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An optically levitated nonspherical nanoparticle can exhibit both librational and translational vibrations due to
orientational and translational confinements of the optical tweezer, respectively. Usually, the frequency of its
librational mode in a linearly polarized optical tweezer is much larger than the frequency of its translational
mode. Because of the frequency mismatch, the intrinsic coupling between librational and translational modes
is very weak in vacuum. Here we propose a scheme to couple its librational and center-of-mass modes with
an optical cavity mode. By adiabatically eliminating the cavity mode, the beam splitter Hamiltonian between
librational and center-of-mass modes can be realized. We find that high-fidelity quantum state transfer between
the librational and translational modes can be achieved with practical parameters. Our work may find applica-
tions in sympathetic cooling of multiple modes and quantum information processing. © 2017 Optical Society of

America

OCIS codes: (270.0270) Quantum optics; (020.7010) Laser trapping; (120.4880) Optomechanics; (350.4855) Optical tweezers or

optical manipulation.
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1. INTRODUCTION

Quantum optomechanics is a rapidly developing field that deals
with the interaction between an optical field and the mechani-
cal motion of an object [1,2]. In the last decade, there were
many studies on the interaction between the light and the
center-of-mass motion of a mechanical oscillator. Quantum
ground cooling of mechanical oscillators has been realized
[3,4]. The study of optomechanics has many applications in
macroscopic quantum mechanics [5,6], precise measurements
[7], and quantum information processing [8,9].

An optically levitated dielectric nanoparticle in vacuum can
have an ultrahigh mechanical Q>109 [10–13]. Therefore, it
can be used for ultrasensitive force detection [14], searching
for hypothetical millicharged particles and dark energy inter-
actions [15,16], and testing the boundary between quantum
and classical mechanics [17,18]. A levitated nanoparticle has
6 degrees of freedom: three translational modes and three
rotational modes [19]. If its orientation is confined by the
optical tweezer, it will exhibit libration. (Such motion was
called “torsional vibration” in Ref. [20,21], and “rotation”

in Ref. [22,23]. Several recent papers called it “libration”
[24,25], which may be a better term, as it is similar to the li-
bration of a molecule in an external field.) The librational mode
of an optically levitated nonspherical nanoparticle has been
observed recently [21,23]. Both translational motion and libra-
tion of a nanoparticle could be coupled with light and cooled
towards quantum ground state by a cavity mode [19]. The
librational mode frequency could be 1 order of magnitude
higher than the frequency of a translational mode [21]. The
coupling between the librational mode and the cavity mode
can also be larger than the coupling between the translational
mode and the cavity [21]. Therefore, it requires less cooling
laser power to cool the librational mode to the quantum regime
than to cool the translational mode [21,22,26,27].

In an optical trap in vacuum, the six motional degrees of
freedom of a nanoparticle are uncoupled from each other when
they are near ground state. It would be interesting to study how
to induce strong coupling between them. Such coupling will
have several applications. For example, we may use one of these
modes to synthetically cool other modes. It is also useful for
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quantum information, as we may use all six motional modes to
store quantum bits, and realize quantum processes such as con-
trolled gates. By dynamically tuning the polarization orienta-
tion of a trapping laser, it was found that two different
translational modes could be coupled with each other [28].
In this way, one translational mode was synthetically cooled
by coupling it to another translational mode, which was feed-
back cooled. It has been proposed to couple the translational
and rotational motion of a sphere with a spot painted on its
surface by a continuous joint measurement of two motional
modes [29]. However, a coherent way to couple the rotational
and translational motion of a nanoparticle is still lacking.

In this paper, we propose a scheme to realize strong coupling
between librational and translational modes of a levitated nano-
particle. We consider an optically trapped nanoparticle that re-
sides in an optical cavity. Both its translational and librational
modes couple with the cavity mode. We discuss the effects of
cavity decay, and find that high-fidelity quantum state transfer
could be realized under realistic experimental conditions. We
also find that two-mode-squeezing Hamiltonian between libra-
tional and translational modes could be realized by adjusting
the detunings of driving lasers.

2. MODEL

As shown in Fig. 1, we consider a system that contains an
optical cavity and an ellipsoidal nanoparticle levitated by a
trapping laser. The trapping laser is linearly polarized.
Therefore, both location and direction of the nanoparticle
are fixed [21]. The nanoparticle has translational mode b with
frequency ωm and librational mode c with frequency ωφ. They
are both coupled to the cavity mode a. The frequency of

the mode c is usually much larger than the frequency of the
mode b. The optical mode is driven by two lasers of frequencies
ωL1 and ωL2 . The Hamiltonian of the system can be divided
into three parts, HE , HI , and HD, such that

H � HE �HI �HD; (1)

where

HE � ℏω0a†a� ℏωmb†b� ℏωφc†c; (2)

HI � ℏgaba
†a�b† � b� � ℏgaca

†a�c† � c�; (3)

HD � hΩ1

2
�a†e−iωL1 t � aeiωL1 t� � hΩ2

2
�a†e−iωL2 t � aeiωL2 t�:

(4)

Here HE is the energy term of translational mode b, librational
mode c, and cavity mode a.HI describes the couplings between
the cavity mode a and two mechanical modes b and c. The cou-
pling rates gab and gac are small, but they can be amplified by the
driving lasers HD. We will discuss how to derive the effective
Hamiltonian between a and b, c modes in the next section.

3. EFFECTIVE HAMILTONIAN

We first consider an ideal system without decay. In order to
get the effective Hamiltonian between the cavity mode a
and mechanical modes b and c, we first give the Heisenberg
equation corresponding to Eq. (1):

_a � −iω0a − igaba�b† � b� − igaca�c† � c�

− i
Ω1

2
e−iωL1 t − i

Ω2

2
e−iωL2 t : (5)

To deal with it, we make a semiclassical ansatz:

a � a0�t� � α1�t�e−iωL1 t � α2�t�e−iωL2 t ; (6)

where α1 and α2 are the classical amplitudes of mode a with
frequencies ωL1 and ωL2, and a0 is the quantum fluctuation
operator.

Inserting Eq. (6) into Eq. (5), we get the equation for the
classical amplitudes α1 and α2:

− iωL1α1e
−iωL1 t − iωL2α2e

−iωL2 t � _α1e−iωL1 t � _α2e−iωL2 t

� −iω0α1e−iωL1 t − iω0α2e−iωL2 t − i
Ω1

2
e−iωL1 t − i

Ω2

2
e−iωL2 t :

(7)

As α1 and α2 have different frequencies, we have equations for
each of them:

_α1 � −iω0α1 � iωL1α1 − i
Ω1

2

_α2 � −iω0α2 � iωL2α2 − i
Ω2

2
: (8)

So we can get their classical steady-state amplitude
( _α1 � _α2 � 0): α1 � Ω1

2Δ1
and α2 � Ω2

2Δ2
, where Δ1�ωL1 −ω0,

Δ2 � ωL2 − ω0. So, we get

a � a0e−iω0t � Ω1

2Δ1

e−iωL1 t � Ω2

2Δ2

e−iωL2 t : (9)

Fig. 1. (a) A nanoparticle is levitated by the trapping laser and is
placed in a cavity. The trapping laser propagates along the z axis.
The cavity is driven by two lasers of frequencies ωL1 and ωL2 .
(b) Details of the nanoparticle: �x; y; z� is the coordinate system of
the cavity. The x axis aligns with the polarization direction of the trap-
ping laser. �x 0; y 0; z 0� is the coordinate fixed on the nanoparticle. The
x 0 axis aligns with the long axis of the nanoparticle.
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We can derive steady-state displacements β and γ for b and c in
the same way:

b � b0 � β

c � c0 � γ; (10)

where β � −gab�α21 � α22�∕ωm, γ � −gac�α21 � α22�∕ωφ. We
substitute Eqs. (9) and (10) into Hamiltonian and in the
rotating frame with U � e−iH 0t∕ℏ, where H 0�ℏω0a

†
0a0�

ℏωmb
†
0b0�ℏωφc

†
0c0. The Hamiltonian HRW �U †�H −H 0�U .

By tuning the lasers’detunings, we can get different Hamiltonians
between mechanical modes and the cavity mode. The different
tasks, such as quantum state transfer and entanglement
generating, can be realized. For example, if the driving
lasers fulfill Δ1 � −ωm, Δ2 � −ωφ, we can neglect fast oscil-
lation terms. The effective Hamiltonian reads

HRW � ℏgabα1�a†0b0 � a0b
†
0� � ℏgacα2�a†0c0 � a0c

†
0�: (11)

The perfect quantum state transfer between the translational
and the librational modes requires jgabα1j � jgacα2j � G.
If we initialize the system as jψa�t � 0�ijψ b�t � 0�ij
ψ c�t � 0�i � j0ij0ij1i, we can get

jψaψ bψ c�t�i �
1

2

�
1� cos

ffiffiffi
2

p
Gt

�
j001i

−
1

2

�
1 − cos

ffiffiffi
2

p
Gt

�
j010i

−
i

ffiffiffi
2

p

2
sin

ffiffiffi
2

p
Gtj100i: (12)

If we let t � πffiffi
2

p
G
, we can transfer a state from librational mode

to translation mode and vice versa.
If we set Δ1 � ωm � Δ2 � ωφ � δ, and in the large detun-

ing limit δ ≫ jgabα1j, jgacα2j, the cavity mode can be adiabati-
cally eliminated [30]. Here we include all fast rotating
terms, both rotating wave and antirotating wave. If the cavity
mode a0 is initially in the vacuum state, the effective
Hamiltonian is

H eff � ℏG1b
†
0b0 � ℏG2c

†
0c0 � ℏG3�b†0c0 � b0c

†
0�; (13)

where

G1 �
α21g

2
ab

Δ1 � ωm
� α21g

2
ab

Δ1 − ωm
� α22g

2
ab

Δ2 � ωm
� α22g

2
ab

Δ2 − ωm
; (14)

G2 �
α22g

2
ac

Δ2 � ωφ
� α22g

2
ac

Δ2 − ωφ
� α21g

2
ac

Δ1 � ωφ
� α21g

2
ac

Δ1 − ωφ
; (15)

G3 �
�
α1α2gabgac
Δ1 � ωm

� α1α2gabgac
Δ1 − ωφ

�
: (16)

If G1 � G2 (we will provide workable parameters in
the next section), and we take the initial state as
jψb�t � 0�ijψ c�t � 0�i � j0ij1i, we can get

jψb�t�ijψ c�t�i �
1

2
�e−i�G1�G3�t � e−i�G1−G3�t�j0ij1i

� 1

2
�e−i�G1�G3�t − e−i�G1−G3�t�j1ij0i: (17)

In the lab reference frame, we have

jψb�t�ijψ c�t�i �
1

2
e−iωφt�e−i�G1�G3�t � e−i�G1−G3�t�j0ij1i

� 1

2
e−iωmt�e−i�G1�G3�t − e−i�G1−G3�t�j1ij0i:

(18)

If we let t � π
2G2

3
, we can transfer a state from librational mode

to translational mode and vice versa.
We can also choose Δ1 − ωm � Δ2 − ωφ � δ. In the limit

δ ≫ G, we can adiabatically eliminate the cavity mode, and get
a two-mode-squeezing effective Hamiltonian [9,31]:

HRW � ℏG 0
1�b†0b0 � c†0c0� � ℏG 0

3�b†0c†0 � b0c0�; (19)

which could be used for generating entanglement between
modes b0 and c0.

4. EXPERIMENTAL FEASIBILITY AND
DISSIPATION EFFECTS

In this section, we will provide the feasible parameters in experi-
ment and consider the effect of dissipations. In our scheme, the
steady-state amplitudes α1 and α2 are on the order of 104 to
105. Therefore, the strengths of linear couplings between the
cavity mode and the mechanical modes are enhanced by 104 to
105 times. The photon number fluctuation is on the order offfiffiffiffiffiffiffiffi
α1;2

p ∼ 102, which is related to nonlinear coupling between
the cavity and the mechanical modes. Therefore, the linear cou-
pling strength is 102 times larger than the nonlinear coupling
strength. The effect of the photon number fluctuation is neg-
ligible in our scheme.

In experiments, the dissipation by the cavity mode and
mechanical modes decay is inevitable. However, in high vac-
uum, the mechanical decay rates are much less than the cavity
decay rate [21,32,33]. Therefore, we only need to consider the
cavity decay effect. Considering the dissipation, the steady-am-
plitudes will change and we can derive them by adding a term
of −iℏ κ

2 a
†a into Hamiltonian Eq. (1). Following the same pro-

cedure mentioned above, we can get

α1 �
Ω1

2
�
Δ1 � i κ2

� ;

α2 �
Ω2

2
�
Δ2 � i κ2

� : (20)

And in order to maintain the form of the Hamiltonian,
we should do the transformation b0 → α1b0∕jα1j; b†0 →
α�1b

†
0∕jα1j and c0 → α2c0∕jα2j; c†0 → α�2c

†
0∕jα2j. Using pertur-

bation theory [13,34], we can obtain the coupling constants in
the same way as Ref. [21]. If we restrict the librational motion
of the long axis of the nanoparticle in the plane xOy, we get

gab �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2Mωm

s
32π2ce−

4π�x2�z2�
λL cos ky sin ky
ϵ0λ

3L2

· �s2 � cos2 φ�s1 − s2��; (21)
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gac �
ffiffiffiffiffiffiffiffiffiffiffi
ℏ

2Iωφ

s
8πce−

4π�x2�z2�
λL cos2 ky

ϵ0λ
2L2

�s1 − s2� sin 2φ: (22)

Here L is the length of the cavity; λ and k are the wavelength
and wavenumber of the cavity mode.M and I are the mass and
the moment of inertia of the nanoparticle. s1 and s2 are the
diagonal elements of the susceptibility matrix. �x; y; z;φ� are
the parameters describing the position of the nanoparticle:
�x; y; z� are the coordinates of the center of mass (origin is
the center of the cavity), and φ is the angle between the long
axis of the nanoparticle and the x axis. x, y, z, and φ can be
changed by adjusting the trapping laser. For example, we
choose the angle between the polarization direction of the trap-
ping laser and the y axis (φ) as 45°, the equilibrium position of
the center of mass is �0; π∕4k; 0�. We can get gab∕2π �
0.3056 Hz and gac∕2π � 0.2189 Hz. (The parameters of
the nanoparticle we choose are as follows: ρ � 3500 kg∕m3,
long axis a � 50 nm, short axis b � 25 nm, ϵr � 5.7, waist
of the trapping laser W t � 600 nm, power of the trapping
laser is 100 mW, wavelength λcav � 1540 nm, length of the
cavity L � 10 nm.) In this situation, ωm∕2π � 247.7 kHz,
ωφ∕2π � 2.6 MHz. If the finesse of our cavity F � 105,
and we can get κ∕2π � 75.2 kHz. For example, we let
δ∕2π � 200 kHz, Ω1∕2π � 2.66 × 109 Hz, Ω2∕2π �
5.0 × 1010 Hz. We can get G3∕2π � 25 kHz and time of state
transfer t � 1 × 10−5 s; thus it is not difficult to realize.

A. Large Detuning Scheme

Under the large detuning condition that Δ1 � ωm �
Δ2 � ωφ � δ ≫ G, we change the system Hamiltonian to
the rotating wave frame, and neglect the fast rotating terms
in HRW . In order to deal with the cavity loss effects, here
we adopt the conditional Hamiltonian [35,36]. We assume
that the cavity decay rate is weak. Therefore, we can only
consider the situation that the system evolves without photon
leakage. Under the condition that no photon is leaking out, we
get the conditional Hamiltonian from the quantum trajectory
method [35]:

H � ℏG�a†0b0e−iδt � a0b
†
0e

iδt� � ℏG�a†0c0e−iδt � a0c
†
0e

iδt�
− iℏ

κ

2
a†0a0; (23)

where κ is the decay rate of the cavity mode a. We can use the
above conditional Hamiltonian to calculate the possibility P of
the system evolving without photon leakage. Because we
suppose that the initial state of the system is j0iaj01ibc , so
the subspace only includes three basis states: j0iaj01ibc ,
j0iaj10ibc , and j1iaj00ibc . And at any time t, the state of
the system is

jψd �t�i � Cd1�t�j0iaj01ibc � Cd2�t�j0iaj10ibc
� Cd3�t�j1iaj00ibc ; (24)

where

Cd1�t� �
1

2
� �2δ� iκ � χ�

4χ
e−iE3t∕ℏ −

�2δ� iκ − χ�
4χ

e−iE2t∕ℏ;

(25)

Cd2�t� � −
1

2
� �2δ� iκ� χ�

4χ
e−iE3t∕ℏ −

�2δ� iκ − χ�
4χ

e−iE2t∕ℏ;

(26)

Cd3�t� � −
e−iδt�2δ� iκ� χ��2δ� iκ − χ�

16Gχ

· �e−iE3t∕ℏ − e−iE2t∕ℏ�; (27)

here χ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δ2 � 32 G2 � 4iδκ − κ2

p
, E2 � 1

4 �−2δ − iκ − χ�,
E3 � 1

4 �−2δ − iκ � χ�.
We first normalize the state jψd i to calculate the fidelity; we

can get jψdni � jψd i∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCd1j2 � jCd2j2 � jCd3j2

p
. As shown

in Fig. 2(a), we plot the fidelity F � jhψdn�t�j010ij at the time
t � πδ

2 G2−κ2∕16 which can be directly derived from the strict sol-
ution of the Schrödinger equation and κ∕2π � 75.2 kHz as a
function of δ and G. The possibility of the system evolving
without photon leakage is P � jCd1j2 � jCd2j2 � jCd3j2.
It is found that the fidelity could approach 1 when G is
small and δ is large. However, at this regime, the effective cou-
pling between two mechanical modes is also pretty small. In
Fig. 2(b), we plot P as a function of δ and G as well.
When we choose δ � 200 kHz and G � 50 kHz, the fidelity
F � 0.95 and the successful possibility P � 0.68.

B. Resonant Scheme

In the resonance case, the Hamiltonian reads

H�ℏG�a†0b0�a0b
†
0��ℏG�a†0c0�a0c

†
0�− iℏ

κ

2
a†0a0: (28)

Fig. 2. (a) Fidelity of state transfer as a function of G and δ in the
situation of large detuning. (b) Probability of the system being in this
state as a function of G and δ.

Research Article Vol. 34, No. 6 / June 2017 / Journal of the Optical Society of America B C11



Because we suppose that the initial state of the system is
j0iaj01ibc , the subspace only includes three basis states:
j0iaj01ibc , j0iaj10ibc , and j1iaj00ibc as well. And at any time
t , the state of the system is

jψ r�t�i � Cr1�t�j0iaj01ibc � Cr2�t�j0iaj10ibc
� Cr3�t�j1iaj00ibc ; (29)

and

Cr1�t� �
1

2
� 1

2
e−κt∕4 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p

4
t

� κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p e−κt∕4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p

4
t; (30)

Cr2�t� � −
1

2
� 1

2
e−κt∕4 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p

4
t

� κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p e−κt∕4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p

4
t; (31)

Cr3�t� � −i
4Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 G2 − κ2
p e−κt∕4 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 G2 − κ2

p

4
t: (32)

As with the large detuning case, we plot the fidelity F �
jhψnr�t�j010ij in Fig. 3(a) and possibility P � jCr1j2 �
jCr2j2 � jCr3j2 at t � 4πffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 G2−κ2
p in Fig. 3(b) as a function

of G and κ. Here jψnr�t�i is the normalized state of

jψ r�t�i. It is found that both P and F are in favor of larger
G and less κ. When we choose κ � 75.2 kHz and
G � 50 kHz, the fidelity F � 0.926 and the successful pos-
sibility P � 0.59. As we can see, for both large detuning
and resonant schemes, the quantum state transfer could be real-
ized with pretty high fidelity and successful possibility. In
experiment, we can choose either of them for convenience.

5. CONCLUSION

In this paper, we propose a scheme to couple librational and
translational modes of a levitated nanoparticle with an optical
cavity mode. We discuss how to realize quantum state transfer
from a librational mode to a translational mode, and vice versa.
We also discuss the effects of cavity decay on the fidelity of
state transfer. We find that the high-fidelity state transfer could
be realized under practical experimental conditions.
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