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We propose a scheme to efficiently generate time-frequency and polarization-entangled photon pairs with cold
atomic ensembles via spontaneous four-wave mixing through combining the photon pairs from two symmetrical
spatial modes by polarization beam splitters. With a two-dimensional magneto-optical trap, polarization-
entangled photon pairs with controllable temporal length (>100 ns) can be generated at the rate of about 105

per second after taking into account all losses. Therefore, it is a feasible photon source for scalable linear optical
quantum computation and long-distance quantum communication. © 2013 Optical Society of America

OCIS codes: 270.0270, 270.5585, 190.4410, 190.4380.

1. INTRODUCTION
Scalable linear optical quantum computation (LOQC) and
quantum memory based long-distance quantum communica-
tion (LDQC) has attracted a great deal of interest recently
[1–4]. For moving on, a feasible photonic entanglement source
plays a critical role in those schemes [4]. For many decades,
spontaneous parametric down-conversion in nonlinear crys-
tals has been a standard method to generate nonclassical
correlated photons [5]. However, such a source typically
has a wide bandwidth (∼THz) and short coherence time
(∼ps), and thus it is not suitable for LOQC and LDQC [3,6].
By putting the nonlinear crystal inside a cavity, generation
of narrowband polarization-entangled photon pairs has been
demonstrated [6,7].

Following the protocol of DLCZ proposed by Duan et al. [3],
polarization-entangled photon pairs have been generated from
atomic ensembles using a “writing-reading” technique [8–10].
For the spontaneous Raman transitions, the paired photons
are generated in order. And hence, the paired photons are
not time–frequency entangled. Subsequently, narrow band-
width photon pairs have also been generated through electro-
magnetically induced transparency (EIT) and spontaneous
four-wave mixing (SFWM) [11–13]. Recently, polarization en-
tanglement has also been demonstrated experimentally using
this technique [14]. However, due to the low efficiency of the
right-angle geometry EIT, both the coherence time and gen-
eration rate are limited to less than 100 ns and several pairs
per second, respectively [14]. Therefore, the generation of
narrowband (MHz) polarization-entangled photon pairs with
much higher generating rate is still in high demand.

In this paper, we propose a highly efficient scheme to
generate hyperentangled (time-frequency and polarization-
entangled) photon pairs through SFWM from cold atomic
ensembles with controllable waveforms. It was proposed that
the polarization-entangled photon pairs can be generated by
using two SFWM channels in the atomic energy levels via

right-angle geometry SFWM [15]. However, it was demon-
strated that the generation rate is about several pairs per
second due to the limitation of the right-angle configuration
of SFWM [14]. Here, we propose to achieve polarization en-
tanglement through combining the photon pairs from two
symmetrical spatial modes of the SFWM by polarization beam
splitters (PBS) instead of two FWM channels of the energy
levels used in [14,15]. In addition, we calculate the generation
rates as a function of the angle between the two symmetrical
spatial modes. We find that the generation rate is lower when
the angle is big, which is similar to that in [14,15]. In contrast,
the generation rate can be five orders of magnitude larger
when the angle is small. With this scheme, we show that nar-
rowband hyperentangled photon pairs with controllable tem-
poral length (100 ns to 1 μs) can be generated at the rate of
about 105 s−1 after taking into account all of the losses. Those
entangled photon pairs, with tunable optical frequencies near
atomic resonances, are ideal for interacting and storing with
atomic quantum memories [3,8,16–18], and hence may find
many applications in LOQC and LDQC.

2. PROPOSED EXPERIMENTAL SETUP
The proposed scheme is shown in Fig. 1(a): counter-
propagating pump laser with polarization σ− and coupling
laser with polarization σ� are collinear and set at the longitu-
dinal axis of a two-dimensional (2D) magneto-optical trap
(MOT) [19]; two Stokes (denoted as s:L, s:R) and two anti-
Stokes (denoted by as:L, as:R) fields are collected at the an-
gles�θ to the propagating direction of the pump and coupling
beams, respectively. As shown in Fig. 1(b), for either one of
the two space modes, only one four wave mixing (FWM) pro-
cess can be picked up by the quarter wave plates (QWP) and
PBS, i.e., for s:L and as:L fields, only the (σ−, σ−, σ�, σ�)
process is picked up. Hence, the polarizations of the s:L
and as:L fields should be σ− and σ�, respectively. After the
QWP, the polarizations of both s:L and as:L fields are turned
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to horizontal jHi and then collected by the PBS. On the other
hand, the polarizations of both the s:R�σ−� and as:R�σ�� fields
are turned into vertical jVi by the QWP. Photon pairs from
other FWM processes are cleaned out by the two PBS. In
the low-gain limit, the two symmetrical space modes of the
Stokes and anti-Stokes fields have the same probability to
generate one pair of photons. Thus, the paired photons are
in a coherent superposition state before the PBS, i.e.,
1∕

���
2

p
�jHs:LHas:Li � jVs:RVas:Ri� (as mentioned above, σ�

and σ− photons are converted into horizontal jHi or vertical
jVi polarized photons through λ∕4 wave plates and then
selected by PBS). Furthermore, after the PBS, the L∕R road
information is erased [9,10,20], so the photon pairs are en-
tangled in polarization and the wave packet of the photon
pairs is given by

jΨs;as�ts; tas�i � Ψ�ts; tas�
1���
2

p �jHsHasi � eiϕjVsVasi�; (1)

where ts and tas are the time of detecting a Stokes or an
anti-Stokes photon, respectively, and ϕ is the entire phase
difference between the two space modes before they overlap
at PBS, which can be compensated and stabilized to 0 by
the phase modulator (PM) as shown in Fig. 1 [21]. So the
photon pairs can be kept in the maximally polarization-
entangled state.

3. GENERATION RATE
Now we focus on one of the space modes before the PBS,
such as the fields s:L and as:L. It is a typical setup for genera-
tion of time-energy entangled narrowband photon pairs with
cold atomic ensembles via EIT and backward geometry
SFWM (with continuous pump and coupling lasers, Stokes
and anti-Stokes photons are spontaneously generated and

propagate in opposite directions) [11,12]. The four-level
double-Λ atomic system is shown in Fig. 1(b). In the presence
of a continuous-wave (cw) pump laser (ωp) and a cw coupling
(ωc) laser, phase-matched Stokes (ωs) and anti-Stokes (ωas)
photon pairs can be spontaneously produced from the
FWM process in the low gain limit. As shown in Fig. 1(b),
the resonant coupling laser forms a standard three-level Λ
EIT system with the generated anti-Stokes field. So the cou-
pling laser not only assists the FWM nonlinear process, but
also creates a transparent window for the anti-Stokes photons
with slow light effect. If we denote L as the length of the
atomic ensemble, Vg � jΩcj2∕�2ργ13� (with 1∕γ13 being the
average lifetime of states j1i and j3i) as the group velocity,
then the coherence time (τ ≈ L∕Vg) and the linewidth
(Δ ≈ 0.88∕τ) of the photon pairs are determined by the cou-
pling laser Ωc and the optical density (OD) ρ of the cold atoms
at the group delay region (τ > 1∕Ωc, 1∕γ13). With the perturba-
tion theory [22], the wave packet of the photon pairs can be
described as

Ψ�ts; tas� �
L
2π

Z
dωasκ�ωas�sinc

�ΔkL
2

�

× ei�kas�ks�L∕2e−iωasτe−i�ωc�ωp�ts ; (2)

where τ � tas − ts and the phase mismatching Δk �
�kas − ks� � �kp − kc� cos�θ�; kas (ks) stands for the wave-
number of anti-Stokes (Stokes) photons; kp (kc) stands for
the wavenumber of pump (coupling) laser. The nonlinear
parametric coupling coefficient κ�ωas� � −i� �������������

ω̄asω̄s
p

∕2c�χ�3�
�ωas;ωs�EpEc, where χ�3� is the third-order nonlinear suscept-
ibility. ω̄as (ω̄s) is the average frequency of the anti-Stokes
(Stokes) photons, c is vacuum light speed, Ep (Ec) is the elec-
tric filed of the pump (coupling) laser. The photon pairs from
the SFWM process should be time-energy entangled according
to the wave function described in Eq. (2) [23].

The coincidence counts of the photon pairs can be deter-
mined by Glauber’s theory with

G�2��ts; tas� � jΨ�ts; tas�j2: (3)

By using Eqs. (2) and (3), the coincidence counts can be
calculated out. The results are plotted in Fig. 2(a) with differ-
ent parameters at 1 ns time bin. The generation rate R is
determined by the equation R � R

G�2��ts; tas�dt. When we
choose the following typically experimental parameters
ρ � 40, Ωp � γ13, Ωc � 4γ13, γ13 � 2π × 3 MHz, Δp � −7.5γ13,
L � 1.5 cm, θ � �2°, and also consider all the existence loss
(fiber–fiber coupling efficiency 0.7, photon detector efficiency
0.5, filter efficiency 0.6), the generation rate is about 105 s−1.
As shown in Fig. 2(a), the coherence time or the linewidth is
determined by ρ and Ωc, while the generation rate is deter-
mined by ρ and Ωp. In order to distinguish the photon pairs
in time (this is also the low gain limit), the maximum genera-
tion rate we could obtain is limited by η � 1∕τ (here η ≈ 0.1 in-
cludes all the existence loss). For example, when τ � 500 ns,
the maximum generation rate we may obtain is about
2 × 105 s−1. In order to suppress double-pair events, the gen-
eration rate should be set 1 or 2 magnitudes smaller. For
comparison, the coincidence count for the right-angle FWM
scheme is also plotted in Fig. 2(b) (here, the same para-
meters are selected as the above-proposed scheme; only

Fig. 1. (Color online) (a) Experimental setup. PBS: polarization
beam splitter; M: mirror; QWP: quarter wave plate; PM: phase modu-
lator. (b) Energy level configuration. ωp: pump laser; ωc: coupling
laser; ωs: Stokes field; ωas: anti-Stokes field;Δp: pump laser detuning.
As for 85Rb, the energy levels j1i → j4i should be j5S1∕2; F � 2i,
j5S1∕2; F � 3i, j5P1∕2; F � 3i, j5P3∕2; F � 3i, respectively.
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Δp � 1000γ13 is different that is limited by the scheme itself).
Considering the absorption, the generating rate is only several
pairs per second, which fits very well with the existing
experiment [14,15].

4. POLARIZATION ENTANGLEMENT
In order to maintain the maximally polarization-entangled
state, two symmetrical Stokes/anti-Stokes fields must be
chosen in our scheme. For the phase-matching condition
[Δk � �kas − ks� � �kp − kc� cos�θ�], the generation rate is
decreasing rapidly as θ increases, as shown in Fig. 3 (here
we choose ρ � 40, Ωp � γ13, Ωc � 4γ13, γ13 � 2π × 3 MHz,
Δp � −7.5γ13, L � 1.5 cm, η ≈ 0.1). When θ → 90°, only sev-
eral pairs of photons per second could be generated. This
is the same as the right-angle geometry SFWM [14,15]. In those
schemes, in order to obtain two undistinguished FWM chan-
nels, the energy levels of right-angle geometry SFWM must be
chosen. Thus the efficiency couldn’t be kept high. In addition,
for the right-angle FWM, the absorption is another important
reason for the low efficiency because the right-angle EIT
couldn’t get 100% transparency besides the phase mismatch.

Compared with the right-angle scheme, a great advantage in
the present scheme is that the angle θ can be varied between 0
to π∕2 since only two symmetrical space modes are needed.
As shown in Fig. 3, when −10° < θ < 10°, the generation rate
is almost the same; thus, it will be easy to choose two symme-
trical Stokes/anti-Stokes fields in our setup. In addition, when
θ ≈ 5°, we get the maximum generation rate for the best
phase-matching condition.

Besides the generation rate, the visibility of the interference
fringe of the polarization correlation between Stokes and
anti-Stokes photons, which determines the degree of entangle-
ment, is another crucial parameter for the proposed scheme.
In the low gain limit, the visibility is given by [10]

V � g�2�s;as − 1

g�2�s;as � 1
; (4)

where the normalized cross-correlation function g�2�s;as �
1� G�2��ts; tas�∕�RsRas� with Rs and Ras being the single-
photon rates of Stokes and anti-Stokes photons [14,20],
respectively. As shown in Fig. 4, the visibility V can be larger
than 1∕

���
2

p
in the condition g�2�s;as > 6, while V � 1∕

���
2

p
is
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Fig. 2. (Color online) (a) Coincidence counts per second for the pro-
posed scheme; generation rate and coincidence time are: 105 s−1 and
400 ns with (OD)ρ � 40, Ωc � 4γ13 (solid curve); 0.5 × 105 s−1 and
200 ns with (OD) ρ � 20, Ωc � 4γ13 (dotted curve), 0.5 × 105 s−1

and 360 ns with (OD) ρ � 20, Ωc � 3γ13 (dashed curve). Other
parameters: Ωp � γ13, γ13 � 2π × 3 MHz, Δp � −7.5γ13, L � 1.5 cm,
θ � �2°, η ≈ 0.1. (b) Coincidence counts per second for the right-
angle FWM scheme (the same parameters are used as above; only
Δp � 1000γ13 is different). With (OD) ρ � 40 (solid curve) and
(OD) ρ � 20 (dashed line), only several pairs can be generated
per second.

Fig. 3. (Color online) Generation rate versus θ; the insert is the en-
larged region around θ � 90°. Other parameters: ρ � 40, Ωp � γ13,
Ωc � 4γ13, γ13 � 2π × 3 MHz, Δp � −7.5γ13, L � 1.5 cm, η ≈ 0.1.

Fig. 4. (Color online) Visibility of the interference fringe of the
polarization correlation between Stokes and anti-Stokes photons.
The dashed line is the boundary of 1∕

���
2

p
, which is the limit to violate

the Bell–CHSH inequality, while the solid curve is the visibility V
versus g�2�s;as.
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actually the limit to violate the Bell–CHSH inequality and
indicates the polarization entanglement [24]. Notably, the
previous experiments had shown that it is easy to obtain
g�2�s;as > 10 [11,12,25].

5. CONCLUSION
In summary, we have proposed a scheme to efficiently gener-
ate narrowband hyperentangled photon pairs with 2D MOT
through SFWM. These narrowband hyperentangled photon
pairs, with generation rate larger than 105 s−1 and coherence
time longer than 100 ns, are suitable for LOQC and quantum
memory-based LDQC. Comparing with the “writing-reading”
scheme, our scheme is a continuous source, and the generated
photons are also time-frequency entangled besides the polar-
ization. In addition, the waveform can be adjustable for the
slow light effect [14,25]. In addition, photons simultaneously
entangled in more than one degree of freedom (such as polar-
ization, momentum, and time-frequency), are useful in in-
creasing information capacity in quantum communication
[26,27].
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