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Abstract
We consider the stochastic composition optimiza-
tion problem proposed in [Wang et al., 2016a],
which has applications ranging from estimation to
statistical and machine learning. We propose the
first ADMM-based algorithm named com-SVR-
ADMM, and show that com-SVR-ADMM con-
verges linearly for strongly convex and Lipschitz
smooth objectives, and has a convergence rate of
O(logS/S), which improves upon the O(S�4/9

)

rate in [Wang et al., 2016b] when the objec-
tive is convex and Lipschitz smooth. Moreover,
com-SVR-ADMM possesses a rate of O(1/

p
S)

when the objective is convex but without Lips-
chitz smoothness. We also conduct experiments
and show that it outperforms existing algorithms.

1 Introduction
Recently, [Wang et al., 2016a] proposed the stochastic com-
position optimization of the following form:

min

x

(E

i

f
i

�E
j

g
j

)(x). (1)

Here x 2 Rq , E
i

f
i

= E

i

{f
i

(x)}, (f � g)(x) , f(g(x)) de-
notes the composite function, and i, j are random variables.
Problem (1) has been shown in [Wang et al., 2016a] to in-
clude several important applications in estimation and ma-
chine learning.

In this paper, we focus on extending the formulation to in-
clude linear constraints, and consider the following variant of
Problem (1):

min

x,!

F (x) +R(!) (2)
s.t. Ax+B! = 0. (3)

Here F (x) , 1

n

nP
i=1

f
i

(

1

m

mP
j=1

g
j

(x)), x 2 Rq , ! 2 Rl,

A 2 Rp⇥q , B 2 Rp⇥l, g
j

: Rq 7! Rr and f
i

: Rr 7! R are
continuous functions, and R(!) : Rl 7! R is a closed convex
function. The reason to consider the specific form of Problem
(2) is as follows. (i) In practice, random variables such as i
and j are obtained from problem-dependent data sets. Thus,

they often only take values in a finite set with certain frequen-
cies (captured by the first term in the objective (2)). (ii) Such
problems often require the solutions to satisfy certain regu-
larizing conditions (imposed by the term R(!) and constraint
(3)). Note here that the uniform distribution of i and j (the 1

n

and 1

m

) in (2) is not critical. In Section 4, we show that our
algorithm is also applicable under other distributions.

1.1 Motivating Examples
We first present a few motivating examples of formulation
(2). The first example is a risk-averse learning problem dis-
cussed in [Wang et al., 2016b], which can be formulated into
the following mean-variance minimization problems, i.e.,

min

x

E

✏

h
✏

(x) + �Var
✏

h
✏

(x) (4)
s.t. Ax = 0. (5)

Here h
✏

(x) is the loss function w.r.t variable x and is param-
eterized by random variable ✏, and Var

✏

(x) , E

✏

{[h
✏

(x) �
E

✏

h
✏

(x)]2} denotes its variance. We see that this example
is of the form (2), where E

✏

h
✏

(x) plays the role of the reg-
ularizer and the variance term is the composition functions.
There are many other problems that can be formulated into
the mean-variance optimization as in (4), e.g., portfolio man-
agement [Alexander and Baptista, 2004].

The second motivating example is dynamic programming
[Sutton and Barto, 1998; Dai et al., 2016]. In this case, one
can often approximate the value of each state by an inner
product of a state feature �

s

and a target variable w. Then,
the policy learning problem can be formulated into minimiz-
ing the Bellman residual as follows:

min

w

SX

s=1

(h�
s

, wi �
X

s

0

P⇡

s,s

0(r
s,s

0
+ �h�

s

0 , wi))2 +R(w),

(6)
where P⇡

s,s

0 denotes the transition probabilities under a pol-
icy ⇡, and � denotes the discounting factor. Note that this
problem also has the form of Problem (2).

The third example is multi-stage stochastic programming
[Shapiro et al., 2014]. For example, a two-stage optimization
scenario often requires solving the following problem:

min

x

E

v

(min

y

E

u|v(U(x, v, y, u))).

Here x, y are decision variables, v, u are the corresponding
random variables, and the function U is the utility function.



In this case, the expectation E

u|v(·) is the inner function and
min

y

(·) is the outer function in Problem (2).
From these examples, we see that formulation (2) is gen-

eral and includes important applications. Thus, it is important
to develop fast and robust algorithms for solving (2).

1.2 Related Works
The stochastic composition optimization problem was first
proposed in [Wang et al., 2016a], where two solution algo-
rithms, Basic SCGD and accelerated SCGD, were proposed.
The algorithms were shown to achieve a sublinear conver-
gence rate for convex and strongly convex cases, and were
also shown to converge to a stationary point in the nonconvex
case. Later, [Wang et al., 2016b] proposed a proximal gra-
dient algorithm called ASC-PG to improve the convergence
rate when both inner and outer functions are smooth. How-
ever, the convergence rate is sublinear and their results do not
include the regularizer when the objective functions are not
strongly convex. In [Lian et al., 2016], the authors solved
the finite sample case of stochastic composition optimiza-
tion and obtained two linear-convergent algorithms based on
the stochastic variance reduction gradient technique (SVRG)
proposed in [Johnson and Zhang, 2013]. However, the algo-
rithms do not handle the regularizer either.

The ADMM algorithm, on the other hand, was first pro-
posed in [Glowinski and Marroco, 1975; Gabay and Mercier,
1976] and later reviewed in [Boyd et al., 2011]. Since then,
several ADMM-based stochastic algorithms have been pro-
posed, e.g., [Ouyang et al., 2013; Suzuki and others, 2013;
Wang and Banerjee, 2013]. However, these algorithms all
possess sublinear convergence rates. Therefore, several re-
cent works tried to combine the variance reduction scheme
and ADMM to accelerate convergence. For instance, SVRG-
ADMM was proposed in [Zheng and Kwok, 2016a]. It was
shown that SVRG-ADMM converges linearly when the ob-
jective is strongly convex, and has a sublinear convergence
rate in the general convex case. Another recent work [Zheng
and Kwok, 2016b] further proved that SVRG-ADMM con-
verges to a stationary point with a rate O(

1

T

) when the
objective is nonconvex. In [Qian and Zhou, 2016], the
authors used acceleration technique in [Allen-Zhu, 2016;
Hien et al., 2016] to further improve the convergence rate
of SVRG-ADMM. However, all aforementioned variance-
reduced ADMM algorithms cannot be directly applied to
solving the stochastic composition optimization problem.

1.3 Contribution
In this paper, we propose an efficient algorithm called com-
SVR-ADMM, which combines ideas of SVRG and ADMM,
to solve stochastic composition optimization. Our algo-
rithm is based on the SVRG-ADMM algorithm proposed in
[Zheng and Kwok, 2016a], which does not apply to compos-
ite optimization problems. We consider three different objec-
tive functions in Problem (2), and show that our algorithm
achieves the following performance.

• When F (x) is strongly convex and Lipschitz smooth,
and R(!) is convex, our algorithm converges linearly.
This convergence rate is comparable with those of com-

SVRG-1 and com-SVRG-2 in [Lian et al., 2016]. How-
ever, com-SVRG-1 and com-SVRG-2 do not take the
commonly used regularization penalty into considera-
tion. Experimental results also show that com-SVR-
ADMM converges faster than com-SVRG-1 and com-
SVRG-2.

• When F (x) is convex and Lipschitz smooth, and R(!)
is convex, com-SVR-ADMM has a sublinear rate of
O(

log(S+1)

S

), where S is the number of outer iterations.1

This result outperforms the O(S�4/9

) convergence rate
of ASC-PG in [Wang et al., 2016b].2

• When F (x) and R(!) are general convex functions
(not necessarily Lipschitz smooth), com-SVR-ADMM
achieves a rate of O(

1p
S

). To the best of our knowledge,
this is the first convergence result for stochastic compos-
ite optimization with general convex problems without
Lipschitz smoothness.

1.4 Notation
For vector x and a positive definite matrix G, the G-norm of
vector x is defined as ||x||

G

=

p
xTGx. For a matrix X ,

||X|| denotes its spectral norm, �
max

(X),�
min

(X) denote
its largest and smallest eigenvalue, respectively. X† denotes
the pseudoinverse of X . ˜rR(!) denotes a noisy subgradi-
ent of nonsmooth R(!). For a function g(x) : Rq 7! Rr,
@g(x) 2 Rr⇥q denotes its Jacobian matrix. rf

ik(g(x)) de-
notes the gradient of f

ik(·) at point y = g(x).

2 Algorithm
Recall that the stochastic composition problem we want to
solve has the following form:

min

x,!

F (x) +R(!)

s.t. Ax+B! = 0.

where F (x) , 1

n

nP
i=1

f
i

(

1

m

mP
j=1

g
j

(x)). For clarity, we denote

F (x) =

1

n

nP
i=1

F
i

(x), F
i

(x) = f
i

(g(x)), g(x) = Eg(x) =

1

m

mP
j=1

g
j

(x). Therefore, rF
i

(x) = (@g(x))Trf
i

(g(x)).

Our proposed procedure adopts the ADMM scheme. At
every iteration the primal variables (x,!) are obtained by
minimizing the following augmented Lagrangian equation
parameterized with ⇢ > 0, i.e.,

L
⇢

(x,!,�)

= F (x) +R(!) + h�, Ax+B!i +

⇢

2

||Ax+B!||2
2

.

The update of dual variable � is similar to that under gradi-
ent descent with the stepsize equaling ⇢. We also based our
algorithm on a sampling oracle as in [Wang et al., 2016b].
Specifically, we assume a stochastic first-order oracle, which,

1The number of inner iterations is constant.
2Note that ASC-PG is not based on SVRG and does not have

inner loops.



Algorithm 1 com-SVR-ADMM for strongly convex stochas-
tic composition optimization

1: Input: K, M , N , ⌘, ⇢, x̃0, !̃0, ˜�0

= �(AT

)

†rF (x̃0

);
2: for s = 1, 2, ... do
3: x̃ = x̃s�1, x0

= x̃s�1, !0

= !̃s�1, �0

=

˜�s�1;
4: g(x̃) = 1

m

P
m

j=1

g
j

(x̃); (m queries)
5: evaluate rF (x̃); (m+ n queries)
6: for k = 0 to K � 1 do
7: !k+1

= argmin

!

R(!) + h�k, B!i + ⇢

2

||Axk

+

B!||2
2

;

8: uniformly sample N
k

and calculate ĝ(xk

) using (9);
(2N queries)

9: uniformly sample i
k

, j
k

and calculate r ˆF
ik(x

k

) us-
ing (8); (4 queries)

10: xk+1

= argmin

x

hr ˆF
ik(x

k

), x�xki+h�k, Axi+
⇢

2

||Ax+B!k+1||2
2

+

1

2⌘

||x� xk||2
2

;

11: �k+1

= �k

+ ⇢(Axk+1

+B!k+1

);
12: end for
13: x̃s

=

1

K

KP
k=1

xk, w̃s

=

1

K

KP
k=1

wk, ˜�s

=

�(AT

)

†rF (x̃s

);
14: end for
15: Output: x̃s, w̃s.

if queried, returns a noisy gradient/subgradient or function
value of f

i

(·) and g
j

(·) at a given point.
In the following sections, we introduce the stochastic

variance reduced ADMM algorithm for solving stochastic
compositional optimization (com-SVR-ADMM). We present
com-SVR-ADMM in three different scenarios, i.e., strongly
convex and Lipschitz smooth, general convex and Lipschitz
smooth, and general convex. Algorithm 1 shows how com-
SVR-ADMM is used in the strongly convex case, while Al-
gorithm 2 is for the second and third cases.

2.1 Compositional Stochastic Variance Reduced
ADMM for Strongly Convex Functions

As in SVRG, com-SVR-ADMM has K inner loops inside
each outer iteration. At every outer iteration, we need to keep
track of a reference point x̃ (Step 3 in Algorithm 1) for com-
puting g(x̃) defined as

g(x̃) =
1

m

mX

j=1

g
j

(x̃), (7)

and evaluate @g(x̃), which is the Jacobian matrix of g(x) at
point x̃. The updates of !k+1 and �k+1 are the same as those
in batch ADMM [Boyd et al., 2011]. The main difference
lies in the update for xk+1, in that we use a stochastic sample
i
k

and replace F
ik(x) with its first-order approximation, and

then approximate rF
ik(x

k

) by

r ˆF
ik(x

k

) = (@g
jk(x

k

))

Trf
ik(ĝ(x

k

)) (8)
�(@g

jk(x̃))
Trf

ik(g(x̃)) +rF (x̃).

Here i
k

, j
k

are uniformly sampled from {1, 2, ..., n} and
{1, ...,m}, respectively. ĝ(xk

) is an estimation of g(xk

) de-
fined as follows:

ĝ(xk

) = g(x̃)� 1

N

X

1jN

�
gNk[j]

(x̃)� gNk[j]
(xk

)

�
, (9)

where N
k

is a mini-batch and is obtained by uniformly and
randomly sampling from {1, ...,m} for N times (with re-
placement) and N

k

[j] is the jth element of N
k

. In step 10

of Algorithm 1, we add a proximal term 1

2⌘

||x�xk||2
2

to con-
trol the distance between the next point xk+1 and the current
point xk. The parameter ⌘ is a constant and plays the role of
stepsize as in [Ouyang et al., 2013].

Note that our estimated gradient r ˆF
ik(x

k

) is biased due
to the composition objective function and its form is the same
as com-SVRG-1 in [Lian et al., 2016]. However, we remark
that our algorithm is not a trivial extension of com-SVRG-
1 due to the existence of linear constraint and Lagrangian
dual variable. Moreover, com-SVR-ADMM can handle reg-
ularization penalty while com-SVRG-1 cannot. Also, the up-
date of ˜�s uses the pseudoinverse of A. In the common case
when A is sparse, one can use the efficient Lanczos algorithm
[Golub and Van Loan, 2012] to compute A†. Note that step
10 in Algorithm 1 often involves computing ATA. The mem-
ory complexity for this step can be alleviated by algorithms
proposed in recent works, e.g., [Zheng and Kwok, 2016a;
Zhang et al., 2011].

2.2 Compositional Stochastic Variance Reduced
ADMM for General Convex Functions

In this section, we describe how com-SVR-ADMM handles
general convex composition problems with Lipschitz smooth-
ness. Without strong convexity, we need to make subtle
changes. As shown in Algorithm 2, besides changes in vari-
able initialization and output, another key difference is the
approximation of rF

ik(x), where we use g(xk

) instead of
ĝ(xk

), i.e.,

r ˆF
ik(x

k

) = (@g
jk(x

k

))

Trf
ik(g(x

k

)) (10)
�(@g

jk(x̃))
Trf

ik(g(x̃)) +rF (x̃).

Note that in the cases of interest (see Assumption 1 below),
the approximated gradient r ˆF

ik(x
k

) is unbiased. The next
change is the stepsize for updating x. In step 10 of Algo-
rithm 2, we use a positive definite matrix G

k

in the proximal
term.3 Therefore, the stepsize depends on two parameters:
⌘
s

and G
k

, as shown in (11), where s and k are the iteration
counters for outer and inner iteration, respectively. Here L

F

is a parameter of Lipschitz smoothness and will be specified
in our assumptions in next section.

⌘
s

=

1

(s+ 1)L
F

, G
0

⌫ G
1

⌫ G
2

⌫ ... ⌫ G
K�1

,

G
0

=

1

s
I, G

K�1

=

1

s+ 1

I, G
K

=

1

s+ 1

I.

(11)

3The corresponding proximal term of Algorithm 1 can be viewed
to have Gk = I .



Algorithm 2 com-SVR-ADMM for general convex stochas-
tic composition optimization

1: Input: S, K, N , ⌘
s

, ⇢, x̃0

= x̂0, !̂0, ˆ�0, ˆG0

= I;
2: for s = 1, 2, ..., S do
3: x̃ = x̃s�1, x0

= x̂s�1, !0

= !̂s�1, �0

=

ˆ�s�1,
G

0

=

ˆGs�1;
4: g(x̃) = 1

m

P
m

j=1

g
j

(x̃); (m queries)
5: evaluate rF (x̃); (m+ n queries)

6: for k = 0 to K � 1 do
7: !k+1

= argmin

!

R(!) + h�k, B!i + ⇢

2

||Axk

+

B!||2
2

;

8: calculate g(xk

) =

1

m

P
m

j=1

g
j

(xk

); (m queries)
9: uniformly sample i

k

, j
k

and calculate r ˆF
ik(x

k

) us-
ing (10); (4 queries)

10: xk+1

= argmin

x

hr ˆF
ik(x

k

), x�xki+h�k, Axi+
⇢

2

||Ax+B!k+1||2
2

+

1

2⌘s
||x� xk||2

Gk
;

11: �k+1

= �k

+ ⇢(Axk+1

+B!k+1

);
12: end for
13: x̃s

=

1

K

KP
k=1

xk, !̃s

=

1

K

KP
k=1

!k, ˜�s

=

1

K

KP
k=1

�k,

x̂s

= xK , !̂s

= !K , ˆ�s

= �K , ˆGs

= G
K

;
14: end for
15: Output: x̄ =

1

S

SP
s=1

x̃s, !̄ =

1

S

SP
s=1

!̃s.

That is, G
k

is nonincreasing for k = 0, 1, ...,K. Then, ac-
cording to the definition of G-norm and (11), we have:

1

2⌘
s

||x� xk||2
Gk

=

1

2⌘
s,k

||x� xk||2
2

, (12)

where ⌘
s,k

=

⌘s

co(Gk)
and co(G

k

) = a if G
k

= aI , and a is
a scalar. Therefore, ⌘

s,k

serves as the stepsize [Ouyang et al.,
2013], and it can be verified that ⌘

s,k

satisfies the following
properties:

⌘
s,0

=

s

(s+ 1)L
F

, ⌘
s,K�1

=

1

L
F

, ⌘
s,K

=

1

L
F

,

⌘
s,0

 ⌘
s,1

 ...  ⌘
s,K�1

.

(13)

That is, ⌘
s,k

changes from s

(s+1)LF
to 1

LF
in stage s. Note

that even though ⌘
s,k

is not a constant, it still has a reasonable
value and does not need to vanish. This feature is helpful for
convergence acceleration.

2.3 General Convex Functions without Lipschitz
Smoothness

In the previous two sections, we present the procedures of
com-SVR-ADMM for the strongly convex and general con-
vex settings, both under the Lipschitz smooth assumption of
F (x). In this section, we further investigate the case when the
smooth condition is relaxed. We still use Algorithm 2, except

that the values ⌘
s

and G
k

are changed to

⌘
s

=

1

s+ 1

, G
0

⌫ G
1

⌫ G
2

⌫ ... ⌫ G
K�1

,

G
0

=

1p
s
I, G

K�1

=

1p
s+ 1

I, G
K

=

1p
s+ 1

I.

(14)
Therefore, using the same technique in (12), it can be verified
that ⌘

s,k

in this setting changes from
p
s

s+1

to 1p
s+1

in stage s

and decreases to zero. Note that in this case, the number of
oracle calls at each step is the same as that in section 2.2.

Although the algorithm we proposed appears similar to
the SVRG-ADMM algorithm in [Zheng and Kwok, 2016a],
it is very different due to the composition nature of the ob-
jective function (which is not considered in SVRG-ADMM)
and the stochastic variance reduced gradients in (8) and
(10). These differences make it impossible to directly apply
SVRG-ADMM and require a very different analysis for the
new algorithm. Readers interested in the full proofs can refer
to our technical report [Yu and Huang, 2017].

3 Theoretical Results
In this section, we analyze the convergence performance of
com-SVR-ADMM under the three cases described in section
2. Below, we first state our assumptions. Note that the as-
sumptions are not restrictive and are commonly made in the
literature, e.g., [Wang et al., 2016b; Ouyang et al., 2013;
Wang et al., 2016a; Zheng and Kwok, 2016b].
Assumption 1. (i) For each i 2 {1, ..., n}, F

i

is convex

and continuously differentiable, R(!) is convex (can be non-

smooth). Moreover, there exists an optimal primal-dual solu-

tion (x⇤,!⇤,�⇤
) for Problem (2).

(ii) The feasible set X for x is bounded and denote D =

max

x,y2X ||x� y||.
(iii) For randomly sampled i

k

2 {1, ..., n}, j
k

2 {1, ...,m}
and 8x, we assume the following unbiased properties:

E((@g
jk(x))

Trf
ik(g(x))) = rF (x),

E(@g
jk(x)) = @g(x), E(rF

ik(x)) = rF (x).
(15)

Assumption 2. F is strongly convex with parameter µ
F

> 0,

i.e., 8x,

F (x)�F (x⇤
) � hrF (x⇤

), x�x⇤i+ µ
F

2

||x�x⇤||2
2

. (16)

Assumption 3. Matrix A has full row rank.

Assumption 4. There exists a positive constant L
F

, such that

8i 2 {1, ..., n}, 8j 2 {1, ...,m} and 8x, y, we have

||(@g
j

(x))Trf
i

(g(x))�(@g
j

(y))Trf
i

(g(y))||  L
F

||x�y||.
Assumption 5. For each i 2 {1, ..., n}, f

i

is Lipschitz

smooth with positive parameter L
f

, that is, 8x, y, we have

||rf
i

(y)�rf
i

(x)||  L
f

||y � x||. (17)

Assumption 6. For every j 2 {1, ...,m}, @g
j

(x) is bounded,

and for all x, y, 9 C
G

, L
G

> 0 that satisfy

||g
j

(x)� g
j

(y)||  C
G

||x� y||, ||@g
j

(x)||  C
G

,

||g
j

(x)� g
j

(y)||  L
G

||x� y||2.
(18)



For clarity, we also use the following notations used in the
theorems:

u =


x
!

�
, uk

=


xk

!k

�
, ũs

=


x̃s

!̃s

�
, ū =


x̄
!̄

�
,

G(u) = F (x)� F (x⇤
)�hrF (x⇤

), x� x⇤i
+R(!)�R(!⇤

)� h ˜rR(!⇤
),! � !⇤i.

(19)

It can be verified that G(u) is always non-negative due to
the convexity of F (x) and R(!). The following theorem and
corollary show that Algorithm 1 has a linear convergence rate.

Proposition 1. Under Assumption 4, we have 8i 2 {1, ..., n}
and 8x, y:

||rF
i

(x)�rF
i

(y)||  L
F

||x� y||, (20)
i.e., each F

i

is Lipschitz smooth. Moreover, it implies

||rF (x)�rF (y)||  L
F

||x� y||.
Theorem 1. Under Assumptions 1, 2, 3, 4, 5 and 6, if 0 <
⌘  1/L

F

, then under Algorithm 1,

�
1

E[G(ũs

)]  �
2

G(ũs�1

), (21)

where (denote �(N) =

p
1/N )

�
1

=(2⌘ �
32⌘2C4

G

L2

f

µ
F

N
� 48⌘2L2

F

+ 8⌘DC
G

L
f

L
G

�(N)

µ
F

)K,

�
2

=(K + 1)(

32⌘2C4

G

L2

f

µ
F

N
+

48⌘2L2

F

+ 8⌘DC
G

L
f

L
G

�(N)

µ
F

)

+

2

µ
F

+

2⌘⇢||ATA||
µ
F

+

2L
F

⌘

⇢�
min

(AAT

)

.

Corollary 1. Suppose the conditions in Theorem 1 hold.

Then, there exist positive ⇥(1) constants K (number of in-

ner iterations) and N (mini-batch size) such that �
1

, �
2

>
0, � = �

2

/�
1

< 1. Thus, Algorithm 1 converges linearly.

From Corollary 1, if we want to achieve E[G(ũs

)]  ✏,
8✏ > 0, the number of steps we need to take is roughly
s � log(

G(ũ

0
)

✏

)/ log( 1
�

). In each iteration, we need 2m +

n + K(2N + 4) oracle calls. Therefore, the overall query
complexity is O((m + n + KN) log

1

✏

). For comparison,
the query complexity is O((m+ n+ 4

) log(1/✏)) for com-
SVRG-1 and O((m + n + 3

) log(1/✏)) for com-SVRG-2
[Lian et al., 2016], where  is a parameter related to condi-
tion number. We will see in simulations in section 4 that the
overall query complexity of com-SVR-ADMM is lower than
com-SVRG-1 and com-SVRG-2.

Now we prove the convergence property of com-SVR-
ADMM under Assumptions 1 and 4.
Theorem 2. Under Assumptions 1 and 4 , if ⌘

s

and G
k

are

chosen as in (11), under Algorithm 2,

E(G(ū) + ⇤||Ax̄+B!̄||)

4L
F

D2

log(S + 1)

S
+

L
F

D2

logS

2KS

+

L
F

D2

+ ⇢D2||ATA||+ 2

⇢

||ˆ�0 � �⇤||2
2

+

2

⇢

⇤

2

2KS
,

(22)

where ⇤ > 0.

From Theorem 2, we see that com-SVR-ADMM has an
O(

log(S+1)

S

) convergence rate under the general convex and
Lipschitz smooth condition. It improves upon the con-
vergence rate O(S�4/9

) in the recent work [Wang et al.,
2016b]. In Theorem 2, we consider both the convergence
property of function value and feasibility violation. Since
G(u) and ||Ax̄ + B!̄|| are both non-negative, each term has
an O(

log(S+1)

S

) convergence rate.
In the following theorem, we show that our algorithm ex-

hibits O(

1p
S

) convergence rate for both the objective value
and feasibility violation, when the objective is a general con-
vex function.
Assumption 7. The gradients/subgradients of all f

i

, F
i

, g
j

and R(!) are bounded and ||rF
i

(x)||  C
F

, C
F

> 0.

Moreover, B is invertible and A,B are bounded.

Theorem 3. Under Assumptions 1 and 7, denote

ẋs

=

1

K

K�1P
k=0

xk

, z̃s =


ẋs

w̃s

�
, z̄ =

1

S

SP
s=1

z̃s. If ⌘
s

and G
k

are

chosen as in (14), there exists a positive ⇥(1) constant ⇢ such

that, under Algorithm 2,

E(G(z̄) + ⇤||Ax̄+B!̄||)

C
1

(C
4

+ C
F

)p
S

+

D2

K
p
S

+

C
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log(S + 1)

S
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+ ⇢||ATA||D2

+

2
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||ˆ�0 � �⇤||2
2

+

2

⇢

⇤

2

2KS
,

(23)

where ⇤, C
1

, C
3

, C
4

are positive constants.

The reason for the introduction of z̄ is similar to the step
taken in [Ouyang et al., 2013], and is due to the lack of Lips-
chitz smooth property. This result implies an O(

1p
S

) conver-
gence rate for both objective value and feasibility violation.

4 Experiments
In this section, we conduct experiments and compare com-
SVR-ADMM to existing algorithms. We consider two exper-
iment scenarios, i.e., the portfolio management scenario from
[Lian et al., 2016] and the reinforcement learning scenario
from [Wang et al., 2016b]. Since the objective functions in
both scenarios are strongly convex and Lipshitz smooth, we
only provide results for Algorithm 1.

4.1 Portfolio Management
Portfolio management is usually formulated as mean-
variance minimization of the following form:

min

x

� 1

n

nX

i=1

h r
i

, xi+1

n

nX

i=1

(h r
i

, xi� 1

n

nX

j=1

h r
j

, xi)2+R(x),

(24)
where r

i

2 RN for i 2 {1, ..., n}, N is the number of assets,
and n is the number of observed time slots. Thus, r

i

is the ob-
served reward in time slot i. We compare our proposed com-
SVR-ADMM with three benchmarks: com-SVRG-1, com-
SVRG-2 from [Lian et al., 2016], and SGD. In order to com-
pute the unbiased stochastic gradient of SGD, we first enu-
merate all samples in the data set of g to calculate g(x) and



Figure 1: Portfolio Management with cov = 2.

Figure 2: Portfolio Management with cov = 10. The other parame-
ters have the same value as Figure 1.

Figure 3: On-policy learning experiment with S = 200, d = 100.

@g(x), then evaluate @g(x)rf
i

(g(x)) for a random sample
i. Using the same definition of g

j

(x) and f
i

(y) and the same
parameters generation method as [Lian et al., 2016], we set
the regularization to R(x) = µ

2

||x||2
2

, where µ > 0.
The experimental results are shown in Figure 1 and Fig-

ure 2. Here the y-axis represents the objective value minus
optimal value and the x-axis is the number of oracle calls or
CPU time. We set N = 200, n = 2000. cov is the parame-
ter used for reward covariance matrix generation [Lian et al.,
2016]. In Figure 1, cov = 2, and cov = 10 in Figure 2. All
shared parameters in the four algorithms, e.g., stepsize, have
the same values. We can see that all SVRG based algorithms
perform much better than SGD, and com-SVR-ADMM out-
performs two other linear convergent algorithms.

4.2 Reinforcement Learning
Here we consider the problem (6), which can be used for on-
policy learning [Wang et al., 2016b]. In our experiment, we
assume there are finite states and the number of states is S.
⇡ is the policy in consideration. P⇡

s,s

0 is the transition proba-
bility from state s to s0 given policy ⇡, � is a discount factor,
�
s

2 Rd is the feature of state s. Here we use a linear prod-
uct h�

s

, wi to approximate the value of state s. Our goal is

Figure 4: On-policy learning experiment with S = 200, d = 200.
The other parameter values is the same as Figure 3.

to find the optimal w 2 Rd.
We use the following specifications for oracles g

s

0
(w) and

f
s

(y):

g
s

0
(w) = (�T

1

w, r
1,s

0
+ ��T

s

0w, ...,�T

S

w, r
S,s

0
+ ��T

s

0w)T ,

f
s

(y) = (y[2s� 1]� y[2s])2.

Note here g
s

0
(w) 2 R2S , and y[i] denote the i-th element of

vector y. All shared parameters in four algorithms have the
same values. Note here that the calculation of E[g(w)] is no
longer under uniform distribution. We use the given transition
probability. In this experiment, the transition probability is
randomly generated and then regularized. The reward is also
randomly generated. In addition, we include a regularization
term R(w) =

µ

2

||w||2
2

with µ > 0. The results are shown
in Figure 3 and Figure 4. It can be seen that our proposed
com-SVR-ADMM achieves faster convergence compared to
the benchmark algorithms.

5 Conclusion
In this paper, we propose an ADMM-based algorithm, called
com-SVR-ADMM, for stochastic composition optimization.
We show that when the objective function is strongly con-
vex and Lipschitz smooth, com-SVR-ADMM converges lin-
early. In the case when the objective function is convex
(not necessarily strongly convex) and Lipschitz smooth, com-
SVR-ADMM improves the theoretical convergence rate from
O(S�4/9

) in [Wang et al., 2016b] to O(

log S

S

). When the ob-
jective is only assumed to be convex, com-SVR-ADMM has
a convergence rate of O(

1p
S

). Experimental results show that
com-SVR-ADMM outperforms existing algorithms.
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