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a b s t r a c t

An antimagic labeling of a graph with M edges and N vertices is a bijection from the set
of edges to the set {1, 2, 3, . . . ,M} such that all the N vertex-sums are pairwise distinct,
where the vertex-sum of a vertex v is the sum of labels of all edges incident with v. A
graph is called antimagic if it has an antimagic labeling. The antimagicness of the Cartesian
product of graphs in several special cases has been studied [Tao-Ming Wang, Toroidal
grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics
Conference, COOCOON’2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671–679, Yongxi
Cheng, A new class of antimagic cartesian product graphs, Discrete Mathematics 308 (24)
(2008) 6441–6448]. In this paper, we develop new construction methods that are applied
to more general cases. We prove that the Cartesian product of paths is antimagic, if one of
them has at least three edges. This (almost) answers the open problems in [Yongxi Cheng,
Lattice grids and prisms are antimagic, Theoretical Computer Science 374 (2007) 66–73].
We also prove that the Cartesian product of an antimagic regular graph and a connected
graph is antimagic, which extends the results of the latter of the two references, where
several special cases are studied.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In 1990, Hartsfild and Ringel [5] introduced the concept of the antimagic graph. An antimagic labeling of a graph with
M edges and N vertices is a bijection from the set of edges to the set {1, 2, 3, . . . ,M} such that all the N vertex-sums are
pairwise distinct, where the vertex-sum of a vertex v is the sum of labels of all edges incident with v. A graph is called
antimagic if it has an antimagic labeling. Hartsfield and Ringel showed that paths Pn(n ≥ 3), cycles, wheels, and complete
graphs Kn(n ≥ 3) are antimagic. They conjectured that all trees except K2 are antimagic. Moreover, all connected graphs
except K2 are antimagic. These two conjectures are unsettled. Significant progress was made by Alon et al. [1], which states
that if G is a n-vertex graph with minimum degree Ω(log n) (or even further Ω(log n/ log log n)), then G is antimagic. In
[6] Hefetz proved several special cases and variants of the latter conjecture. In particular, he proved that for any integers
k > 0, a graph with 3k vertices is antimagic if it admits a K3-factor. In [4] Cranston showed that regular bipartite graphs are
antimagic.
Wang [7] showed that the Cartesian products of two ormore cycles are antimagic. The antimagicness of Cartesian product

of two paths and Cartesian products of two or more regular graphs were proved in [2,3] by Cheng, respectively.
In this paper,we develop new constructionmethodswhich are applied tomore general cases. Firstwe prove that (almost)

all Cartesian products of paths are antimagic. The proof relies on several construction strategies. Our main result is the
following theorem.
Theorem 1. The Cartesian product of two or more paths is antimagic, if there is at least one path with three or more edges.
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Remark. For the case that every path has length one or two, we were not able to give a canonical labeling method.
Using these strategies in similar ways, we can deal with the Cartesian product of regular graphs and arbitrary connected

graphs.
Theorem 2. If R is an antimagic regular graph, and G is a connected graph, the Cartesian product of R and G is antimagic.
This paper is organized as follows: In Section 2 we introduce some definitions and useful lemmas, in Section 3 we give

the proof of Theorem 1, and we give the proof of Theorem 2 in Section 4.

2. Preliminaries

Given a graph G = (V , E), we color the edges with two colors: red and blue. For each vertex u ∈ V (G), let R(u)
and B(u) indicates the number of red and blue edges incident to u respectively. A vertex u is called k-balance-colored if
|R(u) − B(u)| ≤ k. A graph G can be k-balance-colored if, and only if, there exist a coloring for G so that every vertex in G is
k-balance-colored.
Lemma 1. Every connected graph G can be 2-balance-colored. Further more, if G contains at least one vertex whose degree is odd,
then it can be 1-balance-colored.
Proof. First, we construct a new graph G′ from G that contains only even-degree vertices. We do this by pairing all the odd-
degree vertices in G and then adding one virtual-edge between the two vertices of each pair. It is easy to see that G′ has an
Eulerian circuit u1u2 · · · utu1. If G contains odd-degree vertices, then G′ contains virtual-edges. We may assume that u1u2 is
such a virtual-edge.
Then we color the edges of u1u2 · · · utu1 with the two colors. We begin with red for u1u2, then alternatively use blue and

red for u2u3, u3u4, . . . until all the edges have been colored; in this way every vertex in G′ has an equal number of red and
blue incident edges, except u1. In the case that u1u2 · · · utu1 contains an odd number of edges, u1 would have two more red
incident edges than blue incident edges.
Finally, we remove the virtual-edges of G′ andmaintain the coloring, unchanged. At this time, we have already obtained a

2-balance-colored coloring for G. To see this, we note that every vertex except u1 is 0-balance-colored in G′, thus they are 0-
balance-colored or 1-balance-colored inG; u1would also be 0-balance-colored inG′ if u1u2 · · · utu1 contains an even number
of edges. In this case it is 0-balance-colored or 1-balance-colored in G for the same reason, so G can be 1-balance-colored.
Otherwise, u1u2 · · · utu1 has an odd number of edges thus u1 has twomore red incident edges, i.e. u1 is 2-balance-colored in
G′. In this case, if G contains at least one odd-degree vertex, then u1u2 would be a virtual-edge so u1 is 1-balance-colored in
G, which means that G can be 1-balance-colored. But if G contains only even-degree vertices, then there is no virtual-edge
incident to u1 so u1 is 2-balance-colored in G, whichmeans that G can be 2-balance-colored only by our coloringmethod. �

The Cartesian product G1×G2×· · ·×Gn of n graphs Gi = (Vi, Ei) is a graph with vertex set V1×V2×· · ·×Vn, and vertex
(u1, u2, . . . , un) is adjacent to vertex (v1, v2, . . . , vn) if, and only if, there is an index t such that (ut , vt) ∈ Et and ui = vi
for i 6= t . The Cartesian product of paths is represented by P1[m1 + 1] × P2[m2 + 1] × · · · × Pn[mn + 1], where Pi is a path
with mi edges. For the sake of simplicity, we use (x1, x2, . . . , xn) to represent a corresponding vertex in the product graph,
where xi corresponds to the xi-th vertex of Pi, 1 ≤ xi ≤ mi + 1 (i = 1, . . . , n).
Corollary 1. Cartesian product of paths can be 1-balance-colored.
Proof. Given an arbitrary Cartesian product of n paths, suppose that there are m paths whose lengths are larger than 1.
Then, all integers from n to n+m can hold some vertices of the graph as their degrees. Ifm > 1, we can say that there must
be at least one vertex whose degree is odd, which leads to the conclusion by Lemma 1. However, ifm = 0, there may be no
odd-degree vertex in the graph when n is even. In this special case, the graph contains an even number of edges, so it can
also be 1-balance-colored. The proof of this assertion is included in the proof of Lemma 1. �

To continue our discussion, we also need some labeling templates which may simplify our later constructions. The
template will be built on the Cartesian product of paths.
Lemma 2. Every Cartesian product of n (n ≥ 2) paths contains such a circuit in which there are at least 2n edges; when this
circuit is removed, at most one virtual-edge is necessary to be added between a remaining pair of odd-degree vertices to keep the
graph connected.
Proof. Let G be the Cartesian product of n paths, G = P1[m1+1]×P2[m2+1]×· · ·×Pn[mn+1], n ≥ 2. Pi[2] denotes a unit
path of Pi which is formed by the first and the second vertices of Pi and the edge between them (A unit path is a path that
contains only one edge). Let Hk = P1[2] × P2[2] × · · · × Pk[2], 3 ≤ k ≤ n. Vertices in Hk are represented by k-dimension
coordinates (x1, x2, . . . , xk). Notice that the k-dimension path T k1 :

(1, 1, 1, . . . , 1)(2, 1, 1, . . . , 1)(2, 2, 1, . . . , 1) · · · (2, 2, 2, . . . , 2)
is a trail in Hk. In case of k ≥ 3, we first prove by induction that when T k1 is removed from H

k, Hk remains connected.
Case 1: k = 3, the conclusion holds for the unit cube H3, which is shown in Fig. 1.
Case 2: k ≥ 4, we assume that the conclusion holds for Hk−1. Let Hki (i = 1, 2) be the subgraph of H

k whose last coordinate
is i, which means that we let V (Hki ) be the set of vertices in H

k whose last coordinates are equal to i, and let E(Hki ) be the
set of edges in Hk whose two endpoints are both in V (Hki ), thus H

k
i is formed by (V (H

k
i ), E(H

k
i )). Considering the values

of the last coordinate of Hk1 and T
k
1 , we can see that H

k
1 can be reduced to H

k−1; at the same time Hk1 ∩ T
k
1 can be reduced
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Fig. 1. The connectedness of H3 without T 31 is showed in (a). Several examples that verify Lemma 2 are given in (b)–(d), in which (b) shows the only case
in which a virtual-edge must be added. (e) shows the way to link L and C up in the proof of Lemma 3.

to T k−11 . Thus by the inductive assumption, which states that Hk−1 remains connected without T k−11 , we can conclude that
Hk1 remains connected without H

k
1 ∩ T

k
1 . So H

k
1 is connected without T

k
1 . Subgraph H

k
2 is also connected without T

k
1 since

E(Hk2)∩ E(T
k
1 ) = ∅. Moreover, H

k
1 and H

k
2 can be linked by edge (1, 2, 1, . . . , 1)(2, 2, 1, . . . , 1), which does not appear in T

k
1 .

Thus Hk is connected without T k1 .
For the same reason, trail T k2 : (2, 2, 2, . . . , 2) (1, 2, 2, . . . , 2) (1, 1, 2, . . . , 2) · · · (1, 1, 1, . . . , 1) is of the same nature.

So we can say that Hn−1 is connected without T n−11 , and Hn−1 is connected without T n−12 , when n ≥ 4.
Returning to the proof of Lemma 2, we can merge the two n-dimension trails T n1 and T

n
2 to create a 2n-long circuit L:

(1, 1, . . . , 1, 1)(2, 1, . . . , 1, 1)(2, 2, . . . , 1, 1) · · · (2, 2, . . . , 2, 1)→
→ (2, 2, . . . , 2)(1, 2, . . . , 2)(1, 1, . . . , 2) · · · (1, 1, . . . , 1, 2)(1, 1, . . . , 1, 1)

Look at the two underlined trails in L. They can be reduced to T n−11 and T n−12 respectively, since the last coordinateswithin
these two trails themselves are all the same. Obviously, L is a subgraph of G. Nowwe show that L is precisely the circuit that
the proof needs.
For n = 2 and n = 3, it is quite straightforward to verify that L meets the requirements, so we omit the proof here

(Several examples are given in Fig. 1(b) shows the only one case when a virtual-edge must be added). For n ≥ 4, we use the
definition ofHki again, by creating two subgraphsH

n
1 andH

n
2 fromH

n. Considering the values of the last coordinate ofHn1 and
L, we can see that Hn1 can be reduced to H

n−1; and Hn1 ∩ L, which is precisely the first underlined trail of L, can be reduced to
T n−11 . Because that Hn−1 is connected without T n−11 , which we have stated before, we conclude that Hn1 is connected without
Hn1 ∩ L. Thus H

n
1 is connected without L. For the same reason, H

n
2 is connected without L. H

n
1 and H

n
2 can be linked by edge

(1, 2, 1, 1, . . . , 1)(2, 2, 1, 1, . . . , 1), which does not appear in L. Moreover, none of the edges that link these two subgraphs
with other parts of G appear in L, so the connectedness of Gwould not change if L is removed. �

Lemma 3. Every Cartesian product of n(n ≥ 2) paths can be labeled by 1, 2, 3, . . . ,M(M is the total number of edges in the
graph) so that

(1) for any vertex u in this graph, s(u) ≤ n(M + 2);
(2) for any two vertices u and v, if deg(u) < deg(v), then s(u)− deg(u) ≤ s(v)− deg(v).1

here the vertex-sum s(w) for a vertexw is the sum of labels of all edges incident withw.

1 deg(u) < deg(v) and s(u) − deg(u) ≤ s(v) − deg(v) means that s(u) < s(v), so we can conclude deg(u) < deg(v) ⇒ s(u) < s(v) from (2), its
converse-negative proposition is s(u) ≥ s(v)⇒ deg(u) ≥ deg(v), which is equivalent to s(u) ≤ s(v)⇒ deg(u) ≤ deg(v).
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Proof. Let G be the Cartesian product of n paths. If G is a Cartesian product of several unit paths, then s(u) < nM , and the
degrees of all vertices are the same. So the two requirements are obviously met.
Otherwise, n ≥ 2 and there is a path within P1, P2, . . . , Pn that contains more than one edge, which also meansM > 2n.

Without loss of generality, assuming that Pn is such a path, then vertex (1, 1, . . . , 1, 3) exists in G. By Lemma 2, we can
remove the 2n-long circuit L:

(1, 1, 1, . . . , 1)(2, 1, 1, . . . , 1)(2, 2, 1, . . . , 1) · · · (2, 2, 2, . . . , 1)→
→ (2, 2, 2, . . . , 2)(1, 2, 2, . . . , 2)(1, 1, 2, . . . , 2) · · · (1, 1, 1, . . . , 2)(1, 1, 1, . . . , 1)

from G and then add virtual-edges between appropriate pairs of odd-degree vertices to construct a connected and all-even-
degree graph G′. An Eulerian circuit C ′ of G′ must exist.
(1, 1, . . . , 1, 2)(1, 1, . . . , 1, 1) is an edge of L, and (1, 1, . . . , 1, 2)(1, 1, . . . , 1, 3) is an edge of C ′. These two edges are

both incident edges of (1, 1, . . . , 2), and means that (1, 1, . . . , 2) appears in L and in C ′. So we can link up the two circuits
at this vertex to form a new Eulerian circuit, say C∗. C∗ contains all original edges in G and all virtual-edges we added.
We represent C∗ by v2n−1v0v1v2 · · · v2n−1w1w2 · · · v2n−1, in which v2n−1v0v1v2 · · · v2n−1 is the segment that comes from L,
and v2n−1w1w2 · · · v2n−1 is the segment that comes from C ′, v2n−1 is the link vertex. More precisely, v2n−1 corresponds to
(1, 1, . . . , 2), v0 corresponds to (1, 1, . . . , 1), and v1 corresponds to (2, 1, . . . , 1), etc. The structure of C∗ is shown in detail
in Fig. 1. Notice that v0 holds degree n, which is the smallest degree among all possible degrees.
Nowwe give labels to circuit C∗: We label the original edges of G by 1, 2, 3, . . . ,M and label all of the virtual-edges by 0.

Begin with 1 at edge v0v1 and followed byM, 2,M − 1, 3, . . . ,
[M
2

]
+ 1 around the circuit C∗: v1v2, v2v3 · · · . The incident

edges of each vertices of G′ can be paired so that each pair consists of two adjacent edges in C∗. According to this labeling,
if the two edges in a pair are both original edges of G, then the sum of their labels is M + 1 or M + 2 (however, v0 is an
exception, and this will be discussed at the end of this proof). If there are virtual-edges within the pair, in which case the
pair is called to be a virtual-pair, then the label of another original edge in this pair can only be numbers between n and
M − n+ 1. This is because that numbers between 1 and n− 1 and numbers betweenM − n+ 2 andM are all labeled at the
edges in trail v0v1v2 · · · v2n−2, and these edges cannot be adjacent to a virtual-edge in C∗.
When virtual-edges are removed, the vertex-sums of vertices would not change since virtual-edges are all labeled with

0. However, vertex-sums of vertices rely heavily on their original degrees in G, because it is the degree of a vertex that
determines the number of edge-pairs incident to this vertex, and also determines whether there is an incident virtual-pair.
In conclusion, we summarize the range of vertex-sums for all possible degrees as follow,

s(u) ∈


[
deg(u)
2

(M + 1),
deg(u)
2

(M + 2)
]

deg(u) is even[
deg(u)− 1

2
(M + 1)+ n,

deg(u)− 1
2

(M + 2)+M − n+ 1
]
deg(u) is odd

Thus s(u) ≤ n(M + 2) can be concluded directly from above, since deg(u) ≤ 2n.
The rest thing is to prove (2): deg(u) < deg(v) ⇒ s(u) − deg(u) ≤ s(v) − deg(v). Notice that deg(u)2 (M + 1) >

(deg(u)−1)−1
2 (M+2)+M−n+1 and deg(u)−12 (M+1)+n > (deg(u)−1)

2 (M+2) always hold, since deg(u) ≤ 2n. Thus the range
of vertex-sums of different degrees has no intersection. It means that if deg(u) < deg(v), then s(u) ≤ s(v)−1. According to
the nature of graph G, we have deg(1, 1, 1, . . . , 1) ≤ deg(2, 1, 1, . . . , 1) ≤ deg(2, 2, 1, . . . , 1) ≤ · · · ≤ deg(2, 2, 2, . . . , 2).
The difference between every two adjacent degrees in this inequality sequence is, at most, 1; deg(1, 1, 1, . . . , 1) and
deg(2, 2, 2, . . . , 2) are the smallest degree and the largest degree among all possible degrees, respectively. This means that
the degrees ofG have covered every integer between the smallest degree ofG and the largest degree ofG. If deg(u) < deg(v),
we can say that, for every integer k between deg(u) and deg(v), there exists a vertex xk such that deg(xk) = k. Therefore,

deg(u) < deg(xdeg(u)+1) < deg(xdeg(u)+2) < · · · < deg(xdeg(v)−1) < deg(v).

By this inequality and the result shown above, we have s(u) ≤ s(xdeg(u)+1)− 1 ≤ s(xdeg(u)+2)− 2 ≤ · · · ≤ s(v)− deg(v)+
deg(u). So we have proved that s(u)− deg(u) ≤ s(v)− deg(v).
However, there is an exception v0 whose vertex-sum may not fall into the corresponding range, because the pair of

original edges v2n−1v0 and v0v1 is the only exceptional pair whose label sum is
[M
2

]
+ 2, which is smaller thanM + 1. But it

doesn’t matter because v0 has the smallest degree n and its vertex-sum is also smaller than normal. Thus, it meets the two
requirements as well. �

3. Proof of Theorem 1

Let the graph be P0[m0 + 1] × P1[m1 + 1] × · · · × Pn[mn + 1], the case when n ≤ 1 is already solved before [5,
2], so we assume n ≥ 2 here. Let P0 be the longest path and contains at least three edges, i.e. m0 ≥ 3. Let graph
G = P1[m1 + 1] × · · · × Pn[mn + 1], M and N denote the total number of edges and vertices in G respectively. Thus
we need to prove that P0 × G is antimagic. Our general approach is to construct labeling templates for P0 and G, then copy
and adjust them to label the Cartesian product of these two graphs.
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Fig. 2. Labeling templates for G = P1[5] × P2[6] and P0 = P0[6].

Colorings

We color G with red and blue and let G be 1-balance-colored. This is feasible by Corollary 1. Let C(v) = R(v) − B(v),
where v ∈ V (G). G is 1-balance-colored which means that there are three possible values of C(v):−1, 0 and 1.

Labeling templates

We construct labeling templates for G and P0 respectively. The template of G is a function f : E(G) → {1, 2, . . . ,M}. It
is constructed by the methods of Lemma 3. Let us denote the vertices sums of G under function f byw(v) (∀v ∈ V (G)). As a
result of Lemma 3, we have

1. w(u) ≤ n(M + 2).
2. If deg(u) < deg(v), thenw(u)− deg(u) ≤ w(v)− deg(v).

The labeling template of P0 is defined by function h. Let k =
⌊
m0+1
2

⌋
, ui denotes the i-th vertex of P0, then

h(uiui+1) =


k+

i+ 1
2
−
m0 + 1
2

, i is odd;
i
2
−
m0 + 1
2

, i is even.

The following proposition can be derived directly from the definition above.

Proposition 1. 1.1 Function h is a bijection from E(P0) to the values {1− m0+1
2 , 2− m0+1

2 , . . . ,
m0+1
2 − 1}.

1.2 For 2 ≤ i ≤ m0, h(ui−1ui)+ h(uiui+1) = k+ i− (m0 + 1). It is an monotone increasing function of i, whose values belong
to [k−m0 + 1, k− 1].

1.3 h(u1u2)− h(um0um0+1) =
{
−k, m0 is odd;
1, m0 is even.

Examples of labeling templates for G and P0 are given in Fig. 2.

Distribution function

Distribution function g(i) is defined to adjust the template of G in the labeling process. g(1) is defined to be (−1)m0 12
and g(m0 + 1) = −g(1). For 2 ≤ i ≤ m0, g(i) = i − 1 −

m0
2 . The following proposition can be deducted directly from the

definition.
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Proposition 2. 2.1 For2 ≤ i ≤ m0, function g is a bijection from integers {2, 3, . . . ,m0} to the values {1−m02 , 2−
m0
2 , . . . ,

m0
2 −

1}.
2.2 For 1 ≤ i ≤ m0 + 1, g(i) = −g(m0 + 2− i).
2.3 For 2 ≤ i ≤ m0, h(ui−1ui)+ h(uiui+1)+ g(i) = k+ 2i− 3

2m0 − 2. It is an monotone increasing function of i, whose values
belong to

[
k− 3

2m0 + 2, k+
1
2m0 − 2

]
.

2.4 h(u1u2)+ g(1) 6= h(um0um0+1)+ g(m0 + 1).

Labeling rules

Without loss of generality, we can rename the vertices of G as v0, v1, . . . , vN−1 such that w(v0) ≤ w(v1) ≤ · · · ≤
w(vN−1). On the other hand, vertices of P0 is represented by u1, u2, . . . , um0+1 as above, where ui denotes the i-th vertex of
P0. So (ui, vj) is a vertex of P0× G, corresponding to two vertices based on P0 and G, respectively. The edges of P0× G can be
partitioned into two groups: one group is copied from P0 and another is copied from of G. Our labeling rules are also divided
into these two cases, as follows.
We assign 1, 2, 3, . . . , (m0 + 1)M +m0N to elements of E(P0 × G):

1. For uiui+1 ∈ E(P0) and vj ∈ V (G), (ui, vj)(ui+1, vj) is labeled with
(m0 + 1)M +

m0 + 1
2
+m0j+ h(uiui+1), if C(vj) ≥ 0;

(m0 + 1)M +
m0 + 1
2
+m0j+ h(um0+2−ium0+1−i), if C(vj) < 0.

For a fixed j, both m0+12 +h(uiui+1) and
m0+1
2 +h(um0+2−ium0+1−i) are bijections from {1, 2, . . . ,m0} to {1, 2, . . . ,m0}.

This can be learned from Proposition 1.1. So the conclusion is that, when j runs over every integer from 0 to N − 1, every
integer in [(m0 + 1)M + 1, (m0 + 1)+m0N] is used once and only once in the labeling process.

2. For ui ∈ V (P0) and vjvk ∈ E(G), (ui, vj)(ui, vk) is labeled with
2M −

m0
2
+ 1+ (m0 − 1)f (vjvk)+ g(i), if vjvk is red;

2M −
m0
2
+ 1+ (m0 − 1)f (vjvk)+ g(m0 + 2− i), if vjvk is blue

when 2 ≤ i ≤ m0. For fixed (j, k), we know from Proposition 2.1 that both−
m0
2 + 1+ g(i) and−

m0
2 + 1+ g(m0+ 2− i)

are bijections from {2, . . . ,m0} to {−m0 + 2,−m0 + 1, . . . , 0}. Hence, when f (vjvk) runs over all its value range, every
integer in [2M + 1, (m0 + 1)M] is used once and only once in the labeling process for 2 ≤ i ≤ m0.
When i = 1 or i = m0 + 1, (ui, vj)(ui, vk) is labeled with
−
1
2
+ 2f (vjvk)+ g(i), if vjvk is red;

−
1
2
+ 2f (vjvk)+ g(m0 + 2− i), if vjvk is blue.

We know from the definition of g that {g(i)− 1
2 , g(m0 + 2− i)−

1
2 } = {−1, 0} for i = 1 and i = m0 + 1. f (vjvk) is

a bijection from E(G) to {1, 2, . . . ,M}. So it is obvious to see that every integer in [1, 2M] is used once and only once in
the labeling process for i = 1 and i = m0 + 1.

It has been verified, above, that our labels precisely cover every integer between 1 and (m0 + 1)M +m0N , and we never
assign the same value to different edges.

Analysis

We show two corollaries derived from the labeling rules.

Corollary 2. For vj, vk ∈ V (G), if j < k, then∑
x∈Γ (vj)

((
2M −

m0
2
+ 1

)
+ (m0 − 1)f (vjx)

)
≤

∑
x∈Γ (vk)

((
2M −

m0
2
+ 1

)
+ (m0 − 1)f (vkx)

)
,

∑
x∈Γ (vj)

(
−
1
2
+ 2f (vjx)

)
≤

∑
x∈Γ (vk)

(
−
1
2
+ 2f (vkx)

)
,

where Γ (v) is the set of vertices that are adjacent to v.
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Proof. Recalling the structure of graph G, we have∑
x∈Γ (vj)

(
a+ bf (vjx)

)
= bw(vj)+ a deg(vj),∑

x∈Γ (vk)

(a+ bf (vkx)) = bw(vk)+ a deg(vk),

for any a, b. j < k implies w(vj) ≤ w(vk), which also means deg(vj) ≤ deg(vk) (this appears as a note for Lemma 3).
By the labeling template of G, w(vj) − deg(vj) ≤ w(vk) − deg(vk) can be concluded. Thus when b > 0 and a + b ≥ 0,
bw(vj) + a deg(vj) ≤ b(w(vk) + deg(vj) − deg(vk)) + a deg(vj) = bw(vk) + a deg(vk) + (a + b)(deg(vj) − deg(vk))
≤ bw(vk)+ a deg(vk). �

The vertex-sum of a vertex (ui, vj) is expressed by function s((ui, vj)), and s((ui, vj)) can be represented as a sum of four
independent expressions s((ui, vj)) = s1+ s2(j)+ s3(j)+ s4(i, j), in which s1 is a constant, s2, s3 relies only on j, and s4 relies
on both i and j:

Proposition 3. Considering the labeling rules and the definition of vertex-sums altogether, we canwrite the particular expressions
of s1, s2, s3 and s4. For 2 ≤ i ≤ m0,

s1 = (m0 + 1)(2M + 1),

s2(j) =
∑
x∈Γ (vj)

(
2M −

m0
2
+ 1+ (m0 − 1)f (vjx)

)
,

s3(j) = 2m0j,

s4(i, j) =

{h(ui−1ui)+ h(uiui+1)+ g(i), if C(vj) = 1;
h(um0+3−ium0+2−i)+ h(um0+2−ium0+1−i)+ g(m0 + 2− i), if C(vj) = −1;
h(ui−1ui)+ h(uiui+1), if C(vj) = 0.

By Proposition 1 and Proposition 2, the values of s4(i, j) are restricted in the range of [k − m0 + 1, k − 1] ∪[
k− 3

2m0 + 2, k+
1
2m0 − 2

]
. We also know that m0−12 ≤ k ≤

m0
2 , thus

−m0 < min
{
−
m0
2
+
1
2
,−m+

3
2

}
≤ s4(i, j) ≤ max

{m0
2
− 1,m0 − 2

}
< m0 − 1.

So the largest difference between the values of s4(i, j) is less than 2m0.
For i = 1 or i = m0 + 1,

s1 = (m0 + 1)
(
M +

1
2

)
,

s2(j) =
∑
x∈Γ (vj)

(
−
1
2
+ (m0 − 1)f (vjx)

)
,

s3(j) = m0j,

s4(i, j) =

{h(uiui±1)+ g(i± 1), if C(vj) = 1;
h(um0+2−i∓1um0+2−i)+ g(m0 + 2− i), if C(vj) = −1;
h(uiui±1), if C(vj) = 0.

By Proposition 1 and the definition of g(i), the largest difference between the values of s4(i, j) is, at most,max {2, k+ 1}, which
is less than m0 when m0 ≥ 3.

Prove the antimagicness of the labeling

Two vertices conflict if they have the a same vertex-sum. We partition the vertices (ui, vj) into two groups: one group
consists of vertices with 2 ≤ i ≤ m0 and another group consists of vertices with i = 1 orm0+ 1. First we prove that there is
no conflict within these two groups themselves. Then we show that all vertex-sums of the first group are larger than every
vertex-sum of the second group.
Given two arbitrary different vertices of P0 × G belonging to the same group: (ui, vj) and (ui′ , vj′), suppose j ≤ j′. Let

us compare s1, s2, s3 and s4 respectively. s1 is a constant for vertices in the same group. If j = j′, then s2(j) = s2(j′) and
s3(j) = s3(j′), while s4(i, j) 6= s4(i′, j′), by Proposition 1.2 and Proposition 2.3, since i 6= i′. Thus, the two vertices have
different vertex-sums. If j < j′, then s2(j) ≤ s2(j′) (by Corollary 2). Notice that the smallest possible difference between
s3(j) and s3(j′) is larger than the largest possible difference between s4(i, j) and s4(i′, j′) (proved in Proposition 3). Thus, the
vertex-sum of (ui, vj) is less than that of (ui′ , vj′), and means that they have no conflict.
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Consider the smallest possible vertex-sum of (ui, vj) for 2 ≤ i ≤ m0 and arbitrary j. s(ui, vj) can be partitioned into two

parts: one is the partial sum of edges copied from P0, which is at least
2∑
i=1
((m0 + 1)M + i) , another is the partial sum of

edges copied from G, which is at least
n∑
i=1
(2M + i), thus

s((ui, vj)) ≥ (2m0 + 2n+ 2)M +
n(n+ 1)
2

+ 3.

The largest possible vertex-sum of (ui′ , vj′) when i′ = 1 or m0 + 1 can be estimated in the same way. The labeling sum of
edges copied from P0 cannot be larger than the total number of edges, which is (m0 + 1)M + m0N . By labeling rules, the
labeling sum of edges copied from G cannot be larger than 2w(vj′), which is, at most, 2n(M + 2). Thus

s((ui′ , vj′)) ≤ (m0 + 2n+ 1)M +m0N + 4n.

So we have

s((ui, vj))− s((ui′ , vj′)) ≥ (2m0 + 2n+ 2)M +
n(n+ 1)
2

+ 3− ((m0 + 2n+ 1)M +m0N + 4n)

≥ (m0 + 1)M −m0N +
n(n+ 1)
2

− 4n+ 3 > 0.

The last statement is always true when n ≥ 2 (thus M ≥ N ≥ 4). So there is no conflict between the two groups of
vertices. �

4. Proof of Theorem 2

We assume that R is a k-regular antimagic graph (k ≥ 2). T and N denotes the total number of vertices in R and G
respectively, while the total number of edges in G is denoted byM .
The strategies used to prove the antimagicness of R×G are quite similar to those of Section 3.We also construct colorings

and templates, and then copy and adjust them to label the product graph. Fortunately, the constructionprocess in this section
can be much more concise than Section 3.

Colorings

We color G with red and blue and let G be 2-balance-colored. It is feasible by Lemma 1. Let C(v) = R(v) − B(v), where
v ∈ V (G). G is 2-balance-colored means that−2 ≤ C(v) ≤ 2.

Labeling templates

We assign the antimagic labeling h : E(R) →
{
1, 2, . . . , kT2

}
to R. The vertex-sum of vertex v ∈ V (R) is expressed by

functionw1(v).
For G, we have M ≥ N − 1 since G is connected. Assign an arbitrary labeling f : E(G) → {

( k
2 + 1

)
Ti − a|i =

1, 2, . . . ,N − 1}
⋃
{Tj + kT

2 N − a|j = N,N + 1, . . .M} to G, where a =
T−1
2 . The vertex sum of vertex v ∈ V (G) is

expressed by functionw2(v).

Labeling rules

First, we rename the vertices of R as u0, u1, . . . , uT−1 such thatw1(u0) < w1(u1) < · · · < w1(uT−1), the strict inequality
relies on the antimagicness of R. We also rename the vertices of G as v0, v1, . . . , vN−1 such that w2(v0) ≤ w2(v1) ≤ · · · ≤
w2(vN−1). Vertex of R × G is represented by (ui, vj) where ui ∈ V (R) and vj ∈ V (G). The labeling rules for R × G are given
as follow.
We assign 1, 2, 3, . . . , TM + kT

2 N to elements of E(R× G).

1. For uiui′ ∈ E(R) and vj ∈ V (G), (ui, vj)(ui′ , vj) is labeled with
(
k
2
+ 1

)
Tj+ h(uiui′), if C(A) ≥ 0;(

k
2
+ 1

)
Tj+

(
kT
2
+ 1− h(uiui′)

)
, if C(A) < 0.
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2. For ui ∈ V (R) and vjvj′ ∈ E(G), (ui, vj)(ui, vj′) is labeled with{
f (vjvj′)+ (i− a), if vjvj′ is red;
f (vjvj′)+ (a− i), if vjvj′ is blue.

It is quite easy to verify that our labels have precisely covered every integer between 1 and TM + kT
2 N , and we never

assign the same value to different edges. The details of the verification are omitted, considering its similarity with Section 3.

Prove the antimagicness of the labeling

For R × G, the vertex sum s((ui, vj)) can also be represented as a sum of four independent expressions s((ui, vj)) =
s1 + s2(j)+ s3(j)+ s4(i, j), in which

s1 =
k
2

(
kT
2
+ 1

)
s2(j) = w2(vj)

s3(j) =
(
k
2
+ 1

)
kTj

s4(i, j) =


C(vj)∣∣C(vj)∣∣

(
w1(ui)−

k
2

(
kT
2
+ 1

))
+ C(vj) (i− a) C(vj) 6= 0

w1(ui)−
k
2

(
kT
2
+ 1

)
C(vj) = 0.

To estimate the largest possible difference between the values of s4(i, j), we have

|s4(i, j)| ≤
∣∣∣∣w1(ui)− k2

(
kT
2
+ 1

)∣∣∣∣+ 2 |i− a| ≤ (k2T4 − k22
)
+ (T − 1) <

(
k2

4
+ 1

)
T .

Thus the largest possible difference cannot be larger than 2|s4(i, j)| <
(
k2
2 + 2

)
T ≤

( k
2 + 1

)
kT . The last term is the smallest

possible difference between the values of the s3(j) for different j, in case of k ≥ 2 .
Given two arbitrary different vertices ofR×G, (ui, vj) and (ui′ , vj′), suppose j ≤ j′.We compare s1, s2, s3 and s4 respectively.

s1 is a constant. If j = j′, then s2(j) = s2(j′) and s3(j) = s3(j′), but s4(i, j) 6= s4(i′, j′). This is because i 6= i′, and both
C(vj)

|C(vj)|

(
w1(ui)− k

2

( kT
2 + 1

))
+ C(vj) (i− a) and w1(ui)− k

2

( kT
2 + 1

)
are monotonic functions of i. Thus, the two vertex

sums cannot be the same. If j < j′, then s2(j) ≤ s2(j′). Notice that the smallest possible difference between s3(j) and s3(j′) is
larger than the largest possible difference between s4(i, j) and s4(i′, j′)(proved above). Thus the vertex sum of (ui, vj) is less
than that of (ui′ , vj′), which means that they have no conflict. �

5. Open problems

The challenge still remains to prove the antimagicness of some other cases of Cartesian products of graphs. For example,
Cartesian products of 2-edge paths cannot be solved by the methods in this paper. It would also be interesting to find
a general approach to deal with the Cartesian products of two arbitrary antimagic graphs or, even further, the Cartesian
products of two arbitrary connected graphs. On the other hand, trying to prove the antimagicness of all regular graphs may
also be interesting.
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