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Reconstruction of the Jaynes-Cummings field state of ionic motion in a harmonic trap
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A quantum state is fully characterized by its density matrix or equivalently by its quasiprobabilities in phase
space. A scheme to identify the quasiprobabilities of a quantum state is an important tool in the recent development
of quantum technologies. One of the most fundamental interaction models in quantum optics is the so-called
Jaynes-Cummings model (JCM), which has been massively studied theoretically and experimentally. However,
the expected essential dynamics of the field states under the resonant JCM has not been observed experimentally
due to the lack of a proper reconstruction scheme. In this paper, we further develop a highly efficient vacuum
measurement scheme and study the JCM dynamics in a trapped ion system with the capability of the vacuum
measurement to reconstruct its quasiprobability Q function, which is a preferred choice to study the core of
the dynamics of a quantum state in phase space. During the JCM dynamics, the Gaussian peak of the initial
coherent state bifurcates and rotates around the origin of phase space. They merge at the so-called revival time
at the other side of phase space. The measured Q function agrees with the theoretical prediction. Moreover,
we reconstruct the Wigner function by deconvoluting the Q function and observe the quantum interference in
the Wigner function at half of the revival time, where the vibrational state becomes nearly disentangled from the
internal energy states and forms a superposition of two composite states. The scheme can be applied to other
physical setups including cavity or circuit-QED and optomechanical systems.
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I. INTRODUCTION

The Jaynes-Cummings model (JCM) is one of the most
fundamental interaction models in quantum mechanics [1],
where a single two-level atom resonantly interacts with a
single-mode field. The JCM has enabled theoretical and
experimental investigations of the basic properties of quantum
electrodynamics such as Rabi oscillations of the energy
transfer between the two subsystems and collapses and revivals
of the oscillations [2]. More recently, the model has been
widely studied for its rich properties of quantum control,
coherent superposition, and entanglement, which are closely
related to the current development of quantum technology. In
order to see the nonclassical effects due to quantum interaction,
the JCM is often studied with the state initially prepared in a
coherent field and the atom in its energy eigenstate. It has been
shown that the field and the atom are entangled [3] as soon
as the interaction starts, but at a certain time they are nearly
disentangled to bring the field into a superposition of two
coherent states of a π phase difference [4,5]. Earlier, Eiselt and
Risken [6,7] showed that the Gaussian probability distribution
of the initial coherent state in phase space breathes at the
initial points of interaction, reflecting the Rabi oscillations.
Then the Gaussian peak bifurcates to travel around a circle
in the opposite direction in phase space. The bifurcation
is a consequence of the quantum nature of interaction and
was experimentally probed through the measurement of field
phase distribution [8,9]. However, the observation of the JCM
dynamics by the full reconstruction of the field state has not
been experimentally demonstrated.
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II. VACUUM MEASUREMENT

Reconstructing the state of a quantum system through
measurements reveals all the statistical properties of the
system. Thus schemes to reconstruct a quantum state are
useful, for example, to ensure the quantum state generated
and to test the fidelity of quantum operations. The quantum
state is equivalently represented by its density matrices or
quasiprobability functions in phase space [10]. Among the
quasiprobability functions, the Wigner function has been
used mainly for the study of nonclassicality of the state,
which is manifested by negativities [11]. The Q function
has been used to study the essence of the dynamics of a
quantum-state evolution in phase space [3–9,12–15]. Recently,
there have been many developments in reconstructing the
state of a quantum field in various physical systems including
photonic systems [16,17], atomic systems [18], molecular sys-
tems [19], cavity QED [20], circuit-QED systems [21,22], and
trapped-ion systems [23–26], which are mostly related to the
reconstruction of Wigner functions by the parity measurements
of the states. For the reconstruction of the Wigner function in
trapped-ion systems, all the phonon number distributions in
the Fock state basis [23] or in the displaced basis [24] are
used. Alternatively, the direct parity measurements through
nonlinear coupling to another motional mode [25] or internal
level [26] are applied.

The Q function allows one to study the core of the
dynamics of a quantum state in phase space and has been
a preferred choice of study theoretically [3–7] and exper-
imentally [8,9,13–15]. The definition of the Q function is
Q(α) = 1

π
〈0| D̂†(α)ρ̂D̂(α) |0〉, where D̂(α) is the displace-

ment operator [27]. The value of the Q function is merely the
weight of the vacuum component of a given state once it is
displaced in phase space by α, which looks relatively easy to
implement. The reconstruction of the Q function also does not
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require a heavy numerical process as the probability of the
state being in the vacuum is the value of the Q function in
each point of phase space. However, the measurement of the
vacuum state is not straightforward. In a cavity, as an example,
the existence of a photon can be detected by an atomic state
through an atom-photon interaction like JCM [1]. If the cavity
has no photons, an atom initially prepared in its ground state
will remain there forever. However, by merely measuring the
atom in its ground state we cannot say that the cavity is empty
because the Rabi oscillations periodically bring the atom back
to the ground state even with many photons in the cavity.
The oscillation frequency depends on how many photons
are present in the cavity. The authors in Refs. [8,9,13,28]
demonstrated a scheme of vacuum measurement that works
for their particular cavity-QED system. For the circuit-QED
system [15], a measurement of the vacuum component and
the Q-function reconstruction was demonstrated based on the
system-specific strong nonlinear coupling between the cavity
mode and the artificial atom. Recently a generic scheme of
the vacuum measurement was proposed for the cavity-QED
system with the standard JCM coupling [29].

While it is desirable to find the Q function and the
Wigner function based on one set of measurements, this has
not been achieved due to the measurement inefficiencies of
the vacuum state. Here, we report a generic and efficient
detection of vacuum with 98.5 (±0.3)% efficiency for the
phononic states in the vibrational mode of a harmonic trap,
which is realized by the adiabatic passage schemes [30,31]
based on counterdiabatic methods [32–34]. The efficiency
of 98.5 (±0.3)% is the probability of detecting the vacuum
state when the phonon is prepared in the vacuum state, which
is mainly limited by the discrimination efficiency of the
internal state. We obtain the efficiency by repeating 10 000
times the measurements after preparing the vacuum state and
counting the number of events that detect no fluorescences.
The probability of assigning the vacuum state even if the ion is
not in the vacuum state is 1.0 (±0.3)%. The demonstrated
adiabatic passages were used for deterministically adding
and subtracting single phonons in the range of less than six
phonons [31]. The adiabatic passages have been significantly
improved to cover much higher phonon number states up to
〈n〉 ∼ 25, which allow us to measure the vacuum components
in a relatively large area |α| � 3 in phase space. To make
such improvements, we carefully optimize all the experimental
parameters of the adiabatic passages. In particular, we find
the optimal laser intensity to enhance the performance of the
uniform transfer for the large phonon number states.

Typically, in trapped-ion systems, phonon number distri-
butions are measured by the Fourier transformation of the
phonon-number dependent Rabi oscillations [35–37]. For this,
it is necessary to observe multiple detailed oscillations of the
internal state under the JCM interaction, which requires a long
data-taking time. Our scheme does not require such a long
observation, but a single measurement, and we obtain a binary
result: the vacuum or the complementary states. Practically,
the actual time to obtain the Q function is reduced by more
than 20 times. We simply need to repeat the measurement
sequence for the probabilities of the vacuum state, which by
the nature of the measurement excludes the negativity problem
from experimental error. We efficiently measure the vacuum

probabilities in phase space to observe the dynamics of the
JCM field. The measured Q function is highly accurate, which
enables us to reconstruct the density matrix and the Wigner
function by its deconvolution. We show a good agreement of
our quasiprobabilities with the theoretical predictions.

III. EXPERIMENTAL SCHEME

A. Experimental setup

We employ the vibrational mode of a single trapped ion
171Yb+in a harmonic potential with the frequency of ωX =
(2π ) 2.8 MHz. We encode the qubit state into two hyper-
fine states |F = 1,mF = 0〉 ≡ |↑〉 and |F = 0,mF = 0〉 ≡ |↓〉
of the S1/2 manifold with the transition frequency ωHF =
(2π )12.6428 GHz. We perform the experimental demonstra-
tion by the usage of Raman laser beams, which are generated
by the frequency-doubled mode-locked picosecond-pulse laser
with repetition rate 76.22 MHz and a central wavelength of
375.5 nm. The laser beam is split into two paths, sent through
two acousto-optic modulators (AOMs), and then focused on
the ion’s position. The AOMs are used for the control of
frequencies and amplitudes of the Raman laser beams. In the
experiments, we fix the frequency and amplitude of one AOM,
and we only control those parameters of the other AOM for the
necessary operations. The pulse durations of the laser beams
are precisely controlled by the field programmable gate array.

B. Realization of Jaynes-Cummings model

We realize the JCM or anti-JCM by applying a pair of
counterpropagating Raman beams that have the frequency dif-
ferences of (ωR1 − ωR2) = ωHF ∓ ωX, respectively, as shown
in Fig. 1(a). In the interaction picture, the Raman laser
interactions can be described by the following JCM and
anti-JCM Hamiltonians:

ĤJC(φ) = h̄η�

2
(âσ̂+eiφ + â†σ̂−e−iφ),

ĤaJC(φ) = h̄η�

2
(â†σ̂+eiφ + âσ̂−e−iφ). (1)

Here, â† and â are the phonon creation and annihilation oper-
ators, σ̂+(σ̂−) = |↑〉 〈↓| (|↓〉 〈↑|) is the spin-raising (lowering)
operator, � is the vacuum Rabi frequency of (anti-)JCM,
η = 
k

√
h̄/MωX is the Lamb-Dicke parameter with 
k the

net wave vector of the Raman laser beams, M is the mass of the
171Yb+ion, and φ is the phase difference of the Raman laser
beams. As shown in Eq. (1) the JCM and anti-JCM models of
the field state are equivalent; for instance, by exchanging the
internal states |↓〉 with |↑〉 in the interpretation, the dynamics
of the two models are the same. For technical reasons, we
perform experiments for the anti-JCM interaction.

C. Implementation of the state-independent
displacement operation

When the beat-note frequency of Raman beams (ωR1 −
ωR2) is equal to the trap frequency ωX as shown in the middle
panel of Fig. 1(a), the effective Hamiltonian in the interaction
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FIG. 1. Raman laser schemes and the vacuum measurement.
(a) The Hilbert space of the system is composed of the di-
rect product of qubit states {|↓〉, |↑〉} and phonon number states
{|n = 0〉, |1〉, |2〉 , . . .}. Raman laser beams, which have σ− po-
larization and are detuned by 
p ≈ 12.9 THz from the P1/2

manifold, perform anti-JCM, displacement operation, and the vacuum
measurement by adjusting their beating frequencies. (b) The vacuum
component is measured by transferring the population of |↓ ,n〉 to that
of |↑ ,n − 1〉 for any value of n at the same duration of pulse. The
atom remaining in no fluorescence state |↓〉 indicates the phononic
state being in |0〉. (c) The uniform transfer for any phononic state
|n〉 to |n − 1〉 is accomplished by the scheme of shortcuts to the
adiabaticity, where �ut = (2π )22.7 kHz, β = 0.075, 
ut = 1.9�ut,
and the total duration Tut = 198.2 μs. (d) Q function of phononic
Fock state n = 0,1,2 depending on the amount of displacement
|α|. The points with error bars are the experimental results while
the dashed lines are by the theory. The error bars are obtained by
the standard deviation of the quantum projection noise with 100
repetitions.

picture is described by [31]

ĤD = ih̄�D

2
(â†eiφ + âe−iφ), (2)

where �D is the Rabi frequency and φ is the relative
phase of the two Raman laser beams. The application of
the Hamiltonian (2) performs the displacement operation
D̂(α) = eαâ†−α∗â , where α = iη�Dt/2.

The displacement operation is near-equally performed
for both qubit states {|↓〉 , |↑〉} due to the large detuning

P ≈ −(2π )12.9 THz of the Raman beams from the 2P1/2

level. The difference in the strength �D between |↓〉 and
|↑〉 can be written as g2

2
P
− g2

2(
P+ωHF) ≈ g2

2
P

ωHF

P

, where g

is the Rabi frequency of each Raman beam coupled to
the transition 2S1/2 ↔2 P1/2 and g2

2
P
≈ �D. Therefore, the

strength difference should be less than ωHF

P

≈ 10−3.

D. Efficient vacuum measurement

The essence of the vacuum-component measurement is
in the realization of the uniform population transfer of

|↓ ,n〉 → |↑ ,n − 1〉 for any n as shown in Fig. 1(b). After
the uniform transfer, all the phonon states except the vacuum
component |n = 0〉 are in the bright electronic state |↑〉, which
emits photons during the standard fluorescence detection
sequence. Therefore, the atom being in the dark electronic
state |↓〉 after the uniform transfer indicates the phonon state
in the vacuum. By measuring the vacuum probability of the
state after displacing it by α, we can directly measure the Q

function Q(α).
In general, the frequency of the Rabi oscillations between

|↓ ,n〉 and |↑ ,n − 1〉 has
√

n dependency due to the nature
of JCM coupling. To accomplish the uniform transfer, we
basically apply an adiabatic passage, but in much shorter
time than what is required for the adiabatic evolution—the
so-called shortcuts to adiabaticity [30–34]. We note that
in trapped-ion experiments similar rapid adiabatic passages
have been used for manipulation of electronic state [38],
investigation of cooling dynamics, [39] and estimation of the
temperature [40]. Here, as shown in Fig. 1(c), the detuning

 ≡ (ωR1 − ωR2) − (ωHF − ωX) and the amplitude � of Ra-
man laser beams are swept by 
(t) = 
ut cos(πt/Tut) and
�(t) = �ut[sin(πt/Tut) + iβ], where iβ is the counterdiabatic
field that is applied at a constant amplitude 90 deg out of phase
with the driving field to suppress excitations during the fast
evolution [30–34]. The value of the counterdiabatic parameter
β is experimentally optimized [31]. We generate the complex
waveform through the arbitrary waveform generator. We
evaluate the reliability of the uniform transfer by performing
the Q-function measurements for the phonon number states
|n = 0,1,2〉 as shown in Fig. 1(d). Here, we prepare the
phonon number states |n = 0,1,2〉 and displace them along
one direction in phase space. We note that we do not observe
serious deviation from zero over the error bar in the values
of Q-function measurements as the displacements increase to
around 4.8 as shown in Fig. 1(d).

IV. RESULTS AND DISCUSSIONS

A. Q-function reconstruction for JCM dynamics

It was found that the atom and the field in the JCM or anti-
JCM are nearly disentangled during the course of interaction if
the atom is initially prepared in a superposition of |↑〉 and |↓〉
and the field is initially in the coherent state |α〉 of its amplitude
α with |α| � 1 [41]. Let us consider the initial state of the
atom |�±

A 〉 = (|↑〉 ∓ i |↓〉)/√2. By the interaction (1), the
atom-field state evolves to |�±

A−P (t)〉 = |�±
P (t)〉 ⊗ |�±

A (t)〉
[41], where

|�±
A (t)〉 = (e±iπt/trev |↓〉 ∓ i |↑〉)/

√
2, (3)

|�±
P (t)〉 = exp

(
∓ it

η�
√

n̂

2

)
|αe±iπt/trev〉 . (4)

From this, it is clear that if the atom is prepared in its ground
state |↓〉 [= (|�−

A 〉 − |�+
A 〉)/√2i] the atom-phonon state will

be in the superposition of |�±
A−P (t)〉. The phonon state will

rotate in phase space, where trev = 4π |α|
η�

is the corresponding
revival time.

In the experiments, we prepare a coherent state of β =
1.62(0.05) with the internal state |↓〉 by displacing the |n = 0〉

043813-3



LV, AN, UM, ZHANG, ZHANG, KIM, AND KIM PHYSICAL REVIEW A 95, 043813 (2017)

FIG. 2. The time evolution of the Q function for an initial coherent state under anti-JCM interaction. (a) Collapse and revival of the Rabi
oscillation signal and (b) experimentally measured and (c) numerically calculated Q functions of the phonon field with the initial coherent
state |β = 1.62(0.05)〉 depending on the duration of anti-JCM interaction. (a) P (|↑〉) is the probability of detecting the atom in |↑〉. The points
are obtained after 100 repetitions. The solid line is from fitting the data with

∑
n=0

1
2 [1 − e−γ t cos (

√
n + 1η�t)], where γ is the empirical

decay constant. At (b) and (c), the time for each snapshot of the Q functions are labeled as (i)–(v) in the unit of the revival time trev, where
trev = 4π |α|

η�
= 108.8 μs. In (b), each Q function is obtained from 100 repetitions of the vacuum measurements after 384 different displacements,

where the amplitude and the phase of displacement |α|eiϕ are scanned from zero to 3.0 with the step size of 0.2 and from zero to 2π with the
24 steps, respectively.

state after the standard Raman-sideband ground-state cooling.
Then we apply Raman laser beams for the anti-JCM interaction
and observe the dynamics of the atom and the field. For the
internal state of the atom, we measure the probability of being
in the |↑〉 state, P (|↑〉) by the standard fluorescence detection
scheme. For the field, we choose five different interaction
times t = (0, 1

4 , 1
2 , 3

4 ,1)trev in the anti-JCM. After the interaction
time t , we displace the state by α and trace over the internal
degree of freedom by the standard optical pumping sequence,
which does not produce any noticeable change of the phonon
distribution as shown in Fig. 3(a). Then we measure the
vacuum component to reconstruct Q(α). We note that we
observe that the essence of the dynamics remains largely the

FIG. 3. (a) Test of the influence of the optical pumping sequence
to the phonon number distribution. The coherent states prepared
in |↓〉 state (red circles) are compared with those prepared in |↑〉
state by an optical pumping pulse (blue circles). The amount of the
displacement |α| is measured by coherent-state fitting to the phonon
number distribution. (b) The relation between Rabi contrast, purity,
and atomic coherence. The red curve is the Rabi oscillation signal,
the blue dashed line is the purity of the phononic state, and the green
dot-dashed line is the atomic coherence, the absolute value of the
off-diagonal elements of the atomic density matrix after tracing over
the phononic field state. All curves are obtained by the numerical
calculations.

same, though the amplitude of the initial coherent state is not
much larger than 1.

Figures 2(b) and 2(c) show the experimental and theoretical
time evolution of the initial coherent state under the anti-
JCM interaction. The theoretical results are obtained by the
numerical simulation of the master equation of the anti-JCM
Hamiltonian including experimental imperfections [30]. At
t = 0, P (|↑〉) = 0 and Q(α) is Gaussian, which represents the
coherent state. At time t = trev/4, while the Rabi oscillations
begin to collapse, the Gaussian peak splits into two, which can
be understood by the separation of two atom-phonon states
|�±

A−P 〉. The two components of the atom-phonon entangled
state evolve in the opposite phases as shown in Eqs. (3)
and (4). At the half-revival time t = trev/2, the two atomic
states in Eq. (3) become identical except the global phase,
which results in disentanglement of the atomic state from the
phonon state (see also Fig. 5). In the Q function, the phonon
state shows two clearly separated peaks that are located at the
opposite phases in phase space. This can be understood as the
superposition of two coherent states [41]. Note that the bigger
the initial coherent state the more obvious the splitting. Further
evolution of the phonon state is shown in Figs. 2(iv) and 2(v).
At the revival time t = trev, the two phonon peaks merge at the
opposite position of the initial coherent state, which causes the
revival of the Rabi oscillations as shown in Fig. 3(b). Due to
the quadratic phase term in Eq. (4), the amplitude of the Rabi
oscillations is reduced.

B. Time-reversal operation

In order to confirm the whole dynamics keeping coherence,
we perform the time-reversal operation, which forces the
phonon state evolved under the anti-JCM interaction to retrace
its past trajectory in the opposite direction by the generalized
echo scheme [42]. For the echo method, we introduce a π

phase shift in the second half of the anti-JCM interaction, i.e.,
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FIG. 4. (a) Generalized echo-sequence time reversal of anti-JCM
evolution for the interaction time t = trev/2. The φ = π phase of
the anti-JCM Hamiltonian produces the negative sign; HaJC(π ) =
−HaJC(0), which performs the time-reversal operation. (b) The
measured Q function of the phononic state after time-reversal
operation of (a). (c) JCM sequence for the time reversal of anti-JCM
evolution for the interaction time t = trev/2. The JCM coupling is
realized by a σx pulse and the anti-JCM coupling. The phase π

2 of
the second anti-JCM pulse is chosen to maximize the fidelity of the
reverse operation. (d) Measured Q function of the phononic state
after the reversal operation. The total number of measurements for
the Q-function reconstruction is the same as that in Fig. 2.

e−i t
2h̄ HaJC(π) = e+i t

2h̄ HaJC . The process is called time reversal as
in Ref. [43]. We apply the reverse process at the half-revival
time t = trev/2 and observe that the state is brought back to
the initial coherent state at the time t = trev with the fidelity
of 0.914(4) through the Q-function measurement shown in
Figs. 4(a) and 4(b). Since keeping the coherence of the
interaction is at the heart of the time reversal, our result of
time reversal clearly confirms that the process occurs in the
quantum regime. We also study another way of reversing the
anti-JCM by applying the JCM as shown in Figs. 4(c) and
4(d) [44].

C. Wigner function reconstruction from Q function

In addition to the time-reversal process, we demonstrate
the coherence property by detecting nonclassicality generated
during the evolution, in particular, interferences of the com-
posite states of the two peaks in phase space. For this purpose,
we reconstruct the Wigner function from our measured Q

function. We first find the density matrix by deconvoluting
the Q function by the convex optimization and reconstruct the
Wigner function from the density matrix. The relation between
the Q function and the density matrix is described as

Q(α) = 1

π
〈α| ρ |α〉

= 1

π

nmax∑
n=0

nmax∑
m=0

〈α|n〉 〈n|ρ|m〉 〈m|α〉

FIG. 5. The Wigner function reconstruction from the Q function
at various times of the anti-JCM evolution, t = 1

4 , 1
2 , 3

4 trev. The
negativities of the Wigner functions indicate the emergence of the
nonclassical state during the dynamic evolution. (a) The Wigner
functions are reconstructed from the density matrix obtained by
deconvoluting the experimentally measured values of the Q functions
shown in Fig. 2(b). The density matrices are reconstructed by
deconvoluting the Q functions with the convex optimization. We note
that we use the data |α| � 1 for the optimum fidelity and it is necessary
to use proper initial guess of the density matrix for the convergence
of the deconvolution. (b) The Wigner functions are directly obtained
by the numerical calculation of the anti-JCM dynamics.

= e−|α|2αm(α∗)n

π
√

m!n!

nmax∑
n=0

nmax∑
m=0

ρn,m, (5)

where nmax is the maximum phonon number that we include
for the reconstruction. With the sufficient number of measured
values of the Q function over nmax × nmax, we can inverse
the multiple equations of Eq. (5) and reconstruct the density-
matrix elements. Mainly due to the quantum projection noise in
the measurements, however, the direct inverse of the equations
may result in unphysical results including the negativity of the
diagonal components in the density matrix. In order to avoid
the problem, we apply a method of convex optimization of
least-square function with constraints. Here we first define a
function F as follows:

F =
imax∑
i=0

|Qexp(αi) − Qrec(αi)|2

=
imax∑
i=0

∣∣∣∣∣Qexp(αi) − e−|αi |2αm
i (α∗

i )n

π
√

m!n!

nmax∑
n=0

nmax∑
m=0

ρn,m

∣∣∣∣∣
2

(6)

where Qexp(αi) and Qrec(αi) are the experimentally measured
and the numerically reconstructed Q functions, respectively,
at αi in phase space, and imax is the maximum number of
displacements involved to construct the density matrix. Then
we minimize the function F under the constraints of the density
matrix, which should be positive semidefinite of trace 1. Note
that we find the convergence of the minimization algorithm
depends on the choice of the state of initial guess.

Figure 5(a), which is reconstructed from the experimental
data of the Q-function measurement, clearly manifests inter-
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ference patterns of the composite states at the half-revival time
and negativities in other interaction times. The experimental
reconstruction of the Wigner function of Fig. 5(a) is in good
agreement with the direct theoretical reconstruction of the
Wigner function shown in Fig. 5(b). We also obtain the purities
Tr(ρ2) of the states from the experimentally reconstructed
density matrix. At t = trev/2, the purity is 0.82(0.05), which
indicates the phonon state is not entirely pure, possibly because
of its entanglement with the internal state [see Fig. 3(b)].
Theoretical studies [4] suggest that the purity ideally reaches
unity as the size of the initial coherent state increases.

V. CONCLUSION

We have shown a highly efficient scheme to detect the
vacuum which is used to reconstruct the dynamics of the
JCM field state. The efficient measurement of the Q function
enables us to reconstruct the Wigner function, offering a
demonstration of the Wigner function reconstruction from
the vacuum measurement. Our developed technique of the
Q-function measurement can be used to probe other dynamics
of the phonon field including Kerr dynamics. In our exper-
imental demonstration, the size of the initial coherent state
|β〉 could be increased by improving the ion trap system.

The main limitation of the current demonstration comes from
the unreliable displacement operation above α ≈ 4.8, which
is caused by the heating of the phonon mode and going
outside the Lamb-Dicke regime of the phonon state. We may
reach an order-of-magnitude large phonon number state by
the reduction of an order of magnitude in the heating rate
together with making the Lamb-Dicke parameter three times
smaller by changing the configuration of Raman beams. Our
approach is generic and would also be applied to other physical
platforms that have a Jaynes-Cummings type of coupling
including optomechanics and circuit-QED systems.
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