
Information Processing Letters 109 (2009) 1005–1009
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Bounded cost algorithms for multivalued consensus using binary
consensus instances ✩

Jialin Zhang a, Wei Chen b,∗
a Tsinghua University, China
b Microsoft Research Asia, 5/F, Beijing Sigma Center, No. 49, Zhichun Road, Beijing, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 December 2007
Received in revised form 8 October 2008
Available online 11 June 2009
Communicated by C. Scheideler

Keywords:
Distributed computing
Fault tolerance
Binary consensus
Multivalued consensus

In this paper, we present two bounded cost algorithms that solve multivalued consensus
using binary consensus instances. Our first algorithm uses �log2 n� number of binary
consensus instances where n is the number of processes, while our second algorithm
uses at most 2˜k binary consensus instances, where ˜k is the maximum length of the
binary representation of all proposed values in the run. Both algorithms are significant
improvements over the previous algorithm in [A. Mostefaoui, M. Raynal, F. Tronel, From
binary consensus to multivalued consensus in asynchronous message-passing systems,
Information Processing Letters 73 (5–6) (2000) 207–212], where the number of binary
consensus instances needed to solve one multivalued consensus is unbounded.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Consensus is a fundamental problem to solve when
building fault-tolerant distributed systems. Informally, con-
sensus abstracts the basic agreement problem one often
sees in distributed systems as follows: Each process in a
system proposes some value, and through communication
they eventually need to decide on one value proposed,
and the decision is irrevocable. Many important distributed
tasks, such as atomic broadcast, data replication, mutual
exclusion, atomic commit, etc., can use consensus as one
of the core components in their implementations. There-
fore, consensus has been extensively studied from various
angles in the distributed computing community.

One basic form of consensus is binary consensus, in
which processes may only propose 0 or 1 and the de-
cision is one of the two values. Binary consensus is a
form used in studying both impossibility and lower bound

✩ This work was supported in part by the National Natural Science
Foundation of China Grant 60553001, and the National Basic Research Pro-
gram of China Grants 2007CB807900, 2007CB807901.

* Corresponding author.
E-mail addresses: zhanggl02@mails.tsinghua.edu.cn (J. Zhang),

weic@microsoft.com (W. Chen).
0020-0190/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.06.004
results (e.g., [2,4]) and consensus algorithms (e.g., [1,3]).
However, solving the general multivalued consensus using
binary consensus is not trivial. In [7], Turpin and Coan
provide an algorithm reducing multivalued consensus to
binary consensus in synchronous systems with Byzantine
failures. In [6], Mostefaoui et al. provide a reduction al-
gorithm in asynchronous systems with crash failures. Our
work is a direct improvement of the work in [6].

In the algorithm of [6], every process runs a series of
binary consensus instances sequentially to solve multival-
ued consensus. However, the number of the binary consen-
sus instances needed to solve one multivalued consensus
instance is unbounded, and it depends on the message de-
lay among the processes. As long as each proposed value
is delayed in reaching at least one process, it is possible
that all processes may keep running an arbitrarily many
number of binary consensus instances without solving the
multivalued consensus. Since the actual implementation of
binary consensus is usually costly, it is certainly undesir-
able to invoke an unbounded number of binary consensus
instances to solve one instance of multivalued consensus.

In this paper, we provide bounded cost algorithms that
solve multivalued consensus using a bounded number of
binary consensus instances. In our first algorithm, every
process invokes exactly �log2 n� number of binary consen-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:zhanggl02@mails.tsinghua.edu.cn
mailto:weic@microsoft.com
http://dx.doi.org/10.1016/j.ipl.2009.06.004

1006 J. Zhang, W. Chen / Information Processing Letters 109 (2009) 1005–1009
sus instances to solve one multivalued consensus instance,
where n is the number of processes in the system. The idea
is to use binary consensus to agree on a �log2 n� bit long
process identifier bit by bit, such that the decision value
is the proposal value of this process. In our second algo-
rithm, every process invokes at most 2˜k binary consensus
instances, where ˜k is the maximum length of the binary
representation of all proposed values in the run. The idea
is to use binary consensus to agree on the decision value
directly bit by bit, but we need to address the issue of
when to terminate the binary consensus instances since
processes do not know in advance the number of bits they
need to agree on. The second algorithm is adaptive to the
actual length of proposed values in a run, and it is more
efficient than the first algorithm if we know in advance
that the length of proposed values are at most �log2 n�/2.

Our paper focuses on bounding the cost for asyn-
chronous systems. In synchronous systems, the algorithm
in [6] is better since it only needs one binary consensus
instance while our algorithms still needs �log2 n� or 2˜k bi-
nary consensus instances.

2. The model and the problem

We consider a distributed system consisting of n pro-
cesses {p1, p2, . . . , pn}. Processes may fail by crashing, i.e.,
stop taking any actions. We say that a process is faulty in
a run if it crashes in the run and a process is correct if it is
not faulty.

The problem to solve is multivalued consensus, in which
every process proposes a value from an arbitrary range of
values, and makes an irrevocable decision on one value. It
needs to satisfy the following three properties:

• Validity: If a process decides v , then v has been pro-
posed by some process.

• Uniform Agreement: No two processes (correct or not)
decide differently.

• Termination: If all correct processes propose, eventu-
ally all correct processes decide.1

In this paper, we show how to solve multivalued con-
sensus using binary consensus, which is a special form of
multivalued consensus in which processes may only pro-
pose 0 or 1. Note that in this paper we are interested
in the uniform version of consensus, i.e., it satisfies the
Uniform Agreement property. In our algorithms, we use
B-Consensus(v) to represent a binary consensus instance,
where v is the proposal value. When there are multiple
binary consensus instances used in the algorithm, we use
array notation like B-Consensus[k]() to differentiate differ-
ent consensus instances.

The communication primitive we use in this paper is
uniform reliable broadcast [5], which is also used in [6]. In
uniform reliable broadcast, a process broadcasts a value v ,

1 An alternative specification may not require that all correct processes
propose, and only require that all correct processes that propose eventu-
ally decide. It is easy to check that our algorithm satisfies this alternative
requirement if the underlying binary consensus satisfies the same require-
ment.
which is associated with an attribute sender(v) to denote
the initiator of the broadcast of v , and eventually correct
processes should deliver v . More precisely, it should satisfy
the following properties:

• Uniform Integrity: For any value v , any process (correct
or faulty) delivers v at most once, and only if v was
previously broadcast by sender(v).

• Validity: If a correct process broadcasts v , then it even-
tually delivers v .

• Uniform Agreement: If a process (correct or faulty) de-
livers a value v , then all correct processes eventually
deliver value v .

In our algorithms, we use UR-Broadcast(v) to denote
the uniform reliable broadcast of value v , and UR-Deliver(v)

to denote the uniform reliable delivery of v .
We do not use any other communication primitives.

Therefore, we do not need to further clarify if our model
is based on the message-passing model or the shared-
memory model. In fact, the uniform reliable broadcast
abstraction can be implemented in both models. In the
message-passing model with reliable links, it can be imple-
mented using the algorithms in [5]. In the shared-memory
model, it can be simply implemented as follows: When a
process wants to broadcast v , it writes v into a shared
single-writer multi-reader atomic register dedicated to this
process, since once v is written, all other processes can
read it and it will not be lost. Subsequent broadcasts by
the same process can be implemented by piggybacking all
values that have been broadcasted by the process together
and write into one shared register.

3. Algorithms from binary consensus to multivalued
consensus

In this section, we present two algorithms that solve
multivalued consensus using binary consensus instances
and uniform reliable broadcast. The number of binary con-
sensus instances used in the first algorithm is linear to the
length of process identifiers, while the number of binary
consensus instances used in the second algorithm is linear
to the lengths of proposed values in the run. Therefore, the
algorithms can be used for different situations to achieve
the best efficiency.

For many variables in our algorithms, we need to op-
erate on both their integer representations and bit string
representations. To keep the simplicity and the clarity of
the presentation, we use the following conventions in both
algorithms. All simple variables in the algorithms, such as
i, j, l, and d, are treated as non-negative integers by de-
fault. For an integer variable j, we suppose the binary
representation of the value of j is jm jm−1 . . . j1 j0, such
that jk ∈ {0,1}, k = 0,1, . . . ,m, and jm = 1 if j > 0 (jm is
the most significant bit and thus is always 1 except when
j = 0). For any non-negative integer k, we use j[k] to rep-
resent the k-th bit of j: When reading j[k], the return
value is jk if 0 � k � m and 0 if k > m; when writing a
bit b to j[k], the result is changing the integer value of j
such that the k-th bit j[k] becomes b and all other bits re-
main unchanged. We also use j[k . . . 0] to represent the bit

J. Zhang, W. Chen / Information Processing Letters 109 (2009) 1005–1009 1007
Local variables on process pi :
1 vi , input proposal value of process pi

2 prop[0 . . .n − 1], array storing the proposed values of processes,
initially ⊥ for all entries

3 l, non-negative integer storing the process identifier to be decided,
initially 0

Code for process pi :
4 UR-Broadcast(vi)

5 wait until [prop[i] �= ⊥]
6 j ← i
7 for k = 0 to �log2 n� − 1
8 l[k] ← B-Consensus[k](j[k])
9 repeat j ← (j + 1) mod n

10 until [prop[j] �= ⊥ and l[k . . .0] = j[k . . . 0]]
11 endfor
12 return prop[l] /* decide on prop[l] */
13 Upon UR-Deliver(v) with sender(v) = p j :
14 prop[j] ← v

Fig. 1. Algorithm linear to the length of process identifiers.

string j[k] · j[k − 1] · · · j[1] · j[0]. By convention, if k < 0,
j[k . . . 0] is the empty string. For example, if j = 101 (i.e.,
integer 5), then j[1] = 0, j[2] = 1, j[5] = 0, j[1 . . . 0] = 01,
j[2 . . . 0] = 101, j[5 . . . 0] = 000101, and setting j[3] to 1
changes j to 1101 (integer 13).

3.1. Algorithm linear to the length of process identifiers

We first give an algorithm (Fig. 1) that uses �log2 n�
sequential calls to binary consensus instances to solve mul-
tivalued consensus. The idea is for the processes to agree
on the identifier of a process, and the proposed value of
that process would be used as the decision value. To do
so, processes use binary consensus instances to agree on
the binary representation of the process identifier bit by
bit, starting from the least significant bit. The key mech-
anism in the algorithm is to guarantee that after deciding
on a process identifier l, every process also know the pro-
posed value of process pl .

In the algorithm, vi is the proposal of process pi . Each
process pi first uniformly broadcasts its own proposed
value (line 4). Whenever pi uniformly delivers a proposed
value from p j , it stores it into prop[j] (lines 13–14). Pro-
cess pi waits until it delivers its own proposed value
(line 5), then sets variable j to i (line 6). Variable j is
the process identifier such that at the beginning of the
k-th iteration of the for-loop (lines 7–11), prop[j] �= ⊥ and
j[k − 1 . . . 0] = l[k − 1 . . . 0], where variable l stores the pro-
cess identifier on which all processes should eventually
agree. In the for-loop (lines 7–11), processes fill in l as a
bit string bit by bit starting from the least significant bit.
In the k-th round (i.e., the k-th iterations of the for-loop
with k = 0,1, . . . , �log2 n� − 1), process pi first proposes to
the k-th binary consensus instance B-Consensus[k]() with
the k-th bit of j (line 8). The decision of this instance is
used to fill the k-th bit of l. Then pi waits for a proposed
value from a process p j such that the current identifier l
(with bits up to the k-th bit filled) is the same as j, that is,
l[k . . . 0] = j[k . . . 0] (lines 9–10). The loop ends when it has
gone through all bits of process identifiers. At this point l
is the final identifier, and pi then decide on pl ’s proposed
value (line 12).
Theorem 1. The algorithm in Fig. 1 solves multivalued consen-
sus problem based on the binary consensus.

Proof. We show that the algorithm satisfies the Validity,
Uniform Agreement, and Termination properties of consen-
sus.

Validity: Suppose process p decides on prop[l]. First,
in the last round of process p, p has already checked in
line 10 that prop[j] �= ⊥ and l[�log n�−1 . . . 0] = j[�logn�−
1 . . . 0], which means l = j and prop[l] �= ⊥. Thus p decides
on prop[l] = v �= ⊥. The value of prop[l] becomes v only
after p uniformly delivers value v with sender(v) = pl . By
the Uniform Integrity of the uniform reliable broadcast, pl
broadcasts v . According to the algorithm, v = vl is the pro-
posal value of pl .

Uniform Agreement: Suppose process p and q (ei-
ther correct or not) both return some decision value in
line 12. Thus, both of them complete all �log2 n� rounds
without crashing in between. In each round k = 0,1,

. . . , �log2 n� − 1, they run the same binary consensus in-
stance B-Consensus[k]() to determine the k-th bit of l. By
the Uniform Agreement of the binary consensus instances,
we know that they have the same value l after they com-
plete all rounds. Moreover, on both p and q, prop[l] can
only contain the proposed value vl from process pl . There-
fore, p and q can only decide on the same value vl .

Termination: First, for every correct process pi , by the
Validity of the uniform reliable broadcast, after pi broad-
casts vi in line 4, pi eventually delivers vi and sets prop[i]
to vi (line 14). Thus, pi will not be blocked at line 5 for-
ever. Suppose, for a contradiction, that some correct pro-
cess p does not decide. Then p is blocked forever in some
round k.

Let k ∈ {0,1, . . . , �log2 n� − 1} be the earliest round
number in which some correct process is blocked forever.
We first show that no correct process can be blocked at
the binary consensus instance B-Consensus[k]() in line 8.
Since no correct process is blocked in the previous round
by the definition of k, all correct processes eventually pro-
pose to B-Consensus[k](). By the Termination property of
binary consensus, all correct processes eventually decide
in B-Consensus[k](). We then show that no correct process
can be blocked forever in the repeat-until loop in lines 9–
10 in round k. For every correct process pi , pi has already
run the binary consensus instance B-Consensus[k]() to de-
termine bit l[k]. By the Validity of binary consensus, some
process q must have proposed l[k]. If k > 0, we consider
the (k − 1)-th round on process q. According to line 10,
on process q there exists jq such that prop[jq] �= ⊥ and
l[k − 1 . . . 0] = jq[k − 1 . . . 0] and then q proposes jq[k] to
binary consensus instance B-Consensus[k](). So l[k] = jq[k]
means l[k . . . 0] = jq[k . . . 0]. If k = 0, suppose the iden-
tifier of q is jq . Then according to lines 5–6, process q
proposes jq[0] = l[0], and prop[jq] �= ⊥ on process q. So,
in both cases, we can find jq such that prop[jq] �= ⊥ on
some process q and l[k . . . 0] = jq[k . . . 0]. By the Uniform
Agreement of uniform reliable broadcast, eventually on pi
prop[jq] is also non-⊥. After this time point, the repeat-
until loop in lines 9–10 of round k on process pi will end
since pi can at least find j = jq that matches the condition
in line 10. So, pi will not be blocked in this repeat-until

1008 J. Zhang, W. Chen / Information Processing Letters 109 (2009) 1005–1009
Local variables on process pi :
1 vi , non-negative integer storing the input proposal value of process pi

2 prop[0 . . .n − 1], array storing the proposed values of processes,
initially ⊥ for all entries

3 d, non-negative integer storing the decision value, initially 0

Code for process pi :
4 UR-Broadcast(vi)

5 wait until prop[i] �= ⊥
6 k ← 0; j ← i
7 repeat
8 d[k] ← B-Consensus[0][k](prop[j][k])
9 repeat j ← (j + 1) mod n

10 until [d[k . . . 0] = prop[j][k . . . 0]]
11 if d = prop[j] then finish = 1 else finish = 0
12 r ← B-Consensus[1][k](finish)

13 k ← k + 1
14 until r = 1
15 return d /* decide on d */
16 Upon UR-Deliver(v) with sender(v) = p j :
17 prop[j] ← v

Fig. 2. Algorithm linear to the length of the proposed values.

loop. Therefore, no correct process is blocked forever in
any round k, which means eventually all correct processes
must decide. �

It is clear that in the algorithm, every process runs ex-
actly �log2 n� binary consensus instances sequentially to
decide for the multivalued consensus. It is an improvement
comparing to the algorithm in [6], in which the number
of sequential binary consensus instances needed is un-
bounded and is affected by the synchrony and the speed
of the uniform reliable broadcast algorithm.

3.2. Algorithm linear to the length of the proposed values

The algorithm in Fig. 1 uses binary consensus instances
to determine the process identifier bit by bit. Using the
similar structure, we can also determine the decision value
directly bit by bit. The advantage is that when the bit
representations of the proposed values are much shorter
than �log2 n� (the length of the bit representations of pro-
cess identifiers), multivalued consensus terminates with
less number of invocations to binary consensus instances.
The difficulty, however, is that we do not know in advance
what are the values to be proposed, and thus it is difficult
to set an upper bound on the number of binary consensus
instances needed to determine all bits. If we use a large
fixed bound based on the number of all possible proposed
values, it could be very large or even infinite. To deal with
this problem, we use another binary consensus instance to
determine if the algorithm should terminate after choos-
ing each bit of the decision value. The resulting algorithm
is adaptive in the sense that the number of binary con-
sensus instances needed is linear to the maximum length
of proposed values in the run, and it is not related to the
total number of possible proposed values in all runs.

Fig. 2 shows the algorithm that determines the deci-
sion value bit by bit, starting from the least significant
bit. In the algorithm, the proposal value vi of process pi
is a non-negative integer value. Any finite-length string
can be encoded by a non-negative integer, so using non-
negative integers does not lose the generality of the solu-
tion. Similar to the first algorithm, each process first uni-
formly broadcasts its own proposed value and stores all
received proposed values in array prop[]. Variable d is an
integer variable used to store the final decision value. Pro-
cesses decide the decision value d bit by bit from d[0],
d[1], and so on. In round k, i.e., the k-th iteration of the
repeat-until loop in lines 7–14 with k � 0, processes de-
cide on d[k], the k-th bit of d. Process pi first uses the k-th
bit of prop[j] to be the proposal of the binary consensus
B-Consensus[0][k]() (line 8) where j is chosen in the previ-
ous round (initially, j is set to pi ’s own identifier i). Then
process pi finds a non-empty proposal prop[j] such that
d[k . . . 0] = prop[j][k . . . 0] (lines 9–10). This is to ensure
that the final decision value is from one of the proposed
values, i.e., to ensure the Validity property of consensus.
Finally, process pi uses another binary consensus instance
B-Consensus[1][k]() to decide whether or not the proce-
dure should terminate (line 12). The input to this binary
consensus instance is 1 if pi finds that the integer d is the
same as prop[j], or 0 otherwise (line 11). If the decision of
this instance is 1, then the multivalued consensus termi-
nates with the decision d.

Theorem 2. The algorithm in Fig. 2 solves multivalued consen-
sus problem based on the binary consensus.

Proof. We show that the algorithm satisfies the Validity,
Uniform Agreement, and Termination properties of consen-
sus.

Validity: Suppose d is the decision value returned by
process p. By line 14, p breaks from the repeat-until loop
with r = 1 in some round k. This means at least one pro-
cess q proposes finish = 1 in the binary consensus instance
B-Consensus[1][k]() in line 12. So d = prop[j] for some j
when process q runs line 11. By the Uniform Integrity of
the uniform reliable broadcast, some p j broadcasts prop[j],
and thus p j proposes d for its multivalued consensus in-
stance. The Validity property holds.

Uniform Agreement: Suppose process p and q (ei-
ther correct or not) both return some decision value
in line 15. Thus, neither of them crashes or is blocked
before making a decision. We first prove that for any
k � 0, if process p runs the binary consensus instance
B-Consensus[0][k](), process q also runs the binary con-
sensus instance B-Consensus[0][k](). If not, there must
exist k′ < k, process q breaks from repeat-until loop
in line 14 after running the binary consensus instance
B-Consensus[1][k′](). Thus, B-Consensus[1][k′]() returns 1
in line 12. But process p also runs the binary consensus
instance B-Consensus[1][k′](). By the Uniform Agreement
property of the binary consensus, process p should get the
return value 1 from instance B-Consensus[1][k′](), which
means it should break from the repeat-until loop in line 14
in round k′ < k, which contradicts to the fact that p runs
the binary consensus instance B-Consensus[0][k](). So pro-
cesses p and q run the same set of binary consensus
instances B-Consensus[0][k](). The k-th bit of the decision
value d returned by p and q are decided by the binary con-
sensus instance B-Consensus[0][k](), which means that the
k-th bit decided by p and q are the same. So decision value
returned by process p is the same as the decision value

J. Zhang, W. Chen / Information Processing Letters 109 (2009) 1005–1009 1009
returned by process q. This proves the Uniform agreement
property.

Termination: First, by the same argument as in Theo-
rem 1, no correct process p is blocked in line 5. We then
prove that no correct process is blocked inside the repeat-
until loop (lines 7–14). If not, let k be the earliest round
number in which some correct process is blocked forever.
We first show that no correct process pi is blocked at the
binary consensus instance B-Consensus[0][k]() in line 8. If
k = 0, then j = i for process pi . So prop[j] �= ⊥ by line 5.
If k > 0, since process pi is not blocked in the previous
round, prop[j] �= ⊥ by line 10. Therefore, all correct pro-
cesses eventually propose to B-Consensus[0][k](). By the
Termination property of binary consensus, all correct pro-
cesses eventually decide in B-Consensus[0][k](). We then
show that no correct process pi is blocked forever in the
repeat-until loop in lines 9–10 in round k. By the Valid-
ity of binary consensus, the decision value d[k] in round
k is proposed by some process q. So d[k] = prop[jq][k] for
some jq on q. If k > 0, in the (k −1)-th round of process q,
according to line 10, we have d[k − 1 . . . 0] = prop[jq][k − 1
. . . 0]. So d[k . . . 0] = prop[jq][k . . . 0] and prop[jq] �= ⊥ on
process q. If k = 0, suppose the identifier of q is jq . Then
we have prop[jq] �= ⊥ and d[0 . . . 0] = prop[jq][0 . . . 0] on
process q. In both cases, we have prop[jq] �= ⊥ on pro-
cess q and d[k . . . 0] = prop[jq][k . . . 0]. By the Uniform
Agreement of uniform reliable broadcast, eventually on pi ,
prop[jq] is also non-⊥. After this time point, the repeat-
until loop in lines 9–10 of round k on process pi will end
since pi can at least find j = jq that matches the condi-
tion in line 10. So, pi will not be blocked in this repeat-
until loop. Therefore, all correct processes eventually pro-
pose to B-Consensus[1][k](). By the Termination property
of binary consensus, all correct processes eventually de-
cide in B-Consensus[1][k](). Therefore, no correct process
is blocked forever in any round k.

Finally, let |vi |= 1 if vi =0, and |vi |= max{ j | vi[j] = 1}
+1, i.e. |vi | is the length of the binary representation of vi .
Let ˜k = max{|vi | | i = 1,2, . . . ,n}, i.e., ˜k is the maximum
length of the binary representations of all proposed values.
We prove that for any process p that finishes round ˜k − 1,
p must decide at the end of this round and terminate the
multivalued consensus. When p executes line 11 in round
˜k − 1, we have d[˜k − 1 . . . 0] = prop[j][˜k − 1 . . . 0] for some
j according to line 10. By the definition of ˜k, prop[j] has
no bit higher than the (˜k − 1)-th bit that is 1, so d =
prop[j]. Therefore, process p can only propose finish = 1
to the binary consensus instance B-Consensus[1][˜k − 1]()

according to line 11. Since no process can propose 0 to
B-Consensus[1][˜k − 1](), by the Validity of binary consen-
sus the decision of this instance can only be 1. Therefore p
will decide at the end of round ˜k − 1 and terminates. Since
we know that all correct processes will reach the end of
round ˜k − 1 if they have not decided earlier, we know that
all correct processes eventually decide by the end of round
˜k − 1. �

From the proof of Termination, it is clear that the al-
gorithm in Fig. 2 solves multivalued consensus with at
most 2˜k sequential calls to binary consensus instances,
where ˜k is the maximum length of the binary represen-
tation of all proposed values in the run. Therefore, when
˜k < �log2 n�/2, this algorithm is preferred over the algo-
rithm in the previous section.

4. Conclusion

In this paper we present two bounded cost algo-
rithms that solve multivalued consensus problem using
binary consensus instances and uniform reliable broadcast
primitives. In the first algorithm every processes invokes
�log2 n� number of binary consensus instances where n is
the number of processes, while in the second algorithm
every processes invokes 2˜k binary consensus instances,
where ˜k is the maximum length of the binary represen-
tation of all proposed values in the run. Both algorithms
significantly improve the worst-case cost of the previous
algorithm in [6] in which processes may invoke an un-
bounded number of binary consensus instances. Finally,
we remark that, even though our definition of consensus
is for deterministic algorithms, our results can be certainly
extended to include randomized algorithms. Therefore, we
can directly use the randomized binary consensus algo-
rithms in [1,3] to solve randomized multivalued consensus.

References

[1] M.K. Aguilera, S. Toueg, Failure detection randomization: A hybrid ap-
proach to solve consensus, SIAM Journal on Computing 28 (3) (1998)
890–903.

[2] M.K. Aguilera, S. Toueg, A simple bivalency proof that t-resilient con-
sensus requires t + 1 rounds, Information Processing Letters 71 (3–4)
(1999) 155–158.

[3] M. Ben-Or, Another advantage of free choice: Completely asyn-
chronous agreement protocols, in: Proceedings of the 2nd ACM Sym-
posium on Principles of Distributed Computing, Aug. 1983, pp. 27–30.

[4] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed con-
sensus with one faulty process, Journal of the ACM 32 (2) (1985)
374–382.

[5] V. Hadzilacos, S. Toueg, A modular approach to fault-tolerant broad-
casts and related problems, Technical Report 94-1425, Department of
Computer Science, Cornell University, Ithaca, New York, May 1994.

[6] A. Mostefaoui, M. Raynal, F. Tronel, From binary consensus to multival-
ued consensus in asynchronous message-passing systems, Information
Processing Letters 73 (5–6) (2000) 207–212.

[7] R. Turpin, B.A. Coan, Extending binary byzantine agreement to mul-
tivalued byzantine agreement, Information Processing Letters 18 (2)
(1984) 73–76.

	Bounded cost algorithms for multivalued consensus using binary consensus instances
	Introduction
	The model and the problem
	Algorithms from binary consensus to multivalued consensus
	Algorithm linear to the length of process identifiers
	Algorithm linear to the length of the proposed values

	Conclusion
	References

