithm now has the option of moving a cluster after a new point arrives,
as long as this cluster still covers all the points that are assigned to it. In [1],
the two dimensional problem is considered in the L∞ norm rather than the L2

norm. Thus “balls”, are actually cubes. For d = 1 the two metrics are identical.
In this paper, similarly to [1], we consider the L∞ norm.

Note that online clustering is an online graph coloring problem. If we see the
clusters as colors, and the points are seen as vertices, then an edge between
two point occurs if they are too far apart to be colored using the same color.
The resulting graph for the one dimensional problem is the complement of a
unit interval graph (alternatively, the problem can be seen as a clique partition
problem in unit interval graphs). See [5] for a survey on online graph coloring.
Note that online coloring is a difficult problem that does not admit a constant
competitive ratio already for trees [3,6]. There is a small number of classes that
admit constant competitive algorithms, one of which is interval graphs [4].

For the one-dimensional case, [1] showed that several näıve algorithms all have
a competitive ratio of 2. Some of these algorithms are actually designed to solve
already the unit covering problem and thus cannot be expected to overcome this
bound (due to [2]). They also showed that any randomized algorithm for unit
covering has a competitive ratio of at least 2. To demonstrate the difference be-
tween unit covering and unit clustering, they presented a randomized algorithm
with a competitive ratio of 15/8 = 1.875. Finally, they showed a lower bound
of 4/3 on the competitive ratio of any randomized algorithm. The deterministic
lower bound that is implied by their work is 3/2 = 1.5. A multi-dimensional ex-
tension of their algorithm, that they design, results in a 15/4 = 3.75-competitive
algorithm for two dimensions, or a 2d · 15/16-competitive algorithm for general
d. The randomized upper bound for one dimension was improved to 11/6 by the
same authors [8], implying corresponding improvements for higher dimensions.

We improve these results by presenting a relatively simple deterministic al-
gorithm which attains a competitive ratio of 7/4 = 1.75. Using the construction
presented by Chan and Zarrabi-Zadeh [1], this implies an upper bound of 2d ·7/8
in d dimensions. Moreover, we improve the randomized lower bound to 3/2 = 1.5
and show a deterministic lower bound of 8/5 = 1.6. Finally we give a determin-
istic lower bound of 2 and a randomized lower bound of 11/6 ≈ 1.8333 in two
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dimensions. The deterministic lower bound holds for the L2 norm as well. A
summary of previous and improved results can be found in Table 1.

Table 1. Summary of new and previous results for one and two dimensions

Lower bound Lower bound Upper bound Upper bound
of [1] (this paper) (this paper) of [8]

d = 1 deterministic 1.5 1.6 1.75 2
d = 1 randomized 1.3333 1.5 1.75 1.8333
d = 2 deterministic 1.5 2 3.5 4
d = 2 randomized 1.3333 1.8333 3.5 3.667

We start the paper with additional definitions, afterwards, we present the new
algorithm followed by its analysis. Finally, we prove lower bounds, first for one
dimension and then for two dimensions. Some proofs are omitted due to space
constraints.

2 A Deterministic Algorithm

2.1 Definitions

For a cluster C, denote the leftmost request point contained in it by �C and the
rightmost request point by rC . A cluster is single if there is no cluster which
has a common endpoint with it. A cluster is fixed if we have defined both its
endpoints.

The distance of p to a cluster C is denoted by d(p, C) and is defined as the
distance from p to the closest point in C. For a fixed cluster C, this closest point
is not necessarily a request point. The distance between two single clusters C
and D is defined as the distance between their closest points.

We now define several kinds of pairs of clusters. In these definitions we discuss
two clusters, where a cluster C is to the left of cluster D, without overlap. We
call a pair of clusters close or far only if there is no cluster between them and
there is no fixed cluster ‘nearby’. Below, we specify what nearby means in this
context.

Definition 1. A close pair consists of two consecutive single clusters C and D
such that one of the following two properties holds:

– d(�C , �D) ≤ 1 and there is no fixed cluster which overlaps with the interval
(�D − 1, �D + 1)

– d(rC , rD) ≤ 1 and there is no fixed cluster which overlaps with the interval
(rC − 1, rC + 1)

Definition 2. A far pair consists of two single clusters C and D that do not
form a close pair and for which d(rC , �D) ≤ 1. Moreover, there is no fixed cluster
which overlaps with the interval (rC − 1, �D + 1).
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Note that a cluster which contains a single point cannot be part of a far pair,
only of a close pair, since for this cluster its left endpoint and its right endpoint
are the same point.

Definition 3. A fixed pair consists of two fixed clusters C and D that have a
common endpoint which is a request point.

Our algorithm avoids close and far pairs to avoid bad examples and in particular,
bad examples shown in [1]. Instead, such pairs are turned into fixed pairs using
the attach operation which we now define.

Our algorithm attaches one cluster to another cluster in one of two ways,
left-to-right-attach and right-to-left-attach. Let C, D be a close pair and assume
again that D is to the right of C. The algorithm sometimes attaches cluster
C to cluster D and sometimes it attaches cluster D to cluster C. In the first
case, cluster C is attached to cluster D as follows. Fix the location of D to be
the interval [�D, �D + 1] and the location of C to be the interval [�D − 1, �D].
This attach operation is only performed if �C ≥ �D − 1, i.e., in the first case of
the definition of a close pair, and called left-to-right-attach, since the rightmost
point of the left cluster is fixed to be the leftmost point of the right cluster. If C
or D overlaps with an existing cluster as a result of these definitions, we truncate
it at the point where it starts to overlap. Since there is no cluster between C
and D, the overlap can happen only at the right hand side of D or at the left
hand side of C.

In the other option, we can attach D to C. To do that, we fix C at [rC −1, rC ]
and D at [rC , rC +1]. This is only done if rD ≤ rC +1, i.e., in the second case of
the definition of a close pair, and called right-to-left-attach. Again, we truncate
C or D if this is necessary to avoid overlap.

Thus it can be seen that if a cluster is attached to another, they form a fixed
pair. The clusters in a fixed pair always have length 1 unless this would make
them overlap with some other cluster. Single clusters are never fixed by our
algorithm, and thus their right and left endpoints are request points (possibly,
both endpoints are the same request point).

2.2 The Algorithm

The idea of this algorithm is to try and avoid gaps between clusters if requests
occur ‘close’ to one another.

A request inside a cluster is assigned to that cluster. Let a good cluster for p
be a single cluster C such that p can be assigned to C without creating a new
far or close pair. Let a feasible cluster for p be a single cluster C such that there
is no cluster between C and p and the distance of p to the furthest request point
in C is at most 1.

1. If there exists a good cluster C for p, assign p to C.
2. Else, if there exists a feasible cluster C for p such that assigning p to C

creates a close pair C and D, assign p to C and attach D to C (perform
a right-to-left-attach operation if D is to the right of C and otherwise a
left-to-right-attach operation).
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3. Else, if there exists a feasible cluster C for p such that assigning p to C
creates a far pair C and D, define a new cluster P for p and attach it to D.
(P, D form a close pair.)

4. Else, define a new cluster P for p. If there exists a cluster C such that P
and C form a close pair, attach P to C.

< 1< 1

pC D

C P D

> 1
< 1

DC

DpC

Step 3Step 2

Fig. 1. Creation of a fixed pair in Step 2 and 3

Our algorithm does not allow overlap between clusters (except for endpoints,
and even that can only happen if two clusters are attached and fixed, or if a
cluster is truncated at the point where another cluster begins). and our algorithm
avoids the creation of close and far pairs. A close or far pair can be created if a
request point is being assigned to a cluster C and thus making it closer to the
closest cluster on the same side of C as the request point. If the point is indeed
assigned to C then a single close pair may be created and this pair is fixed right
away. Otherwise, if the point is finally assigned to a new cluster, this cluster may
form a close pair with each one of two clusters on its both sides. This happens in
Step 3 or in Step 4. If it happens in Step 3, it must form a close pair with each
one of them, since in this case any fixed cluster is located too far. The algorithm
fixes the new cluster with one of the two previously existing clusters.

Therefore, when a close pair or far pair appears, our algorithm immediately
fixes at least one half of the pair, possibly leaving the other half unchanged.
Thus if there were no close or far pairs before some request, they still do not
occur afterwards. Note also that the creation of a new cluster P cannot create
a far pair, since the new cluster consists of a single point at this time.

2.3 Analysis

We start by proving several lemmas that clarify the structure of the clusters
created by the algorithm. We first consider single clusters.

Lemma 1. There can be no interval of length 1 which contains two single clus-
ters.

Proof. Suppose the two single clusters A and B are contained in an interval
of length 1. Without loss of generality, denote by A the cluster that is defined
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earlier by the algorithm. Let b be the first request point in B. We consider the
step in which b is assigned to a cluster. Since the point b fits in A (or in the
cluster which is closest to b between b and A), it is not assigned by our algorithm
in Step 4. In Steps 2 and 3, b is placed in a fixed cluster. In Step 1, b is placed
in an existing cluster. But then B has more than one point. In all cases, we find
a contradiction. �
Note that this lemma holds even if there are fixed clusters nearby. Specifically,
the lemma shows that for two single clusters A and B that both contain only
one request point, we have d(A, B) > 1.

In the following, we will repeatedly discuss sets of clusters C1, C2, . . . In such
cases, denote the leftmost request point contained in Ci by �i and the rightmost
request point by ri. We now consider a fixed optimal offline algorithm. We call
the clusters used by this algorithm “optimal clusters”. The clusters used by our
algorithm are called “online clusters”.

As noted in [1], it is trivial to provide an optimal solution for a given input
offline: starting from the left, repeatedly define a cluster of length 1 that has
as its left endpoint the leftmost unserved point. It can be seen that in this
solution, no two clusters overlap (not even at their endpoints). We will compare
our algorithm, which also does not let clusters overlap, to this solution.

Lemma 2. Consider three consecutive single online clusters, denoted by C1, C2

and C3 from left to right. If there is an optimal cluster X which serves requests
from all three clusters, then

– there exists a fixed cluster F which overlaps with the interval (r1 − 1, �3 + 1)
– there is no single online cluster between F and Cj , where Cj is the cluster

among C1, C2 and C3 that is closest to F
– there exists a request point in Cj which is served by an optimal cluster Y

which does not serve requests from any other single cluster.

Proof. Suppose there is no such fixed cluster F . The assumption implies that
d(r1, �3) ≤ 1. Let q be the oldest request point in C2. If q is newer than r1 and
�3, C1 and C3 formed a close or far pair before q arrived, which our algorithm
does not allow. Otherwise, without loss of generality, let r1 be newer than �3.
Then C2 and C3 form a close pair as soon as both q and �3 have arrived (since
d(�2, �3) ≤ d(r1, �3) ≤ 1), which our algorithm also does not allow.

This proves the existence of the cluster F . Suppose that F is to the left of
C1. (The case where F is to the right of C3 is symmetric.) By Lemma 1, C1 and
C2 are not contained in an interval of length 1. This implies that the optimal
cluster X which serves r2 does not serve �1. By the same Lemma, there is no
online single cluster between F and C1 since d(F, r1) < 1.

Consider the optimal cluster Y which serves �1. By these observations and the
fact that Y does not overlap with X , we have that Y does not cover any point
from any single cluster besides C1 (possibly it covers some points of F ). �
This Lemma shows that an optimal cluster X can only serve requests from
three consecutive single clusters if these online clusters are the first or last three
clusters in a sequence of consecutive single clusters (or the only three, of course).
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Definition 4. A group of online clusters is a maximal set of consecutive clusters
such that each two successive clusters are ‘connected’ by an optimal cluster.

That is, if C1, . . . , Cm (numbered from left to right) form a group, there is an
optimal cluster which contains both ri and �i+1 for i = 1, . . . , m − 1. (These
optimal clusters are not necessarily all distinct.) If there is more than one group,
for each group we have that the leftmost point of the leftmost online cluster is
not to the right of the leftmost point of the leftmost optimal cluster by the way
we construct our optimal solution.

Lemma 3. For m ≥ 3, at least m−1 offline clusters are needed to serve all the
request points in m consecutive single clusters that are in one group.

Proof. Denote these single clusters by C1, . . . , Cm from left to right. For m = 3,
even if there is an optimal cluster X which serves requests from all three single
clusters, it cannot cover two of them completely by Lemma 1.

Suppose m ≥ 4. Clearly, an optimal cluster cannot cover requests from four
(or more) different online clusters Ci, . . . , Ci+3, because then the two clusters
Ci+1 and Ci+2 would have to be contained in an interval of length 1, which is
impossible by Lemma 1. Lemma 2 shows that if an optimal cluster serves requests
from three consecutive single clusters, then these are the clusters C1, C2, C3 or
Cm−2, Cm−1, Cm (or both), since there must be a fixed cluster immediately next
to them on one side. Suppose it happens to the first three clusters (the other case
is symmetric). Lemma 2 also shows that in this case, there is an optimal cluster
Y which serves only requests from C1. So whether this case occurs or not, the
first (and last) three clusters are served by at least two optimal clusters. No other
three consecutive clusters can be served by one optimal cluster by Lemma 2. We
see that on average, at least one optimal cluster is required to serve requests
from each two consecutive single online clusters. Since we have m − 1 pairs of
consecutive single clusters, the lemma is proved. �

The next few lemmas consider fixed clusters.

Lemma 4. In each pair of fixed clusters where none of the clusters is truncated,
there is at least one optimal cluster which is completely contained inside the pair.

Proof. This follows immediately from the fact that in any pair of fixed clusters,
the shared endpoint of these two clusters is an actual request point. If both fixed
clusters are not truncated, each one of them has length 1. The claim follows from
the fact that the optimal solution needs to serve the point in the middle. �

Lemma 5. Not all requests in a pair of fixed clusters are served by a single
optimal cluster.

Lemma 6. If a fixed cluster T is truncated, there is an existing fixed cluster F
within a distance of less than 1 of the newly fixed cluster T , and exactly one
single cluster E between T and F . The clusters T and E have a shared endpoint.
Our algorithm does not create additional clusters between E and F .
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Note that when a fixed cluster T is truncated, both its endpoints are request
points by Lemma 6. We consider T to be in the same group as both its neighbors,
even if there exists an optimal cluster which only serves requests from one of
these three clusters.

Lemma 7. If a fixed cluster T is truncated, at least three optimal clusters are
required to serve all request points in T and the two clusters with which T shares
an endpoint.

Proof. T shares one endpoint with another fixed cluster F , and one with a single
cluster E by Lemma 6. These three clusters used to be single clusters. Wlog, let
the order of them by E, T, F from left to right. Denote the rightmost endpoint
of T before it became fixed by t. If the requests in these three clusters are served
by only two optimal clusters, one optimal cluster must serve t and all request
points in F , since no optimal cluster can serve E and T entirely by Lemma 1.
But if this were possible, then T and F would have formed a close pair already
before the request p arrived which caused T and F to become fixed. (If they did
not form a close pair then, it was because there was a fixed cluster nearby, and
in this case the appearance of p would also not have made them close, so T and
F would not have become fixed.)

Since our algorithm avoids the creation of close pairs, we have found a con-
tradiction. �

Theorem 1. Our algorithm has a competitive ratio of 7/4.

Proof. By Lemma 5, the request points of a fixed pair are served by at least
two optimal clusters. If they are served by three different optimal clusters, and
both clusters in the pair are not truncated, we allow the optimal algorithm to
move the leftmost of these clusters to the left until it no longer intersects the
pair. This may mean that some request point is no longer served by the optimal
algorithm, and thus can only make the competitive ratio higher. The request
points that remain outside of optimal clusters are only points that the algorithm
assigns to fixed clusters. Our further analysis on the optimal clusters is only for
points that are inside single clusters. Thus the reduction above is valid.

We consider the groups that exist after this shifting. Note that the endpoint
of a fixed pair which is an inner point of its group (i.e., the left endpoint of the
pair if this pair is on the right end of its group, and vice versa) is always covered
by some optimal cluster.

For each fixed untruncated pair, by Lemma 4 there is an optimal cluster X
which does not serve any request from any cluster outside the pair, and an op-
timal cluster Y which might. We are going to bound the number of optimal
clusters needed to serve all the request points that are not in the fixed untrun-
cated pair(s) at the end(s). We then add 2 to the online cost and 1 to the offline
cost for each fixed pair (the cluster Y has already been counted).

Truncated clusters By our definition of groups, truncated clusters occur only in
the middle of groups. By Lemma 6, if a cluster T is truncated, there is another
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(older) fixed cluster F within a distance of less than 1 of it, and one single
cluster E between them. Also there is a fixed cluster G on the other side of T
which shares an endpoint with it. We call three such clusters E, T, G a triplet.
The cluster F is either part of the next triplet or one half of a pair of fixed
untruncated clusters.

There might be a triplet E, T, G such that G is also truncated. In this case,
there is a single cluster E′ immediately next to G, followed by the next fixed
cluster G′ which is older than G and not truncated. In this case we call the
set {E, T, G, E′} a quartet. As above we have that G′ is either part of the next
triplet or one half of a pair of fixed untruncated clusters.

This leaves only two possibilities for the inside structure of a group (ignoring
the possible fixed pairs at the ends):

– (sTF )ksm(FTs)�, where k ≥ 0, m ≥ 0, � ≥ 0
– (sTF )k(sTTs)(FTs)�, where k ≥ 0, � ≥ 0

In this list, s represents a single cluster, T is a truncated cluster, and F is an
untruncated fixed cluster.

Group elements. We see that we have three structural elements inside a group:
triplets, quartets and sequences of single clusters. To calculate the number of
optimal clusters required to serve the request points in such a group, we upper
bound the number of optimal clusters for each element separately, going from
left to right, and then add these together. Here we need to take into account
that whenever we move from one element to the next, we need to subtract one
from the optimal cost, because one optimal cluster gets counted double (once
for each element).

By our results so far, we have the following table for the offline cost of each
structural element.

Element Contribution to online cost Contribution to offline cost
Triplet 3 3 (Lemma 7)
Quartet 4 3 (Lemma 7)
One single cluster 1 1 (Lemma 1)
Two single clusters 2 2 (Lemma 1)
m ≥ 3 single clusters m m − 1 (Lemma 3)

We want to show an upper bound of 7/4. There are only a few cases we need
to check. To begin with, we only need to check groups with fixed untruncated
pairs at both ends. We are going to add the optimal cost for each element, and
subtract one from the optimal cost for each element beyond the first. Note that
any triplet beyond the first does not help to show a competitive ratio above
3/2, and that a sequence of single clusters cannot occur in combination with a
quartet.

– No clusters in the group apart from the fixed untruncated pairs. If there is
one fixed pair, we have a ratio of 1 by Lemma 5. Else, we have a ratio of at
most 3/2, again by using Lemma 5 (on both pairs), and noting that we are
counting at most one optimal cluster double by Lemma 4.
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– If the group starts with a quartet, the ratio is at most 8/5 (two fixed pairs,
there can be no sequence of single clusters in this group, any triplets decrease
the competitive ratio).

– If the group contains at least one triplet followed by a quartet, the ratio is
at most 11/7 (two fixed pairs, one triplet, one quartet; no sequence of single
clusters possible).

– Else, there is no quartet. If there is also no triplet, the ratio is at most 7/4,
given by m = 3 single clusters and two fixed pairs.

– If there is a triplet, we find a ratio of 7/5 for m = 0 single clusters, 8/5 for
m = 1, 9/6 for m = 2 and at most 10/7 for m ≥ 3.

A matching lower bound for our algorithm can be shown using the request
sequence 0, 1, 3, 4, 6, 7, 2, 5, 2.5, 3.5. �

3 Lower Bounds

Theorem 2. No deterministic algorithm can have a competitive ratio below 8/5.

Point Cluster A(σ) opt(σ) Explanation
3 A 1 1
4 A 1 1 Otherwise we get A(σ) = 2 and opt(σ) = 1.
5 B 2 2 The point does not fit in cluster A.
6 C 3 2 If the point is placed in B, the requests 2, 4.5, 7

open three new clusters: A(σ) = 5, opt(σ) = 3.
2 D 4 3
1 D 4 3 If the point is not placed in D, A(σ)/opt(σ) = 5

3 .
0 E 5 4

2.5 F 6 4
7 C 6 4 If the point is not placed in C, A(σ)/opt(σ) = 7

4 .
4.1 B 6 4 Otherwise we get A(σ) = 7.
5.5 G 7 5 The point fits in no other cluster.

8 H 8 5 The point fits in no other cluster.

We use the above instance. In the table, A(σ) is the cost of an online algorithm
and opt(σ) is the current cost of the optimal solution for the instance σ up to
now. In each row, “point” is the location of a new point. “Cluster” is the cluster
it must belong to, where a new name means that a new cluster must be opened.
See figure 2. It can be seen that the construction results in a lower bound of 8/5.

Theorem 3. No randomized algorithm can have a competitive ratio below 3/2.

Theorem 4. No deterministic online algorithm can have a competitive ratio
less than 2 in two dimensions.

Proof. The proof is illustrated in Figure 3. Consider an online algorithm A, and
assume by contradiction that it has a competitive ratio of less than 2. First, four
points arrive on the corners of a unit square. A must assign them all to the same
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0 1          2           3         4          5           6         7          8    

E              D         F          A          B         G        C          H

Fig. 2. The general deterministic lower bound: At the top the online clusters (marked
in bold), at the bottom the final optimal solution

OPT = 1 OPT = 2

OPT = 4 OPT = 6

A
B C

D E

F G

Fig. 3. The deterministic lower bound in two dimensions: Online clusters are repre-
sented by lines and boxes, an optimal solution for each case is represented by dashed
boxes

cluster A, otherwise, since there exists a feasible solution consisting of a single
cluster, it has a ratio of (at least) 2 and the input stops. It can be seen that A
cannot be assigned any further point outside this unit square.

Then, four additional points arrive, two to either side (top right of Figure 3),
so that the input now consists of two rows of four points each, one above the
other. A must open exactly one cluster for each new pair, since it is possible
to cover all existing points with only two clusters. Both of these new clusters,
B and C, cannot cover any request above or below them, since the points they
contain are already of distance 1 apart from each other (vertically).

In the next phase, eight additional points arrive (bottom left of Figure 3).
These are new four points above and below the previous points, so that the 16
points form a square, and the distance between every consecutive pair of points
is 1, both vertically and horizontally. Since it is possible to serve all these points
with only four clusters, A must open four new clusters for these points; less than
four does not cover all the points, and more than four gives a competitive ratio
of 2. It can be seen that these clusters D, E, F, G cannot serve any request which
is to the left or to the right of them, since each cluster contains two points that
are of distance 1 apart (horizontally).
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Finally, six additional points arrive. Three of which are in the top row of
points, between the two central points, and in distance 1 from the extremal
points, and the other three are in the same positions in the bottom row. Algo-
rithm A is forced to open six new clusters for them, since none of these points
fit in an existing cluster: they are to the side of D, E, F, and G, and above or
below B and C (bottom right of Figure 3). Clearly, no two new points can be
assigned to the same new cluster. Now A has opened 13 clusters in total while
the optimal solution requires only six clusters. This is a contradiction and shows
that A has a competitive ratio of at least 2. �

Note that this lower bound of 2 for two dimensions implies a lower bound of
2 for any higher dimension as well: we can let all the requests appear in a 2-
dimensional subspace.

Theorem 5. No randomized online algorithm can have a competitive ratio less
than 11/6 in two dimensions.

Proof. We use an adaptation of Yao’s principle [7] for proving lower bounds for
randomized algorithms. It states that a lower bound on the competitive ratio of
deterministic algorithms using a fixed distribution on the input, is also a lower
bound for randomized algorithms and its value is given by E(A(σ))

opt(σ) .
Let N be a large integer. To simplify presentation, we apply scaling so that

the length of a cluster is at most N instead of 1. We give requests only at integer
points. There are four phases:

1. (N + 1)2 points: {N, . . . , 2N} × {N, . . . , 2N}.
2. Choose an integer i uniformly at random, 0 ≤ i ≤ N − 1. In this phase

(N + 1)2 points appear, so that the set of all points requested so far is now
{N, . . . , 2N} × {i, . . . , 2N + 1 + i}.

3. Choose an integer j uniformly at random, 0 ≤ j ≤ N − 1. In this phase
2(N + 1)2 additional points appear in such a way that the set of points
requested so far is {j, . . . , 2N + 1 + j} × {i, . . . , 2N + 1 + i}.

4. Choose an integer k uniformly at random, 0 ≤ k ≤ N − 1. In this phase
2(N + 1)2 final points appear in such a way that the set of points requested
so far is {j, . . . , 2N + 1 + j} × {i − k − 1, . . . , 3N + 1 + i − k}.

Thus, the set of request points is first extended vertically, then horizontally, and
finally vertically again. We will show that for N → ∞, with high probability,
A(σ) ≥ 11 for any deterministic online algorithm A. It can be seen that the
input σ can be covered using only six clusters. These clusters are defined by
vertical lines trough the points (j, 0),(N + j, 0),(N + j +1, 0) and (2N + j +1, 0),
and horizontal lines through the points (0, i − k − 1), (0, N + i − k − 1) (0, N +
i − k),(0, 2N + i − k),(0, 2N + i − k + 1),(0, 3N + i − k + 1).

We first focus on the last two phases in our construction. Consider the set of
points S1 = {(j, y)|y = i, . . . , 2N + 1 + i}. Let C1 be the cluster which contains
(j, i). Let p ≤ i + N be the highest value such that (j, p) is in cluster C1. Define
the set S2 = {(j, y)|y = i − k − 1, . . . , 3N + 1 + i − k}. The following claim is
given without proof.
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phase 3

phase 4
(N,i)

phase 2

S2

S3
S1

S4

(2N,2N)

(N,N)

(j+N,i)

phase 1

(j,i)

(j,i−k)

Fig. 4. The randomized lower bound in two dimensions. The values i, j, and k are all
chosen uniformly at random from the set {1, . . . , N}. The sets S1, . . . , S5 are defined
in the proof.

Claim. With probability at least 1− 1/N , the online algorithm will require four
clusters in the fourth phase to cover all the points in the set S2.

We can apply the same analysis to the point set S3 = {(2N + 1 + j, y)|y =
i − k − 1, . . . , 3N + 1 + i − k}, showing that with probability at least 1 − 1

N , four
clusters are needed to cover this set as well. Note that there cannot be a cluster
which contains points from both S2 and S3.

Finally, consider the set of points S4 = {(j + N, y)|y = i, . . . , 2N + 1 + i}.
Note that the points in S4 are requested already in the first two phases of our
input sequence. An analysis as in the proof of Theorem 3 shows that with high
probability, S4 requires at least three clusters. We consider the clusters of S4

and would like to show that with high probability, these are three clusters that
are different from the eight clusters that we already found.

To show this, we consider the input after the first two phases. If already at
this time, there are at least 11 clusters, we are done. Otherwise, there are at
most ten clusters. We say that N ≤ x ≤ 2N is a border of a cluster X if there
exists a point (x, y) that the algorithm assigns to cluster X but no point (x′, y′)
with x < x′ ≤ 2N and i ≤ y′ ≤ 2N +1+ i that is assigned to X exists. Consider
the clusters that are used by the algorithm to cover S4. Assume that a cluster
C4 is identical to one of the clusters found for S2. Then j + N is a border for
C4. Clearly, each cluster has one border. Since j is chosen uniformly at random
such that 0 ≤ j ≤ N − 1, the probability that j + N is a border of C4 is at most
1
N . The probability that among all (at most ten) clusters, at least one has j +N
as a border is at most 10

N . Thus, with probability at least 1 − 10
N , the clusters of

S4 are all different from those of S2. Clearly, they cannot be the same as these
of S3 (due to the distance).
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Thus with high probability we find that the online algorithm requires at least
11 distinct clusters to cover all the requests in the input. Four for S1, four for
S2, and three for S4. �

4 Concluding Remarks

This paper significantly improves the previously known bounds. However, many
questions still remain open. Specifically, we would like to find out whether the
competitive ratio grows with the dimension. Another unresolved issue is the
relation between deterministic and randomized algorithms. It is known that for
small dimensions (d = 1, 2), randomization does not help in the unit covering
problem. However, we do not have clear evidence that this is the case for unit
clustering as well.
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Abstract. In the incremental version of the well-known k-median prob-
lem the objective is to compute an incremental sequence of facility sets
F1 ⊆ F2 ⊆ .... ⊆ Fn, where each Fk contains at most k facilities. We say
that this incremental medians sequence is R-competitive if the cost of
each Fk is at most R times the optimum cost of k facilities. The smallest
such R is called the competitive ratio of the sequence {Fk}. Mettu and
Plaxton [6,7] presented a polynomial-time algorithm that computes an
incremental sequence with competitive ratio ≈ 30. They also showed a
lower bound of 2. The upper bound on the ratio was improved to 8 in [5]
and [4]. We improve both bounds in this paper. We first show that no
incremental sequence can have competitive ratio better than 2.01 and we
give a probabilistic construction of a sequence whose competitive ratio is
at most 2 + 4

√
2 ≈ 7.656. We also propose a new approach to the prob-

lem that for instances that we refer to as equable achieves an optimal
competitive ratio of 2.

Keywords: Incremental medians, approximation algorithm, online al-
gorithm, analysis of algorithms.

1 Introduction

The k-median problem is one of the most studied facility location problems. We
are given two sets: a set C of customers and a set F of n facilities, with a metric
function d that specifies the distance dxy between any two points x, y ∈ C ∪ F .
The cost of a facility set F ⊆ F , denoted by cost(F ), is defined as the minimum
sum, over all customers c ∈ C, of dcF , where dcF = minf∈F dcf is the minimum
distance from c to F . Given k, the objective is to compute a set of k facilities
with minimum cost.

Not surprisingly, the k-median problem is NP-hard. A number of polynomial-
time approximation algorithms have been proposed, with the latest one, by
Arya et al. [1,2] achieving the ratio of 3 + ε, for any ε > 0.

Mettu and Plaxton [6,7] introduced the incremental medians problem, where
the permitted number k of facilities is not specified in advance. Starting with
the empty set, an algorithm receives authorizations for new facilities over time,
and after each authorization it is allowed to add another facility to the existing
ones. As a result, such an algorithm produces an incremental sequence of facility
sets F1 ⊆ F2 ⊆ ... ⊆ Fn, where |Fk| ≤ k for all k. This sequence {Fk} is said to

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 207–217, 2008.
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be R-competitive if cost(Fk) is at most R times the optimum cost of k facilities,
for each k. The smallest such R is called the competitive ratio of {Fk}.

Mettu and Plaxton [6,7] gave a polynomial-time algorithm that computes
such an incremental sequence with competitive ratio ≈ 30. This result is quite
remarkable, for there is no apparent reason why an incremental sequence {Fk}
of facility sets, with each cost(Fk) within a constant factor of the the optimum,
would even exist – let alone be computed efficiently.

It is thus natural to address the issue of existence separately from computa-
tional complexity, and this is what we focus on in this paper. As shown by Mettu
and Plaxton [6,7], no ratio better than 2 is possible, that is, for each ε > 0 there
is a metric space where each incremental facility sequence has competitive ratio
at least 2 − ε. The upper bound on the ratio was improved to 8 by Lin et al. [5]
and, independently, by Chrobak et al. [4]. In [5], the authors also show that
a 16-competitive incremental median sequence can be computed in polynomial
time.
Our results. We improve both the lower and upper bounds for incremental
medians. For the lower bound, we show that, in general, no competitive ratio
better than 2.01 is possible. We also prove, via a probabilistic argument, that
each instance has an incremental medians sequence with competitive ratio at
most 2 + 4

√
2 ≈ 7.656.

In numerical terms, the improvement of the lower bound is mostly symbolic,
as it implies that 2 is not the “right” ratio. For the upper bound, our result shows
that the doubling method from [5,4] (see also [3]) is not optimal – even though
it gives the optimal ratio of 4 for the closely related “resource augmentation”
version of incremental medians [4]. As discussed in Section 6, we believe that our
methods can be refined to further improve both the lower and upper bounds.

In addition, we consider a special case of the incremental medians problem
where for any fixed value of k, each customer has the same distance to the optimal
k-median. We refer to such instances as equable. (See Section 5 for a formal
definition.) For this case, we show a construction of a 2-competitive incremental
medians sequence, matching the lower bound from [6,7]. Our method for this
case is very different from previous constructions and we believe that it will
be useful in improving the upper bound for general spaces. In fact, this result
implies that if there is a constant γ ≥ 1 such that for each fixed k all customers’
optimal costs are within factor γ of each other, then our construction achieves
ratio at most 2γ – improving our own bound above if γ < 1 + 2

√
2.

2 Preliminaries

Let (F , C) be an instance of the medians problem, where F is a set of n facilities,
C is the set of customers, and F ∪ C forms a metric space. By dxy or d(x, y) we
denote the distance between points x, y. If Y is a set, we also write dxY =
miny∈Y dxy for the minimum distance from x to Y . For a facility set F ⊆ F ,
denote by cost(F ) the cost of F , that is

∑
x∈C dxF .
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Fig. 1. Metric space used in the lower bound

For a point x and a set Y , denote by ΓY (x) the point y ∈ Y that is closest to
x, that is dxy = dxY (if this point is not unique, then break the tie arbitrarily.)
If X is a set, we also define ΓY (X) = {ΓY (x) | x ∈ X}. Clearly, |ΓY (X)| ≤ |X |.
Note that if F is a facility set and X is a set of customers, then ΓF (X) is exactly
the set of facilities in F that serve customers in X if F is the facility set under
consideration.

By optk we denote the optimum cost of k facilities, that is

optk = min {cost(F ) | F ⊆ F & |F | = k}. (1)

By F ∗
k ⊆ F we will denote the optimal set of k facilities, that is, the k-median.

(As before, ties are broken arbitrarily.) Thus cost(F ∗
k ) = optk.

3 A New Lower Bound

In this section we prove our lower bound of 2.01 on the competitive ratio for
incremental medians, improving slightly the previous bound of 2 from [6,7].

Theorem 1. There is an instance (C, F) for which no incremental median se-
quence has competitive ratio smaller than 2.01.

Proof. The set of customers is C = U ∪ V ∪ W , where U , V , W are disjoint sets
with |U | + |V | + |W | = n − 3, where n is a large integer. The set of facilities is
F = {f, g, h} ∪ C. The distances between customers and facilities are shown in
Figure 1. For each set U , V , W , all customers in a set have the same distance
to each facility. For example, the distance from f to all u ∈ U is a, the distance
from h to all v ∈ V is b, etc. Other distances are measured along the shortest
paths in the graph from Figure 1. This is also true for two customers from a
same set (they are not at distance 0 from one-another). For example, if v, v′ ∈ V
and v′ 	= v then the distance from v to v′ is 2b.

Since for k = n − 3 the optimal cost is 0, the first n − 3 facilities in any
competitive incremental sequence must be chosen from C. In fact, we will only
use only three values of k: k = 1, 2 and n − 3.

To prove that there is no incremental median with ratio better than R, we
only need to give some values a, b, c, c′, |U |, |V | and |W | such that:

min {cost(v), cost(w)} ≥ R · cost(f), and (2)
min {cost(u, v), cost(u, w)} ≥ R · cost(g, h). (3)
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These inequalities imply the lower bound of R, for (2) implies that, for k = 1, to
beat ratio R we must pick some u ∈ U as the first facility, and (3) implies that,
for k = 2, it is not possible to add to u another facility and preserve ratio R.

In order to simplify calculations, we slightly modify the way we compute the
costs. If a facility at some point x ∈ U ∪ V ∪ W serves a customer z 	= x then
the cost of z is the length of the shortest path from z to x via one facility f , g,
or h, while the cost of z = x is 0. Our first modification is that we will charge
this z = x the cost of such a shortest path as well, that is, c cannot serve itself
directly at cost 0. For example, if there is a facility at x ∈ U , then we will charge
x the cost of 2a to get to this facility. Since this increases the cost by a factor of
at most 1 + Θ(1/n), by taking n large enough in the proof below, the argument
remains valid for the true cost values.

With this convention in mind, we set a = 5/4, b = 1, c = 211/100, c′ =
141/100, |U | = 295λ, |V | = 25λ, and |W | = 149λ, for some large integer λ.
(Thus n = 469λ + 3.) Note that b ≤ a ≤ c ≤ c′. Then, for k = 1 we have

cost(f) = |U |a + |V |(b + 2a) + |W |c
cost(v) = |U |(a + b) + |V |(2b) + |W |(b + 2a + c)
cost(w) = |U |(a + c) + |V |(b + 2a + c) + |W |(2c′)

and for k = 2 we have

cost(g, h) = |U |a + |V |b + |W |c′

cost(u, v) = |U |(a + b) + |V |(2b) + |W |(a + c)
cost(u, w) = |U |(2a) + |V |(a + b) + |W |(2c′)

Then

min {cost(v), cost(w)}
cost(f)

=
2039
1014

≥ 2.01, and

min {cost(u, v), cost(u, w)}
cost(g, h)

=
121393
60384

≥ 2.01.

This implies that inequalities (2), (3) hold with R = 2.01, and the lower bound
follows.

4 A New Upper Bound

In this section we construct an incremental medians sequence with competitive
ratio R = 2+4

√
2. First, we show that, given a facility set H we can find subsets

F ⊆ G ⊆ H of specified sizes and of appropriately small cost. We then use this
result to construct our incremental medians sequence.

4.1 Choosing Two Nested Facility Sets

Let 1 ≤ k ≤ l ≤ m ≤ n. (Recall that n = |F| is the number of facilities.)
Throughout this section we consider three facility sets: H of cardinality m, U of
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cardinality k, and V of cardinality l. Intuitively, U and V represent optimal k−
and l− medians. We use a probabilistic argument to show that there exist two
sets F and G, with |F | = k, |G| = l and F ⊆ G ⊆ H , such that cost(F ) and
cost(G) are bounded in terms of cost(U), cost(V ) and cost(H).

Lemma 1. Let 1 ≤ k ≤ l ≤ m ≤ n, and let U , V and H be facility sets with
|H | = m, |V | = l and |U | = k. Then there is a set T ⊆ V with |T | = k such
that, denoting T̄ = V − T , we have

cost(ΓH(T )) + cost(ΓH(U ∪ T̄ )) ≤ 2 · cost(H) + 4 · cost(V ) + 2 · cost(U). (4)

Proof. We use a probabilistic argument, by defining a probability distribution
on subsets T ⊆ V and proving that inequality (4) holds in expectation.

Define a random mapping Φ : U → C, where Φ(u) is chosen uniformly from the
set Cu = {x ∈ C | ΓU (x) = u}. In other words, Φ(u) is a random customer of u
when U is the facility set. Order arbitrarily the elements of V , and for any given
Φ define TΦ as the subset of V that consists of ΓV (Φ(U)) and k − |ΓV (Φ(U))|
smallest elements of V that are not in ΓV (Φ(U)). Thus |TΦ| = k.

Fig. 2. Notations

For each point x in C, let ux = ΓU (x), vx = ΓV (x) and hx = ΓH(x) be the
points serving x respectively in U , V and H . The corresponding distances from x
are denoted ax = d(x, ux), bx = d(x, vx) and cx = d(x, hx). Let also u′

x = ΓH(ux)
and v′x = ΓH(vx). (See Figure 4.1.)

We now temporarily fix the mapping Φ and a customer x ∈ C. To simplify
notation, we write TΦ = T and u = ux. We claim that

d(x, ΓH(T )) + d(x, ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u). (5)

To prove the claim, we consider two cases, for vx ∈ T and vx ∈ T̄ .
Case 1: vx ∈ T̄ . This case is illustrated in Figure 3.

Since v′Φ(u) ∈ ΓH(T ), using the definition of v′Φ(u) and several applications of
the triangle inequality, we have d(x, ΓH(T )) ≤ d(x, v′Φ(u)) ≤ ax + d(u, vΦ(u)) +
d(vΦ(u), v

′
Φ(u)) ≤ ax+[aΦ(u)+bΦ(u)]+d(vΦ(u), hΦ(u)) ≤ ax+aΦ(u)+2bΦ(u)+cΦ(u).

Since v′x ∈ ΓH(U ∪ T̄ ), using the definition of v′x and triangle inequality,
d(x, ΓH(U ∪ T̄ )) ≤ d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.
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Combining the two bounds, we get

d(x, ΓH(T )) + d(x, ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u).

Case 2: vx ∈ T . This case is illustarted in Figure 4.

Fig. 3. The proof of (5) when vx ∈ T̄ Fig. 4. The proof of (5) when vx ∈ T

Since v′x ∈ ΓH(T ), using the triangle inequality and the definition of v′x, we
have d(x, ΓH(T )) ≤ d(x, v′x) ≤ bx + d(vx, v′x) ≤ bx + d(vx, hx) ≤ 2bx + cx.

Since u′
x ∈ ΓH(U∪T̄ ), using the definition of u′

x = ΓH(u), we have d(x, ΓH(U∪
T̄ )) ≤ d(x, u′

x) ≤ ax + d(u, u′
x) ≤ ax + d(u, hΦ(u)) ≤ ax + aΦ(u) + cΦ(u).

Combining the two bounds we get

d(x, ΓH(T )) + d(x, ΓH(U ∪ T̄ )) ≤ ax + 2bx + cx + aΦ(u) + cΦ(u)

≤ ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u),

completing the proof of inequality (5).
From (5), for a fixed Φ we have

cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ))

≤
∑
u∈U

∑
x∈Cu

[
ax + 2bx + cx + aΦ(u) + 2bΦ(u) + cΦ(u)

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · [aΦ(u) + 2bΦ(u) + cΦ(u)]. (6)

For any facility set Z, we have cost(Z) =
∑

u∈U |Cu| · ExpΦ[d(Φ(u), Z)]. Ap-
plying it to Z = U , V and H , and using the linearity of expectation, inequality
(6) yields

ExpΦ

[
cost(ΓH(TΦ)) + cost(ΓH(U ∪ T̄Φ))

]
≤ cost(H) + 2 · cost(V ) + cost(U)

+
∑
u∈U

|Cu| · ExpΦ

[
aΦ(u) + 2bΦ(u) + cΦ(u)

]
= 2 · cost(H) + 4 · cost(V ) + 2 · cost(U).
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This implies that there is a T = TΦ that satisfies the lemma.

Theorem 2. Let 1 ≤ k ≤ l ≤ m ≤ n. For any facility sets H, U and V with
|U | = k, |V | = l, |H | = m, there exist F ⊆ G ⊆ H with |F | = k, |G| = l such
that

(i) cost(F ) ≤ cost(H) + 2 · cost(U) and
(ii) cost(G) ≤ cost(H) + 4 · cost(V ).

Proof. Let U ′ = ΓH(U) and V ′ = ΓH(V ) be the facilities in H that are closest to
those in U and V , respectively. Using the triangle inequality, it is not difficult to
show (see [5,4], for example) that cost(U ′) ≤ cost(H)+2 ·cost(U) and cost(V ′) ≤
cost(H) + 2 · cost(V ).

Let T ⊆ V be the set from Lemma 1. Then either cost(ΓH(T )) ≤ cost(H) + 2 ·
cost(U) or cost(ΓH(U ∪ T̄ )) ≤ cost(H)+4 · cost(V ). In the first case, we take F =
ΓH(T ) and G = V ′, and in the second case we take F = U ′ and G = ΓH(U ∪ T̄ ).
(If |F | < k or |G| < l, we can increase their cardinalities by adding a sufficient
number of elements of H while preserving the inclusion F ⊆ G.) The theorem
then follows from Lemma 1 and the bounds on cost(U ′) and cost(V ′).

4.2 Competitive Incremental Medians

Recall that n is the number of facilities, F ∗
j is the optimal j-median and optj =

cost(F ∗
j ), for each j = 1, 2, ..., n. Our objective is to construct an incremental

medians sequence F1 ⊆ F2 ⊆ ... ⊆ Fn.
The general approach is similar to that in [5,4]: we construct the sequence

backwards, at each step extracting a smaller set of facilities from among those
selected earlier. These sets Fj will be constructed only for values of j in a pre-
defined sequence {κ(a)} of indices, for which the optimal costs increase expo-
nentially with a. For the intermediate values of j, we simply let Fj to be Fκ(a),
where a is the smallest index for which κ(a) ≤ j.

The crucial difference between our method and the previous constructions is
in how we extract facilities from Fκ(a) to form Fκ(a+1). The algorithms in [5] and
[4] select κ(a + 1) facilities in Fκ(a) that are closest to those in the optimal set
F ∗

κ(a+1). Instead, we use our probabilistic construction from the previous section
to simultaneously extract two facility sets next in the sequence, namely Fκ(a+1)

and Fκ(a+2), with Theorem 2 providing an upper bound on their costs.

Construction of incremental medians. Without loss of generality we can
assume that optn = 1, for otherwise we can normalize the instance by dividing
all distances by optn. (If optn = 0, instead of n, we can start the process with
the largest n′ for which optn′ > 0.)

We use two parameters γ = 2 +
√

2/2 ≈ 2.71 and λ = 3
√

2/2 − 1 ≈ 1.16.
We now define a sequence of indices n = κ(0) ≥ κ(1) ≥ ... ≥ κ(h) = 1. For
a = 0, 1, ..., let

κ(a) =
{

min {j | optj ≤ γa/2} if a is even
min {j | optj ≤ λγ(a−1)/2} if a is odd
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and choose h to be the smallest a for which κ(a) = 1. For simplicity, we will
assume that h is even. Note that we allow some of the elements in the sequence
{κ(a)} to be equal.

We first define facility sets Fj for j = κ(0), κ(1), ..., κ(h). Initially, Fκ(0) = F ,
the set of all facilities. Suppose that Fκ(a) has been already defined for some
even a ≥ 0. In Theorem 2 let m = κ(a), H = Fκ(a), l = κ(a + 1), k = κ(a + 2),
V = F ∗

κ(a+1) and U = F ∗
κ(a+2). We then choose Fκ(a+2) ⊆ Fκ(a+1) ⊆ Fκ(a) such

that

cost(Fκ(a+1)) ≤ cost(Fκ(a)) + 4optκ(a+1), and (7)
cost(Fκ(a+2)) ≤ cost(Fκ(a)) + 2optκ(a+2). (8)

The existence of such sets is guaranteed by Theorem 2; namely take Fκ(a+1) = G
and Fκ(a+2) = F .

Next, we extend the sequence to other values of j. If κ(a + 1) < j < κ(a), we
simply let Fj = Fκ(a+1). This completes the construction.

Theorem 3. The incremental sequence {Fj} constructed above is R-competitive,
where R = 2 + 4

√
2 ≈ 7.656.

Proof. For each j = 1, ..., n, denote costj = cost(Fj). Using the bounds (7), (8),
and the definition of the sequence {κ(a)}, each value costκ(a) can be estimated
as follows: if a is even, then costκ(a) ≤ 2

∑a/2
b=1 opt2b ≤ 2

∑a/2
b=1 γb, and if a is odd

then costκ(a) ≤ 2
∑(a−1)/2

b=1 γb+4λγ(a−1)/2. Summing up the geometric sequences,
we thus get

costκ(a) ≤

⎧⎪⎪⎨
⎪⎪⎩

2γa/2+1

γ − 1
if a is even

2γ(a−1)/2+1

γ − 1
+ 4λγ(a−1)/2 if a is odd

Fix some number of facilities j, and choose a such that κ(a + 1) ≤ j < κ(a).
We want to show that costj ≤ R · optj . By the construction, Fj = Fκ(a+1), so
costj = costκ(a+1). We have two cases.

Suppose first that a is even. By the choice of j and the definition of κ(a), we
get optj > γa/2. Since costj = costκ(a+1) ≤ 2γa/2+1/(γ − 1) + 4λγa/2, the ratio
is

costj
optj

≤ 2γ

γ − 1
+ 4λ = R.

If a is odd, then by the choice of j and the definition of κ(a), we get optj >

λγ(a−1)/2. Since costj = costκ(a+1) ≤ 2γ(a+1)/2+1/(γ − 1), the ratio is

costj
optj

≤ 2γ2

(γ − 1)λ
= R,

completing the proof.
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5 2-Competitive Incremental Medians for Equable
Instances

In this section we present a construction of a 2-competitive incremental medians
sequence for a special case where, for any fixed value of k, each customer has
the same distance to the optimal k-median. More formally, suppose (F , C) is an
instance of the medians problem with n ≤ |C| such that (i) for each k = 1, 2, ..., n
there exist an optimal k-median F ∗

k such that all distances d(x, F ∗
k ) are the same,

for all x ∈ C, and that (ii) for k = n we have d(x, F ∗
n ) = 0 for all x ∈ C (or,

equivalently, C ⊆ F .) An instance with this property will be called equable.
Our method is different from previous constructions of incremental medi-

ans, including the one from Section 4. Unlike in these previous approaches, we
construct the sequence F1, F2, ..., Fn forward, maintaining an invariant ensuring
that we not only do well at step k, but also that we make good progress towards
obtaining a low-cost l-median for all l > k.

Throughout this section, (C, F) denotes an equable instance of the medians
problem. For each k = 1, 2, ..., n, let F ∗

k be the optimal k-median such that
d(x, F ∗

k ) = δk for all x ∈ C. Thus optk = |C|δk for all k. Without loss of generality,
we can assume that δ1 > δ2 > ... > δn = 0.
Incremental spanners. Suppose that for each k = 1, 2, ..., n we have a family
Sk ⊆ 2C of k sets that forms a partition of C, that is, all sets in Sk are disjoint
and

⋃
A∈Sk

A = C. (Our proof can be modified to work even if the sets in Sk are
not disjoint.) For a set X ⊆ C, define its k-span as

Spank(X) =
⋃

{A ∈ Si | i ≥ k & A ∩ X 	= ∅}.

A set X ⊆ C is called a k-spanner if Spank(X) = C. Note that if X is a k-spanner
then it is also a j-spanner for any j < k. A sequence X1 ⊆ X2 ⊆ ... ⊆ Xn is
called an incremental spanner if for each k = 1, 2, ..., n, |Xk| ≤ k and Xk is a
k-spanner.

We now show how to construct an incremental spanner. For X ⊆ C and any
j = 1, 2, ..., n, let setscovj(X) be the collection of sets in Sj covered by the j-span
of X , that is

setscovj(X) = {A ∈ Sj | A ⊆ Spanj(X)}.

Note that |setscovj(X)| = j if and only if X is a j-spanner, because Sj covers C.
We will construct the sets ∅ = X0 ⊆ X1 ⊆ ... ⊆ Xn so that, for each k =

0, 1, 2, ..., n, we will have |Xk| ≤ k and the following invariant will hold:

|setscovj(Xk)| ≥ k, for all j = k, k + 1, ..., n. (9)

Initially, for k = 0, we set X0 = ∅, and (9) holds trivially. Suppose we have
X0, X1, ..., Xk′ , for some k′ < n and that (9) holds for k = 0, 1, ..., k′. This
implies, in particular, that |setscovk′(Xk′)| ≥ k′, that is, Xk′ is a k′-spanner.
Thus Xk′ is also a k-spanner for all k ≤ k′. Let l be the minimum index for
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which Xk′ is not an l-spanner, that is C −Spanl(Xk′ ) 	= ∅. By the choice of l, we
have l > k′. Pick any x ∈ C − Spanl(Xk′ ) and take Xk′+1 = Xk′ ∪ {x}. Clearly,
|Xk′+1| ≤ k′ + 1.

We now show that (9) holds for k = k′ + 1. By the choice of l, for j =
k′ + 1, k′ + 2, ..., l − 1, Xk′ is a j-spanner. Therefore Xk′+1 is also a j-spanner,
and thus (9) holds. Consider any j ≥ l ≥ k′ + 1. Let A ∈ Sj be the set for which
x ∈ A. By induction, since x ∈ C − Spanj(Xk′ ), we have A /∈ setscovj(Xk′).
But now x ∈ Xk′+1, so A ∈ setscovj(Xk′+1), and we get |setscovj(Fk′+1)| ≥
|setscovj(Fk′ )| + 1 ≥ k′ + 1. This completes the proof that our construction
preserves invariant (9).

By (9), for each k we have |setscovk(Xk)| ≥ k, and thus Xk is a k-spanner.
We can conclude then that X1, X2, ..., Xn is an incremental spanner.
Incremental medians. We now show how to use incremental spanners to con-
struct incremental medians. For k = 1, 2, ..., n, assign each customer x ∈ C to its
closest facility f ∈ F ∗

k (that is, dxf = δk), breaking ties arbitrarily. Define Cf
k to

be the set of customers assigned to f , and let Sk = {Cf
k | f ∈ F ∗

k }. Then each
Sk contains k sets and forms a partition of C. As we showed above, for these
partitions S1, S2, ..., Sn there exists an incremental spanner F1, F2, ..., Fn.

We claim that F1, F2, ..., Fn is a 2-competitive incremental medians sequence.
Consider some fixed k. Since Fk is a k-spanner, for each customer x ∈ C there
is i ≥ k, f ∈ F ∗

i and y ∈ Fk such that both x, y ∈ Cf
i . Thus d(x, Fk) ≤ dxy ≤

dxf + dyf = 2δi ≤ 2δk. This implies that cost(Fk) ≤ 2mδk = 2optk, and the
claim follows.

Summarizing, we obtain the following result:

Theorem 4. For any equable instance (C, F) of the medians problem there ex-
ists a 2-competitive incremental medians sequence.

6 Final Comments

We improved both the lower and upper bounds for incremental medians, from 2
to 2.01 and from 8 to 2 + 4

√
2 ≈ 7.656, respectively, thus proving that neither 2

nor 8 are the “right” bounds for this problem. (By optimizing the the parameters
in Section 3 it is possible to improve the lower bound slightly, to about 2.01053.)
In addition to its own independent interest, closing or significantly reducing the
remaining gap would shed more light on the computational hardness of approx-
imating incremental medians, as it would show to what degree the difficulty of
the problem can be attributed to non-existence of incremental median sequences
with small competitive ratios.

The expected values in the proof of Lemma 1 can be computed in polynomial-
time, and thus our probabilistic construction can be derandomized using the
method of conditional expectations. However, since our improvement is relatively
minor, we did not pursue this direction of research, nor possible implications for
upper bounds achievable in polynomial time.

We believe that some of the ideas in the paper can be used to prove even
better bounds. In the upper bound proof in Section 4 we construct our sequence
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backwards, starting with all facilities, and gradually extracting smaller and
smaller facility sets, two at a time. By extending the probabilistic construction
to more than two steps at a time, we should be able to get a better bound. Even
our two-step method still might have room for improvement, as the two choices
for F and G considered in the proof of Theorem 2 are not “balanced”, that is,
the bounds on the cost of F and G in the two cases are not the same. Also,
our construction of a 2-competitive incremental medians sequence for equable
spaces is very different from previous constructions and we believe that its basic
idea will be useful in improving the upper bound for general spaces.

Our lower bound argument uses only three steps, for k = 1, 2, n. It should be
possible to improve our bound by using either k > 2 as the intermediate number
of facilities or more (perhaps an unbounded number of) steps. Both ideas lead
to difficulties that we were not able to overcome at this time. In a three-step
strategy using k = 1, k′, n with k′ > 2, an algorithm can place facilities 2, .., k′

optimally (given the choice of the first facility), and thus increasing k′ seems
only to help the algorithm. A strategy that uses additional steps leads to a
different problem. Average costs for the customers must decrease with k, and
thus introducing additional steps creates shortcuts via optimal k′-medians for
large k′, reducing the algorithm’s cost for small values of k.

The result from Section 5 may also be useful for lower bound proofs, as it shows
that in “hard” instances, for a fixed k, the optimal customers’ costs should be
significantly different.
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Abstract. We study minimum weighted sum bin packing (MWSBP),
which is a bin packing problem where the cost of an item is the index of
the bin into which it is packed multiplied by its weight, and the goal is to
minimize the total cost of the items. This is equivalent to a batch schedul-
ing problem which we define, where the total weighted completion time
is to be minimized. This problem is previously known to be NP-hard in
the strong sense even for unit weight items. We design a polynomial time
approximation scheme for it, and additionally, a dual polynomial time ap-
proximation scheme.

1 Introduction

Bin packing is a natural and well studied problem which has applications in prob-
lems of computer storage, bandwidth allocation, stock cutting, transportation
and many other important fields.

Consider the following scenario. A processor receives a set of short tasks to run.
Each task in this set has a given duration, which never exceeds one time unit, and
has to be run non-preemptively. Moreover, each task has a non-negative weight.
The processor is capable of processing one task at every time. At every integer time
unit, the processor reports the output of running the tasks that were processed in
the previous time unit, and starts a new batch of jobs. Clearly, each such batch of
tasks must have a total processing time of at most one unit. Therefore, the tasks
need to be partitioned into subsets, where for each subset, the total sum of process-
ing times is at most one. Our goal is to minimize the weighted sum of completion
times, where a completion time of a task is the time at which its output is reported.
This definition of completion time to be the completion time of the whole batch is
the common definition in batch scheduling problems. Note that if instead of the
weighted sum of completion times we are interested in the maximum completion
time of any task, this problem is equivalent to the standard bin packing problem,
first studied in the early 1970’s [12,2,1], and widely studied ever since. We define
our problem as a variant of bin packing.

The minimum weighted sum bin packing problem (MWSBP) is defined
as follows. We are given a set I of n items denoted by I = {1, 2, . . . , n}, where
item i has a size si ∈ (0, 1] and a weight wi ∈ [1, ∞). A feasible solution consists
of partition of I into I1, I2, . . . , Ip such that for all j = 1, 2, . . . , p,

∑
i∈Ij

si ≤ 1.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 218–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The objective is to find a feasible solution so that
p∑

j=1

j ·
∑

i∈Ij

wi is minimized.

The goal function is equivalent to minimizing
p∑

j=1

( ∑
i∈Ij∪Ij+1∪···∪Ip

wi

)
. The sets

Ij are called bins and we identify a bin with the item set in it (thus Ij is a set
of items).

The min-sum set cover problem (MSSC) is a related problem studied by
Feige, Lovász and Tetali [6] (see also Munagala, Babu, Motwani and Widom
[10]). We are given a collection of subsets S1, S2, . . . , Sm of a ground set S =
{1, 2, . . . , n}. A feasible solution is an ordering π of a subset S′ of 1, 2, . . . , m,
such that

⋃
X∈S′

X = S, and for each element j of the ground set we incur a cost

i, where i is such that j ∈ Sπ(i) and j /∈ Sπ(k) for all k < i. The goal is to find an
ordering that minimizes the total cost. They showed that the greedy algorithm
is a 4-approximation algorithm for MSSC. This greedy algorithm is equivalent to
the well known greedy algorithm for the classical set cover problem [8,9]. They
further showed that this approximation ratio is best possible unless P = NP .
This result holds also for a weighted variant of MSSC where each item has a
weight and for each element j we incur a cost wj · i where i is defined in the
same way as in MSSC (this can be easily deduced for integer weights by replacing
each item with weight wi by wi distinct unit weight items, and then applying
the greedy algorithm on the resulting instance. Since an optimal solution and
the approximated solution for the new instance cover all copies of item i with
the same set, the result holds). We note that the MWSBP is a special case of a
weighted variant of the MSSC where the ground set is the set of items and the
available subsets are all subsets of the items that fit into one bin. Although the
number of subsets is exponential in the original input size to problem MWSBP,
we can still apply the greedy algorithm where in each step we use an FPTAS
for the Knapsack problem and obtain a 4 + ε approximation algorithm. Such an
approach of using an approximated oracle in each greedy step for MSSC, was
recently analyzed by Epstein, Halldórsson, Levin and Shachnai [4]. Hence, we
conclude that prior to this study there is a known 4+ε approximation algorithm
for MWSBP where ε > 0 is an arbitrary small positive number.

The unweighted case of MWSBP was studied before in [5]. It is shown in that
paper that the unweighted case is NP-hard in the strong sense, and a polynomial
time approximation scheme for the unweighted case was designed. In the same
paper, some natural fast bin-packing heuristics were analyzed, the best of which
has an approximation ratio of at most 5

3 .
For an algorithm A, we denote its cost by A as well. The cost of an opti-

mal algorithm denoted by opt. A ρ-approximation algorithm for a minimization
problem is a polynomial time algorithm that returns a feasible solution with
cost at most a factor ρ above the optimal cost. A polynomial time approxima-
tion scheme (PTAS) is a family of (1 + ε)-approximation algorithms over all
ε > 0. A dual polynomial time approximation scheme (dual-PTAS) is a family
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of polynomial time algorithms such that for all ε > 0 the algorithm constructs a
solution of cost at most opt that uses bins of size 1+ ε instead of bins of size 1.
Our results. In Section 2 we show that Next Fit Decreasing has an approxima-
tion ratio of exactly 2, if the sequence of output bins is sorted optimally (i.e., in
order of non-increasing sum of weights of items). Then, in Section 3 we design
a dual-polynomial time approximation scheme, i.e., we design an approximation
scheme where the cost of the returned solution is at most opt, however the
approximated solution is allowed to use bins with capacity (1 + ε) whereas the
optimal solution is allowed to use bins with unit capacity. Note that the value
opt does not need to be given in advance. In Section 4 we show a polynomial
time approximation scheme (PTAS) for the problem. To design the PTAS, we
use linear grouping similarly to [3], together with non-trivial pre-processing of
the set of large items. The structure of our problem allows to design a PTAS (and
not an APTAS as in [3]). Note that by the hardness result, a PTAS is basically
the best possible approximation as an FPTAS does not exist. Note also that in
presence of weights, the problem becomes more difficult to deal with than the
unweighted problem of [5]. Therefore the structure of the PTAS is much more
complex. Our dual PTAS however is relatively simple and has the interesting
property that no rounding of the weights, or grouping by weight, is required.

2 Preliminaries

Many heuristics for the standard bin packing problem were suggested and an-
alyzed. Among these heuristics, the most natural ones are Next Fit (nf), First
Fit (ff) and Best Fit (bf). These algorithms assume an arbitrary ordering of
the input. Next Fit uses one active bin into which it packs the input. Once the
free space in this bin becomes too small to accommodate the next item, a new
active bin is opened and the previous active bin is never used again. The two
other algorithms keep all non-empty bins active, and try to pack every item in
these bins before opening a new bin. Such algorithms belong to the class of Any
Fit (af) algorithms that consists of all algorithms that open a new bin only if
there is no other option. Note that nf is not an af algorithm. The algorithms
Weighted Next Fit Decreasing (wnfd), Weighted First Fit Decreasing (wffd),
Weighted Best Fit Decreasing (wbfd), and the class Weighted Any Fit Decreas-
ing (wafd) are defined in the same way as nf ,ff ,bf and af, only the input
is not ordered arbitrarily but sorted in a non-increasing order of the ratio of the
item size to the item weight.

To adapt these algorithms for our problem we note that the performance
guarantee of an algorithm can only benefit from sorting the output bins in a
non-increasing order of their total weight (the total weight of a bin is defined as
the sum of weights of the items in it).

In [5] we showed that for each positive value of K, the approximation ratio
of wafd and of nf (with or without re-ordering the bins) and of wnfd without
re-ordering the bins is at least K even when applied to unweighted instances (for
unweighted instances, wafd is equivalent to the algorithm Any Fit Decreasing
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(afd) and wnfd is equivalent to the algorithm Next Fit Decreasing (nfd)). We
also showed that for unweighted case the approximation ratio of nfd when a
re-ordering the bins is applied is at most 2 and at least 3

2 . We are able to show
that this positive result holds also for the MWSBP and we improve the lower
bound to get tight bounds on the performance of this algorithm for the weighted
case.

Theorem 1. The approximation ratio of wnfd when a re-ordering of the bins
is applied is exactly 2.

3 Dual-PTAS

Let 0 < ε ≤ 1
4 be a fixed constant, such that 1

ε is an even integer. We construct
a solution of cost at most opt that uses bins of size 1 + ε instead of bins of
size 1. This scheme uses some of the ideas that the APTAS in the next section
uses but it is significantly simpler. We describe it first to introduce some of the
concepts used later. We use a parameter δ = ε

2 .
As a first step, we partition the set of items into small items, which are items

of size at most δ, and large items which are all other items. We next perform a
rounding of the sizes of large items (see [7]). For an item i of size si > δ, we let
s′i be the smallest value of the form δ + bδ2 for some integer b ∈ {1 . . . , 1

δ2 − 1
δ }

such that si ≤ s′i. For an item i of size si ≤ δ, we let s′i = si. We call the instance
with sizes s′i the rounded instance.

Lemma 1. For every item i, s′
i

si
≤ 1 + δ.

Let optr be the cost of an optimal solution which uses bins of size 1+ δ instead
of bins of size 1, and needs to pack the items of the set I with their original
weights and the sizes s′i for 1 ≤ i ≤ n.

Lemma 2. optr ≤ opt.

As a result of the rounding, the number of different sizes of large items in now
constant (less than 1

δ2 ). We are going to restrict ourselves to solutions with
the following property. Let i, i′ ∈ I be two large items such that s′i = s′i′ and
wi ≥ wi′ . Let t and t′ be the respective indices of bins where i and i′ are packed.
Then t ≤ t′. We call such a packing sorted. Let optrs be the cost of a sorted
optimal packing of the rounded instance into bins of size 1 + δ. Then we can
show the following lemma.

Lemma 3. optrs ≤ optr.

We consider next packings into bins of size 1 + 2δ. We only consider packings
of the following type. The items have rounded up sizes and are packed using
a sorted packing. The sum of the rounded size of the large items in a bin is
at most 1 + δ. Let Is = {1, . . . , �} be the set of small items, sorted so that
s1
w1

≥ s2
w2

≥ · · · ≥ s�

w�
(i.e., by Smith’s ratio [11]). Then we require also that the
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set of small items packed in each prefix of bins 1, . . . , j is a suffix of the small
items (a set kj , kj +1, . . . , �−1, �), and that the sum of all rounded sizes of items
in the j-th bin, except the small item kj (if it is packed into bin j), is at most
1+δ. This can be seen visually as follows. We stack all large items (with rounded
sizes) one on top of the other. Then we stack the small items, starting from the
one of largest index. The ”height” of the stack may exceed 1 + δ, but if the last
item is removed, then the total (rounded) size does not exceed 1 + δ. Therefore,
the total rounded size of the items in this stack is at most 1 + 2δ. Denote an
optimal solution among solutions that fulfill these conditions by optrsc.

Lemma 4. optrsc ≤ optrs.

We showed that if we pack the rounded items into bins of size 1 + 2δ, we can
restrict ourselves to packings where small items in each bin are a consecutive
sequence and the set of small items in every prefix of bins is a suffix of the
small items. All bins that contain small items, except possibly the last such bin,
should contain a total size of items which is at least 1 + δ. Moreover, if we are
given the locations of the large items of rounded size δ + bδ2, these items can
be distributed to the bins according to a list of the items sorted by weight, such
that bins of smaller indices receive items of larger weight (with the same rounded
size). Therefore, a packing for the rounded items can be specified by the number
of items of rounded size δ + bδ2 in each bin for b = 1, . . . , 1

δ2 − 1
δ , and by the

values kj .
We next show how to construct a graph G = (V, E), which allows us to find

such an optimal packing of the input items. The packing is represented by a
path in the graph. Edges in the graph represent bins, and are associated with
costs. This results in a correspondence of paths to (possibly partial) packings.
The cost of a path is equal to the costs of packings. Such a solution will be a
valid packing of the rounded items into bins of size at most 1 + 2δ. However,
since the original sizes are no larger than the rounded sizes, this solution implies
a packing for the original items with the same cost and the same size of bins
(i.e., 1 + 2δ).

A label of a vertex corresponds to a subset of unpacked items. For v ∈ V
we have a label which is a vector of length 1

δ2 − 1
δ + 1. The label is label(v) =

(n1(v), . . . , n 1
δ2 − 1

δ
(v), p(v)). Among the first 1

δ2 − 1
δ components, nb(v) is the

number of remaining items of rounded size δ + bδ2, and p(v) is the largest index
of an unpacked small item, thus 0 ≤ p(v) ≤ � ≤ n, where p(v) = 0 indicates that
all small items are packed already. For 1 ≤ b ≤ 1

δ2 − 1
δ , let νb ≤ n be the number

of items of rounded size δ + bδ2 in the input. Then 0 ≤ nb ≤ νb. Therefore,
the number of different labels is at most (n + 1)

1
δ2 − 1

δ +1 < (n + 1)
1

δ2 . For each
possible value of the label, we will have a vertex in the graph G. Therefore, G
has a polynomial size (for a fixed value of ε).

An edge from v to u must correspond to the difference between the two labels,
label(v) and label(u). This difference corresponds to a packing pattern of a single
bin. A pattern for an outgoing edge of v, pat(v) = (pat1(v), . . . , pat 1

δ2 − 1
δ
(v), q(v))

is defined as follows. The pattern contains a number patb(v) for 1 ≤ b ≤ 1
δ2 − 1

δ ,
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which indicates how many items of size δ+bδ2 are in this bin. For all these values
of b we require nb(v) − nb(u) = patb(v). The last component q(v) indicates the
sequence of small items with consecutive indices to be packed in the bin, that
is, the sequence of small items in this bin is defined to be the items of indices
q(v), . . . , p(v). We require 1 ≤ q(v) ≤ p(v) + 1, where q(v) = p(v) + 1 means
that no small items are packed in the bin, and the special case q(v) = 1 and
p(v) = 0 means that all small items have been packed previously. To comply
with the requirements of the type of solutions we seek, if q(v) > 1, we require

that
1

δ2 − 1
δ∑

b=1

(δ+bδ2)patb(v)+
p(v)∑

i=q(v)+1

si ≤ 1+δ and 1+δ <

1
δ2 − 1

δ∑
b=1

(δ+bδ2)patb(v)+

p(v)∑
i=q(v)

si ≤ 1 + 2δ. If q(v) = 1 we still require the first and third inequalities.

A packing path in the graph is a path which starts at the vertex whose label
is (ν1, . . . , ν 1

δ2 − 1
δ
, �) and terminates in a vertex whose label is (0, . . . , 0, 0). The

cost of any outgoing edge of a vertex v is the same. This is the total weight
of all items that are associated with the label of v. Then, the cost of a path is
identical to the cost of a packing, using the second definition of the cost of a
solution to MWSBP. Since earlier bins contain items of larger weights (and the
same rounded size), we may assume that the remaining nb items of size δ + bδ2

are the ones with smallest weight among the νb items of this rounded size, and
we define the cost of an edge according to that. Assume that the weights of these
items are w1(b) ≤ w2(b) ≤ . . . ≤ wν(b)(b). Then the cost of an outgoing edge of

v is
1

δ2 − 1
δ∑

b=1

nb(v)∑
i=1

wi(b) +
p(v)∑
i=1

wi.

We are interested in a packing which is based on a path of minimum cost. As
we saw above, this path can be translated into a packing with the same cost and
bins of size 1 + 2δ = 1 + ε. Therefore, we proved the following theorem.

Theorem 2. There is a dual polynomial time approximation scheme for problem
MWSBP.

4 PTAS

Let 0 < ε ≤ 1
4 be a fixed constant, such that 1

ε is an even integer. We let
W =

∑n
j=1 wj . One of the ingredients of our PTAS is an approach which is

similar to the approach of the APTAS for the classical bin packing problem due
to Fernandez de la Vega and Lueker [3]. We say that an item i is large if its
size is greater than ε2, it is heavy if its size is at most ε2 and its weight is at
least ε3W , and otherwise, if its size is at most ε2 and its weight is smaller than
ε3W , it is small. Without loss of generality we make the following assumptions.
Let m be the number of large items, and assume that these are the first m
items (i.e., the large items are L = {1, 2, . . . , m}). Moreover, we assume that
s1 ≥ s2 ≥ · · · ≥ sm. We further assume that there are � heavy items and these
are the next � items (i.e., the heavy items are H = {m + 1, m + 2, . . . , m + �}).
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By definition, we have � ≤ 1
ε3 . Finally, we assume that the small items are sorted

according to their Smith’s ratio. That is, sm+�+1
wm+�+1

≥ sm+�+2
wm+�+2

≥ · · · ≥ sn

wn
.

In some of the proofs we refer to the cost charged to an item, or the charging
cost of this item. This cost for a given solution is defined to be the index of the
bin where the item is packed, multiplied by its weight. Thus if a solution consists
of bins C1, C2, . . ., and item i is packed in bin Cj , then its charged cost is j · wi.
Clearly, the total cost charged to all items is exactly the cost of the solution.

The first step of our scheme is to partition the set of large items into classes
according to their weight. Without loss of generality we can assume that the
minimum weight of an item is 1, and we define the first class as L1 = {i :
wi < 1 + ε, 1 ≤ i ≤ m}. For all j = 2, 3, . . . we let Lj = {i : (1 + ε)j−1 ≤ wi <

(1 + ε)j , 1 ≤ i ≤ m} to be the set of large items whose weights are in the interval[
(1 + ε)j−1

, (1 + ε)j
)
. We let r be the maximum index of a non-empty set Lj .

The set Lj is called the j-th class.
A feasible solution to MWSBP is called a nice solution if for every bin S

in the solution the following condition holds: Denote by c(S) the largest index
of a class of large items with an item in S, and denote by d(S) the smallest
index of a class of large items with an item in S. These values are defined only
if S contains at least one large item, and the condition on such bins is that
c(S) − d(S) ≤ 4�log1+ε

1
ε� − 1. I.e., the large items from S arise from at most

4�log1+ε
1
ε� consecutive weight classes. We can show the following lemma.

Lemma 5. Let C be a feasible solution to MWSBP . There exists a feasible
nice solution C′ that can be produced from C in polynomial running time, such
that C′ ≤ (1 + 4ε)C.

Recall that opt the cost of an optimal solution to problem MWSBP, and denote
by optn the cost of the best nice solution. The following corollary of Lemma 5
shows that as far as we are interested in a polynomial time approximation
scheme, we can bound the cost of the approximated solution by the cost of
the best nice solution.

Corollary 1. optn ≤ (1 + 4ε)opt.

The next step of our scheme is to apply linear grouping [3] of each class of large
items into 1

ε4 sets (some of them may be empty if |Lj| < 1
ε4 ). I.e., we apply linear

grouping to each class separately. More precisely, for each value of j = 1, 2, . . . , r
such that |Lj| ≥ 1

ε4 , we partition Lj into 1
ε4 subsets Lj

1, . . . , L
j
1/ε4 such that

the following two conditions hold: first |Lj
1| ≥ |Lj

2| ≥ · · · ≥ |Lj
1/ε4 | ≥ |Lj

1| − 1
(i.e., the subsets are approximately of the same cardinality ε4|Lj |), and second
if i ∈ Lj

k and i′ ∈ Lj
� such that k < �, then i > i′, and therefore si ≥ si′ (i.e.,

we assign to Lj
1 the largest |Lj

1| items from Lj , afterwards we assign to Lj
2 the

largest |Lj
2| items from the remaining ones in Lj, and continue in this way). Note

that the first condition gives the exact cardinality of each Lj
i , which is either⌊

ε4|Lj |
⌋

or
⌈
ε4|Lj |

⌉
, and by the second condition the partition is well-defined
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up to the assignment of equal size items. If |Lj| < 1
ε4 , then we partition Lj into

1
ε4 sets such that Lj

1 = ∅, the next |Lj | sets contain one item each, and the rest
of the sets are empty. We have |Lj

2| ≥ · · · ≥ |Lj
1/ε4 | ≥ |Lj

2| − 1 and the second
property introduced above (sets with smaller indices have items which are no
smaller than items in sets with larger indices) is kept starting from Lj

2.
We next consider the instance with rounded-up sizes defined in the following

way. For all k ≥ 2 and i ∈ Lj
k, we let s′i = maxi′∈Lj

k
si′ be the rounded-up size

of item i, and for a heavy item or a small item i we let s′i = si. The rounded-up
instance has item set I \ (∪r

j=1L
j
1), where the size of i ∈ I \ (∪r

j=1L
j
1) is s′i. Note

that if |Lj| ≤ 1
ε4 , then s′i = si for all i ∈ Lj.

For i ≥ 2 and all j = 1, 2, . . . , r, we denote si,j = s′k where k ∈ Lj
i . Denote by

opt
′
n

the cost of the cheapest nice solution to the rounded-up instance, and recall
that optn is the cost of the cheapest nice solution to the original instance. Then,
the following lemma shows that it suffices that the solution we construct (which
we explain later how to create it) has a cost close enough to (1+O(ε))opt

′
n
. We

will thus be able to concentrate on a subset of feasible solutions.

Lemma 6. opt
′
n

≤ (1 + ε)optn.

Proof. We construct a feasible nice solution to the rounded-up instance whose
cost is at most (1+ε)optn. Given the cheapest nice solution optn to the original
instance, that packs the items into the sets I1, I2, . . . , Ip, we create a new nice
solution to the rounded-up instance as follows. The heavy and small items as well
as large items belonging to classes Lj such that |Lj | ≤ 1

ε4 are not moved and are
kept in their respective subsets. However, the positions of the other large items
are different. If Iq has nj,k items from Lj

k (for j = 1, 2, . . . , r such that |Lj| ≥ 1
ε4

and for k = 1, 2, . . .), then the subset Iq receives nj,k items from the set Lj
k+1

of the rounded-up instance. We apply this procedure for all q = 1, 2, . . . , p, all
j = 1, 2, . . . , r and all k ≤ 1

ε4 − 1. If at some time we run out of items of some
set Lj

k+1, and do not have an item to assign, it means that |Lj
k| = |Lj

k+1| + 1.
There is only one such value of k for each value of j and this can only happen
for one item. In this case, the space remains unused.

In this way we place all the large items of the rounded-up instance in the
bins I1, I2, . . . , Ip (we can do it because of the first property of the partition
and since there exists at least one item in Lj

k+1 whose original size is sk+1,j ).
The resulting solution is clearly feasible because for all j, k and a pair of items
i ∈ Lj

k and i′ ∈ Lj
k+1, we have si ≥ s′i′ by the second property of the partition.

The resulting solution is clearly nice because the original solution is nice and
we only replace item by another item if they belong to the same class. By our
partition into classes we note that the difference in the weight of two items from
the same class is at most a factor of (1 + ε). Therefore, the cost of the solution
for the rounded-up instance is at most (1 + ε) times the cost of the solution of
the original instance, and the claim follows. 
�

A feasible solution to the rounded-up instance is called nice and easy if it is nice,
and additionally, for each bin in the solution that contains at least one large
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item, the total weight of the large items in the bin is at least ε2 times the total
weight of the items in the bin.

Lemma 7. Given a nice solution to the rounded-up instance, C, there is a nice
and easy solution C′ to the rounded-up instance, whose cost is at most (1+3ε)C.
Moreover, C′ can be constructed in polynomial time from C.

We denote by opt
′
ne

the cost of the cheapest nice and easy solution to the
rounded-up instance. The following corollary follows from Lemma 7.

Corollary 2. opt
′
ne

≤ (1 + 3ε)opt
′
n
.

We call a solution reasonable, if the bins of this solution are sorted according to
non-increasing total weight, that is, if bin S appears before bin S′ in the solution,
then the total weight of items in S, is not smaller than the total weight of items
in S′.

Claim. Let P be a property of bins. Let optp be an optimal solution among all
solutions, where all bins have property P . Then optp is reasonable.

Proof. Given two bins S and S′ of optp, such that S appears before S′. Let
WS and W ′

S the total weight of items in these bins. If WS < W ′
S , swapping the

locations of bins I and I ′ would result in a solution of smaller cost. This new
solution still satisfies P since it is a property of bins. 
�

Therefore, we can assume that all optimal solutions we are dealing with are
reasonable. Moreover, we can sort any solution in polynomial time without in-
creasing its cost, so that it becomes reasonable.

We next show that nice and easy solutions that are reasonable fulfill the
following convenient properties.

Lemma 8. Given a nice, easy and reasonable solution to the rounded-up in-
stance, C, consider two bins of the solution, S and S′, such that S appears before
S′ in the solution, and each one of the two bins contain at least one large item.
Then we have c(S′) − c(S) ≤ 4�log1+ε

1
ε�.

Proof. Let WS and W ′
S be the total weights of items in bins S and S′ respectively.

Since C is reasonable, WS ≥ W ′
S . Let aS be a large item of maximum weight

in S. Since the size of a large item is at least 1
ε2 , S contains at most 1

ε2 large
items. The total weight of these items is at least ε2WS (since C is easy) and thus
an item of maximum weight has weight of waS ≥ ε2Ws

1/ε2 = ε4Ws. Similarly, let
a′

S be a large item of maximum weight in S′. Clearly wa′
S

≤ W ′
S . Thus we have

(1 + ε)c(S′)−1 ≤ Wa′
S

≤ W ′
S ≤ WS ≤ waS

ε4 < 1
ε4 (1 + ε)c(S). Taking the logarithm

with base 1 + ε we get c(S′)− 1 < 4�log1+ε
1
ε� + c(S) and thus the claim follows

because both sides of the last inequality are integer numbers. 
�
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The following corollary holds for a wide class of solutions, including opt
′
ne

.

Corollary 3. Given a nice, easy and reasonable solution to the rounded-up in-
stance C, consider a bin of the solution, S. Then every item i of a class j such
that j ≥ d(S) + 8�log1+ε

1
ε� is packed in a bin which precedes S in the solution

C.

Proof. Consider a bin S′ which appears after S in C. By Lemma 8, c(S′) ≤ c(S)+
4�log1+ε

1
ε�. By the definition of a nice solution, c(S) ≤ d(S) + 4�log1+ε

1
ε� − 1.

We thus get c(S′) ≤ d(S) + 8�log1+ε
1
ε � − 1. Since j ≥ d(S) + 8�log1+ε

1
ε�, item

i cannot be packed in S′. Since this holds for every bin S′ that appears after S,
we conclude that i is packed into a bin that precedes S in the solution. 
�

We next show how to construct an infeasible solution sol for the rounded-up in-
stance whose cost is at most opt

′
ne

, we later show how to adapt it into a feasible
solution, increasing the cost of the solution by a small enough multiplicative fac-
tor. We create a graph G = (V, E) in the following way. For each v ∈ V we asso-
ciate a label label(v) = (n1

2(v), n1
3(v), . . . , n1

1/ε4(v), . . . , nr
2(v), nr

3(v), . . . , nr
1/ε4(v),

am+1(v), . . . , am+�(v), p(v)), where nj
i (v) denotes the number of items from Lj

i

that are not packed yet (for i ≥ 2 and j = 1, 2, . . . , r), ak(v) is a binary value in-
dicating whether the k-th heavy item has been already packed or not (ak(v) = 1
means that this item is still unpacked) where k = m + 1, . . . , m + �, and p(v)
(m + � ≤ p(v) ≤ n) denotes that the small items p(v) + 1, . . . , n are already
packed and the small items left are exactly m + � + 1, m + � + 2, . . . , p(v). For
each possible value of the label, we will have a vertex in V . Note that since the
label of a vertex may have a linear number of components, and each of them
can have a polynomial number of possibilities, it seems that our graph will have
exponential number of vertices. Therefore additional conditions need to be in-
troduced. We next show that using the nice and easy properties of the resulting
solution we are interested in we can decrease substantially the number of ver-
tices in the graph. If label(v) has zeros in all components besides (perhaps) the
last � + 1 components, then it is put in the graph. Otherwise, we insert only
vertices with label label(v) that satisfies the following condition: Denote by b(v)
the maximum index of a class j such that nj

2(v) + nj
3(v) + · · · + nj

1/ε4(v) > 0,
and let b(v) = 0 if no such j exists. Then for all j′ ≤ b(v) − 8�log1+ε

1
ε� and for

all k = 1, 2, . . .1/ε4, nj
k(v) = |Lj

k|. We denote by V the resulting vertex set.

Lemma 9. |V | is polynomial.

We next describe the edge set E. A pattern for an outgoing edge of a ver-
tex v, denoted by pat(v), is defined as follows. Such a pattern defines a pack-
ing of a bin. A number patji (v) is associated with the number of items from
each Lj

i (for j = 1, 2, . . . , r and i ≥ 2) that are packed in the bin. Further,
there is a number patj(v) for j = m + 1, m + 2, . . . , m + � that equals one
if the j-th heavy item is packed in the bin, and otherwise it equals zero. Fi-
nally, an interval [q(v), p(v)] which is associated with a set of small items that
are placed in this bin. Note that we require m + � + 1 ≤ q(v) ≤ p(v) + 1,
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and if q(v) = p(v) + 1, then no small items are packed into this bin. We let
pat(v) = (pat12(v), . . . , pat11

ε4
(v), . . . , patr1

ε4
(v), patm+1(v), . . . , patm+�(v), q(v)).

If q(v) > m + � + 1, i.e. the first small item is not packed into the bin, then
we have the following constraint. We require the sum of the rounded-up sizes of
all items that are placed in the bin to be strictly larger than 1, however if we
remove the small item q(v) then the total rounded-up sizes of the items in the

bin is at most 1. That is,
r∑

j=1

1
ε4∑

i=2

patji (v)si,j +
m+�∑

j=m+1

patj(v) · s′j +
p(v)∑

j=q(v)

s′j > 1

and
r∑

j=1

1
ε4∑

i=2

patji (v)si,j +
m+�∑

j=m+1

patj(v) · s′j +
p(v)∑

j=q(v)+1

s′j ≤ 1. Therefore, if we are

given the number of items from each Lj
i that are placed in a bin, the set of heavy

items in this bin, and p(v), then q(v) is defined uniquely.
For a pattern pat(v) such that for 2 ≤ i ≤ 1

ε4 and for all j = 1, 2, . . . , r we
have nj

i (v) ≥ patji (v) and for all j = m + 1, . . . , m + � we have patj(v) ≤ aj(v),
there is an edge from v to the vertex u which has the label(
n1

2(v)−pat12(v), n1
3(v)−pat13(v), . . . , n1

1
ε4

(v)−pat11
ε4

(v), . . . , nr
2(v)−patr2(v), . . . ,

nr
1

ε4
(v)−patr1

ε4
(v), am+1(v)−patm+1(v), . . . , am+�(v)−patm+�(v), q(v)−1

)
whose

cost is
p(v)∑

j=m+�+1

wj +
m+�∑

j=m+1

aj(v)wj +
r∑

j=1

1
ε4∑

i=2

nj
i (v) ·(1 + ε)j (i.e., the total weight

of items that are still unpacked in v when we round up the weight of a large
item to the nearest power of 1 + ε).

If such a vertex u does not exist then we do not insert the edge. Thus, to build
the graph in polynomial time, we check for every vertex u whether an edge (u, v)
should be inserted (i.e., if it corresponds to a pattern), and if so, the pattern of
this edge and its cost are computed.

We next describe a source vertex s and a destination t. The label of s is

label(s) = (|L1
2|, . . . ,

∣∣∣L1
1

ε4

∣∣∣ , |L2
2|, . . . ,

∣∣∣L2
1

ε4

∣∣∣ , . . . , |Lr
2|, . . . ,

∣∣∣Lr
1

ε4

∣∣∣ , 1, 1, . . . , 1, n)

and the label of t is (0, . . . , 0, m + �). In the resulting graph we find a minimum
cost path P from s to t.

If the k-th edge of the path P corresponds to a pattern pat(v), then the k-th
bin of the solution sol is created as follows. For i ≥ 2 and j = 1, 2, . . . , r, we
pack to this bin patji (v) items from Lj

i that were not packed before. Finally, we
add to this bin all heavy items such that patj(v) = 1. We add to this bin the
set of small items q(v), q(v) + 1, . . . , p(v). Note that sol might be infeasible (as
long as there are enough small items, the total size of items packed in each bin
will be larger than 1).

Note that the cost of sol is at most the cost of the path P . This holds because
of the equivalent form of the goal function of MWSBP, and since the cost of
an edge used a rounding up of the weights of the large items to their maximal
possible values.

Lemma 10. The cost of sol is at most (1 + ε) · opt
′
ne

.
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We next show how to transform sol into a feasible solution sol
′ to the

rounded-up instance while paying at most another εopt
′
n
. Note that sol is

an infeasible solution as it uses bins of size larger than 1.
Denote by S1, S2, . . . the bins used by sol (according to their order in sol).

We partition the bins into blocks where each block has 1
ε2 bins. The i-th block

consists of the bins S i−1
ε2 +1, . . . , S i

ε2
. The last block may have a smaller number

of bins.
We transform sol into sol

′ by adding to each block one bin that is placed in
this block, and in this bin we pack one small item from each original bin of the
block that contains at least one small item. The position of this extra bin within
the block is as follows: In the first block we place the extra bin in the 1

ε + 1-th
position, and in the other blocks we add this additional bin as the first bin of
the block. From each bin in the block, we move a small item of minimum index
to the new additional bin. Then, the new bin is packed with at most 1

ε2 small
items, and therefore the total size assigned to such a new bin is at most 1. Since
we remove one small item, then by definition of q(v), we get that the same holds
for all bins. We conclude that the solution is feasible. We next bound its cost.

Lemma 11. The cost of sol
′ is at most (1 + 2ε)sol.

Proof. The total cost of sol is exactly the total charging costs of all items
according to sol. We similarly partition the cost of the items according to sol

′.
We first consider the increase of the cost charged to items that is caused by
insertion of new bins. The worst case for each block occurs for bins that are
located just after a new bin. In the first block, the bin in position 1

ε +1 is shifted
to position 1

ε +2. In other blocks, the bin is position j
ε2 +1 is shifted to position

j
ε2 + j + 2 (j ≥ 1). The ratio between the positions of the bin in the first case is
at most 1+2ε

1+ε ≤ 1 + ε. In the second case, the worst case occurs for the second

block, for which j = 1 and we get the ratio 1+3ε2

1+ε2 ≤ 1 + 2ε2 < 1 + ε for ε ≤ 1
4 .

If an item i is not packed in the first block, then its charged cost in sol
′ is

at most (1 + 2ε2) times its charged cost in sol. We saw that the increase in the
location of bins is bounded by this factor, and the only items that are shifted
are small items that are moved to locations with smaller indices. Therefore, it
remains to bound the increase of the total charged cost of the items in the first
block.

First, note that if j is either large or heavy item then its charged cost in
sol

′ is at most (1 + ε) times its charged cost in sol (the two charged costs are
the same if j is packed in the first 1

ε bins and otherwise the two charged costs
differ by at most a factor of 1 + ε). Therefore, there are at most 1

ε small items
that are packed in bins 1, . . . , 1

ε that are postponed until the 1
ε + 1-th bin, each

of them has weight of at most ε3W (because these are small items, and thus
not heavy), and therefore the total charging cost of these items increased by an
additive factor of at most εW . The other items from the first 1

ε bins have the
same charging cost in the two solutions. Since W is clearly a lower bound on
the cost of any solution, and on sol in particular, we conclude that the total
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cost of sol
′ is at most (1+ ε) times the total cost of sol plus εsol, i.e., at most

(1 + 2ε)sol as we claimed. 
�

Even though we restricted our search of solutions, the resulting solution for the
rounded-up input is not necessary nice and easy, nor can we claim that it is
reasonable. We can apply transformations on sol

′ as we performed on opt,
changing it into a nice solution and afterwards to a nice and easy solution.

The proof of the following lemma allows us to assume that the resulting
solution is nice, easy and reasonable.

Lemma 12. There exists a nice and easy reasonable solution sol
′′ that can be

computed in polynomial time such that the cost of sol
′′ is at most (1+10ε)sol

′.

Proof. Using Lemmas 5 and 7, we see that a nice and easy solution of cost at
most (1 + 3ε)(1 + 4ε)sol

′ can be constructed from sol
′ in polynomial time. We

further sort the bins to obtain a reasonable solution, this does not change the
first property, and may only reduce the cost of the solution. Using ε ≤ 1

4 we get
a cost of at most (1 + 3ε)(1 + 4ε)sol

′ ≤ (1 + 10ε)sol
′. 
�

Though we phrased sol
′′ as a solution to the rounded-up instance, it is clear

that it would be possible to give a feasible solution to the instance with item set
I \ ∪r

j=1L
j
1 and the size of an item i is si (because by decreasing the size of each

item, any feasible solution remains feasible with the same cost). It remains to
show what we do with the items of L1

1∪· · ·∪Lr
1. We apply this replacement later,

so the solutions we consider at this point are still to the rounded-up problem.
We insert the items of L1

1 ∪· · ·∪Lr
1 into the solution of the rounded-up problem,

sol
′′.

For each j = 1, 2, . . . , r we create another |Lj
1| bins that are placed immedi-

ately after the last item of Lj
2 ∪ Lj

3 ∪ · · · ∪ Lj
1

ε4
is packed (pushing some bins

forward), each of this additional bins contain exactly one item from Lj
1. Note

that insertion of bins for some values of j could push bins for a smaller value of j
forward so that they would no longer be in the position just after the last items
of the same class in the rounded-up instance. We denote by sol

′′′ the resulting
solution. It is clear that sol

′′′ is a feasible solution to the rounded-up instance
together with the L1

1 ∪ · · · ∪ Lr
1 items, that can be modified without additional

cost into a feasible solution of the original instance.

Lemma 13. The cost of sol
′′′ is at most (1+2ε2)·(1+48ε2(1+ε)�log1+ε

1
ε�) <

1 + 150ε2 log1+ε
1
ε times the cost of sol

′′.

We sequentially apply Corollary 1, Lemma 6, Corollary 2, and Lemmas 10, 11,
12 we have sol

′′ ≤ (1+128ε)opt for ε ≤ 1
4 . Since by Lemma 13 sol

′′′ ≤. We let

ε = δ2

1000000 for some δ ≤ 1. We need to upper bound ε2 log1+ε
1
ε = ε2 ln 1

ε

ln(1+ε) . We
have ε

ln(1+ε) < 2 for ε < 1. We also have ln 1
ε ≤ 1√

ε
for ε ≤ 1

4 , so the expression is

upper bounded by 2
√

ε = δ
500 . Thus we have sol

′′′ ≤ (1+ 128δ2

1000000 )(1+ 150δ
500 )opt <

(1 + δ)opt.
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We get an approximation ratio of at most 1 + δ for every δ ≤ 1 such that 1
δ

is an integer. The running time of our algorithm is polynomial in the number of
items for any constant value of δ. Thus we have proved the following.

Theorem 3. There is a polynomial time approximation scheme for problem
MWSBP.
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Abstract. We continue the study of bin packing with splittable items
and cardinality constraints. In this problem, a set of items must be
packed into as few bins as possible. Items may be split, but each bin
may contain at most k (parts of) items, where k is some fixed constant.
Complicating the problem further is the fact that items may be larger
than 1, which is the size of a bin. We close this problem by providing a
polynomial-time approximation scheme for it. We first present a scheme
for the case k = 2 and then for the general case of constant k.

Additionally, we present dual approximation schemes for k = 2 and
constant k. Thus we show that for any ε > 0, it is possible to pack
the items into the optimal number of bins in polynomial time, if the
algorithm may use bins of size 1 + ε.

1 Introduction

In bin packing problems, a set of items is given and the goal is to pack them into
the smallest possible number of containers, called bins. The items are typically
given as numbers between 0 and 1, which is the bin size. In this paper we consider
items that may be larger than 1. Items are allowed to be split and distributed
among an arbitrary number of bins.

Clearly, if we allow items to be split and have no other constraints, a simple
Next Fit-type algorithm can generate an optimal solution. However, we require
that at most k (parts of) different items are packed together in a single bin.
This is called a cardinality constraint, and it makes the problem NP-hard in the
strong sense for any fixed k ≥ 2 [3,6].

This problem was introduced by Chung et al. [3], who discussed the problem
of allocating memory to parallel processors. The goal is that each processor has
sufficient memory and not too much memory is being wasted. If processors have
memory requirements that vary wildly over time, any memory allocation where
a single memory can only be accessed by one processor will be inefficient. A
solution to this problem is to allow memory sharing between processors. However,
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if there is a single shared memory for all the processors, there will be a lot of
contention which is also undesirable. It is currently infeasible to build a large,
fast shared memory and in practice, such memories are time-multiplexed. For n
processors, this increases the effective memory access time by a factor of n.

Chung et al. [3] suggested a new architecture where each memory may be ac-
cessed by at most two processors, avoiding the disadvantages of the two extreme
earlier models. This leads to the bin packing problem described above, where
in their paper k = 2: the bins are the memories and the items to be packed
represent the memory requirements of the processors.

In this paper, we study approximation algorithms in terms of the absolute
approximation ratio or the absolute performance guarantee. Let B(I) (or B, if the
input I is clear from the context), be the cost of algorithm B on the input I. An
algorithm A is an R-approximation (with respect to the absolute approximation
ratio) if for every input I, A(I) ≤ R·opt(σ), where opt is an optimal algorithm
for the problem. The absolute approximation ratio of an algorithm is the infimum
value of R such that the algorithm is an R-approximation.

The asymptotic approximation ratio for an algorithm A is defined to be
R∞

A = lim supn→∞ supI{ A(I)
opt(I) |opt(I) = n} . This ratio is relevant if we are

particularly interested in the performance of algorithms on large inputs, that
cannot be packed in few bins. Fernandez de la Vega and Lueker [4] designed
an APTAS for standard bin packing. Their work was followed by the work of
Karmarkar and Karp [10] who developed an AFPTAS.

Regarding the absolute approximation ratio, for the classical bin packing prob-
lem a simple reduction from the partition problem (see problem SP12 in [7])
shows that no polynomial-time algorithm has an absolute performance guarantee
better than 3

2 unless P=NP. This reduction is no longer valid for our problem,
where items may be split.

Chung et al. [3] showed that the problem with splittable items is NP-hard in
the strong sense for k = 2. They use a reduction from the 3-Partition problem
(see problem [SP15] in [7]). In a recent paper [6], we showed that this problem
is NP-hard in the strong sense for any fixed value of k.

Chung et al. [3] also gave a 3/2-approximation for the case k = 2. Graham
and Mao [8] analyzed the asymptotic approximation ratio of several algorithms,
giving upper bounds of 1.498 for k = 2, 3/2 for k = 3 and 2−2/k for k ≥ 4. In [6],
we gave a simple algorithm with an absolute approximation ratio of 2 − 1/k for
k ≥ 2, and an algorithm with absolute approximation ratio of 7/5 for k = 2.

Bin packing with cardinality constraints (and regular, non-splittable items)
was introduced and studied in an offline environment as early as in 1975 by
Krause, Shen and Schwetman [12,13]. They showed that the performance guar-
antee of the well known First Fit algorithm is at most 2.7− 12

5k . Additional results
were offline approximation algorithms of performance guarantee 2. Kellerer and
Pferschy [11] designed an improved offline approximation algorithm with perfor-
mance guarantee 1.5 and finally a PTAS was designed in [2] (for a more general
problem).
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On the other hand, Babel et al. [1] designed a simple online algorithm with
asymptotic approximation ratio 2 for any value of k. They also designed improved
algorithms for k = 2, 3. Finally, Epstein [5] gave an optimal online bounded space
algorithm (i.e., an algorithm which can have a constant number of active bins
at every time) for this problem. Its asymptotic worst-case ratio is an increasing
function of k and tends to 1 + h∞ ≈ 2.69103, where h∞ is the best possible
performance guarantee of an online bounded space algorithm for regular bin
packing (without cardinality constraints). Additionally, she improved the online
upper bounds for 3 ≤ k ≤ 6.

A related problem was studied recently by Shachnai, Tamir and Yehezkely
[14]. They considered an offline bin packing problem where items may be split
arbitrarily. They consider two models: one where splitting items comes at a
cost, as each part of a split item increases by a constant additive factor, and
one where there is an upper bound on the total number of splits. They showed
that both these problems do not admit a PTAS unless P = NP. They designed
approximation schemes for both problems. Their problem is different from our
problem since in their case all items have size at most 1. In their case it is
possible to exploit the existence of simple structures of optimal solutions, which
are more complicated in our case.

Our results. Our first main result is a polynomial-time approximation scheme.
Recall that for standard bin packing, this is impossible unless P = NP. We first
present our scheme for the special case of k = 2 and then show how to extend
it to the general case. The main difficulty here is that we have less structure in
the packing, making it harder to search all potential packings.

We also present a dual PTAS for this problem, first for k = 2 and then for
general k. That is, given bins of size 1 + ε for an arbitrary ε > 0, we give an
algorithm to pack these items into at most N bins, where N is the number of
bins (of size 1) in an optimal solution. The difficulty of designing such a dual
PTAS lies in the packing of large items. Since they can be arbitrarily large, the
number of items does not imply any upper bounds on the optimal cost, and no
known rounding techniques apply in this case.

Note that a dual PTAS for standard bin packing is a component in the PTAS for
scheduling on identical machines, which was given by Hochbaum and Shmoys [9].

Due to space constraints, we have omitted almost all proofs.

2 PTAS for k = 2

2.1 The Structure of the Optimal Packing

Before we begin our analysis, we make some observations regarding the packing
of opt. A packing can be represented by a graph where the items are nodes and
edges correspond (one-to-one) to bins. If there is a bin which contains (parts
of) two items, there is an edge between these items. A bin with only one item
corresponds to a loop on that item. The paper [3] showed that for any given
packing, it is possible to modify the packing such that there are no cycles in the
associated graph. Thus the graph consists of a forest together with some loops.
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We now consider items that are larger than 1/ε. We modify the input as
follows. Any item of size x > 1/ε is replaced by �εx� items of size 1/ε and one
additional item of size x − 1

ε�εx� (if this last amount is nonzero). Denote the
original input by I and the modified input by I ′. We have the following lemma.

Lemma 1. opt(I ′) ≤ (1 + ε)opt(I).

This lemma implies that for an input with items larger than 1/ε, we can begin
by splitting these items into pieces of size 1/ε. Then if we find a solution which
approximates opt(I ′), this solution approximates opt(I) nearly as well.

The optimal packing for the modified input I ′ consists of a forest and some
loops. The trees can be arbitrarily large, where the size of a tree is the number
of its nodes. However, given an optimal solution with large trees (possibly with
loops), we can split these trees into trees (with loops) of constant size. Denote by
opt

′(I ′) an optimal solution for the case where there is an additional constraint
that all trees that are created in the packing must have size at most 1/ε2. We
then have the following lemma.

Lemma 2. opt
′(I ′) ≤ (1 + 2ε)opt(I ′).

2.2 Description of the PTAS

We look for solutions with trees of size at most 1/ε2. We start by using techniques
introduced by Lueker and Fernandez de la Vega [4]. Let n be the number of items
in I ′. Assume first that n ≥ 1/ε2. The easier case n < 1/ε2 is treated below.
We sort the items in order of nonincreasing size and put the items into groups
of �nε2� successive items (possibly less items for the last group). Say that this
gives p + 1 groups.

We now modify I ′ as follows. We remove the first group (the one with the
largest items). For each other group, we round the item sizes inside this group
up to the size of the largest item in the group. This creates an input I ′′ which
does not require more bins to be packed than I ′ (since we can map every item
in I ′′ to an item of I ′ that is no smaller than it), and does not require less bins
than I ′ without the first group (since we rounded up the item sizes).

We are going to consider all possible packings for I ′′, that is, all possible
forests with trees of size at most 1/ε2.

From a packing of I ′′ to a packing of I ′. Given a packing (represented by a
forest), we are going to change it as follows: wherever an item of group i is
needed, we are going to take an arbitrary unpacked item from this group. Since it
is smaller than the rounded version, it definitely fits in the space that is allocated
to it. This leaves the �nε2� largest items of I ′ (the items in group 1) unpacked
and we pack them into separate bins (into chains where possible). The size of
each such item (in I ′) is at most 1/ε so this requires at most (nε2 + 1)/ε ≤ 2nε
extra bins (using that n ≥ 1/ε2).

The packing that we will finally use is the one that uses the least amount
of bins and that gives a feasible packing. The important thing to note is that
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we are going to try all possible forests that pack all the items, thus we also try
the one that corresponds to the packing of opt

′(I ′). Our modified packing then
requires only 2nε more bins than opt

′(I ′).

From a tree to a packing of I ′′. An important ingredient of our algorithm is still
missing. We need to actually allocate items to bins based on the tree represen-
tation.

To begin with, we may assume that the trees in opt
′(I ′) are minimal in the

sense that any partition of the items in a tree into two sets requires more bins
to pack the items than the original tree.

Second, note that in any tree, items can be packed starting from the leaves
without wasting any space, so we do not have any empty space in bins apart
from possibly one bin that contains part of the root. This also means that given
a tree, the number of bins required to pack this tree follows immediately from
the total size of the items packed.

Third, to pack the items into bins we do not need the loops explicitly: we can
ignore them, and it will be clear from the size of an item whether or not we need
to pack some bins that contain only a part of this item. Thus from now on we
work with real trees.

We define a type of a tree to be a pair (j, E) where j is the number of vertices
(1 ≤ j ≤ 1/ε2 + 1). We assume that these vertices are always numbered 1, . . . , j
and E is a subset of j − 1 edges. A pattern consists of two parts. The first
one is a type of a tree (defined above), and the second is a vector of length j,
where component i (for 1 ≤ i ≤ j) is the group to which node i belongs (a
number between 1 and p + 1). The number of patterns is constant, since there
is a constant amount of trees with at most 1/ε2 + 1 nodes, and p + 1 ≤ 1/ε2

possible groups for each node. For a given pattern, items are packed starting
from the leaves. During the process, we sometimes assign items to bins without
immediately packing them into those bins. A pattern is valid if this process leads
to all items being packed without violating any cardinality constraints and the
representation of the final packing is the original tree.

Packing a leaf is done as follows: first fill up the bins it is assigned to, if any.
Then open as many new bins as you need to pack this item. If the final bin is
not filled completely, assign the item at the other side of the edge leading to this
leaf to that bin. (If this violates the cardinality constraint of k, or if the final bin
is not used at all, the pattern is not valid.) Remove the leaf and the edge that
leads to it (possibly creating a new leaf).

Note that in this process, items may be assigned to multiple bins before finally
being packed into them. When a leaf completely fits into bins it was already
assigned to, and it is not the last node packed in the tree, we have in effect
found a smaller tree and we know that this pattern is not valid since the tree
was not minimal. This proves the following lemma.

Lemma 3. Given a tree representation of the optimal packing with minimal
trees, it is possible to assign the items to bins such that for each tree, there is at
most one bin which is not completely full.
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Enumerating the forests. There is a constant number of patterns, so certainly
a constant number of valid patterns. Each valid pattern can be picked at most
n times, thus we have at most (n + 1)O(1) assignments to check. Once we know
how many instances of each pattern you have, we can check whether this gives
a valid packing (the right number of items of each group), and finally select the
one that uses the least number of bins. This can be done in polynomial time.

Our PTAS (for the case n ≥ 1/ε2) is summarized in Figure 1.

1. Any item of size x > 1/ε is replaced by �εx� items of size 1/ε and one additional
item of size x − 1

ε
�εx� (if this last amount is nonzero).

2. Put the items into a constant number of groups and round them as in Lueker
and Fernandez de la Vega [4]. All items in a group have the same size. The
largest group is packed separately in new bins.

3. Determine the set of valid patterns (trees plus specification of groups of nodes).
4. Determine the forest (combination of patterns) which uses the least number of

bins and which packs all the items.
5. Replace the rounded items by the original items.

Fig. 1. The PTAS for k = 2 and n ≥ 1/ε2

A trivial lower bound on the amount of bins needed to pack the entire input
is n/2. Putting it all together, we find that our algorithm uses the following
number of bins:

opt
′(I ′) + 2nε ≤ (1 + 4ε)opt

′(I ′) ≤ (1 + 10ε)opt(I ′) ≤ (1 + 16ε)opt(I),

where we have applied opt
′(I ′) ≥ n/2, Lemma 2, and Lemma 1 in this order,

as well as ε ≤ 1/2.
Finally we consider the case where n < 1/ε2. For a constant number of items,

there exists only a constant number of forests including the allocation of items
to nodes. A given forest can be filled up as described above (starting from the
leaves), using the exact sizes of items. Hence in this case we do not split large
items or large trees and find the optimal solution in polynomial time.

Altogether, this proves the following theorem.

Theorem 1. There exists a polynomial-time approximation scheme for cardi-
nality constrained bin packing of splittable items where each bin is allowed to
have at most two items or parts of items.

3 PTAS for Constant k

Our PTAS for constant k will be essentially the same as the one in Figure 1 for
k = 2. However, we need to implement Step 3 for this more general case. For
this we use a modified graph representation. If a bin contains parts x1, . . . , xk,
we order them in some way and create edges only between successive items in
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this ordering. Thus the edges in this case are e.g. (x1, x2), . . . , (xk−1, xk). Each
item is still represented by a single node, thus one node might be involved in
several of such chains, where each chain represents one bin.

So in this case, we no longer have a one-to-one correspondence of edges and
bins. Instead, there are now at least as many edges as there are bins. Note that
the order of the parts inside a bin is irrelevant. Thus we can reorder the parts in
a chain arbitrarily. This gives a different graph for the same packing into bins.
It is now more difficult to construct a packing into bins from a given graph. We
have the following two important lemmas.

Lemma 4. If the graph of a packing contains a cycle, it is possible to modify the
packing such that this cycle is removed without increasing the number of bins.

Lemma 5. There exists an optimal packing such that each item of size at most
i/k is split into at most i parts, for all i > 1.

From a tree to a packing of rounded items. Lemmas 1 and 2 also hold for general
k. However it is now not so clear how to construct the bins from a given forest.

To do this, we further modify our graph representation, and let each item
be represented by x nodes if and only if it is split into x parts in the packing.
The parts of one item are connected by a simple chain, as are the parts that
are in one bin. We can then start packing bins from the leaves of the tree and
repeatedly remove leaves similar to before. There are now two cases, since the
edge that connects the leaf to the tree leads either to a copy of the leaf (same
item) or to a different item.

If a leaf leads to another item, then the remaining unpacked part of the leaf
item must be small enough that it can be packed entirely inside the bin it is
assigned to, so do that. (If not, there would be an edge leading to a copy of the
leaf.) If it does not fit, we know that the tree is not valid. Also, assign the item
at the other end of this edge to this bin. If there are already k items in the bin,
the tree is not valid.

If a leaf leads to another part of the same item, then the bin this leaf is
assigned to (or a new bin, if it is not assigned to anything) can be filled up by
this leaf. This holds because no future unpacked items can be assigned to this
bin (otherwise there would be an edge to that item from this leaf).

Using this packing process, it can be seen that Lemma 3 also holds for this
case. In order to apply this process, we do not only need to know the group to
which each node belongs but also which of the items of that size is packed there.
Again, let the type of a tree be a pair (j, E) where j is the number of nodes in
the tree (as mentioned above, there is one node in the tree for every part of an
item) and E is a set of j − 1 edges.

We now need a vector (a, b) for each node (to get a pattern for the tree).
Thus, a is the group (a ∈ {1, . . . , p+1}, where p+1 is the number of groups like
in Section 2.2) and b is the number of the item of this group (b ∈ {1, . . . , 1/ε2},
as there are at most 1/ε2 items in a tree, there are certainly at most 1/ε2 items
of any one of the groups). In a valid tree, the nodes of type (a, b) for any fixed a
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and b must be in a chain, since they represent parts of one item. The maximum
length of such a chain is bounded by the following Lemma.

Lemma 6. The length of a chain representing one item in a valid pattern is
bounded by 1/ε2 + 1/ε.

Proof. There can be at most 1/ε2 nodes in the chain that have an edge to another
item, because otherwise there would be two nodes having edges to the same item,
giving a cycle.

There can be at most 1/ε nodes in the chain that do not have an edge to
another item, since each such node has a bin to itself and such a bin (apart from
at most one) will be fully packed in an optimal solution by Lemma 3. The size
of an item is at most 1/ε. �

We can now determine in polynomial time how often each pattern is used in
an optimal packing, as in the previous PTAS. We now have that a trivial lower
bound on the cost of packing n items is n/k. Thus our PTAS only works for
constant k, and requires at most (1 + (2k + 4)ε)opt(I) bins.

Again, for a constant number of items, only a constant amount of forests needs
to be checked, and we can find an optimal solution. Thus we have the following
theorem.

Theorem 2. For any constant k ≥ 2, there exists a polynomial-time approxi-
mation scheme for cardinality constrained bin packing of splittable items where
each bin is allowed to have at most k items or parts of items.

4 A Dual PTAS for k = 2

We have already seen that the optimal packing can be represented by a forest
together with some loops. Moreover, in each tree, the only items that have degree
more than two have size more than 1. Items of size in (1

2 , 1] have at most two
neighbors. We call such items medium. Items of size in (0, 1

2 ] have at most one
neighbor. We call such items small.

Our algorithm tries to find a good way to cut items, i.e., split them into
parts. The cuts are performed in two stages. As a first step we cut a single piece
off medium and large items. Our algorithm performs an enumeration on such
possible cuts. Clearly, these are not the only cuts that an optimal algorithm may
perform on these items for its packing. However, by Lemmas 7 and 8, proved
in [6], no further cuts are required for items of size at most 1.

Lemma 7. There exists an optimal packing in which all items of size at most
1/2 are leaves.

Lemma 8. There exists an optimal packing in which any item of size in ((i−1)
/2, i/2] has at most i neighbors for all i ≥ 2.

When we perform cuts on items, our algorithm considers the two resulting parts
to be two independent items and thus allows to cut them further (for parts that
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have size more than 1) while creating a packing. The enumeration considers a
set of cut options which cover sufficiently many packings to find a very good
one. The options include the “empty cut”, i.e. the case that this item is not cut
at all.

We do this initial cutting in order to simplify the tree structure. We would
like to work with trees that contain at most one large item, and each tree is
a star rooted at a large item or a part of a large item. We now show that by
cutting off a piece of size at most 1 from each item that is medium or large,
and treating this piece as an independent item, we get a packing which has this
property without increasing the number of bins required to pack the input. Note
that these techniques are useful only for the dual PTAS and not for the PTAS
since the modification of the input is done by cutting some items. We later use
the fact that we can slightly increase the sizes of bins in order to efficiently
enumerate the possible cutting points.

Lemma 9. It is possible to modify the input in such a way that the optimal
packing for the new input requires the same number of bins as the old input, and
there exists an optimal packing for the new input such that all medium items
have degree 1.

Lemma 10. It is possible to modify the input in such a way that the optimal
packing for the new input requires the same number of bins as the old input, and
there exists an optimal packing for the new input such that each tree contains at
most one large item.

We conclude that by modifying the input appropriately, there exists an optimal
packing which consists of stars with large items in the middle (where such a large
item that is a root of a star might be smaller by at most 1 than the corresponding
large item in the original input), single edges, and loops. We will look for a packing
that has this structure. Denote the number of input items by n.

4.1 Description of the Algorithm

Our dual PTAS works as follows. We use a parameter δ which is based on ε,
and which is the inverse of some odd integer. Specifically, we let K = min{i|i ≥
2/ε, 2 � i} and δ = 1/K. We begin by rounding item sizes (of all items that
are not large) up to the nearest multiple of δ (possibly to 0). There are K + 1
possible sizes of such items. For a given tree, we can fill the bins starting with
these items. This means that each cut of an item will now occur at an integer
multiple of δ. This also holds for a tree that contains no small items (items of size
at most 1/2) but does contain medium items. By the above, if a tree contains
no items of size at most 1, it consists of only a loop (a single item).

Denote the number of items of size iδ by Mi for i = (K + 1)/2, . . . , K. For
each size, we guess how many items of this size are cut at each integer multiple
of δ that is at most 1/2. Note that we do not need to consider cuts above 1/2,
since cutting an item of size iδ at the point jδ or at the point (i − j)δ gives the
same parts. Thus the possible cutting points are iδ for i = 0, . . . , (K − 1)/2.
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1. Let K = min{i|i ≥ 2/ε, 2 � i} and δ = 1/K.
2. Round each item size which is no larger than 1 up to the nearest multiple of δ.

Let the number of items of size iδ be Mi for i = (K + 1)/2, . . . , K.
3. For each medium item size, guess how many items of this size are cut at jδ for

j = 0, . . . , (K − 1)/2.
4. Guess how many items of size jδ are cut off from large items for j = 0, . . . , K.
5. Create a graph with L layers, plus source and sink. The construction of the

graph is shown in Figure 3. This graph represents all possible packings for the
current set of guesses. Find a path with minimal cost from the source to the
sink. This is the cost of packing the input with these guesses.

6. Use the packing of this guess to create a packing for the original instance.

Fig. 2. The dual PTAS for k = 2

Our dual PTAS is summarized in Figure 2. Each guessing step can be emulated
via an exhaustive enumeration of all the possibilities for this piece of information.
So our algorithm runs all the possibilities, and among them chooses the best
solution achieved. Denote the number of large items by L. For convenience of
notation, we will also denote this number by M(K−1)/2. We guess how many
pieces of each size of at most 1 that is an integer multiple of δ are cut off. Note
that a large item may stop being large when some part of it is cut off. However,
in our algorithm, we still group it among the large items (and in particular,
allow it to be cut further). The cuts can be represented by a vector of size (K +
1)2/4 + (K + 1), which tells us how many items of each size (K + 1)δ/2, . . . , Kδ
are cut off at each point, and how many pieces of each size are cut off from the
large items.

Construction of the graph. For every possible set of cuts, we do the following. We
construct a layered graph which represents possible packings. The graph starts
at a single source node, then there are L layers which correspond to the L large
items, and finally there is a sink. We maintain a summary vector which describes
how many unpacked (parts of) items there are of every size iδ (i = 0, . . . , K).
This vector is denoted by s(u) for a node u. Additionally, we maintain a cutoff
vector which contains unpacked parts of size less than 1 of large items. This
vector is denoted by c(u) for a node u. We concatenate both vectors into a single
packing vector of length 2(K +1) which contains all relevant information needed
to find the optimal packing for these parts. Note that the parts which were cut
off large items are listed twice, once in the main list of unpacked items, so that
they can be packed, and once in the list of parts of large items, to make sure
that the pieces that were cut off are matched to the large items.

For two nonnegative integer vectors a and b of length �, we say that a ≥ b if
ai ≥ bi for i = 1, . . . , �. We say that a → b if there exists a unique j such that
aj = bj + 1 and ai = bi for i ∈ {1, . . . , �}\{j}. We describe the construction of
the layered graph in Figure 3.

The cost of an edge (u, v) that is mentioned in Step 4 of Figure 3 can be
computed as follows. This step creates a star rooted at a given large item (the
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1. Layer 0 and layer L + 1 contain a single node. The node in layer 0 is labeled
with the packing vector, while the node in layer L is labeled with the all-zero
vector.

2. Sort the large items in some way. Each large item is associated with a layer
between 1 and L. Each of these layers contains one node for every (nonnegative,
integer) vector that is smaller than the original packing vector.

3. For a node u, denote the cutoff vector by c(u) and the summary vector by s(u).
For any node u in layer i (i = 0, . . . , L − 1), there is an arc to every node v in
layer i + 1 such that c(u) → c(v) and s(u) ≥ s(v).

4. The cost of arc (u, v), where v is in layer i (i = 1, . . . , L), is the cost of packing
the ith large item excluding a piece of size specified by the nonzero entry in
c(u)−c(v) (this size may be 0), together with the items specified by s(u)−s(v).

5. For every node u in layer L, there is an arc to the single node in layer L + 1.
The cost of this arc is the cost of packing all items in s(u).

Fig. 3. Construction of the layered graph for one set of guesses (cuts)

i-th item in the list of large items is associated with layer i). The size of the
large item that needs to be packed, is given by its original size minus the size
of the part of item which corresponds to the nonzero entry of c(u) − c(v). This
item is to be packed with items specified by s(u) − s(v). The only item that
we cut further at this point is the large item associated with the current layer.
Moreover, that is the only item that may be combined with other items. Thus,
if we denote the sizes of items specified by s(u)− s(v) by a1, . . . , ap and the size
of the part of the large item that needs to be packed by X , then the number of
bins is max{p, �X +

∑p
i=1 ai�}.

The cost of an edge (u, v) that is mentioned in Step 5 of Figure 3 can be
computed as follows. The items to pack here are specified by s(u). These items
are not split further, they are packed in bins containing one or two of these items.
We apply the First-Fit-Decreasing algorithm with the restriction that no bin can
contain more than two items. By Lemma 11, this gives an optimal packing.

Lemma 11. FFD is an optimal algorithm for cardinality constrained bin pack-
ing for k = 2.

Proof. We modify the input as follows. For an item x > 0 let x′ = (x + 1)/3.
Then 1/3 < x′ ≤ 2/3. Three modified items clearly do not fit together, and for
two items x′ + y′ ≤ 1 ⇐⇒ x + y ≤ 1.

Thus the number of bins required to pack the modified input is the same as
for the original input. We now have an input where all items are larger than 1/3.
It is known [15] that for such an input, FFD gives an optimal solution. �

Packing the original input. Once we have found the set of cuts that allows the
best packing, it is easy to find the packing for the original input items. Say
large item 1 (in our ordering) is packed into bins together with parts of size
k1δ, k2δ, . . . , ka1δ. Using the original vector that represents the set of cuts, we
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find the first i such that there exists an item of size iδ < 1 which is cut at k1δ, or
at (i−k1)δ, and the part of size k1δ that is created by this cut is so far unpacked.
We then mark this part as packed and continue. (For each item size less than 1,
we keep track of how many first and second parts are packed of each size.)

The correct part of this item of size less than 1 is put in bin 1. Bin 1 is filled
with some part of large item 1 (namely, 1 + 2δ − k1δ). Then we find an unpacked
part for bin 2 in the same manner, etc. At the end we have some part of the large
item left, exactly how large this is is determined by what piece was cut off from
the first large item. If this part has a positive size, it is packed in consecutive bins,
and we move to the next large item. Finally, we find parts that are paired up in the
same manner. Each bin contains only two parts, and we rounded up to the nearest
multiple of δ, so we can use bins of size 1 + 2δ to pack the unrounded parts.

Lemma 12. The running time of this algorithm is nO(1/ε2).

Lemma 13. This algorithm uses at most opt(L) bins of size 1+2δ to pack the
input L.

Proof. The optimal solution of the original instance (in bins of size 1) can be
adapted to pack the rounded items (to the nearest multiple of δ) in the same
number of bins of size 1 + 2δ, using only cuts at multiples of δ. Denote this
packing by P . The PTAS tries all possible packings of this form for the rounded
items and thus tries the packing P at some point. Therefore, it manages to pack
the original items in bins of size 1 + 2δ, needing at most the optimal number of
bins for these items. �

Theorem 3. For any ε > 0, there exists a polynomial-time algorithm for car-
dinality constrained bin packing of splittable items where each bin is allowed to
have at most two items or parts of items. This algorithm gives packs the items
in the optimal number of bins, but uses bins of size 1 + ε.

5 A Dual PTAS for Constant k

We give an algorithm for packing the input items into the optimal number of
bins, but where the bins have size 1 + ε. In fact we will pack the items in bin of
size 1 + kδ, where δ depends on ε and k. Therefore, we only have a dual PTAS
for the case where k is constant. We choose ε, so that δ is the inverse of some
odd integer. Let M = 1/δ + k. All items of size more than 1 + kδ = Mδ are
called large.

We will again use the fact that there is an optimal packing which is a forest
(Lemma 4). We modify the input in two steps.
Sizes of items and parts. A first step would be a revision of sizes of items and
parts of items. We take an optimal packing, and replace any part of size x with
a part of size �x

δ �δ. As a result, the total size of parts in a bin can increase
by an additive factor of at most kδ. Therefore from this time on, we use bins
of size 1 + kδ. One problem is that the sizes of items may have increased in
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an unbounded way. We would like to change the size of an item of size y to
exactly � y

δ �δ. Therefore, we repeatedly pick a packed piece of an item whose size
increased too much, and decrease its size by δ. This is done until all items are
back to the desired size.

All parts in the packing now have sizes that are multiples of δ. Note that it
may happen that the number of bins used decreases, if there are bins where all
the pieces in it have their size reduced to 0.
Large items. As in the previous Section (Lemma 10), we would like to pack the
large items one by one and not combine them together into bins. Note that we
showed in Section 4 that Lemma 3 still holds in this case. It is straightforward
to adapt the proof of Lemma 10 for the case where the bins have size 1+kδ and
large items have size more than 1+ kδ (instead of 1). Thus we find that for each
large item, we can cut off one part of size at most 1+kδ, and moreover this part
is not cut further later.
Non-large items. We now consider the non-large items (size at most 1+ kδ). We
need to allow these items (except non-large parts cut off from large items) to be
cut at every integer multiple of δ. This is sufficient since in the optimal packing
all parts have sizes that are integer multiples of δ. Moreover, by Lemma 5, it
is sufficient to let non-large items be cut at most k′ = k(1 + kδ) < 2k times.
Therefore our scheme need only check such packings.

Description of the dual PTAS. We begin by rounding up all items into integer
multiples of δ. To convert our packing into a packing of the original instance,
for each item of original size y we need to decrease the size of at most one of
its parts by � y

δ �δ − y (this amount may be zero). From now we only discuss
the rounded items. Note that these items are the same as used in the adapted
optimal packing described above.

After rounding, the non-large items in the input can be represented by a
vector indicating how many items exist of each non-large size, out of M possible
non-large sizes. For each size, the number of parts cut off from those items of a
particular smaller size can also be represented by a vector. We need to try all
possibilities for these cutoff vectors. For each possibility, we will enumerate all
possible packings of the items of size at most 1+ kδ into bins of size 1+ kδ such
that no bin is empty. Here we use the fact that there is only a constant number
of different packings of one bin (patterns), and a packing can be specified by
giving how often each pattern is used.

For each such packing, we will construct a layered graph similar to the one in
the previous section, with one layer for each large item. Each node now represents
a subset of the bins of the current packing. The cost of an edge between two
nodes is determined by the difference packing vector and the size of the large
item of the current layer.

6 Conclusions

In this paper, we provided approximation schemes for bin packing of splittable
items with cardinality constraints for all values of k. We also provided dual
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approximation schemes. It should be noted that our upper bounds are absolute,
i.e. there is no additive term.
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Abstract. It has been a long-standing open problem to determine the
exact randomized competitiveness of the 2-server problem, that is, the
minimum competitiveness of any randomized online algorithm for the 2-
server problem. For deterministic algorithms the best competitive ratio
that can be obtained is 2 and no randomized algorithm is known that
improves this ratio for general spaces. For the line, Bartal et al. [2] give a
155
78 competitive algorithm, but their algorithm is specific to the geometry
of the line.

We consider here the 2-server problem over Cross Polytope Spaces
M2,4. We obtain an algorithm with competitive ratio of 19

12 , and show
that this ratio is best possible. This algorithm gives the second non-
trivial example of metric spaces with better than 2 competitive ratio.

The algorithm uses a design technique called the knowledge state tech-
nique – a method not specific to M2,4.

1 Background

In the k-server problem, there are k mobile identical servers in a metric space
M. At any time, a point r ∈ M can be “requested,” and must be “served” by
moving one of the k servers to the point r. The cost of that service is defined to
be the distance the server is moved; for a sequence of requests the goal is to serve
the requests at small cost. An online algorithm for the server problem decides,
at each request, which server to move, but does not know the sequence of future
requests. We analyze an online algorithm for the server problem in terms of its
competitive ratio, which essentially gives the ratio of its cost over the cost of an
optimal (offline) algorithm which has knowledge of the entire request sequence
before making any decisions. More precisely, we say that an online algorithm A
for the server problem is C-competitive, if there is a constant K, such that, given
� Research of the first author (Bein) done while visiting Kyoto University as Kyoto

University Visiting Professor. Research of the first author (Bein) and the fourth
author (Larmore) supported by NSF grant CCR-0312093.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 246–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Randomized Algorithm for Two Servers in Cross Polytope Spaces 247

any request sequence �, costA(�) ≤ C · costopt(�)+K. For a randomized online
algorithm, we state competitiveness in terms of expected cost. The competitive
ratio of A is the smallest C for which A is C-competitive.

The server problem was first proposed by Manasse, McGeoch and Sleator [14]
and the problem has been studied widely since then. They also introduced the
now well-known k-server conjecture, which states that, for each k, there exists
an online algorithm for k servers which is k-competitive in any metric space.
The conjecture was immediately proved true for k = 2, but for larger k remains
open except in special cases, including lines [8], trees [9], and spaces with at most
k + 2 points [11]. Even some simple-looking special cases have not been settled,
for example the 3-server problem in the circle and in the Euclidean plane [8,9,12].
In general, the best currently known upper bound is 2k−1, given by Koutsoupias
and Papadimitriou [12]. Thus there is a rich literature for deterministic online
algorithms for this problem.
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Fig. 1. The Class M2,4

Randomization is a powerful for many online problems [7]. Yet, very little is
known for randomized algorithms for the k-server problem. It seems to be quite
hard to determine the exact randomized competitiveness of the k-server problem,
that is, the minimum competitiveness of any randomized online algorithm for
the server problem. Even in the case k = 2 it is not known whether its compet-
itiveness is lower than 2, the known value of the deterministic competitiveness.
This is surprising and it is quite intuitive that a “better than 2-competitive”
algorithm should exist. In fact, 1 + e−

1
2 ≈ 1.6065, is the greatest lower bound
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with a published proof (see [10]) on the competitiveness of any randomized on-
line algorithm.1 There has been some progress for special cases. The randomized
competitiveness is known to be 3

2 for all uniform spaces and is also known for
three-point spaces [13]. For the special case of the line, Bartal et al. [2] have
given a randomized algorithm with a competitive ratio of 155

78 ≈ 1.987.
Our Contribution. In this paper we give a randomized online algorithm for
the 2-server problem in Cross Polytope Spaces with optimal competitive ratio
of 19

12 . Cross Polytope Spaces, denoted by M24, have been studied extensively
as early as the 19th century, see Schläfli [15], as well as Figure 1. They consist
of all metric spaces such that

– all distances are 1 or 2,
– d(x, y) + d(y, z) + d(z, x) ≤ 4.

By an abuse of terminology we will sometimes simply say “the metric space
M2,4” to denote this class of metric spaces.

In terms of the server problem, M24 generalizes uniform spaces and thus
paging. It is also useful to gain insight into the 2-server problem over more
general spaces. Our technique can, in principle, be used to design algorithms
for spaces M�,k, � ≤ k

2 , where distances are 1, . . . , � and the perimeter of every
triangle is at most k.

Our algorithm is not derived in an ad hoc way, instead it is constructed by
using a design technique called the knowledge state technique. It is worth men-
tioning that it would be hard to come up with the actual behavioral algorithm,
which we call the “wireframe algorithm”, if one were not to use this technique.
Yet the algorithm can be easily implemented and uses little memory, though the
derivation and the proof of competitiveness is only via the technique.

In the next section we briefly describe the knowledge state technique, and
then give a knowledge state description of the algorithm together with a proof
of competitiveness. This description is in what is called the mixed model of
computation – a generalization of a distributional description of a randomized
online algorithm. As mentioned, the technique makes it easier to contrive the
19
12 -competitive algorithm. In this form however, the algorithm would be hard to
implement as it is not described in the usual behavioral way. Thus in Section 3 we
translate this description into the behavioral (and easily implementable) wire-
frame algorithm. We are also able to show that our algorithm has a competitive
ratio, which is best possible; we show the lower bound in Section 4.

2 Knowledge States

We remind the reader that many randomized algorithms are given in distrib-
utional form, including a number of well known paging algorithms, e.g. [1,3].
For the 2-server problem, such an algorithm is essentially a state transition di-
agram, where each state is a probabilistic distribution of configurations (each

1 A lower bound very slightly larger than 1 + e− 1
2 is given in [10], but without proof.
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configuration is a set of two points in the space – the locations of the servers); a
transition from one state to the next state is a deterministic transition to a new
distribution. Figure 2 illustrates such a step. Here the algorithm has both servers
initially at configuration (x, z). Serving request r the algorithm transitions to a
distribution with mass 1

2 at (r, x) and mass 1
2 at (r, z). Unfortunately the num-

ber of configurations in each state (and hence the number of states) can increase
arbitrarily. One way to help avoid this is to allow non-deterministic transitions.
We note that we have a great degree of freedom in designing our state transition
diagram. As it turns out, our algorithm needs only eight states to achieve the
optimal competitive ratio.

Fig. 2. A Step of a Distributional Algorithm

We describe our algorithm and the lower bound result in terms of knowledge
states. We describe knowledge states briefly in this section and refer the reader
to [5,6] for a more detailed description of this concept. It incorporates non-
deterministic transitions as well as estimates on the offline cost.

As mentioned above, we use a variation of the distribution model to describe
our randomized algorithm. That is, at each step the state of the algorithm will
be described by a probability distribution on the set of all possible configurations
at that step. The distribution model is equivalent to the behavioral model for
randomized online algorithms against an oblivious adversary; see, for example,
[7]. In the standard distribution model, the algorithm deterministically chooses
a distribution at each step, but in this paper we allow the algorithm to use
randomization to choose the distribution. We call such a step a Las Vegas Step;
the reader might preview Figure 4. This variation, called the mixed model of
randomized algorithms, is a generalization of both the behavioral model and the
distributional model.

Let X denote the set of all configurations. (Naturally, for the 2-server prob-
lem, a configuration is simply a 2-tuple (a, b) of points in the metric space,
which describes the location of two servers.) We say that a function ω : X → R
is Lipschitz if ω(w) ≤ ω(u) + d(u, w) for all u, w ∈ X . An estimator is a non-
negative Lipschitz function X → R. If S ⊆ X , we say that S supports an
estimator ω if, for any w ∈ X there exists some u ∈ S such that ω(w) =
ω(u) + d(u, w). If ω is supported by a finite set, then there is a unique minimal
set S which supports ω, which we call the estimator support of ω. We call the



250 W. Bein et al.

Fig. 3. The Knowledge States

cardinality of the support the order of the estimator. We say that an estimator
ω has zero minimum if minu∈X ω(u) = 0.2

A knowledge state algorithm [4,5,6] is a mixed online algorithm that computes
an estimator at each step. The estimators used throughout this paper will have
very low order, i.e. the estimator can be described by giving values on very few
configurations. Furthermore, distributions of a knowledge state algorithm are
only concentrated on the estimator support, i.e. they are zero on all configura-
tions other than the configurations in the estimator support.

More formally, if A is a knowledge-state algorithm, then:

1. At any given step, A keeps track of a pair (ω, π), where π is a finite distri-
bution on X , and ω : X → R is the current estimator. The distribution is
positive only on configurations which are in the support of the estimator ω.
We call that pair the current knowledge state.

2. If S = (ω, π) is the knowledge state and the next request is r, then A uses
randomization to pick a new knowledge state S′ = (ω′, π′).

We now describe Item 1 for our specific situation. Thus, let M be a metric
space in the class M24. We will call a finite set of points S ⊂ M a constel-
lation. To define the knowledge states for our algorithm, we only need a total
of eight constellations, where each constellation has no more than four points.

2 We remind the reader of the concept of a work function. Work functions are estima-
tor functions. For example, work functions were used by Lund and Reingold [13] to
describe an “opt-graph”, which describes all possible moves of an optimal adversary.
In short, work functions provide information about the optimal cost of serving the
past request sequence. For a request sequence �, by ω�(u), we denote the minimum
cost of serving � and ending in configuration u.
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Fig. 4. One Move of the Knowledge State Algorithm

Each constellation is used to define a knowledge state of order no more than
3. In fact, for M24 it will suffice to consider a very small and simple class of
knowledge states: these knowledge states are shown in Figure 3. In Figure 3, a
line between two points indicates a distance of 1 between the two points, and the
absence of a line means that the points are 2 apart. Note also that for any point
x ∈ M , we denote an antipodal point (i.e. a point a distance of 2 away) by x̄.
The ovals encircling two points are the support configurations of the estimators
and distributions; the red numbers (the numbers to the left in the pairs of num-
bers) give the values of the distribution and the black numbers (the numbers to
the right in the pairs of numbers) give the value on the support of the estima-
tor. We refer to these knowledge states as Axz , Bxyz, Cz , Dxyz, Exz, Fxz, Gxz and
Hxz. When we only refer to the configurations we will use the same notation
except we will use lower case letters; thus the constellations are referred to as
axz, bxyz, cz, dxyz, exz, fxz, gxz and hxz. We finally note that the numbers in the
boxes denote a potential, which is used later.

We now turn to Item 2 and describe how, using randomization, a new knowl-
edge state is chosen. Given S = (ω, π) and r there are subsequent knowl-
edge states Si = (ωi, πi) and subsequent nonactive weights λi for i = 1, . . .m,∑m

i=1 λi = 1. Then for each i, A chooses S′ to be Si with probability λi. Again,
for M2,4, Figure 3 shows all eight possible subsequents.

We will now discuss how we can see if a knowledge state algorithm is com-
petitive. Given the subsequents, a real number adjustA(S, r) is computed such
that (ω∧r)(u) ≥ adjustA(S, r) +

∑m
i=1 λiωi(u) for each x ∈ X , where we define
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function ω∧r as (ω∧r)(w) = min {ω(u) + d(u, w) | u 
 r}. We will use a standard
potential argument to prove competitiveness, and thus we will need to associate
a potential Φ with each knowledge state. We now define the update condition
for a given step. To this end, fix competitive ratio C > 1. Let S be the current
knowledge state, let {Si} be the subsequents for the current step, and λi be
the probability that Si will be chosen in this current step. Let costA to be the
expected cost of the algorithm A. Then the update condition is that

Φ(S) ≥ costA − C · adjust +
∑

i

λi Φ(Si) . (1)

We will make use of the following lemma from [5,6]:

Lemma 1. If the update condition holds at every step of a knowledge state al-
gorithm then the algorithm is C-competitive.

Figure 4 shows the step where the knowledge state S is Dxyz and x̄ is requested.
For S we have an estimator with support ω({z, x}) = ω({z, y}) = ω({z, z̄}) = 0

Table 1. The Knowledge State Algorithm for M2,4

KS State Request Resulting KS Φ0 Φ1 offset costA slack

Axz x̄ Cx 0 5
12 1 1 1

6
Axz r Bxzr 0 7

12 1 1 0

Bxyz x Axz 7
12 0 0 1

2
1
18

Bxyz z̄ Bxyz̄ 7
12

7
12 1 1 7

12
Bxyz x̄ Dyzx̄ 7

12
7
6 1 1 0

Bxyz r 1
3Bxyr + 1

3Bxzr + 1
3Byzr 7

12
7
12

2
3 1 1

18
Cz r Gzr 5

12 1 1 1 0

Dxyz x Ez̄x 7
6

5
12 0 3

4 0

Dxyz z̄ Cz 7
6

5
12 0 1

2
1
4

Dxyz x̄ 1
3Dyzx̄ + 1

3Dyz̄x̄ + 1
3Gzx̄ 7

6
10
9

2
3

13
12

1
36

Dxyz r 1
2Bxzr + 1

2Byz̄r 7
6

7
12

1
2 1 3

8

Exz x Fzx 5
12

29
24 1 19

24 0

Exz x̄ Ax̄z 5
12 0 0 5

12 0

Exz z̄ Ax̄z 5
12 0 0 5

12 0

Exz r Bx̄zr 5
12

7
12 1 1 5

12
Fxz x Ezx 29

24
5
12 0 19

24 0

Fxz z̄ Cz 29
24

5
12 0 5

24
7
12

Fxz x̄ Hzx̄ 29
24

7
4 1 25

24 0

Fxz r 1
2Axr + 1

2Gzr 29
24

1
2

1
2

31
24

17
24

Gxz x Axz 1 0 0 1 0

Gxz z̄ Cz 1 5
12 1 1 7

6
Gxz r Axr 1 0 3

2 1 13
12

Hxz r 1
2Bxzr + 1

2Bx̄z̄r 7
4

7
12

1
2 1 23

24

Hxz x Ez̄x 7
4

5
12 0 1 1

3
Hxz z̄ Cz 7

4
5
12 0 3

4
7
12
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and distribution 1
4 on {z, x}, 1

4 on {z, y} and 1
2 on {z, z̄}. In this situation

the knowledge state algorithm chooses knowledge states Gzx̄, Dyzx̄, and Dyz̄x̄

with equal probability of 1
3 . (See the single numbers on the edges under the

Las Vegas sign in Figure 4.) Next, we will argue that the update condition,
i.e. inequality 1, does indeed hold for this step. To argue this we first focus
on the “intermediate state” W depicted to the right of Dxyz. First note by
using elementary arithmetic that the weighted average of the three subsequent
states Gzx̄, Dyzx̄, and Dyz̄x̄ gives exactly the intermediate state W , both its
distribution as well as its estimator function.

Turning now to ω∧x̄ it is easily calculated that the resulting estimator support
set consists of {{x̄, x}, {x̄, z̄}, {x̄, z}, {x̄, y}} with value 1 on all the elements in
the support set. Note now that if ω∧x̄ is lowered by 2

3 , this function is equal to the
estimator of W . In other words, if adjustA(S, x̄) = 2

3 , then (ω∧x̄)−adjustA(S, x̄)
is the estimator of W . (The value adjustA(S, x̄) appears as the second value under
the arrow from Dxyz to W in Figure 4.)

We now analyze the cost of the algorithm for the step. It is the cost of the move
from the distribution of Dxyz to the distribution of W . We remind the reader
that this can be done solving a transportation problem. An instance of the trans-
portation problem is a weighted directed bipartite graph with distributions on
both parts. More formally, an instance is an ordered quintuple (A, B, cost , α, β)
where U and V are finite non-empty sets, α is a distribution on U , β is a dis-
tribution on V , and cost is a real-valued function on U × V . A solution to this
instance is a distribution γ on U × V such that

1. γ({u} × V ) = α(u) for all u ∈ U .
2. γ(U × {v}) = β(v) for all v ∈ V .

Then cost(γ) =
∑

u∈U

∑
v∈V γ(u, v)cost(u, v), and γ is a minimal solution if

cost(γ) is minimized over all solutions, in which case we call cost(γ) the min-
imum transportation cost. The left part of Figure 5 shows the instance of the
transportation problem which results from the situation in Figure 4. A solution
of the problem is given by the following: Move 1

4 from {z, x} to {x̄, x}, move 1
6

from {z, y} to {x̄, y}, move 1
4 from {z, z̄} to {x̄, z̄}, move 1

4 from {z, z̄} to {x̄, z},
each at cost 1; and 1

12 from {z, y} to {x̄, x} at cost 2. Thus the total cost of the
algorithm in this step is 13

12 . (This number also appears as the first value under
the arrow from Dxyz to W in Figure 4.)

Finally we fix competitiveness C = 19
12 . We are now ready to check the update

condition 1 for this step. We have Φ(S) = 7
6 ; costA = 13

12 , C · adjust = 19
12 · 2

3 and∑
i λi Φ(Si) = 10

9 . Thus Φ(S) − costA + C · adjust −
∑

i λi Φ(Si) ≥ 0.
A complete listing of moves of the algorithm is given in columns one to three

of Table 1.
We have:

Theorem 1. The knowledge state algorithm of Table 1 is C-competitive with
C = 19

12 .

Proof. Update condition 1 is verified for every step in Table 1.
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Fig. 5. The Distributional Transportation Problem

3 The Wireframe Algorithm

The knowledge state algorithm described in the previous section was analyzed
in the mixed model of computation. We recall that this implies that there is a
competitive behavioral online algorithm. The following lemma is well-known. (It
is, for example, implicit in Chapter 6 of [7].)

Lemma 2. The mixed model and the behavioral model of randomized online
algorithms are equivalent, in the following sense. If A1 is an algorithm of one of
the models, there exist an algorithm A2 of the other model, such that, given any
request sequence �, the cost of A2 for � is no greater than the cost of A1.

We will now translate our algorithm into behavioral form, a form in which it
is easy to implement the algorithm into an actual working computer program.
The resulting behavioral algorithm is called the “wireframe algorithm.” At each
step, in addition to the position of the two servers, the algorithm also keeps track
of certain points in an octahedron. This can be best illustrated by a wireframe
of an octahedron; see Figure 6. In the situation depicted in Figure 6 (see top
octahedron) the server positions are at points y and z and the algorithm keeps
track of constellation dxyz. (See the dashed lines.) Note that constellation dxyz

can be best thought of as the wireframe shown in Figure 6 (top part). Next, the
Figure (lower part) shows the behavior of the algorithm if x̄ is requested. With
probability 1

6 the algorithm moves the server at point y to point x̄ and and the
server at point z to x and goes into state (i.e. wireframe) dyzx̄. With remaining
probability 1

6 the algorithm does exactly the same server movements (y to x̄
and z to x) and goes into state (i.e. wireframe) dyz̄x̄. Furthermore, with equal
probabilities 1

3 the wireframe algorithm moves the server at point z to point x̄
and goes into state (i.e. wireframe) dyzx̄ or dyz̄x̄.

Note the following:

– The algorithm has no concept of knowledge states, it merely remembers
where the servers are and keeps track of only very limited extra information.
Upon a request, depending on this extra information, the algorithm then
decides how to move the servers and how to update its information.
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Fig. 6. One Move of the Wireframe Algorithm

– A server algorithm is called lazy if, in a step, it only moves one server to serve
a request and it does not move any other server. Note that the algorithm is
non-lazy.

– In the situation described in Figure 6 the request to x̄ is served by moving the
server at point z to point x̄ with probability 2

3 = 1
3 + 1

3 , but the constellation
memorized by the algorithm after the move is either dyzx̄ or dyz̄x̄. With
probability 1

3 = 1
6 + 1

6 , the algorithm moves the server at point y to point x̄
and and the server at point z to x. (Again, with the caveat that two different
constellations are possible after the move.)

For the behavioral move just described we will use the notation:

dxyz, yz x̄ 1
6{dyzx̄, xx̄} + 1

3{dyzx̄, yx̄} + 1
6{dyz̄x̄, xx̄} + 1

3{dyz̄x̄, yx̄} .

Using this notation, the wireframe algorithm is completely described in
Table 2.

The derivation of the behavioral algorithm from the mixed algorithm is rou-
tine (it is described in general in [5,6]); we will briefly discuss how the step of
Figure 6 results from translating the transition of Figure 4. The translation uses
the solution to transportation problem of Figure 5. Note that there is proba-
bility mass of 1

4 at {(z, y)}. Mass 1
12 is moved to {(x̄, x)} and mass 1

6 is moved
to {(x̄, y)}. Thus, given that the constellation is {(z, y)} the conditional proba-
bilities for {(x̄, x)} and {(x̄, y)} are 1

3 and 2
3 respectively. Following Figure 5 to

the right, we see that the mass 1
3 at {(x̄, x)} is equally divided between constel-

lations dyzx̄ and dyz̄x̄. The same is true for the mass at {(x̄, y)}. We conclude
that the algorithm chooses with probability 1

6 servers at {(xx̄)} with dyzx̄, with
probability 1

3 servers at {(yx̄)} with dyzx̄, with probability 1
6 servers at {(xx̄)}

with dyz̄x̄, and with probability 1
3 servers with {(yx̄)} with dyz̄x̄.
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In summary we have:

Theorem 2. The wireframe algorithm of Table 2 is C-competitive with C = 19
12 .

Table 2. The Moves of the Wireframe Algorithm

axz, xz x̄ 1{cx, xx̄}
axz, xz r 1

2{bxzr, xr} + 1
2{bxzr, zr}

bxyz, xz x 1{axz, xz}
bxyz, yz x 1{axz, xz}
bxyz, xz x̄ 1{dyzx̄, xx̄}
bxyz, yz x̄ 1

2{dyzx̄, yx̄} + 1
2{dyzx̄, zx̄}

bxyz, xz z̄ 1{bxyz̄, xx̄}
bxyz, yz z̄ 1{bxyz̄, yx̄}
bxyz, xz r 1

3{bxyr, xr} + 1
3{bxzr, xr}

+ 1
6{bxzr, zr} + 1

6{byzr, zr}
bxyz, yz r 1

3{bxyr, yr} + 1
6{bxzr, zr}

+ 1
3{byzr, yr} + 1

6{byzr, zr}
cxz, zz̄ r 1

2{gzr, zr} + 1
2{gzr, z̄r}

dxyz, xz x 1{ez̄x, yz}
dxyz, yz x 1{ez̄x, yz}
dxyz, z̄z x 7

12{ez̄x, yz} + 5
12{ez̄x, yz̄}

dxyz, xz z̄ 1{cz , zz̄}
dxyz, yz z̄ 1{cz , zz̄}
dxyz, z̄z z̄ 1{cz , zz̄}
dxyz, xz r 1{bxzr, xr}
dxyz, yz r 1

2{bxzr, zr} + 1
2{byz̄r, z̄r}

dxyz, z̄z r 1{byz̄r, yr}
dxyz, xz x̄ 1

2{dyzx̄, xx̄} + 1
2{dyz̄x̄, xx̄}

dxyz, yz x̄ 1
6{dyzx̄, xx̄} + 1

3{dyzx̄, yx̄}
+ 1

6{dyz̄x̄, xx̄} + 1
3{dyz̄x̄, yx̄}

dxyz, z̄z x̄ 1
3{gzx̄, zx̄} + 1

3{gzx̄, z̄x̄}
+ 1

6{dyzx̄, zx̄} + 1
6{dyz̄x̄, z̄x̄}

exz, xz x 1{fzx, zx}
exz, x̄z x 1{fzx, x̄x}
exz, xz z̄ 1{ax̄z, x̄z}
exz, x̄z z̄ 1{ax̄z, x̄z}
exz, xz r 1{bx̄zr, zr}
exz, x̄z r 12

19{bx̄zr, x̄r} + 7
19{bx̄zr, zr}

exz, xz x̄ 1{ax̄z, x̄z}
exz, x̄z x̄ 1{ax̄z, x̄z}

fxz, xz x 1{ezx, zx}
fxz, z̄z x 14

19{ezx, zx} + 5
19{ezx, z̄x}

fxz, xz z̄ 1{cz , zz̄}
fxz, z̄z z̄ 1{cz , zz̄}
fxz, xz x̄ 1{hzx̄, xx̄}
fxz, z̄z x̄ 1

19{hzx̄, xx̄} + 9
19{hzx̄, zx̄}

+ 9
19{hzx̄, z̄x̄}

fxz, xz r 1{axr, xr}
fxz, z̄z r 7

19{axr, xr} + 6
19{gzr, zr}

+ 6
19{gzr, z̄r}

gxz, xz x 1{axz, zx}
gxz, x̄z x 1{axz, zx}
gxz, xz z̄ 1{cz , zz̄}
gxz, x̄z z̄ 1{cz , zz̄}
gxz, xz r 1{axr, xr}
gxz, x̄z r 1{axr, xr}
hxz, xz r 2

3{bxzr, xr} + 1
3{bxzr, zr}

hxz, x̄z r 1
3{bxzr, zr} + 2

3{bx̄z̄r, x̄r}
hxz, z̄z r 1{bx̄z̄r, z̄r}
hxz, xz x 1{ez̄x, xz}
hxz, x̄z x 1{ez̄x, xz}
hxz, z̄z x 1

6{ez̄x, xz} + 5
6{ez̄x, xz̄}

hxz, xz z̄ 1{cz , zz̄}
hxz, x̄z z̄ 1{cz , zz̄}
hxz, z̄z z̄ 1{cz , zz̄}

4 The Lower Bound

Indeed, the competitiveness of the wireframe algorithm is best possible:

Theorem 3. Let A be any randomized online algorithm for the 2-server problem
for M2,4. Let C be the competitiveness of A. Then C ≥ 19

12 .
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Proof. We only give a sketch; the formal proof will be given in the full paper. We
refer to Figure 7. Consider the cross-polyhedron {x, x̄, y, ȳ, z, z̄}. Without loss of
generality, the initial server position is {(x, y)}. We call this situation START.
Now consider:

1. Adversary requests z; pays 1.
2. A serves request; pays 1.
3. Without loss of generality, A is at x with probability ≤ 1

2 .
4. Adversary requests ȳ; pays 1.
5. A serves request; pays 1.

It can easily be argued that the probability that A has a server at y is not smaller
than 1

2 and that the probability that there is a server at x is not larger than 1
4 .

6. Adversary requests x, pays 0.
7. A serves the request; pays ≥ 3

4 .

We call this situation the MIDDLE, see Figure 7.
Let

p = probability there is a server at ȳ

q = probability there is a server at z

r = probability there is a server at y

Then p + q + r = 1.

Case i: q + 2r ≥ 5
12 (Return to START)

a) Adversary repeatedly requests ȳ, x, i.e. hammers at {(ȳ, x)}; pays 0.
b) A must move server from y and z to ȳ; pays q + 2r.

Situation has returned to START: Adversary has paid 2, A has paid no less than
2 + 3

4 + 5
12 = 38

12 . Thus the ratio is no less than 19
12 .

Case ii: q + 2r < 5
12 (Cycle back to MIDDLE)

a) Adversary requests y, pays 1.
b) A serves request and pays 1 − r. Thus, the probability that there is a server

at x after this move is ≤ 1 − p.
c) Adversary requests x, pays 0.
d) A serves request, pays ≥ p.

We have now returned to MIDDLE, with the roles of y and ȳ interchanged. The
”middle loop” consists of the two requests between the two times of MIDDLE.
Analysis of the middle loop: Adversary pays 1. A pays no less than (1− r)+p =
(p + q) + p = 2p + q. But 2p + q = 2(p + q + r) − q − 2r ≥ 2 − 5

12 = 19
12 .
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Fig. 7. The Lower Bound Graph

5 Concluding Remarks

The knowledge states from Figure 3 were found by trial and error using computer
experimentation. We mention that there exists a slightly simpler knowledge state
algorithm for M2,4, which is of order 2, with competitiveness 7

4 . We note that
for that case we also have calculated, through computer experimentation, the
minimum value of C in the sense that no lower competitiveness for any order 2
knowledge state algorithm for M2,4 exists. This value is C = 173+

√
137

112 .
These results, as well as our results for the server problem in uniform spaces

(equivalent to the caching problem), indicate a natural trade-off between com-
petitiveness and memory of online randomized algorithms.
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Abstract. We consider ranking and clustering problems related to the
aggregation of inconsistent information. Ailon, Charikar, and Newman
[1] proposed randomized constant factor approximation algorithms for
these problems. Together with Hegde and Jain, we recently proposed
deterministic versions of some of these randomized algorithms [2]. With
one exception, these algorithms required the solution of a linear pro-
gramming relaxation. In this paper, we introduce a purely combinator-
ial deterministic pivoting algorithm for weighted ranking problems with
weights that satisfy the triangle inequality; our analysis is quite simple.
We then shown how to use this algorithm to get the first deterministic
combinatorial approximation algorithm for the partial rank aggregation
problem with performance guarantee better than 2. In addition, we ex-
tend our approach to the linear programming based algorithms in Ailon
et al. [1] and Ailon [3]. Finally, we show that constrained rank aggrega-
tion is not harder than unconstrained rank aggregation.

Keywords: derandomization, rank aggregation, feedback arc set in tour-
naments.

1 Introduction

We consider the problem of ranking or clustering a set of elements, based on
input information for each pair of elements. The objective is to find a solution
that minimizes the deviation from the input information. For example, we may
want to cluster webpages based on similarity scores, where for each pair of pages
we have a score between 0 and 1, and we want to find a clustering that minimizes
the sum of the similarity scores of pages in different clusters plus the sum of (one
minus the similarity score) for pages in the same cluster. Another example arises
in meta-search engines for Web search, where we want to get robust rankings
that are not sensitive to the various shortcomings and biases of individual search
engines by combining the rankings of the individual search engines [4].
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More formally, in the weighted minimum feedback arc set problem in tourna-
ments, we are given a set of elements V , nonnegative weights w(i,j) and w(j,i) for
each pair of distinct elements i and j, and we want to find a permutation π that
minimizes the weight of pairs of elements out of order with respect to the per-
mutation, i.e.

∑
π(i)<π(j) w(j,i). We say the weights satisfy probability constraints

if for any pair i, j, w(i,j) + w(j,i) = 1, or the triangle inequality if for any triplet
i, j, k, w(i,j) + w(j,k) ≥ w(i,k). We will sometimes refer to this problem as the
ranking problem. In the rank aggregation problem, the input is a collection of
orderings of V , and w(i,j) is the fraction of orderings in which i is ordered before
j; note that these weights obey both the probability constraints and triangle
inequality. In the constrained version of the ranking problem, we are also given a
partial order P as input and the output permutation π must be consistent with
P , i.e. if (i, j) ∈ P then π(i) < π(j).

In the weighted clustering problem, we are given a set of elements V , and
values w+

{i,j} and w−
{i,j} for every distinct pair of elements i, j. We want to find

a clustering minimizing
∑

i,j in different clusters w+
{i,j} +

∑
i,j in same cluster w−

{i,j}.
We say the weights satisfy probability constraints if for every i, j ∈ V , w+

{i,j} +
w−

{i,j} = 1. We will say the weights satisfy the triangle inequality if for every
triple i, j, k, w−

{i,j} + w−
{j,k} ≤ w−

{i,k} and w+
{i,j} + w−

{j,k} ≤ w+
{i,k}. The problem

where exactly one of w+
{i,j} and w−

{i,j} is 1 (and the other 0) is called correlation
clustering. The clustering problem corresponding to rank aggregation, in which
we want to aggregate a collection of clusterings of the same set of elements,
is called consensus clustering. We can also have a constrained version of the
weighted clustering problem by giving as input sets of pairs of items P+ and
P−, where pairs in P+ must be in the same output cluster, while pairs in P−

must be in different output clusters.
Both rank aggregation and consensus clustering are NP-hard [4,5], so the more

general problems of ranking or clustering with weights that satisfy the triangle
inequality or probability constraints, or both, are also NP-hard.

Ailon, Charikar and Newman [1] give the first constant-factor approximation
algorithms for the unconstrained ranking and clustering problems with weights
that satisfy either triangle inequality constraints, probability constraints, or
both. Their algorithms are randomized and based on Quicksort: the algorithms
recursively generate a solution by choosing a random vertex as “pivot” and
ordering all other vertices with respect to the pivot vertex according to some
criterion. For example, in the first type of algorithm they give for the ranking
problem, a vertex j is ordered before the pivot k if w(j,k) ≥ w(k,j) or ordered
after k otherwise. Next, the algorithm recurses on the two instances induced by
the vertices before and after the pivot.

In the case of rank aggregation and consensus clustering, a folklore result is
that returning the best of the input rankings or clusterings is a 2-approximation
algorithm. Ailon, Charikar and Newman also show that one can obtain better
approximation factors for rank aggregation and consensus clustering by returning
the best of their algorithm’s solution and the best input ranking/clustering.
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For instance, for rank aggregation, they obtain a randomized 11
7 -approximation

algorithm using their first type of algorithm, and a randomized 4
3 -approximation

algorithm using their second, LP-based, algorithm.
There has been a good deal of follow-up work since the Ailon et al. paper.

Ailon and Charikar [6] extend the pivot-based approximation algorithms for clus-
tering to hierarchical clustering. Coppersmith, Fleischer, and Rudra [7] give a
simple greedy 5-approximation algorithm for the ranking problem when weights
obey the probability constraints. Van Zuylen, Hegde, Jain and Williamson [2]
give deterministic variants of the pivoting algorithms in Ailon et al. and Ailon
and Charikar and extend them to the constrained versions of these problems.
All but one of their algorithms require solving an LP relaxation of the problem,
and their techniques do not extend to the improved results in the Ailon et al.
paper for rank aggregation and consensus clustering. They do give a combina-
torial approximation algorithm for the ranking problem when weights obey the
probability constraints, with a performance guarantee of 4 in the unconstrained
case, and 6 for constrained problems.

Kenyon-Mathieu and Schudy [8] show that there exists a polynomial-time ap-
proximation scheme for unconstrained weighted feedback arc set in tournaments
with weights satisfying b ≤ w(i,j) + w(j,i) ≤ 1 for all i, j ∈ V for some b > 0.
Note that this includes problems satisfying the probability constraints and hence
includes the rank aggregation problem as a special case. Their approximation
scheme assumes the availability of a solution with cost that is not more than
a constant factor α from optimal. To get a (1 + ε)-approximate solution, the
running time of their algorithm is doubly exponential in 1

ε , 1
b and α.

Ailon [3] considers the partial rank aggregation problem, which was intro-
duced by Fagin, Kumar, Mahdian, Sivakumar and Vee [9,10]. Unlike full rank
aggregation, the input rankings do not have to be permutations of the same
set of elements. Instead, input rankings are allowed to be top-m rankings, i.e.
permutations of only a subset of the elements (in which case we make the nat-
ural assumption that the unranked elements all share the position after the last
ranked element), or the rankings may be p-ratings, i.e. mappings from V to
{1, . . . , p}, as is the case for example in movie rankings. More precisely, a partial
ranking of a set of elements V is a function π : V → {1, . . . , |V |}. If π is bijective,
it is a full ranking. We will say the distance between two partial rankings π1 and
π2 is the number of pairs i, j such that π1(i) < π1(j), and π2(i) > π2(j). The
goal of partial rank aggregation is, given � partial rankings of V , to output a
permutation of the elements of V that minimizes the sum of the distances from
the � input rankings. Note that the output is required to be a permutation, and
cannot be a partial ranking. Ailon [3] generalizes and improves some of the re-
sults from Ailon et al. to partial rank aggregation. He shows that perturbing the
solution to the linear programming relaxation and using these perturbed values
as probabilities gives a randomized 3

2 -approximation algorithm for partial rank
aggregation. Since his analysis only uses the fact that the weights satisfy the
triangle inequality, this also yields 3

2 -approximation algorithm for ranking with
triangle inequality constraints on the weights.
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1.1 Our Results

Our goals in obtaining the results for this paper were twofold. First, we wanted
to do an implementation study of the various pivoting algorithms. But none
of the deterministic pivoting algorithms thus far are especially practical. The
PTAS of Kenyon-Mathieu and Schudy is of theoretical interest only. Although
the deterministic algorithms of Van Zuylen et al. are polynomial-time, with the
exception of their combinatorial algorithm for ranking with probability con-
straints, they require solving a linear program with O(n2) variables and O(n3)
constraints for n = |V |, which with standard LP packages is likely to be slow
for even moderate values of n. Thus we give purely combinatorial, determinis-
tic pivoting algorithms. For weights obeying the triangle inequality, we give a
2-approximation algorithm, whose analysis is particularly simple. In the case of
rank aggregation and consensus clustering, we give an 8

5 -approximation algo-
rithm. The 8

5 -approximation algorithm extends to the partial rank aggregation
problem as well. This gives the first combinatorial algorithm for partial rank
aggregation with an approximation guarantee less than 2. The running time of
our combinatorial algorithms is O(n3) compared to O(n2) for their randomized
counterparts in Ailon et al.

Second, we wished to give deterministic algorithms matching the best ran-
domized algorithms of Ailon et al. and Ailon in the case of rank aggregation
and partial aggregation, and correlation and consensus clustering. It is a fun-
damental question whether everything computable in randomized polynomial
time is computable in deterministic polynomial time (something that the recent
primes in P result by Agrawal, Kayal, and Saxena [11] provided some additional
evidence for). The techniques from Ailon et al. and Ailon are not amenable to
standard techniques of derandomization, but we show (in the current paper and
[2]) that we can amortize in place of the expectation and make the random-
ized algorithm deterministic. In particular, we show how to derandomize the
4
3 -approximation algorithm of Ailon et al. for rank aggregation and consensus
clustering, the 5

2 -approximation algorithm of Ailon et al. for ranking and clus-
tering with probability constraints, and the 3

2 -approximation algorithm of Ailon
for partial rank aggregation. These algorithms invoke an interesting two-step
derandomization, in which we first choose a pivot so as to minimize a ratio of
expectations; then we apply the method of conditional expectations to decide
how to order (cluster) the elements with respect to the pivot.

Finally, we show that if the weights satisfy the triangle inequality, then any
approximation result that holds for unconstrained ranking or clustering problems
also holds for constrained problems, by showing a sequence of local moves that
remove any violations of the constraints and do not increase the cost of the
solution.

In the remainder of the paper, we will only discuss our results for ranking, and
not for clustering. It is straightforward to translate these results to the clustering
setting (see Ailon et al. [1] and Van Zuylen et al. [2]).
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Table 1. The table summarizes the best known approximation guarantees. Italicized
entries are expected approximation guarantees from randomized algorithms. ‘A’ refers
to Ailon [3], ‘ACN’ refers to Ailon, Charikar and Newman [1], ‘KS’ refers to Kenyon-
Mathieu and Schudy [8], ‘ZHJW’ refers to Van Zuylen, Hegde, Jain, and Williamson
[2] and ‘ZW’ refers to this paper.

Ranking
prob. constr. triangle ineq. full rank agg. partial rank agg

Combin. 4(ZHJW), 3(ACN) 2(ZW), 2(ACN), 8
5 (ZW), 11

7 (ACN) 8
5 (ZW)

LP based 5
2 (ZW), 5

2 (ACN) 3
2 (ZW), 3

2 (A) 4
3 (ZW), 4

3 (ACN) 3
2 (ZW), 3

2 (A)
PTAS 1 + ε(KS) 1 + ε(KS)

Clustering
prob. constr. triangle ineq. consensus clustering

Combinatorial 6(ZHJW), 3(ACN) 2(ZW), 2(ACN) 8
5 (ZW), 11

7 (ACN)
LP based 5

2 (ZW), 5
2 (ACN) 2(ZHJW), 2(ACN) 4

3 (ZW), 4
3 (ACN)

2 Combinatorial Pivoting Algorithms

Given an instance of the weighted feedback arc set problem in tournaments,
suppose we form a tournament G = (V, A) by including arc (i, j) only if w(i,j) ≥
w(j,i) (breaking ties arbitrarily). This is called the majority tournament in Ailon
et al. [1]. Clearly, if the tournament is acyclic, then it corresponds to an optimal
permutation: the cost for pair i, j in any solution is at least min{w(i,j), w(j,i)},
and this lower bound is met for every pair.

Ailon, Charikar and Newman [1] propose a simple algorithm to obtain a per-
mutation that costs at most 3 times the optimum if the weights satisfy the
triangle inequality, or at most 2 times the optimum if the weights satisfy both
triangle inequality and probability constraints. Their algorithm, FAS-Pivot, is
given below. We use the following notation: We denote by G(V ′) the subgraph
of G induced by V ′ ⊂ V . If π1 and π2 are permutations of disjoint sets V1, V2,
we let π1, π2 denote the concatenation of the two permutations.

FAS-Pivot(G = (V, A))

Pick a pivot k ∈ V .
VL = {i ∈ V : (i, k) ∈ A}, VR = {i ∈ V : (k, i) ∈ A}.
Return FAS-Pivot(G(VL)), k, FAS-Pivot(G(VR)).

In Ailon, Charikar and Newman’s algorithm, a pivot is chosen randomly. In
our deterministic versions of this algorithm, we will propose different ways of
choosing the pivot, depending on the information we have about the input.

For a pair i, j with (i, j) in the majority tournament A, we will let wij =
w(i,j) and w̄ij = w(j,i). Note that this implies that wij = max(w(i,j), w(j,i)) and
w̄ij = min(w(i,j), w(j,i)). Then if a pair i, j is ordered according to A, the cost
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incurred by the algorithm is w̄ij , and for each pair not ordered according to A,
the cost is wij . We will call the first type of arcs “forward arcs” and the second
“backward arcs”.

Ailon, Charikar and Newman bound the expected cost for the backward arcs
if the pivot is chosen randomly. Subsequently, Van Zuylen, Hegde, Jain and
Williamson showed that one can obtain a deterministic version of this algorithm
by first solving a linear programming relaxation, and then carefully choosing the
pivot vertex based on the solution to the linear program. We show that if the
weights satisfy the triangle inequality, then we can give a deterministic algorithm
that does not require us to solve a linear program and that achieves the same
guarantees as in Van Zuylen et al. for this case. The idea of our algorithm is to
use w̄ij as a “budget” for vertex pair i, j, and to show that we can always choose
a pivot so that the cost of the backward arcs created by pivoting on this vertex
is at most twice the budget for these arcs.

Theorem 1. There exists a deterministic combinatorial 2-approximation algo-
rithm for weighted feedback arc set in tournaments with triangle inequality.

Proof. We use the algorithm described above, but specify how to choose a good
pivot. For a given pivot k, we let Tk(V ) ⊂ A be the set of arcs that become
backward by pivoting on k when the set of vertices in the recursive call is V .
Our choice of pivot is then:

Pick k ∈ V minimizing1

∑
(i,j)∈Tk(V ) wij∑
(i,j)∈Tk(V ) w̄ij

(1)

As was observed in [2], (i, j) is a backward arc if (k, i) and (j, k) in A, in
other words, exactly when (i, j) is in a directed triangle in A with the pivot k.
Therefore Tk(V ) contains exactly the arcs that are in a directed triangle with
k in G(V ). The cost incurred for the arcs in Tk(V ) if k is the pivot is equal to∑

(i,j)∈Tk(V ) wij , and we have a lower bound on the cost in any feasible solution
for these vertex pairs of

∑
(i,j)∈Tk(V ) w̄ij .

Let T be the set of directed triangles in G(V ), and for a triangle t =
(i, j), (j, k), (k, i), let w(t) = wij +wjk +wki and let w̄(t) = w̄ij + w̄jk + w̄ki. If we
sum

∑
(i,j)∈Tk(V ) wij over all k ∈ V , i.e.

∑
k∈V

∑
(i,j)∈Tk(V ) wij , then we count

wij exactly once for every pivot k such that (i, j), (j, k), (k, i) is a directed tri-
angle, hence

∑
k∈V

∑
(i,j)∈Tk(V ) wij =

∑
t∈T w(t). Similarly,

∑
(i,j)∈Tk(V ) w̄ij =∑

t∈T w̄(t).
Now, note that for t = (i, j), (j, k), (k, i), by the triangle inequality on the

weights, wij = w(i,j) ≤ w(i,k) + w(k,j) = w̄ki + w̄jk, or more generally wa ≤∑
a′∈t:a′ �=a w̄a′ for any a ∈ t. Hence w(t) ≤ 2w̄(t). Thus we have that∑

k∈V

∑
(i,j)∈Tk(V )

wij =
∑
t∈T

w(t) ≤ 2
∑
t∈T

w̄(t) =
∑
k∈V

∑
(i,j)∈Tk(V )

w̄ij .

1 Throughout this work, we define a ratio to be 0 if both numerator and denominator
are 0. If only the denominator is 0, we define it to be ∞.
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Hence, there exists some k such that
∑

(i,j)∈Tk(V ) wij ≤ 2
∑

(i,j)∈Tk(V ) w̄ij ,
and the cost incurred for the backward arcs when pivoting on k is not more than
2 times the lower bound on the cost for these vertex pairs. ��

As in Ailon, Charikar and Newman [1], we can do better in the case of rank
aggregation. In fact, we will extend the ideas from Ailon, Charikar and Newman
[1], and Ailon [3] to give a combinatorial 8

5 -approximation algorithm for partial
rank aggregation.

In the partial rank aggregation problem, we are given � partial rankings
π1, . . . , π� where πk : V → {1, . . . , |V |} for k = 1, . . . , �. In the (full) rank ag-
gregation problem, π1, . . . , π� are bijective. We let w(i,j) = 1

�

∑�
k=1 1(πk(i)<πk(j))

and note that the weights for the partial rank aggregation problem satisfy the
triangle inequality.

A well-known 2-approximation for full rank aggregation outputs one of the
input permutations at random: the expected cost for pair i, j is 2w(i,j)w(j,i) which
is not more than 2w̄ij . It follows that returning the best input permutation is
also a 2-approximation algorithm.

Ailon [3] proposes the algorithm RepeatChoice for partial rank aggregation.
Let π1, . . . , π� be the input rankings; π will be our final output ranking. We start
by setting π(i) = 1 for all i ∈ V . Then we repeatedly choose an input ranking
πk uniformly at random without replacement; we check each i, j ∈ V and if
π(i) = π(j) but πk(i) < πk(j), we modify π so that now π′(i) < π′(j). We can
do this by setting π′(h) = π(h) if π(h) ≤ π(i) and π′(h) = π(h) + 1 if h = j or
π(h) > π(i).

Note that π may not yet be a full ranking: We will say that i ≡ j if πk(i) =
πk(j) for every input ranking πk. At the end of the RepeatChoice procedure, we
arbitrary break the ties between i, j, i ≡ j, so that π is a full ranking. For ease
of exposition, we will henceforth assume that there are no pairs i, j such that
πk(i) = πk(j) for all k = 1, . . . , �, although our results also hold if such pairs do
exist.

The probability that i is ranked before j is w(i,j)

w(i,j)+w(j,i)
which incurs a cost

of w(j,i). Since i is either ranked before j, or j before i, the expected cost for
pair i, j is 2w(j,i)w(i,j)

w(i,j)+w(j,i)
. If we define the majority tournament G = (V, A) as

above, and let wij = max{w(i,j), w(j,i)} and w̄ij = max{w(i,j), w(j,i)} as before,
then the total expected cost for the permutation returned by RepeatChoice
is

∑
(i,j)∈A

2wijw̄ij

wij+w̄ij
≤ 2

∑
(i,j)∈A w̄ij . Ailon shows that this algorithm can be

derandomized.
Ailon, Charikar and Newman show that the best of their algorithm’s solution

and the best input permutation is a 11
7 -approximation algorithm for (full) rank

aggregation. We show that a similar guarantee can be given for our deterministic
algorithm, and moreover that this result also holds for partial rank aggregation,
i.e. the best of our algorithm’s solution, and the solution given by RepeatChoice
gives a combinatorial 8

5 -approximation algorithm for partial rank aggregation.

Theorem 2. There exists a deterministic combinatorial 8
5 -approximation algo-

rithm for partial rank aggregation.
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Proof. We again use the algorithm described above, but specify a different way
of choosing a good pivot. Let Tk(V ) ⊂ A be the set of arcs that become backward
by pivoting on k when the set of vertices in the recursive call is V . Let αij =
w(i,j) + w(j,i) = wij + w̄ij , and note that w̄ij = αij − wij . In our partial rank
aggregation algorithm, we use the following rule to choose a pivot vertex.

Pick k ∈ V minimizing

∑
(i,j)∈Tk(V )

(
8
5wij − 6

5

w2
ij

αij

)
∑

(i,j)∈Tk(V )(αij − wij)
(2)

We charge our pivoting algorithm 2
5 times the cost of the solution it generates,

plus 3
5 times the expected cost of the permutation returned by RepeatChoice.

We will show that the total cost charged is not more than 8
5 times the lower

bound given by
∑

(i,j)∈A w̄ij =
∑

(i,j)∈A(αij − wij). Taking the better solution
from the pivoting solution and the (derandomized) RepeatChoice solution then
gives a 8

5 -approximation algorithm.
The expected cost incurred by pair i, j in RepeatChoice is 2 w(i,j)w(j,i)

w(i,j)+w(j,i)
=

2wij(αij−wij)
αij

. The cost if i, j is ranked according to the majority tournament is
w̄ij = αij − wij , and if it is not ordered according to the majority tournament,
the cost is wij . Hence the charge for a forward arc is

2
5
(αij − wij) +

6
5

wij(αij − wij)
αij

≤ 2
5
(αij − wij) +

6
5
(αij − wij) =

8
5
(αij − wij)

The charge for a backward arc is

2
5
wij +

6
5

wij(αij − wij)
αij

=
8
5
wij − 6

5
w2

ij

αij
.

We will show that there always exists a pivot k such that the ratio in (2) is at
most 8

5 . This implies that the combined charge for the arcs that become backward
in one iteration can be bounded by 8

5 times the lower bound on their combined
cost in any feasible solution. Since the charge for a forward arc between a vertex
pair is also at most 8

5 times the lower bound for the vertex pair, the total charge
at the end of the algorithm is at most 8

5

∑
(i,j)∈A(αij − wij) =

∑
(i,j)∈A w̄ij ,

which is at most 8
5 times the optimal cost.

To show that a pivot with ratio at most 8
5 exists, we use the same techniques

as before. Let T again be the set of directed triangles in A, and for a triangle
t = (i, j), (j, k), (k, i), let w(t) = wij + wjk + wki, α(t) = αij + αjk + αki and

z(t) =
w2

ij

αij
+

w2
jk

αjk
+ w2

ki

αki
. Note that

∑
k∈V

∑
(i,j)∈Tk(V )

(
8
5
wij − 6

5
w2

ij

αij

)
=

8
5

∑
t∈T

w(t) − 6
5

∑
t∈T

z(t),

and ∑
k∈V

∑
(i,j)∈Tk(V )

(αij − wij) =
∑
t∈T

α(t) −
∑
t∈T

w(t).
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Note that by the triangle inequality constraints, w(t) = w(i,j)+w(j,k)+w(k,i) ≤
w(i,j)+w(j,k)+(w(k,j)+w(j,i)) = αij +αjk. Similarly, we get that w(t) ≤ αij +αki

and w(t) ≤ αjk + αki. Adding these constraints, we get that w(t) ≤ 2
3α(t).

By these observations and Claim 3 below, we can conclude that 8
5

∑
t∈T w(t)−

6
5

∑
t∈T z(t) ≤ 8

5

(∑
t∈T α(t) −

∑
t∈T w(t)

)
, and hence there exists some k ∈ V

such that the ratio in (2) is at most 8
5 . ��

Claim 3. For w = (w1, w2, w3), and α = (α1, α2, α3) such that 0 ≤ wi ≤ αi ≤ 1
for i = 1, 2, 3, and

∑3
i=1 wi ≤ 2

3

∑3
i=1 αi:

16
3∑

i=1

wi − 6
3∑

i=1

w2
i

αi
− 8

3∑
i=1

αi ≤ 0

Proof. The proof uses standard techniques, and for space reasons is deferred to
the full version.

Lemma 4. The algorithms in Theorem 1 and 2 can be implemented in O(n3)
time.

Proof. We maintain a list of the directed triangles in G for which all three vertices
are currently contained in a single recursive call, and for each vertex we maintain
the total cost for the vertex pairs that get a backward arc if pivoting on that
vertex and the total budget for these pairs (i.e. the numerator and denominator
of (1) resp. (2)). If we disregard the time needed to obtain and update this
information, then a single recursive call takes O(n) time, and there are at most
O(n) iterations, giving a total of O(n2). Initializing the list of triangles and
the numerator and denominator of (1) or (2) for each vertex takes O(n3) time.
Over all recursive calls combined, the time needed to update the list of directed
triangles, and the numerator and denominator of (1) or (2) is O(n3): After
each pivot, we need to remove all triangles that either contain the pivot vertex,
or contain (i, j) where i and j are separated into different recursive calls, and
for each triangle removed from the list, we need to update the numerator and
denominator of (1) or (2) for the three vertices in the triangle. Assuming the
list of triangles is linked to the vertices and arcs contained in it and vice versa,
finding a triangle that contains a certain vertex or arc, removing it, and updating
the numerator and denominator for the vertices contained in it, can be done in
constant time. Finally, note that each triangle is removed from the list exactly
once. ��

3 Two-Step Derandomization of LP-Based Pivoting
Algorithms

We now show how to extend the ideas from [2] to derandomize the randomized
rounding algorithm in Ailon et al. [1], and the perturbed version in Ailon [3]. In
particular, this allows us to obtain a deterministic 5

2 -approximation algorithm
for ranking with probability constraints, and a 3

2 -approximation algorithm for
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partial rank aggregation. Combined with the ideas from Theorem 2, this also
allows us to obtain a deterministic 4

3 -approximation algorithm for full rank ag-
gregation.

The linear program we will use is the following:

min
∑
i<j

(
x(i,j)w(j,i) + x(j,i)w(i,j)

)

s.t. x(i,j) + x(j,k) + x(k,i) ≥ 1 for all distinct i, j, k

(LP ) x(i,j) + x(j,i) = 1 for all i 
= j

x(i,j) ≥ 0 for all i 
= j

Given an optimal solution x to this LP, we will write cij = cji = x(i,j)w(j,i) +
x(j,i)w(i,j).

Given an optimal solution x to the linear programming relaxation, in Ailon
et al. [1] a vertex i is ordered to the left of the pivot k with probability x(i,k),
and to the right of the pivot with probability x(k,i) = 1 − x(i,k). In Ailon [3], the
probabilities are perturbed by a function h that satisfies h(1−x) = 1−h(x). Since
we can always take h to be the identity, we assume without loss of generality
that the probabilities are always given by h(x).

FASLP-Pivot(V, x)

Pick a (random) pivot k ∈ V .
Set VL = ∅, VR = ∅.
For all i ∈ V, i �= k,

with probability h(x(i,k)): add i to VL,
else (with probability h(x(k,i))): add i to VR.

Return FASLP-Pivot(VL, x), k, FASLP-Pivot(VR, x).

We will say an arc (i, j) is a forward arc if the vertices i, j were in the same
recursive call in which one of them was the pivot, and we will say an arc (i, j) is
backward if the vertices i, j were in the same recursive call, in which some vertex
k 
= i, j was the pivot, and i was added to VL and j was added to VR. Note the
difference from our previous definition of forward and backward arcs.

Let Tk(V ) be the set of arcs that become backward in a recursive call on V
when k is the pivot. Note that Tk(V ) is a random set, since VL, VR are random
sets. In particular, (i, j) ∈ Tk(V ) with probability h(x(i,k))h(x(k,j)), and the

expected cost for the arcs that become backward arcs is E

[ ∑
(i,j)∈Tk(V ) w(j,i)

]
=∑

i∈V \{k}
∑

j∈V \{k} h(x(i,k))h(x(k,j))w(j,i).
We derandomize the algorithm in two steps. First we choose a pivot k such

that ratio of the expected cost for the arcs in Tk(V ) and E

[∑
(i,j)∈Tk(V ) cij

]
is

as small as possible. Then we use the method of conditional expectation [12] to
assign the vertices in V \{k} to VL or VR.
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We define the following notation: Let VL, VR, V ′ be a partition of V \{k},
and let E

[
Bk(V )|VL, VR

]
be the expected total cost incurred in an iteration of

FASLP-Pivot for the backward and forward arcs when pivoting on k conditioned
on the vertices in VL and VR being ordered to the left and right of k respectively
(and the vertices in V ′ are ordered left or right with probability h(x(i,k)) and

h(x(k,i))). Let E

[
Ck(V )|VL, VR

]
be the expected total LP contribution for the

vertex pairs that are in forward or backward arcs in an iteration of FASLP-Pivot
when pivoting on k, again conditioned on VL, VR. Note that the conditional
expected cost for backward arcs is

E

[ ∑
(i,j)∈Tk(V )

w(j,i)|VL, VR

]
=

∑
i∈VL

∑
j∈VR

w(j,i) +
∑
i∈V ′

∑
j∈V ′

h(x(i,k))h(x(k,j))w(j,i)

+
∑
i∈VL

∑
j∈V ′

h(x(k,j))w(j,i) +
∑
i∈V ′

∑
j∈VR

h(x(i,k))w(j,i),

and the conditional expected LP budget for backward arcs can be computed
similarly. Hence we can easily compute these conditional expectations and we
get

E

[
Bk(V )|VL, VR

]
= E

[ ∑
(i,j)∈Tk(V )

w(j,i)|VL, VR

]
+

∑
i∈VL

w(k,i) +
∑
i∈VR

w(i,k)

+
∑
i∈V ′

(
h(x(i,k))w(k,i) + h(x(k,i))w(i,k)

)
,

and E

[
Ck(V )|VL, VR

]
= E

[ ∑
(i,j)∈Tk(V )

cij

∣∣ VL, VR

]
+

∑
i∈V \{k}

cik.

DerandFASLP-Pivot(V, x)

Pick k ∈ V minimizing
E

��
(i,j)∈Tk(V ) w(j,i)

�

E

��
(i,j)∈Tk(V ) cij

� .

Set VL = ∅, VR = ∅.
For i ∈ V \{k}

If
E

�
Bk(V )

�� VL ∪ {i}, VR

�

E

�
Ck(V )

�� VL ∪ {i}, VR

� ≤
E

�
Bk(V )

�� VL, VR ∪ {i}
�

E

�
Ck(V )

�� VL, VR ∪ {i}
�

add i to VL,
else

add i to VR.
Return DerandFASLP-Pivot(VL, x), k, DerandFASLP-Pivot(VR, x).

Lemma 5. If h(x(i,j))w(j,i) + h(x(j,i))w(i,j) ≤ αcij and there always exists a
pivot k with ratio at most α, then DerandFASLP-Pivot is an α-approximation
algorithm.
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Proof. In our analysis of DerandFASLP-Pivot, it will be convenient to consider
an “intermediate” derandomization of FASLP-Pivot. Let DFASLP-Pivot be the
algorithm that chooses a pivot as in DerandFASLP-Pivot, but then randomly
assigns vertices to VL and VR as in FASLP-Pivot.

We think of cij = x(i,j)w(j,i) + x(j,i)w(i,j) as the “LP budget” for vertex pair
i, j. We say a pair i, j gets decided in an iteration of DFASLP-Pivot if it either
gets a forward arc (i.e. one of i, j is the pivot) or a backward arc (i.e. one of them
gets assigned to VL and one to VR). Under the assumptions in the lemma, the
expected cost for the pairs that get decided in an iteration of DFASLP-Pivot is
at most α times the expected LP budget for these pairs: the total expected cost
for the pairs that get decided in an iteration of DFASLP-Pivot with pivot k is
E

[
Bk(V )

∣∣ VL = ∅, VR = ∅
]

=

∑
i∈V \{k}

(
h(x(i,k))w(k,i) + h(x(k,i))w(i,k)

)
+ E

[ ∑
(i,j)∈Tk(V )

w(j,i)

]
,

and by the assumptions of the lemma this expected cost is at most

α
( ∑

i∈V \{k}
cik + E

[ ∑
(i,j)∈Tk(V )

cij

])
= αE

[
Ck(V )

∣∣ VL = ∅, VR = ∅
]
.

Hence DFASLP-Pivot is an expected α-approximation algorithm. By stan-
dard conditional expectation arguments, we know that if we consider some vertex
i ∈ V \(VL∪VR∪{k}) and E

[
Bk(V )

∣∣ VL, VR

]
≤ αE

[
Ck(V )

∣∣ VL, VR

]
, then we can

add i to either VL or VR and maintain the invariant that E

[
Bk(V )

∣∣ VL, VR

]
≤

αE

[
Ck(V )

∣∣ VL, VR

]
. Therefore, DerandFASLP-Pivot returns a a partition

VL, VR of V \{k} such that the cost of ordering the vertices in VL and VR to
the left and right of k respectively, is at most α times the total LP budget of
the pairs that get decided in that iteration. ��

Note that one can show that there always exists a pivot with ratio at most α,
by showing that

∑
k∈V E

[∑
(i,j)∈Tk(V ) w(j,i)

]
≤ α

∑
k∈V E

[∑
(i,j)∈Tk(V ) cij

]
for

any feasible LP solution. Using similar observations as in the proof of Theorem
1, it is possible to reduce this inequality to a certain inequality on triples of
vertices. Using Lemma 13 in [1] this gives us Corollary 6 and using an inequality
from [3] this implies corollory 7.

Corollary 6. DerandFASLP-Pivot with h(x) = x is a 5
2 -approximation algo-

rithm for weighted feedback arc set in tournaments with probability constraints.

Corollary 7. DerandFASLP-Pivot is a 3
2 -approximation algorithm for partial

rank aggregation and for ranking with weights that obey triangle inequality if we

use h(x) =

⎧⎨
⎩

3
4x, 0 ≤ x ≤ 1

3
3
2x − 1

4 , 1
3 < x ≤ 2

3
3
4x + 1

4 , 2
3 < x ≤ 1

as proposed in [3].
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We can obtain a 4
3 -approximation algorithm for rank aggregation by using the

techniques from Theorem 2 to show that the best of DerandFASLP-Pivot and
picking a random input permutation is within 4

3 of optimal. Similar to the
technique in the proof of Theorem 2 we replace the weight w(i,j) by 2

3w(i,j) +
1
3 (2w(i,j)w(j,i)), and show that DerandFASLP-Pivot returns a solution for which
the cost with respect to these new weights is at most 4

3 times optimal. Since the
cost with respect to these new weights is a convex combination of the cost of the
solution with respect to the original weights, and the cost of a randomly chosen
input permutation, we get that the best of the algorithm’s solution and the best
input permutation is a 4

3 -approximation algorithm. For space reasons the details
of the proof are deferred to the full version.

Theorem 8. There exists a deterministic 4
3 -approximation algorithm for rank

aggregation.

4 Constrained Problems

We now consider ranking problems where we are also given a partial order P ,
and the output permutation π must be consistent with P ; in other words, if
(i, j) ∈ P then π(i) < π(j). We make the natural assumption that the weights
are consistent with P , i.e. if (i, j) ∈ P then w(j,i) = 0. It is possible to use similar
techniques as in [2] to ensure that the algorithms in Section 2 return a feasible
solution. However, a stronger result is given by the following lemma, which says
that if the weights satisfy the triangle inequality, then any permutation that is
not consistent with P is not a local minimum. We thank Frans Schalekamp for
suggesting that this may be the case. This means that all results in this paper,
except for the result in Corollary 6, also hold for constrained problems.

Lemma 9. Given weights that satisfy the triangle inequality,a permutation π,
and a partial order P such that w(j,i) = 0 for (i, j) ∈ P , then we can find a
permutation π′ that is consistent with P and costs not more than π.

Proof. Let (i, j) ∈ P and suppose π(j) < π(i). We call such (i, j) violated. Let
K(i, j) be the set of vertices k such that π(j) < π(k) < π(i), and let (i∗, j∗) be a
violated pair such that for any vertex k ∈ K(i∗, j∗) it is the case that (j∗, k) 
∈ P
and (k, i∗) 
∈ P . (Note that by transitivity of P , if a violated pair exists, then
there exists a violated pair that satisfies this condition.)

Consider the permutation π′ we obtain by moving j∗ to the position just after
i∗ with probability p = 1

2 or otherwise moving i∗ to the position just before j∗.
Note that (i∗, j∗) is not violated in π′ and no new violations are created.

The expected difference in the cost of permuations π′ and π is given by

w(j∗,i∗) − w(i∗,j∗) +
1
2

∑
k∈K(i∗,j∗)

(w(j∗,k) − w(k,j∗) + w(k,i∗) − w(i∗,k))

≤ w(j∗,i∗) − w(i∗,j∗) +
1
2

∑
k∈K(i∗,j∗)

(2w(j∗,i∗)) = −w(i∗,j∗) ≤ 0,
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where the first inequality follows from the triangle inequality, and the last equal-
ity follows since w(j∗,i∗) = 0. Hence either moving j∗ to the position just after
i∗ or moving i∗ to the position just before j∗ does not increase the cost of the
permutation, and has fewer violations. ��
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Abstract. We study an online geometric problem arising in channel-
aware scheduling of wireless networks, which we call online rectangle fill-
ing. We present an online algorithm for this problem with a competitive
ratio of 1.848. We also prove a lower bound of 1.6358 for the competitive
ratio of the problem. In addition, we give an O(n2)-time optimal offline
algorithm, where n is the size of the input. All three results are signifi-
cant improvements on the previous results. Our techniques are based on
new observations of the combinatorial structures of the problem.

1 Introduction

We consider the following online problem motivated by channel-aware schedul-
ing in wireless networks: Given an online sequence of nonnegative real numbers
h(1), h(2), . . ., representing the maximum transmission capacities of a
wireless channel at each time step, compute a sequence of transmission rates
u(1), u(2), . . ., that satisfies two constraints: (1) the transmission rate u(i) at
each time step i is no more than the channel capacity h(i), and (2) if at any step
we decide to change the transmission rate, a penalty of one time step in which
the transmission rate is zero is incurred (this is required for the transmitter and
receiver to coordinate and reset a new transmission rate). The objective is to
maximize the throughput, i.e.,

∑
i=1,2,... u(i). The decision is made online with

a lookahead of one time step, i.e., at each step i, we decide on u(i) having seen
the capacities h(1), . . . , h(i + 1), but before we see the capacity h(i + 2) and
beyond. The penalty on changing the transmission rate implies that for any i,
either u(i) = u(i + 1) or at least one of u(i) and u(i + 1) is zero.

In wireless networks [12], the channel conditions can change frequently, af-
fecting the bit error rate and consequently the channel transmission capacity.
The transmitter and receiver can monitor the channel capacity and change the
transmission rate accordingly. To coordinate the change in transmission rate, a
change-over protocol is used, resulting in a temporary loss in transmission of
data. This is modeled by setting the transmission rate at one time period to
zero. (For further details of this application setting, see [2,3,5,7,8,9,11,13].)

This problem can be described from a geometric view point. The sequence of
channel capacities corresponds to a sequence of “columns” of unit-width such
that the bases of all columns are on the x-axis and the height of column i is

� This research was supported in part by NSF Grant CCF-0515203.

C. Kaklamanis and M. Skutella (Eds.): WAOA 2007, LNCS 4927, pp. 274–287, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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h(i) (see Fig. 1). The transmission rates correspond to a “used-height” in each
column, from the base to a height u(i). The penalty for changing the transmission
rate implies that in any solution, consecutive columns with nonzero used-height
values have the same used-height and thus form a rectangle (see Fig. 2). The
objective is, given the online sequence of columns, to fill the region between the
column “skyline” and the x-axis with rectangles in a manner that maximizes
the total area covered by the rectangles. The constraints are that each rectangle
lies on the x-axis and respects the skyline, i.e., the height of a rectangle is at
most the height of the lowest column intersecting it, and that any two distinct
rectangles are separated by at least one column with zero used-height. We call
this the online rectangle filling problem. To be exact, we are interested in the
version with a lookahead of one; we assume that this is true for the rest of the
paper, unless mentioned otherwise.

Fig. 1. An example Fig. 2. A feasible solution Fig. 3. Zero columns

The first known algorithms for the online rectangle filling problem had a
4-competitive ratio [3,5]. (See [1,6] for formal definitions of online algorithms,
offline optimal algorithms, and competitive analysis.) It was also shown [3,5] that
for any online algorithm with a finite lookahead, the competitive ratio is strictly
larger than one. (It is easy to see that with no lookahead, the competitive ratio
is unbounded.) Besides, the authors gave an offline algorithm that computes an
optimal solution for any n-length sequence in O(n3) time. In a subsequent paper
[4], one of the original algorithms (called Wait-Dominate-Hold) was shown to be
(8/3 ≈ 2.667)-competitive and a lower bound of 8/5 = 1.6 on the competitive
ratio of any online algorithm was given. In the same paper, an upper bound of 2
and a lower bound of 1+1/(k+1) were shown for an algorithm with a lookahead
of k ≥ 2. In this paper, we improve upon the previous best known results for
the problem with a lookahead of one, as described below.
Our Contributions. We present significant improvements on the known so-
lutions [3,4,5] for the online rectangle filling problem. In the next section, we
present our main result: an online algorithm (with a lookahead of one) that has
a competitive ratio of 1.848. In Section 3, we present a lower bound: no on-
line algorithm (with a lookahead of one) can have a competitive ratio less than
1.6358. In Section 4, we present another improvement over a best known result,
an offline algorithm for the problem that takes O(n2) time.
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2 Online Algorithm for Rectangle Filling

Let t be the index of the current column whose used-height u(t) is to be de-
termined. To do so, we use three known values: the used-height u(t − 1) of the
previous column, the height h(t) of the current column, and the height h(t + 1)
of the next column. For ease of presentation, we add an extra column at the
beginning and the end of the sequence, both with zero height and zero used-
height. The algorithm’s decisions depend on which of the three situations holds:
(1) the previous used-height is larger than the current height, (2) the previous
used-height is zero, and (3) the previous used-height is positive and is no bigger
than the current height. We describe the decisions of the algorithm in terms of
two parameters q1 and q2, with 1 < q1 and 0 ≤ q2 < 1; we will determine the
values of q1 and q2 later (based on the analysis in order to obtain the lowest
competitive ratio).

Algorithm RecFilling(t)

1. If u(t − 1) > h(t), then set u(t) = 0.
2. If u(t − 1) = 0, then

(a) If q1 · h(t) < h(t + 1), then set u(t) = 0.
(b) If h(t) > h(t + 1) and q2 · h(t) ≤ h(t + 1), then set u(t) = h(t + 1).
(c) If q2 · h(t) > h(t + 1), then set u(t) = h(t).
(d) If h(t) < h(t + 1) and q1 · h(t) ≥ h(t + 1), then set u(t) = h(t).

3. If u(t − 1) > 0 and u(t − 1) ≤ h(t), then
(a) If q1 · u(t − 1) < h(t + 1), then set u(t) = 0.
(b) If q1 · u(t − 1) ≥ h(t + 1), then set u(t) = u(t − 1).

Theorem 1 (Upper Bound). The algorithm RecFilling with the parameter
values q1 set to 1.848 and q2 set to 0.667 attains a competitive ratio of 1.848.

The above theorem will be proved in the rest of this section. For the simplicity
of statement we always assume q1 > 1/q2 and q1 ≥ 5/3, as is true for the values
q1 = 1.848 and q2 = 0.667 in Theorem 1.

2.1 Idea Behind the Proof

Since the proof for Theorem 1 is long and detailed, we begin with a skeleton
description which will also serve as a rationale for our approach. For a given
input sequence, let S and S′ denote the sequences of used-heights in the solutions
computed by algorithm RecFilling and the offline optimal, respectively, and let
ALG and OPT denote the throughput values for the solutions of RecFilling and
the optimal, respectively. For the ith column, let u(i) denote its used-height in
RecFilling and u′(i) denote its used-height in the optimal solution.

We call the columns in S with zero used-height values the zero columns (Sit-
uations 1, 2(a) or 3(a) of RecFilling). Similarly, the columns in S with nonzero
used-heights are nonzero columns (Situations 2(b-d) or 3(b)). A column is said to
be fully used if its used-height equals its height (Situations 2(c-d)). The following
observation indicates an important characteristic about nonzero columns.
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Observation 1. The used-height of any nonzero column is at least a 1/q1 frac-
tion of its height.

The proof of the above observation is in our full paper [10]. Observation 1 im-
plies that to prove S is q1-competitive, we need not be concerned about nonzero
columns, inasmuch as they are not dependent on other columns having a large
used-height so that the entire sequence S is q1-competitive. On the other hand,
zero columns are dependent, precisely in this manner, on other columns. Intu-
itively, a zero column is dependent on another column if the algorithm creates
the zero column so that the other column can (potentially) have a larger used-
height. In order to demonstrate S is competitive, the used-heights of both the
zero column and the other column have to be considered together. The depen-
dency of a zero column can extend beyond its immediate neighbors when, e.g., its
neighbors are themselves zero columns or “barely competitive” (u(t) = h(t)/q1).
Thus “dependency chains” can be formed that are propagated through columns.
The proof is structured based on the different kinds of dependency chains as-
sociated with different kinds of zero columns. We choose not to formalize this
intuitive notion of dependency between columns here as we only use it in this
outline and not in the actual proof.

Based on the different situations in the algorithm RecFilling, we have three
kinds of zero columns:

Type 1 zero columns are those resulting from Situation 1 , i.e., when u(t−1) >
h(t). Here, the current used-height u(t) is required to be zero. It occurs when
in the previous step t − 1 the algorithm decides to sacrifice the used-height
of column t for a greater used-height in column t − 1.

Type 2 zero columns are those resulting from Situation 2(a) in RecFilling, i.e.,
when u(t − 1) = 0 and h(t) < h(t + 1)/q1. The algorithm decides to sacrifice
the current column for a potentially greater used-height in the next column.

Type 3 zero columns are those resulting from Situation 3(a) in RecFilling, i.e.,
when u(t − 1) > 0 and u(t − 1) < h(t + 1)/q1. Here again, the algorithm
decides to sacrifice the current column for a potentially greater used-height
in the next column. This decision is based not on h(t), but on u(t − 1).

Fig. 3 gives an example of a solution produced by RecFilling: the 2nd and 6th
columns are of Type 1, the 3rd, 4th, and 9th columns are of Type 2, and the 8th
column is of Type 3. A simple fact about our algorithm is stated below.

Observation 2. No zero column of Type 1 or Type 3 can occur immediately
after another zero column. A zero column of Type 2 can only occur at the very
beginning of S or immediately after another zero column.

Zero Columns and Dependency Chains. The three types of zero columns
and their significances in dependency chains play an important role in the proof.
Consider a zero column of Type 1. Its used-height is sacrificed for the previous
column, and this is done irrespective of later columns. Thus, intuitively speaking,
it is dependent on earlier columns and not on future ones. Further, the depen-
dency chain does not propagate from previous columns through the Type 1
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zero column to any future columns. In fact, since the future columns are not
affected adversely by the Type 1 zero column, the dependency chain also does
not propagate from future columns to the zero column. (This last property is
shared by all zero columns.) As we shall see later, it is rather simple to account
for Type 1 zero columns.

The used-height of a Type 2 zero column is sacrificed for the next column, and
in this decision there is no adverse effect of any previous column. Accordingly,
the zero column is dependent on future columns and not on previous ones.

Lastly, the used-height of a Type 3 zero column is sacrificed for the next
column, and in this decision it is affected by the previous column. Thus the zero
column is dependent on both the future columns and the previous ones. The
dependency chains may propagate in either direction (in any particular instance
we won’t have chains “crossing” each other but in general they may propagate
in either direction). Further, a dependency chain from previous columns may
propagate through the zero column to future columns. This makes accounting
for Type 3 zero columns the most difficult of the three types of zero columns.

Partitioning into Blocks. We make use of the structures in the dependency
chains for different types of zero columns in the proof by partitioning S into
mutually exclusive blocks of subsequences. Sweeping through the columns of S
in order, we create a new block whenever we encounter a zero column of Type
1 or Type 3, in the following manner. If t is a zero column of Type 1, then the
current block ends at t and a new block starts at column t + 1. If, instead, t
is a zero column of Type 3, then the current block ends at t − 1 and a new
block starts at column t + 1. The Type 3 zero column at t itself is not part of
any block. Type 2 columns play no role in defining the blocks. For each block
in S, we partition a corresponding block in S′. In the rest of the paper, unless
otherwise indicated, we refer to the blocks in S.

Observation 3. A Type 1 column can occur only at the end of a block, and any
zero column at the end of a block is of Type 1. Type 2 zero columns can occur
within a block, but only as part of a continuous series of zero columns beginning
from the first column of the block. Type 3 columns cannot occur within a block.
There are no zero columns between any two nonzero columns in a block.

The partitioning of S into blocks allows us to proceed with a proof consisting
of cases that address increasingly complex situations. Essentially, in each case
we consider a particular kind of block and show that the total used-height of
RecFilling in that block is competitive with respect to the used-height of the
optimal in the corresponding block, i.e., if we look at the competitive ratio
restricted to the block, it is at most 1.848. We consider the following cases:

Case 1. The used-heights of all columns in the block are nonzero.
Case 2. The used-heights of all columns in the block, except for the last column,

are nonzero.
Case 3. The block consists of a series of Type 2 zero columns starting from

the first column and at least two other columns. Here, the column following
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the last Type 2 column must be nonzero, but the last column of the block
can possibly be a Type 1 zero column. Remember that Type 2 zero columns
are dependent only on future columns. If the last column is a Type 1 zero
column, this dependency chain stops within the block and so the block can
be shown to be competitive.

Case 4. The remaining blocks. These consist of a series of Type 2 zero columns
starting from the first column and one other column which is necessarily
nonzero. Here, every block, except possibly the very last block in S, is fol-
lowed by a Type 3 column in S. The dependency chain may propagate either
towards previous columns or towards future columns and can cross the block
boundaries. Thus we cannot show that the block by itself is competitive. We
can however show that the entire sequence S (including the not-in-any-block
Type 3 zero columns) is competitive by using an inductive argument on the
number of Type 3 zero columns.

The example in Fig. 3 has four blocks: One consists of the 1st and 2nd columns
(Case 2); one consists of the 3rd, 4th, 5th, and 6th columns (Case 3); one consists
of only the 7th column (Case 1); one consists of the 9th and 10th columns (Case
4). The 8th column is a Type 3 zero column.

The need for multiple cases. In the rest of the section, we present the formal
proof using the above case structure. The proof requires quite a few cases and
subcases. There are three reasons for this: (1) we need to consider the different
kinds of blocks that can occur in S; (2) to obtain tighter bounds we need to
consider the different ways the optimal can choose its zero columns; (3) the
general bounds for a block are often not tight when the number of columns in a
block is small, so we have different cases for long blocks and for short blocks.

Our proof is longer than a bare proof for Theorem 1. This is because we
also illustrate the constraints for obtaining the parameter values of q1 and q2.
We analyze the first three cases, keeping q1 and q2 as unspecified parameters.
Then we determine the values for these parameters to minimize the worst-case
competitive ratio for the three cases. Finally, we verify that the remaining case
remains competitive with these parameter values. In the following we use OPT

and ALG to denote the the throughput value achieved by the optimal and Rec-
Filling for the particular block in the case or subcase in question. Similarly we
use R = OPT/ALG to denote the competitive ratio of the block in question. For
some cases, we distinguish a particular ratio using a subscript, such as R1 for the
ratio in Case 1, when it is referred to elsewhere. To save on the symbols needed,
we often choose a particular column of a block in a case and WLOG assume its
height is 1. Other column heights are then assigned corresponding values.

2.2 Case 1: All Columns Are Nonzero

Since all columns are nonzero, they have the same used-height H . Assume the
length of the block is l. According to Observation 1, for each column 1 ≤ i ≤ l,
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H ·q1 ≥ h(i). So we have ALG = H ·l and OPT ≤
∑l

i=1 h(i). Thus the competitive
ratio for this case is

R1 = OPT/ALG ≤ q1 (1)

2.3 Case 2: All But the Last Column Are Nonzero

If the block contains at most two columns, then the first one must be fully used
since the second one is a Type 1 zero column. According to our algorithm, that
case occurs if and only if Situation 2(c) is satisfied, i.e., h(2) < h(1) · q2. For the
block, since OPT = max{h(1), 2 · h(2)}, we have

OPT

ALG
≤ max{h(1), 2 · h(2)}

h(1)
≤ max{1, 2 · q2} (2)

When the block has l ≥ 3 columns, let H be the (same) used-height of all
nonzero used-height columns of the block. Then for the block, ALG = (l−1) ·H .
Since the last zero column is of Type 1, its height is less than H . For the block,
depending on whether there is a zero used-height column in the corresponding
block of the optimal solution S′, there are two cases.

1. If the corresponding block of S′ has at least one zero used-height column,
then according to Observation 1, h(i) ≤ H · q1 for 1 ≤ i ≤ l. Thus we have

OPT

ALG
≤ (l − 1) · H · q1

(l − 1) · H ≤ q1 (3)

2. If the block of S′ has no zero used-height column, then the used-heights of
all columns in that block must be the same, which is at most equal to the
height of the last column (let it be H ′). Since H > H ′ and l ≥ 3, we have

OPT

ALG
=

l · H ′

(l − 1) · H
<

l

l − 1
≤ 3

2
(4)

Combining all the above subcases together, we have the competitive ratio R2

for Case 2 :
R2 ≤ max{q1, 2 · q2,

3
2
} (5)

2.4 Case 3: A Series of Type 2 Columns and at Least Two
Additional Columns (A Sketch)

Recall that the Type 2 zero columns in the beginning are due to the Situation
2(a) of our algorithm. Fig. 4 shows such an example. Assume the first nonzero
column is the kth column. Our approach for this case is as follows: (1) we parti-
tion the original block into two sub-blocks (the first sub-block consists of columns
from the first one to the (k − 2)th one inclusively; the second sub-block is from
the (k − 1)th column to the end); (2) analyze the competitive ratio of the two
sub-blocks individually; (3) combine the two sub-blocks together to obtain the
competitive ratio of the whole block. The complete analysis of this case, in-
cluding the determination of the particular parameter values q1 = 1.848 and
q2 = 0.667, is in [10]. Here we just prove a lemma that plays a central role.
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Lemma 1. Given a sequence of columns S, if each column’s height is at least
q > 1.65 times the height of the previous one, then the value of the optimal
solution is at most q2

q2−1 · H where H is the height of last column in S.

Proof. Assume S is given from left to right and H = 1. We extend S to S∗ as
follows: (1) starting from the last column to the left, extend every column to a
height such that it is equal to 1

q of its right column’s height; (2) starting from the
first (leftmost) column, theoretically add infinite columns to the left such that
every column is equal to 1

q of its right column’s height. So the optimal solution
of S is at most equal to that of S∗.

We claim the optimal solution of S∗ is to use every other column fully from
the rightmost column to the left, as shown in Fig. 5 and whose value is q2

q2−1 .
We prove the claim as follows.

Let SOL(i) denote the maximum feasible solution in which from the rightmost
column to the left all columns are nonzero except the (i ·k +1)th columns for all
k > 0 (assume the rightmost column is the first one). So there are i consecutive
nonzero columns between two adjacent zero columns and the optimal solution
we claimed is SOL(1). Fig. 6 shows an example of SOL(2). Since for each group
of i consecutive nonzero columns the optimal solution is that each column has
a used height equal to the lowest column (i.e. the leftmost one), we can obtain
SOL(i) = i·q2

qi+1−1 .
We can prove that SOL(i) attains maximum when i = 1 if q > 1.65 by simply

using calculus to show that SOL(2) > SOL(i) for any i > 2 and SOL(1) >
SOL(2), respectively.

Fig. 4. Fig. 5. Fig. 6. Fig. 7.

We have proved that SOL(1) is the best solution among all solutions where
there are a fixed number of consecutive nonzero columns between two adjacent
zero columns. In the following we will show by contradiction that SOL(1) is also
the best among all solutions including those in which the number of consecutive
nonzero columns between two adjacent zero columns is not the same.

Suppose S′ is a solution in which the number of consecutive nonzero columns
between two adjacent zero columns is not the same and S′ is better than SOL(1).
Then starting from the first column (the leftmost one), we can find the first place
where there are m > 1 consecutive nonzero columns. Assume the jth column is
the zero column immediately after them. Let S1 denote the columns from the
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first column of S′ to the (j − 1)th one and let ALG1 denote the solution of S′ in
S1. Then in S1, if we use every other one column fully from the rightmost column
to the left, then we can obtain another solution ALG2. By the similar method
to the proof SOL(1) > SOL(i), for i > 1, it is easy to verify that ALG2 > ALG1

when q1 > 1.65. Then from the (j +1)th column, we continue to find the second
place where the selection is not one column at a time. By the same method as
above, we can get a better solution again. We can continue to do the same thing
until the rightmost column. At the end we can obtain a solution which is better
than S′, implying a contradiction.

So the claim that SOL(1) is optimal is proved, which leads to the lemma. ��

2.5 Case 4: A Series of Type 2 Columns Followed by One Other
Column, and Type 3 Columns

We have seen that, when q1 = 1.848 and q2 = 0.667, blocks falling in Cases 1, 2,
and 3 are competitive, i.e. the competitive ratio R for each such block is at most
1.848. What remains is to prove that if S, possibly in addition to the three kinds
of blocks above, contains zero columns of Type 3 and blocks falling in Case 4,
the competitive ratio R is at most 1.848. Unlike the previous cases, here we do
not show this is true for any block in Case 4 per se, rather we use an inductive
argument on the number of Type 3 zero columns in S to prove it for the whole
sequence.

We noted earlier that a Case 4 block is always followed by a Type 3 zero
column, except possibly when it is the last block in S. Consider two Type 3
zero columns at positions t and r, where t < r and there is no other Type 3
zero column between them. Let Si be the sequence after column t, and Si−1

the (sub)sequence after r. Let Bi be the block just prior to the column r. Note
Bi may fall in any of Cases 1, 3, and 4, but not in Case 2. Si can possibly
consist of blocks other than Bi, occurring prior to Bi, but none of such blocks
can fall in Case 4. By assuming inductively that Si−1 is competitive, we’ll show
that the sequence S′

i composed of Bi, the Type 3 zero column at r, and Si−1

is also competitive. All blocks in Si, other than in S′
i are already known to be

competitive. Thus the entire sequence Si will be shown to be competitive.
In the following we call Bi the before-block, and Si−1 the after-block. (In

spite of the name, remember that Si is not necessarily a single block.) For the
basis step of our inductive argument we need to show that the last block B1

is competitive. We have seen that this is true for the first three cases. What
remains to be shown is that if the last block is in Case 4, it is competitive. Such
a block is called the exceptional Case 4 since this is the only block in Case 4
that is competitive per se—does not require the inductive argument.

In an exceptional Case 4 block, the last column is fully used. Let its height
be 1. The other columns are of Type 2. Applying Lemma 1, we get OPT ≤
1/(q2

1 −1)+1 ≤ 1.848. ALG is 1, and thus the block is competitive. We now build
the inductive argument through different cases for the before-block, assuming
that after-block has a competitive ratio at most 1.848. WLOG, we’ll assume
h(r − 1) is 1 and describe other heights relative to this.
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Before-block is in Case 4. When the before-block belongs to Case 4, its last
column, at position (r − 1), is the only nonzero column. Since RecFilling has a
Type 3 column at position r, it follows that q2 ≤ h(r) ≤ q1. We proceed using
three subcases, based on the value of h(r).

Subcase (a): 0.7652 ≤ h(r) ≤ 1. Here h(r) ≥ q2, and so u(r − 1) = h(r), as
shown in Fig. 8. The figure is for illustration, the actual before and after blocks
may have other columns not shown. Applying Lemma 1 to the before-block,
OPT ≤ 1 + 1

q2
1−1

. Since ALG ≥ 0.7652, we get R ≤ 1.848 for the before-block.
Now since the rth column is of Type 3 column and u(r − 1) = h(r), from our
algorithm, it follows that h(r +1) > q1 ·h(r). If we attach the rth column to the
beginning of the after-block, and run RecFilling on it, it will fall in Situation
2(a) of the algorithm. Thus the rth column can be looked upon as a Type 2 zero
column attached to the after-block. This new composite block, consisting of the
rth column and the after-block, can fall in Case 3 (when the after-block falls in
Cases 1, 2 or 3 ), or can fall in Case 4 (when the after-block falls in Cases 1
and 4 (exceptional)). All these cases are competitive. Thus Si, consisting of the
before-block and the new composite block, is competitive as well.

Subcase (b): 1 < h(r) ≤ q1. Here h(r) ≤ q1 ·h(r−1) and so u(r−1) = h(r−1)
, as shown in Fig. 9. For the analysis, we create an pair of blocks which we show
are equivalent. We separate the rth column out and set its used-height the same
as u(r − 1) = h(r − 1) and set the used-height of the (r − 1)th column to zero.
So there are two parts, as shown in Fig. 10 and Fig. 11. Assume ALG1 is the
value of our solution in the before part and ALG2 is for the after part. Obviously
ALG2 = h(r − 1) = 1 and ALG = ALG1 + ALG2.

Let ALG′
1 denote the value of our solution if we run the algorithm RecFilling

on the before part. Since h(r − 1) · q1 < h(r +1), which means that the (r − 1)th
column can be considered as a new Type 2 zero column, then in the solution
obtained by our algorithm the used-height structure will be the same as that in
Fig. 10, implying ALG′

1 = ALG1. Assume the optimal solution for the original
structure Fig. 9 is OPT, the optimal solution for the before part (Fig. 10) OPT′

1,
and the optimal solution for the after part (Fig. 11) OPT′

2. Obviously OPT′
2 =

h(r) ≤ q1. We have the following lemma.

Lemma 2. OPT ≤ OPT′
1 + OPT′

2.

Proof. We prove it by showing that for the optimal solution of the original
column sequence (Fig. 9), we can find a solution S1 for the before part (Fig. 10)
and a solution S2 for the after part (Fig. 11) such that S1 + S2 ≥ OPT. For the
optimal solution OPT, if one of the (r − 1)th column and (r + 1)th column is
a zero column in OPT, then we just use the same used-height sequence as OPT

for the two parts. So S1 + S2 = OPT. If both of the two columns are nonzero in
OPT, then if the two columns have the same used-height, then we can also use
the same used-height sequence as OPT for the two parts. So S1 + S2 = OPT.
Otherwise, the rth column used-height must be zero in OPT. Let OPT1 and
OPT2 denote the value of OPT in the before and after part respectively. In the
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before part, we can set the used-height of the (r − 1)th column to zero and set
the used-height of the after part the same as the (r − 1)th column used-height
in OPT since OPT2 = 0 and h(r) > h(r − 1). So S1 = OPT1 − u(r − 1) and
S2 = OPT2 +u(r − 1), where u(r − 1) is the used-height of the (r − 1)th column
in OPT. Then we still have S1 + S2 = OPT.

Since OPT′
1 ≥ S1 and OPT′

2 ≥ S2, our lemma follows. ��

Since we have already known that the before part (Fig. 10), which may belong
to Case 3 or Case 4 (the exception case), satisfies R ≤ 1.848, which means
OPT′

1

ALG′
1

≤ 1.848. So the competitive ratio for the original composite block (Fig. 9)
R is

R =
OPT

ALG
≤ OPT′

1 + OPT′
2

ALG1 + ALG2
=

OPT′
1 + OPT′

2

ALG′
1 + ALG2

≤ max{OPT′
1

ALG′
1

,
OPT′

2

ALG2
} ≤ max{1.848, q1} ≤ 1.848

Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 12.

Subcase (c): q2 ≤ h(r) < 0.7652. Here u(r − 1) = h(r), as shown in Fig. 12.
Since the before-block is a Case 4 block, there is at least one Type 2 zero column
in front of the (r − 1)th column. We use the similar technique to the last case.
However, this time we separate the (r − 2)th and the (r − 1)th columns out,
as shown in Fig. 13 and Fig. 14. Assume ALG1 is the value of our solution in
the before part (Fig. 13) and ALG2 is for the after part (Fig. 14). Obviously
ALG2 = h(r) ≥ q2 and ALG = ALG1 + ALG2.

Let ALG′
1 denote the value of our solution if we run our algorithm on the

before part. If there is another Type 2 zero column in front of the (r − 2)th
column, which is the (r − 3)th column. Since q1 · h(r − 3) < h(r − 2) < h(r),
then in the solution obtained by our algorithm, the used-height structure will
be the same as that in Fig. 13, implying ALG′

1 = ALG1. If there are no other
Type 2 columns in front of the (r − 2)th column, since q1 · h(r) < h(r + 1),
we also have ALG′

1 = ALG1. Since h(r − 2) ≤ 1/q1, we extend the height of the
(r−2)th column in the after part to 1/q1 to obtain a new sequence, which makes
the optimal solution even greater, implying that our obtained competitive ratio
upper bound is always correct. Assume Fig. 14 is the new sequence. Let OPT
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be the optimal solution for the original sequence (Fig. 12), OPT′
1 the optimal

solution for the before part (Fig. 13), and OPT′
2 the optimal solution for the

after part (Fig. 14). One can easily find that OPT′
2 = 2

q1
. By using the similar

proof to Lemma 2, we have the similar result.

Lemma 3. OPT ≤ OPT′
1 + OPT′

2

The complete proof is in [10]. Since we have already known that the structure
in Fig. 13 satisfies the inequality R ≤ 1.848, which means OPT′

1
ALG′

1
≤ 1.848. So the

competitive ratio for Fig. 12,

R =
OPT

ALG
≤ OPT′

1 + OPT′
2

ALG1 + ALG2
≤ OPT′

1 + OPT′
2

ALG′
1 + ALG2

≤ max{OPT′
1

ALG′
1

,
OPT′

2

ALG2
} ≤ max{1.848,

2
q1 · q2

} ≤ 1.848

Fig. 13. Fig. 14. Fig. 15. Fig. 16. Fig. 17.

Above all, in the case where the before-block belongs to Case 4, R ≤ 1.848 is
satisfied for the new composite block.

Before-block is in Case 1. If the before-block belongs to Case 1, as shown
in Fig. 15, then H · q1 ≥ h(r) where H is the used-height of each column in the
before-block.

If the before-block has only one column, which is the (r − 1)th column, then
depending on the value of H , there are two cases.

1. If H = h(r−1), as shown in Fig. 16, then there must be h(r−1)·q1 < h(r+1)
and h(r−1) ≤ h(r). We separate the rth column out with the used-height of
h(r−1) and set the used-height of the (r−1)th column to zero. By using the
similar analysis to second subcase of last case (before-block is in Case 4),
we can prove the new composite block satisfies R ≤ 1.848.

2. If H < h(r−1), as shown in Fig. 17, then there must be h(r)·q1 < h(r+1). So
the rth zero column can be considered as a Type 2 zero column of the after-
block whose competitive ratio satisfies our previous result. For the before
block, OPT ≤ h(r − 1) and ALG ≥ h(r−1)

q2
, so R ≤ 1

q2
< 1.848.
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If there is more than one column in Case 1 before-block, such as shown in
Fig. 15, then we add the Type 3 zero column (the rth column) to the end of the
before-block to create a new block. We prove the new block satisfies R ≤ 1.848
as follows. Assume the length of the before-block is l, so ALG = H · l.

1. If there is no nonzero column in the optimal solution of the new block, then
OPT ≤ H · (l + 1), then R ≤ OPT

ALG ≤ l+1
l ≤ 3

2 since l ≥ 2.
2. If there is at least one zero column in the optimal solution, then OPT ≤

l · H · q1, since the height of each column is at most H · q1. So R ≤ q1.

In both cases, R ≤ 1.848 is satisfied for the before-block. For the after-block,
we already know it satisfies the R ≤ 1.848, so the new composite block also
satisfies upper bound.

Above all, if the before-block is in Case 1, the upper bound is also satisfied.

Before-block is in Case 3. The analysis of this case is in [10].
Above all, we obtain that R ≤ 1.848 for the new composite block which is

formed by the before-block, the last Type 3 zero column, and the after-block.
Note that in the above analysis the only assumption we made is that both the
before-block and the after-block satisfy R ≤ 1.848 except if the before-block is
Case 4. Since the new composite block also satisfies the ratio upper bound, we
can continue to analyze other Type 3 zero columns from the last second Type 3
zero column to the beginning by the same technique as above. Finally, we can
obtain the whole solution satisfies R ≤ 1.848.

It is not difficult to see from the analysis that there are several situations
where our algorithm can approximately achieve the obtained competitive ratio,
which means that the analysis is tight for the algorithm RecFilling.

3 Lower Bound

Theorem 2 (Lower Bound). The competitive ratio of every online algorithm
with one lookahead for the rectangle filling problem is at least 1.6358.

We construct an adversarial input pattern as follows. At the beginning two
columns are given with their heights h(1) and h(2) = q · h(1) where q = 2.1638.
Suppose the height of the (r +1)th column is known and the algorithm is about
to decide the used-height of the rth algorithm. The (r + 2)th column is given
depending on u(r) and following the rules below.

1. If u(r) = 0, then we set h(r + 2) = q · h(r + 1).
2. If u(r) > 0, then we set h(r + 2) = h(r + 1).
3. At the end of the input, assume the last column is r. We add two “extra”

columns following the last column with the heights h(r) and u(r)− ε respec-
tively, where ε is a very small positive real number. However, if all columns
except the first one have the same height, then the two extra columns de-
scribed above are not necessary.

The proof of Theorem 2 is in [10] due to the space limitation.
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4 Offline Algorithm for Rectangle Filling

Theorem 3. The optimal solution of the offline Rectangle Filling problem can
be obtained in O(n2) time by dynamic programming.

The algorithm for above theorem is in [10].
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