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Abstract. We prove that a balanced 8-round Feistel network is indifferentiable from a random per-
mutation. This result comes on the heels of (and is part of the same body of work as) a 10-round
indifferentiability result for Feistel network recently announced by the same team of authors [10]. The
current 8-round simulator achieves similar security, query complexity and runtime as the 10-round
simulator and is not significantly more involved. As such, the security of our simulator is also slightly
better than the security of the previous 14-round simulator of Holenstein et al. [18] (O(q8/2n) vs.
O(210/2n)) for a comparable runtime and query complexity (these metrics being both O(q4) in both
ours and Holenstein et al.’s simulator).
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1 Introduction

For many cryptographic protocols the only known analyses are in a so-called ideal primitive model.
In such a model, a cryptographic component is replaced by an idealized information-theoretic
counterpart (e.g., a random oracle takes the part of a hash function, or an ideal cipher substitutes
for a concrete blockcipher such as AES) and security bounds are given as functions of the query
complexity of an information-theoretic adversary with oracle access to the idealized primitive. Early
uses of such ideal models include Winternitz [34], Fiat and Shamir [17] (see proof in [27]) and Bellare
and Rogaway [2], with such analyses rapidly proliferating after the latter paper.

Given the popularity of such analyses a natural question that arises is to determine the relative
“power” of different classes of primitives and, more precisely, whether one class of primitives can
be used to “implement” another. E.g., is a random function always sufficient to implement an ideal
cipher, in security games where oracle access to the ideal cipher/random function is granted to
all parties? The challenge of such a question is partly definitional, since the different primitives
have syntactically distinct interfaces. (Indeed, it seems that it was not immediately obvious to
researchers that such a question made sense at all [7].)

A sensible definitional framework, however, was proposed by Maurer et al. [22], who introduce
a simulation-based notion of indifferentiability. This framework allows to meaningfully discuss the
instantiation of one ideal primitive by a syntactically different primitive, and to compose such
results. (Similar simulation-based definitions appear in [4, 5, 25, 26].) Coron et al. [7] are early
adopters of the framework, and give additional insights.

Informally, given ideal primitives Z and Q, a construction CQ (where C is some stateless al-
gorithm making queries to Q) is indifferentiable from Z if there exists a simulator S (a stateful,
randomized algorithm) with oracle access to Z such that the pair (CQ, Q) is statistically indis-
tinguishable from the pair (Z,SZ). Fig. 1 (which is adapted from a similar figure in [7]) briefly
illustrates the rationale for this definition. The more efficient the simulator, the lower its query
complexity, and the better the statistical indistinguishability, the more practically meaningful the
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Fig. 1. The cliff notes of indifferentiability, after [7]. (left) Adversary A interacts in a game with protocol π in which
π calls a construction C that calls an ideal primitive Q and in which A calls Q directly. (middle) By indifferentiability,
the pair (CQ, Q) can be replaced with the pair (Z, SZ), where Z is an ideal primitive matching C’s syntax, without
significantly affecting A’s probability of success. (right) Folding S into A gives a new adversary A′ for a modified
security game in which the “real world” construction CQ has been replaced by the “ideal world” functionality Z.
Hence, a lack of attacks in the ideal world implies a lack of attacks in the real world.

result.

The present paper focuses on the natural question of implementing a permutation from one or
more random functions (a small number of distinct random functions can be emulated by a single
random function with a slightly larger domain) such that the resulting construction is indifferen-
tiable from a random permutation. This means building a permutation C : {0, 1}m(n) → {0, 1}m(n)

where

C = C[F1, . . . , Fr]

depends on a small collection of random functions F1, . . . , Fr : {0, 1}n → {0, 1}n such that the
vector of r + 1 oracles

(C[F1, . . . , Fr], F1, . . . , Fr)

is statistically indistinguishable from a pair

(Z,SZ)

where Z : {0, 1}m(n) → {0, 1}m(n) is a random permutation from m(n) bits to m(n) bits, for some
efficient simulator S. Thus, in this case, the simulator emulates the random functions F1, . . . , Fr,
and it must use its oracle access to Z to invent answers that make the (fake) random functions
F1, . . . , Fr look “compatible” with Z, as if Z where really C[F1, . . . , Fr]. (On the other hand, the
simulator does not know what queries the distinguisher might be making to Z.) Here m(n) is
polynomially related to n: concretely, the current paper discusses a construction with m = 2n.

The construction C[F1, . . . , Fr] that we consider in this paper, and as considered in previous
papers with the same goal as ours (see discussion below), is an r-round (balanced, unkeyed) Feistel
network. To wit, given arbitrary functions F1, . . . , Fr : {0, 1}

n → {0, 1}n, we define a permutation

C[F1, . . . , Fr] : {0, 1}
2n → {0, 1}2n

by the following application: for an input (x0, x1) ∈ {0, 1}
2n, values x2, . . . , xr+1 are defined by

setting

xi+1 = xi−1 ⊕ Fi(xi) (1)
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for i = 1, . . . , r; then (xr, xr+1) ∈ {0, 1}
2n is the output of C on input (x0, x1). One can observe

that C is a permutation since xi−1 can be computed from xi and xi+1, by (1). The value r is the
number of rounds of the Feistel network. (See, e.g., Fig. 2.)

The question of showing that a Feistel network with a sufficient number of rounds is indiffer-
entiable from a random permutation already has a growing history. Coron, Patarin and Seurin [9]
show that an r-round Feistel network cannot be indifferentiable from a random permutation for
r ≤ 5, due to explicit attacks. They also give a proof that indifferentiability is achieved at r = 6, but
this latter result was found to have a serious flaw by Holenstein et al. [18], who could only prove, as
a replacement, that indifferentiability is achieved at r = 14 rounds. At the same time, Holenstein
et al. found a flaw in the proof of indifferentiability of a 10-round simulator of Seurin’s [30] (a
simplified alternative to the 6-round simulator of [9]), after which Seurin himself found an explicit
attack against his own simulator, showing that the proof could not be patched [31].

In our recent preprint [10] we show that a slight modification of Seurin’s 10-round simulator
(approximately obtained by switching from a “first-in-first-out” to a “last-in-first-out” path com-
pletion process) gives a simulator that is provably secure, thus bringing the number of rounds that
are known to be sufficient for indifferentiability back down to 10. It should be noted that the 14-
round simulator of [18] is based on Seurin’s 10-round simulator as well, being essentially obtained
by adding four “buffer rounds” to flank the two “adapt zones” in the 10-round simulator.

While [10] focuses on the application of a paradigm shift to a pre-existing (but flawed) simulator
the current preprint explores further tweaks and optimizations that can be cleanly and safely carried
out in the context of the new paradigm. Specifically, we succeed in building an 8-round version of
Seurin’s 10-round simulator, so to speak. The security, query complexity and runtime of our 8-round
simulator are O(q8/2n), O(q4) and O(q4) respectively, the same as for our 10-round simulator. For
comparison, the 14-round simulator of Holenstein et al. achieves security of O(q10/2n) and query
and time complexity O(q4) as well.1

It remains open whether 6 or 7 rounds might suffice for indifferentiability.

Concerning our optimizations, more specifically, in [10, 18] the “outer detect zone” requires
four-out-of-four queries in order to trigger a path completion (the outer detect zone consists of four
rounds, these being rounds 1, 2 and r− 1, r). In the current paper, we optimize by always making
the outer detect zone trigger a path completion as soon as possible, i.e., by completing a path
whenever three-out-of-four matching queries occur in the outer detect zone. By detecting a little
earlier in this fashion, we can move the “adapt zones” on either side by one position towards the
left and right edges of the network, effectively removing one round at either end, but things are not
quite so simple as two of the four different types of paths detected by the outer detect zone can not
make use of the new translated adapt zones, because the translated adapt zones overlap with the
query that triggers the path. For these two types of paths (which are triggered by queries at round
2 or at round r − 1), we use a brand new adapt zone instead, consisting of the middle two rounds
of the network. (Rounds 4 and 5, in our 8-round design.) This itself creates a fresh complication,
since an adapted query should not trigger a path completion, lest the proof blow up, and since
the “middle detect zone” is traditionally made up of rounds 4 and 5 precisely. We circumvent this
problem with a fresh trick: We split the middle detect zone into two separate overlapping zones,

1 The original running time and query complexity of Holenstein et al.’s simulator is O(q8) but these metrics can be
reduced to O(q4) with little effort. (Specifically, the query complexity is reduced by remembering queries previously
made to the permutation Z, as in [1], while the running time is reduced by implementing various exhaustive lookups
with hash tables, as in our Theorem 33.)
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each of which has three rounds: rounds 3, 4, 5 for one zone, rounds 4, 5, 6 for the other; after this
change, adapted queries at rounds 4, 5 (and as argued within the proof) do not trigger either of the
middle detect zones. The simulator’s “termination argument” is slightly affected by the presence of
two separate middle detect zones, but not much: one can observe that neither type of middle path
detection adds queries at rounds 4 and 5, even though paths triggered by one middle detect zone can
trigger a path in the other middle detect zone. Hence, Seurin’s original termination argument [30]
(used in [10,18] and in many other contexts since) can go through practically unchanged.

While the entire process of modifications just described might seem (and to a certain extent,
is) haphazard, the final 8-round simulator ends up having a highly symmetric structure: It can be
abstracted as having four detect zones of three consecutive rounds each, with two “inner zones”
(rounds 3, 4, 5 and 4, 5, 6) and two “outer zones” (rounds 1, 2, 8 and 1, 7, 8); each detect zone of
three consecutive rounds detects “at either end” (e.g., the detect zone with rounds 3, 4, 5 detects at
rounds 3 and 5, etc); the upshot is that each of rounds 1, . . . , 8 ends up being a detection point for
exactly one of the four three-round detect zones. We refer to Fig. 3 in Section 3. A more leisurely
description of our simulator can also be found in Section 3.

Related Work. Recently, and in fact exactly concurrently with [10], Dachman-Soled et al. [19]
have published a 10-round indifferentiability result for Feistel networks as well.

Before [9], Dodis and Puniya [11] investigated the indifferentiability of Feistel networks in the
so-called honest-but-curious model, which is incomparable to the standard notion of indifferentia-
bility. They found that in this case, a super-logarithmic number of rounds is sufficient to achieve
indifferentiability. Moreover, [9] later showed that super-logarithmically many rounds are also nec-
essary.

Besides Feistel networks, the indifferentiability of many other types of constructions (and par-
ticularly hash functions and compression functions) have been investigated. More specifically on
the blockcipher side, [1] and [20] investigate the indifferentiability of key-alternating ciphers (with
and without an idealized key scheduler, respectively). In a recent eprint note, Dodis et al. [12]
investigate the indifferentiability of substitution-permutation networks, treating the S-boxes as in-
dependent idealized permutations. As explained in [10], our “LIFO” design philosophy is partly
inspired by the simulator in that work.

It should be recalled that indifferentiability does not apply to a cryptographic game for which the
adversary is stipulated to come from a special class that does not contain the computational class
to which the simulator belongs (the latter class being typically “probabilistic polynomial-time”).
See [28].

Finally, Feistel networks have been the subject of a very large body of work in the secret-key
(or “indistinguishability”) setting, such as in [21,23,24,29] and the references therein.

Paper Organization. In Section 2 we give the few definitions necessary concerning Feistel net-
works and indifferentiability, and we also state our main result.

In Section 3 we give an hand-wavy overview of our simulator, focusing on high-level behavior.
A more technical description of the simulator (starting from scratch, and also establishing some of
the terminology used in the proof) is given in Section 4. Section 5 contains the proof itself, starting
with a short overview.

2 Definitions and Main Result

Feistel Networks. Let r ≥ 0 and let F1, . . . , Fr : {0, 1}
n → {0, 1}n. Given values x0, x1 ∈ {0, 1}

n
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we define values x2, . . . , xr+1 by
xi+1 = Fi(xi)⊕ xi−1

for 1 ≤ i ≤ r. As noted in the introduction, the application

(x0, x1)→ (xr, xr+1)

defines a permutation of {0, 1}2n. We let

Ψ [F1, . . . , Fr]

denote this permutation. We say that Ψ is an r-round Feistel network and that Fi is the i-th round
function of Ψ .

In this paper, whenever a permutation is given as an oracle, our meaning is that both forward
and inverse queries can be made to the permutation. This applies in particular to Feistel networks.

Indifferentiability. A construction is a stateless deterministic algorithm that evaluates by mak-
ing calls to an external set of primitives. The latter are functions that conform to a syntax that
is specified by the construction. Thus Ψ [F1, . . . , Fr] can be seen as a construction with primitives
F1, . . . , Fr. In the general case we notate a construction C with oracle access to a set of primitives
Q as CQ.

A primitive is ideal if it is drawn uniformly at random from the set of all functions meeting the
specified syntax. A random function F : {0, 1}n → {0, 1}n is a particular case of an ideal primitive.
Such a function is drawn uniformly at random from the set of all functions of domain {0, 1}n and
of range {0, 1}n.

A simulator is a stateful randomized algorithm that receives and answer queries, possibly being
given oracles of its own. We assume that a simulator is initialized to some default state (which
constitutes part of the simulator’s description) at the start of each experiment. A simulator S with
oracle access to an ideal primitive Z is notated as SZ .

A distinguisher is an algorithm that initiates a query-response session with a set of oracles, that
has a limited total number of queries, and that outputs 0 or 1 when the query-response session
is over. In our case distinguishers are information-theoretic; this implies, in particular, that the
distinguisher can “know by heart” the (adaptive) sequence of questions that will maximize its dis-
tinguishing advantage. In particular, one may assume without loss of generality that a distinguisher
is deterministic.

Indifferentability seeks to determine when a construction CQ, whereQ is a set of ideal primitives,
is “as good as” an ideal primitive Z that has the same syntax (interface) as CQ. In brief, there
must exist a simulator S such that having oracle access to the pair (CQ, Q) (often referred to as
the “real world”) is indistinguishable from the pair (Z,SZ) (often referred to as the “simulated
world”).

In more detail we refer to the following definition, which is due to Maurer et al. [22].

Definition 1. A construction C with access to a set of ideal primitives Q is (tS , qS , ε)-indifferentiable
from an ideal primitive Z if there exists a simulator S = S(q) such that

Pr
[

DCQ,Q = 1
]

− Pr
[

DZ,SZ

= 1
]

≤ ε

for every distinguisher D making at most q queries in total, and such that S runs in total time tS
and makes at most qS queries to Z. Here tS, qS and ε are functions of q, and the probabilities are
taken over the randomness in Q, Z, S and (if any) in D.
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As indicated, we allow S to depend on q.2 The notation

DCQ,Q

indicates that D has oracle access to CQ as well as to each of the primitives in the set Q. We also
note that the oracle

SZ

offers one interface for D to query for each of the primitives in Q; however the simulator S is
“monolithic” and treats each of these queries with knowledge of the others.

Thus, S’s job is to make Z look like CQ by inventing appropriate answers for D’s queries to the
primitives in Q. In order to do this, S requires oracle access to Z. On the other hand, S doesn’t
know which queries D is making to Z.

Informally, CQ is indifferentiable from Z if it is (tS , qS, ε)-indifferentiable for “reasonable” values
of tS , qS and for ε negligibly small in the security parameter n. The value qS in Definition 1 is
called the query complexity of the simulator.

In our setting C will be the 8-round Feistel network Ψ and Q will be the set {F1, . . . , F8} of
round functions, with each round function being an independent random function. Consequently,
Z (matching CQ’s syntax) will be a random permutation from {0, 1}2n to {0, 1}2n, queriable (like
CQ) in both directions; this random permutation is notated P in the body of the proof.

Main Result. The following theorem is our main result. In this theorem, Ψ plays the role of the
construction C, while {F1, . . . , F8} (where each Fi is an independent random function) plays the
role of Q, the set of ideal primitives called by C.

Theorem 1. The Feistel network Ψ [F1, . . . , F8] is (tS , qS , ε)-indifferentiable from a random 2n-bit
to 2n-bit permutation with tS = O(q4), qS = 32q4 + 8q3 and ε = 7400448q8/2n. Moreover, these
bounds hold even if the distinguisher is allowed to make q queries to each of its 9 (= 8 + 1) oracles.

The simulator that we use to establish Theorem 1 is described in the two next sections. The three
seperate bounds that make up Theorem 1 (for tS, qS and ε) are found in Theorems 33, 30 and 97
of sections 5.1, 5.1 and 5.7 respectively.

Miscellaneous Notations. Our pseudocode uses standard conventions from object-oriented
programming, including constructors and dot notation ‘.’ for field accesses. (Our objects, however,
have no methods save constructors.)

We write [k] for the set {1, . . . , k}, k ∈ N.

The symbol ⊥ denotes an unitialized or null value (and can be taken to be synonymous with
a programming language’s null value, though we reserve the latter for uninitialized object fields).
If T is a table, moreover, we write x ∈ T to mean that T (x) 6= ⊥. Correspondingly, x /∈ T means
T (x) = ⊥.

2 This introduces a small amount of non-uniformity into the simulator, but which seems not to matter in practice.
While in our case the dependence of S on q is made mainly for the sake of simplicity and could as well be
avoided (with a more convoluted proof and a simulator that runs efficiently only with high probability), we note,
interestingly, that there is one indifferentiabiliy result that we are aware of—namely that of [14]—for which the
simulator crucially needs to know the number of distinguisher queries in advance.
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3 High-Level Simulator Overview

In this section we give a somewhat non-technical overview of our 8-round simulator which, like [18]
and [10], is a modification of a 10-round simulator by Seurin [30].

Round Function Tables. We recall that the simulator is responsible for 8 interfaces, i.e., one
for each of the rounds functions. These interfaces are available to the adversary through a single
function, named

F

in our pseudocode (see Fig. 4 and onwards), and which takes two inputs: an integer i ∈ [8] and an
input x ∈ {0, 1}n.

Correspondingly to these 8 interfaces, the simulator maintains 8 tables, notated F1, . . . , F8,
whose fields are initialized to ⊥: initially, Fi(x) = ⊥ for all x ∈ {0, 1}n, all i ∈ [8]. (Hence we
note that Fi is no longer the name of a round function, but the name of a table. The i-th round
function is now F(i, ·). Hopefully this should not cause confusion.) The table Fi encodes “what the
simulator has decided so far” about the i-th round function. For instance, if Fi(x) = y 6= ⊥, then
any subsequent distinguisher query of the form F(i, x) will simply return y = Fi(x). Entries in the
tables F1, . . . , F8 are not overwritten once they have been set to non-⊥ values.

The 2n-bit Random Permutation. Additionally, the distinguisher and the simulator both have
oracle access to a random permutation on 2n bits, notated

P

in our pseudocode (see Fig. 7), and which plays the role of the ideal primitive Z in Definition 1.
Thus P accepts an input of the form (x0, x1) ∈ {0, 1}

n ×{0, 1}n and produces an output (x8, x9) ∈
{0, 1}n × {0, 1}n. P’s inverse P−1 is also available as an oracle to both the distinguisher and the
simulator.

Distinguisher Intuition and Completed Paths. One can think of the distinguisher as check-
ing the consistency of the oracles F(1, ·), . . ., F(8, ·) with P/P−1. For instance, the distinguisher
could choose random values x0, x1 ∈ {0, 1}

n, construct the values x2, . . . , x9 by setting

xi+1 ← F(i, xi)⊕ xi−1

for i = 2, . . . , 9, and finally check if (x8, x9) = P(x0, x1). (In the real world, this will always be the
case; if the simulator is doing its job, it should also be the case in the simulated world.) In this case
we also say that the values

x1, . . . , x8

queried by the distinguisher form a completed path. (The definition of a “completed path” will be
made more precise in the next section. The terminology that we use in this section should not be
taken too seriously.)

It should be observed that the distinguisher has multiple options for completing paths; e.g., “left-
to-right” (as above), “right-to-left” (starting from values x8, x9 and evaluating the Feistel network
backwards), “middle-out” (starting with some values xi, xi+1 in the middle of the network, and
growing a path outwards to the left and to the right), “outward-in” (starting from the endpoints
x0, x1, x8, x9 and going right from x0, x1 and left from x8, x9), etc, etc. Moreover, the distinguisher
can try to reuse the same query for several different paths, can interleave the completion of several
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paths in a complex manner, and so on.
To summarize, and for the purpose of intuition, one can picture the distinguisher as trying to

complete all sorts of paths in a convoluted fashion in order to confuse and/or “trap” the simulator
in a contradiction.

The Simulator’s Dilemma. Clearly a simulator must to some extent detect which paths a dis-
tinguisher is trying to complete, and “adapt” the values along these paths such as to make the
(simulated) Feistel network compatible with P. Concerning the latter, one can observe that a pair
of missing consecutive queries is sufficient to adapt the two ends of a path to one another; thus if,
say,

x0, x1, x4, x5, x6, x7, x8, x9

are values such that
Fi(xi) 6= ⊥

for i ∈ {1, 4, 5, 6, 7, 8}, and such that

xi+1 = xi−1 ⊕ F (xi)

for i ∈ {5, 6, 7, 8}, and such that
P(x0, x1) = (x8, x9)

and such that
F (x2) = F (x3) = ⊥

where x2 := x0 ⊕ F1(x1), x3 := F4(x4)⊕ x5, then by making the assignments

F2(x2)← x1 ⊕ x3 (2)

F3(x3)← x2 ⊕ x4 (3)

the simulator turns x1, . . . , x8 into a completed path that is compatible with P. In such a case, we
say that the simulator adapts a path. The values F2(x2) and F3(x3) are also said to be adapted.

In general, however, if the simulator always waits until the last minute (e.g., until only two
adjacent undefined queries are left) before adapting a path, it can become caught in an over-
constrained situation whereby several different paths request different adapted values for the same
table entry. Hence, it is usual for simulators to give themselves a “safety margin” and to pre-
emptively complete paths some time in advance. When pre-emptively completing a path, typical
simulators sample all but two values along the path randomly, while “adapting” the last two values
as above.

It should be emphasized that our simulator, like previous simulators [9,18,30], makes no distinc-
tion between a non-null value Fi(xi) that is non-null because the distinguisher has made the query
F(i, xi) or that is non-null because the simulator has set the value Fi(xi) during a pre-emptive path
completion. (Such a distinction seems tricky to leverage, particularly since the distinguisher can
know a value Fi(xi) without making the query F(i, xi), simply by knowing adjacent values and by
knowing how the simulator operates.) Moreover, the simulator routinely calls its own interface

F(·, ·)

during the process of path completion, and it should be noted that our simulator, again like previous
simulators, makes no difference between distinguisher calls to F and its own calls to F.
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One of the basic dilemmas, then, is to decide at which point it is worth it to complete a path;
if the simulator waits too long, it is prone to finding itself in an over-constrained situation; if it is
too trigger-happy, on the other hand, it runs the danger of creating out-of-control chain reactions
of path completions, whereby the process of completing a path sets off another path, and so on.
We refer to the latter problem (that is, avoiding out-of-control chain reactions) as the problem of
simulator termination.

Seurin’s 10-Round Simulator. Our 8-round simulator is based on “tweaking” our previous 10-
round simulator [10] which is itself based on modifying Seurin’s (flawed) 10-round simulator [30].
Unfortunately (and after some failed efforts of ours to find shortcuts!) it still seems that the best
way to understand the 8-round simulator might be to start back with Seurin’s 10-round simulator,
followed by the modifications of [10] and by the “tweaks” that bring the network down to 8 rounds.

In a nutshell, Seurin’s simulator completes a path for every pair of values (x5, x6) such that
F5(x5) and F6(x6) are defined, as well as for every 4-tuple of values

x1, x2, x9, x10

such that
F1(x1), F2(x2), F9(x9), F10(x10)

are all defined, and such that
P(x0, x1) = (x10, x11)

where x0 := F1(x1) ⊕ x2, x11 := x9 ⊕ F10(x10). By virtue of this, rounds 5 and 6 are called the
middle detect zone of the simulator, while rounds 1, 2, 9, 10 are called the outer detect zone. (Thus
whenever a detect zone “fills up” with matching queries, a path is completed.) Paths are adapted
either at positions 3, 4 or else at positions 7, 8, as depicted in Fig. 2.

In a little more detail, a function call F(5, x5) for which F5(x5) = ⊥ triggers a path completion
for every value x6 such that F6(x6) 6= ⊥; such paths are adapted at positions 3 and 4. Symmetrically,
a function call F(6, x6) for which F6(x6) = ⊥ triggers a path completion for every value x5 such
that F5(x5) 6= ⊥; such paths are adapted at positions 7 and 8. For the outer detect zone, a call
F(2, x2) such that F2(x2) = ⊥ triggers a path completion for every tuple of values x1, x9, x10 such
that F1(x1), F9(x9) and F10(x10) are defined, and such that the constraints listed above are satisfied
(verifying these constraints thus requires a call to P or P−1); such paths are adapted at positions
3, 4. Paths that are symmetrically triggered by a query F(9, x9) are adapted at positions 7, 8.
Function calls to F(2, ·), F(5, ·), F(6, ·) and F(9, ·) are the only ones to trigger path completions.
(Indeed, one can easily convince oneself that sampling a new value F1(x1) or F10(x10) can only
trigger the outer detect zone with negligible probability; hence, this possibility is entirely ignored
by the simulator.) To summarize, in all cases the completed path is adapted at positions that are
immediately next to the query that triggers the path completion.

To more precisely visualize the process of path completion, imagine that a query

F(2, x2)

has just triggered the second type of path completion, for some corresponding values x1, x9 and
x10; then Seurin’s simulator (which would immediately lazy sample the value F2(x2) even before
checking if this query triggers any path completions) would (a) make the queries

F(8, x8), . . . ,F(6, x6),F(5, x5)
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to itself in that order, where xi−1 := Fi(xi)⊕ xi+1 = F(i, xi)⊕ xi+1 for i = 9, . . . , 6, and (b) adapt
the values F3(x3), F4(x4) as in (2), (3) where x3 := x1 ⊕ F2(x2), x4 := F5(x5) ⊕ x6. In general,
some subset of the table entries

F8(x8), . . . , F5(x5)

(and more exactly, a prefix of this sequence) may be defined even before the queries F(8, x8),
. . . ,F(5, x5) are made. The crucial fact to argue, however, is that F3(x3) = F4(x4) = ⊥ right before
these table entries are adapted.

Extending this example a little, say moreover that F6(x6) = ⊥ at the moment when the above-
mentioned query

F(6, x6)

is made. This will trigger another path completion for every value x∗5 such that F5(x
∗
5) 6= ⊥ at the

moment when the query F(6, x6) occurs. Analogously, such a path completion would proceed by
making (possibly redundant) queries

F(4, x∗4), . . . ,F(1, x
∗
1),F(10, x

∗
10),F(9, x

∗
9)

for values x∗4, . . . , x
∗
1, x

∗
0, x

∗
11, x

∗
10, x

∗
9 that are computed in the obvious way (with a query to P to

go from (x∗0, x
∗
1) to (x∗10, x

∗
11), where x

∗
0 := F1(x

∗
1)⊕ x∗2), before adapting the path at positions 7, 8.

The crucial fact to argue would again be that F7(x
∗
7) = F8(x

∗
8) = ⊥ when the time comes to adapt

these table values, where x∗8 := F10(x
∗
10)⊕ x∗11, x

∗
7 := x∗5 ⊕ F6(x6).

In Seurin’s simulator, moreover, paths are completed on a first-come-first-serve (or FIFO3)
basis: while paths are “detected” immediately when the query that triggers the path completion
is made, this information is shelved for later, and the actual path completion only occurs after all
previously detected paths have been completed. In our example, for instance, the path triggered by
the query F(2, x2) would be adapted before the path triggered by the query F(6, x6). The imbroglio
of semi-completed paths is rather difficult to keep track of, however, and indeed Seurin’s simulator
was later found to suffer from a real “bug” related to the simultaneous completion of multiple
paths [18,31].

Changes to Seurin’s Simulator. For the following discussion, we will say that x2, x5 constitute
the endpoints of a path that is adapted at positions 3, 4; likewise, x6, x9 constitute the endpoints of
a path that is adapted at positions 7, 8. Hence, the endpoints of a path are the two values that flank
the adapt zone. We say that an endpoint xi is unsampled if Fi(xi) = ⊥ and sampled otherwise.
Succinctly, our simulator’s philosophy is to not sample the endpoints of a path until right before
the path is about to be adapted or (even more succinctly!) to sample randomness at the moment it
is needed. This essentially results in two main differences for our simulator, which are (i) changing
the order in which paths are completed and (ii) doing “batch adaptations” of paths, i.e., adapting
several paths at once, for paths that happen to share endpoints.

To illustrate the first point, return to the above example of a query

F(2, x2)

that triggers a path completion of the second type with respect to some values x1, x9, x10. Then
by definition

F2(x2) = ⊥

3 FIFO: First-In-First-Out. LIFO: Last-In-First-Out.
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at the moment when the call F(2, x2) is made. Instead of immediately sampling F2(x2), as in the
original simulator, we will keep this value “pending” (the technical term that we use in the proof
is “pending query”) until it comes time to adapt the path. Moreover, and keeping the notations
from the previous example, note that the query

F(6, x6)

will not result in F6(x6) being immediately lazy sampled either (assuming, that is, F6(x6) = ⊥) as
long as there is at least one value x∗5 such that F5(x

∗
5) 6= ⊥, since in such a case x6 is the endpoint

of a path-to-be-completed (namely, the path which we notated as x∗1, . . . , x
∗
5, x6, x

∗
7, . . . , x

∗
10 above),

and, according to our policy, this endpoint must be kept unsampled until that path is adapted.
In particular, the value x5 = F6(x6) ⊕ x7 from the “original” path cannot be computed until the
“secondary” path containing x∗5 and x6 has been completed (or even more: until all secondary paths
triggered by the query F(6, x6) have been completed). In other words, the query F(6, x6) “holds up”
the completion of the first path. In practical terms, paths that are detected during the completion
of another path take precedence over the original path, so that path completion becomes a LIFO
process.

Implicitly, we note that our requirement that both endpoints of a path remain unsampled until
further notice means that both endpoints are initially unsampled. For the “starting” endpoint of the
path (i.e., where the path is detected) this is obvious, since the path cannot be triggered otherwise,
while for the “far” endpoint of the path one can argue, as we do in the proof, that it holds with
high probability.

As for “batch adaptations” the intuitive idea is that paths that share unsampled endpoints
must be adapted (and in particular have their endpoints lazy sampled) simultaneously. In this
event, the group of paths that are collectively sampled4 and adapted will be an equivalence class
in the transitive closure of the relation “shares an endpoint with”. Note that paths adapted at 3, 4
can only share their endpoints5 with other paths adapted at 3, 4, while paths adapted at 7, 8 can
only share their endpoints with other paths adapted at 7, 8. Hence the paths in such an equivalence
class will, in particular, all have the same adapt zone. Moreover, the batch adaptation of such a
group of paths cannot happen at any point in time, but must happen when the group of paths
is “stable”: none of the endpoints of the paths in the group should currently be a trigger for a
path completion that has not yet been detected, or that has started to complete but that has not
yet reached its far endpoint. It so turns out, moreover, that the topological structure of such an
equivalence class (with endpoints as nodes and paths as edges) will be a tree with all but negligible
probability, simplifying many aspects of the simulator and of the proof.

While this describes the (simple) high-level idea of batch adaptations, the implementation details
are more tedious. In fact, we follow with a separate and slightly more technical discussion of these
details.

Further Details: Pending Queries, Trees, Etc. Whenever a query F(i, xi) occurs with
Fi(xi) = ⊥ and i ∈ {2, 5, 6, 9}, the simulator creates a so-called pending query at that position, and
for that value of xi. (Strictly speaking, the pending query is the pair (i, xi).) One can think of a
pending query as a kind of “beacon” that periodically6 checks for new paths to trigger, as per the

4 In this context we use the verb “sampled” as a euphemism for “have their endpoints sampled”.
5 Recall that the endpoints of a path with adapt zone 3, 4 are x2 and x5, and that the endpoints of a path with
adapt zone 7, 8 are x6 and x9.

6 Our simulator is not multi-threaded! But this metaphor is still helpful.
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Fig. 2. A sketch of the 10-round simulator from [10] (and also Seurin’s 10-round simulator). Rounds 5 and 6 form
one detect zone; rounds 1, 2, 9 and 10 form another detect zone; rounds 3 and 4 constitute the left adapt zone, 7
and 8 constitute the right adapt zone; red arrows point from the position where a path is detected (a.k.a., “pending
query”) to the adapt zone for that path.
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Fig. 3. A sketch of our 8-round simulator drawn in the same style as Fig. 2. Red groups of three queries are detect
zones; when a query completing a detect zone (a.k.a., “pending query”) occurs at one of the endpoints of the zone, a
path completion is triggered; the adapt zone for that path completion is shown in blue; the four quadrants correspond
to the four possible adapt zones. (The adapt zone at positions F1, F2 in the upper right quadrant could equivalently
be moved to F7, F8.)
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rules of Fig. 2. E.g., a pending query

(2, x2)

will trigger a new path to complete for any tuple of values x1, x9, x10 such that (same old!)

F1(x1) 6= ⊥, F9(x9) 6= ⊥, F10(x10) 6= ⊥

and such that

P(x0, x1) = (x10, x11)

where x0 := F1(x1) ⊕ x2, x11 := x9 ⊕ F10(x10). The tuple of queries x1, x9, x10 is also called a
trigger for the pending query (2, x2). For a pending query (9, x9), a trigger is a tuple x1, x2, x10
subject to the symmetric constraints. For a pending query (5, x5), a trigger is any value x6 such
that F6(x6) 6= ⊥, and likewise any value x5 such that F5(x5) 6= ⊥ is a trigger for any pending query
(6, x6). We note that a pending query triggers a path when there exists a trigger for the pending
query. Hence there the word “trigger” has two slightly different uses (as a noun and as a verb).

We differentiate the endpoints of a path according to which one triggered the path: the pending
query that triggered the path is called the origin of the path, while the other endpoint (if and when
present) is the terminal of the path.

While pending queries are automatically created each time a function call F(i, xi) occurs with
Fi(xi) = ⊥ and with i ∈ {2, 5, 6, 9}, the simulator also has a separate mechanism7 at its disposal for
directly creating pending queries without calling F(·, ·) by this mechanism. In particular, whenever
the simulator reaches the terminal of a path, the simulator turns the terminal into a pending query.

In short: (i) all path endpoints are pending queries, so long as the path has not been sampled
and adapted; (ii) pending queries keep triggering paths as long as there are paths to trigger.

For the following, we introduce some extra terminology:

- A path is ready when it has been extended to the terminal, and the terminal has been made
pending.

- A ready path with endpoints 2, 5 is called a “(2, 5)-path”, and a ready path with endpoints 6,
9 is called a “(6, 9)-path”.

- Two ready paths are neighbors if they share an endpoint; let a neighborhood be an equivalence
class of ready paths under the transitive closure of the neighbor relation. We note that a
neighborhood consists either of all (2, 5)-paths or consists all of (6, 9)-paths.

- A pending query is stable if it has no “new” triggers (that is, no triggers for which the simulator
hasn’t already started to complete a path), and if paths already triggered by the pending query
are ready.

- A neighborhood is stable if all the endpoints of all the paths that it contains are stable.

A neighborhood can be visualized as a graph with a node for each endpoint and an edge for
each ready path. As mentioned above, these neighborhoods actually turn out to be trees with high
probability. (The simulator aborts otherwise.) We will thus speak of a (2, 5)-tree for a neighborhood
consisting of (2, 5)-paths and of a (6, 9)-tree for a neighborhood consisting of (6, 9)-paths.

To summarize, when a query F(i, xi) triggers a path completion, the simulator starts growing
a tree that is “rooted” at the pending query (i, xi); for other endpoints of paths in this tree (i.e.,

7 This might sound a bit ad-hoc right now, but it actually corresponds to the most natural way of programming the
simulator, as will become clearer in the technical simulator overview.
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besides (i, xi)), the simulator “plants” a pending query at that endpoint without making a call to
F(·, ·), which pending query tests for further paths to complete, and which may thus cause the tree
to grow even larger, etc. If and when the tree becomes stable, the simulator samples all endpoints
of all paths in the tree, and adapts all these paths.8

The growth of a (2, 5)-tree may at any moment be interrupted by the apparition of a new
(6, 9)-tree (specifically, when a query to F(6, ·) or F(9, ·) triggers a new path completion), in which
case the (2, 5)-tree is put “on hold” while the (6, 9)-tree is grown, sampled and adapted; vice-versa,
a (6, 9)-tree may be interrupted by the apparition of a new (2, 5)-tree. In this fashion, a “stack of
trees” that alternates between (2, 5)- and (6, 9)-trees is created. Any tree that is not the last tree
on the stack contains a non-ready path (the one, that is, that was interrupted by the next tree on
the stack), and so is not stable. For this reason, in fact, the only tree that can become stable at a
given moment is the last tree on the stack.

We also note that in certain cases (and more specifically for pending queries at positions 5 and
6), trees higher up in the stack can affect the stability of nodes of trees lower down in the stack: a
node that used to be stable loses its stability after a higher-up tree has been created, sampled and
adapted. Hence, our simulator always re-checks all nodes of a tree “one last time” before deeming a
tree stable, after a tree stops growing—and such a check will typically, indeed, uncover new paths to
complete that weren’t there before. Moreover, because the factor that determines when these new
paths will be adapted is the timestamp of the pending query to which they are attached, rather
than the timestamp of the actual last query that completed a trigger for this pending query, it
is a matter of semantic debate whether our simulator is really “LIFO” or not. (But at least, we
personally tend to think of our simulator as a LIFO simulator.)

Afterthoughts: Structural vs. Conceptual Changes. Of the main changes that we in-
troduce to Seurin’s simulator, we note that “batch adaptations” are in some sense a conceptual
convenience. Indeed, one way or another every non-null value

Fj(xj)

for j /∈ {3, 4, 7, 8} ends up being randomly and independently sampled in our simulator, as well as
in Seurin’s; so one might as well load a random value into Fj(xj) as soon as the query F(j, xj) is

8 In more detail, when a tree becomes stable the simulator lazy samples

Fi(xi)

for every endpoint (a.k.a., pending query) in the tree. Then if the tree is, say, a (2, 5)-tree, the simulator can
compute the values

x3 := x1 ⊕ F2(x2)

x4 := F5(x5)⊕ x6

and set

F3(x3) := x2 ⊕ x4

F4(x4) := x3 ⊕ x5

for each path in the tree. If two paths “collide” by having the same value of x3 or x4 the simulator aborts. Likewise
the simulator aborts if either F3(x3) 6= ⊥ or F4(x4) 6= ⊥ for some path, before adapting those values. We call this
two-step process “sampling and adapting” the (2, 5)-tree. The process of sampling and adapting a (6, 9)-tree is
analogous.
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made, as in Seurin’s original simulator, as long as we take care to keep on completing paths in the
correct order. While correct, this approach is conceptually less convenient, because the “freshness”
of the random value Fj(xj) is harder to argue when that randomness is needed (e.g., to argue that
adapted queries do not collide, etc). In fact, our simulator is an interesting case where the search
for a syntactically convenient usage of randomness naturally leads to structural changes that turn
out to be critical for correctness.

We also point out that the idea of batch adaptations already appears explicitly in the simulator
of [12], and which indeed formed part of the inspiration for our own work. In [12], however, batch
adaptations are purely made for conceptual convenience, and not for structural reasons.

Readers seeking more concrete insights can consult Seurin’s attack against his own 10-round
simulator [31] and check this attack fails when the simulator is switched to ours.

8-round Simulator. In the 10-round simulator, the outer detect zone is in some sense unneces-
sarily large: for any set of four matching queries that complete the outer detect zone, the simulator
can “see” the presence of matching queries already by the third query.

To wit, say the distinguisher chooses random values x0, x1, makes the query

(x10, x11)← P(x0, x1)

to P, then queries F(1, x1) and F(10, x10). At this point, even if the simulator knows that the values
x1 and x10 are related by some query to P, the simulator has no hope of finding which query to
P, because there are exponentially many possibilities to try for x0 and/or x11. However, as soon as
the distinguisher makes either of the queries

F(2, x2) or F(9, x9)

where x2 := x0 ⊕ F(1, x1), x9 := F(10, x10) ⊕ x11, then the simulator has enough information to
draw a connection between the queries being made at the left- and right-hand sides of the network.
(E.g., if the query F(2, x2) is made, the simulator can compute x0 from F1(x1) and x2, can call
P(x0, x1), and recognize, in P’s output, the value x10 for which it has already answered a query.)
More generally, anytime the distinguisher makes three-out-of-four matching queries in the 10-round
outer detect zone, the simulator has enough information to reverse-engineer the relevant query to
P/P−1 and, thus, to see a connection between the queries being made at either side of the network.

This observation motivates the division of the 4-round outer detect zone into two separate
outer detect zones of three (consecutive) rounds each. In the eight-round simulator, then, these two
three-round outer detect zones are made up of rounds 1, 2, 8 and rounds 1, 7, 8, respectively. Both
of these detect zones detect “at the edges” of the detect zone. I.e., the 1, 7, 8 detect zone might
trigger a path completion through queries to F(7, ·) and F(1, ·), whereas the 1, 2, 8 detect zone
might trigger a path completion through queries to F(2, ·) or to F(8, ·). (Once again the possibility
of “completing” a detect zone by a query at the middle of the detect zone is ignored because this
event has negligible chance of occuring.)

E.g., a query
F(7, x7)

such that F7(x7) = ⊥ and for which there exists values x0, x1, x8 such that F8(x8) 6= ⊥, F1(x1) 6= ⊥,
and such that P−1(x8, x9) = (x0, x1) where x9 = x7 ⊕ F8(x8) would trigger the 1, 7, 8 detect zone,
and produce a path completion. Similarly, a query

F(1, x1)
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such that F1(x1) = ⊥ and for which there exists values x0, x7, x8 such that F7(x7) 6= ⊥, F8(x8) 6= ⊥,
and such that P−1(x8, x9) = (x0, x1) where x9 = x7 ⊕ F8(x8) would trigger the 1, 7, 8 detect zone
as well.

When a path is detected at position 1 or at position 8, we can respectively adapt the path at
positions 2, 3 or at positions 6, 7—i.e., we adapt the path in an adapt zone that is immediately
adjacent to the position that triggered the path completion, as in the 10-round simulator. However,
for paths detected at positions 2 and 7, the same adapt zones cannot be used, and we find it more
convenient to adapt the path at rounds 4, 5, as depicted in the bottom left quadrant of Fig. 2.

To keep the proof manageable, however, one of the imperatives is that an “adapted” query
should not trigger a new path completion. If we kept the middle detect zone as rounds 4, 5 only
(by analogy with the 10-round simulator, where the middle detect zone consists of rounds 5 and 6),
then the queries that we adapt at rounds 4, 5 would trigger new paths completions of themselves—a
mess! However, this problem can be avoided by splitting the middle detect zone into two enlarged
middle detect zones of three rounds each: one middle detect zone consisting of rounds 3, 4, 5 and one
consisting of rounds 4, 5, 6. As before, each of these zones detects “at the edges”. After this change,
bad dreams are dissipated, and the 8-round simulator recovers essentially the same functioning as
the 10-round simulator. The sum total of detect and adapt zones, including which adapt zone is
used for paths detected at which point, is shown in Fig. 3.

The 8-round simulator utilizes the same “pending query” mechanism as the 10-round simulator.
In particular, now, each query

F(j, xj)

with Fj(xj) = ⊥ creates a new pending query (j, xj), because paths are now detected at all positions,
and each pending query will detect for paths as depicted9 in Fig. 3, with there being exactly one
type of “trigger” for each position j. A path triggered by a pending query is first extended to a
designated terminal (the “other” endpoint of the path), the position of which is a function of the
pending query that triggered the path (this position is shortly to be discussed), which becomes a
new pending query of its own, etc. As in the 10-round simulator, the simulator turns the terminal
into a pending query without making a call to F(·, ·).

For the 10-round simulator, we recall that the possible endpoint positions of a path are 2, 5
and 6, 9. The 8-round simulator has more variety, as the endpoints of a path do not always directly
flank the adapt zone for that path. Specifically:

– paths detected at positions 1 and 4, as in the top left quadrant of Fig. 3, have endpoints 1, 4;
before such paths are adapted, they include only the values x1, x4, x5, x6, x7, x8

– paths detected at positions 3 and 6, as in the top right quadrant of Fig. 3, have endpoints 3, 6;
before such paths are adapted, they include only the values x3, x4, x5, x6

– paths detected at positions 2 and 7, as in the bottom left quadrant of Fig. 3, have endpoints 2,
7; before such paths are adapted, they include only the values x1, x2, x7, x8

– paths detected at positions 5 and 8, as in the bottom right quadrant of Fig. 3, have endpoints
5, 8; before such paths are adapted, they include only the values x1, x2, x3, x4, x5, x8

Hence, paths with endpoints 1, 4 or 5, 8 are familiar from the 10-round simulator. (Being the

9 To solidify things with some examples, a “trigger” for a pending query (5, x5) is a pair values of x3, x4 such that
F3(x3) 6= ⊥, F4(x4) 6= ⊥ and such that x3⊕F4(x4) = x5, corresponding to the rightmost, bottommost diagram of
Fig. 3; a “trigger” for a pending query (1, x1) is pair of values x7, x8 such that F7(x7) 6= ⊥, F8(x8) 6= ⊥, and such
that P−1(x8, x9) = (∗, x1) where x9 := x7⊕F8(x8), corresponding to the leftmost, topmost diagram of Fig. 3. Etc.
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analogues, respectively, of paths with endpoints 2, 5 or 6, 9.) On the other hand, paths with
endpoints 3, 6 or 2, 7 are shorter, containing only four values before adaptation takes place. As in
the 10-round simulator, we speak of an “(i, j)-path” for paths with endpoints i, j. We also say that
a path is ready once it has reached both its endpoints and these have been turned into pending
queries, and that two ready paths are neighbors if they share an endpoint.

Since, by virtue of the endpoint positions, a (1, 4)-path can only share an endpoint with a
(1, 4)-path, a (2, 7)-path can only share an endpoint with a (2, 7)-path, a (3, 6)-path can only share
an endpoint with (3, 6)-path, and a (5, 8)-path can only share an endpoint with a (5, 8)-path,
neighborhoods (which are the transitive closure of the neighbor relation) are always comprised
of the same kind of (i, j)-path. As in the 10-round simulator, these neighborhoods are actually
topological trees, giving rise, thus, to “(1, 4)-trees”, “(2, 7)-trees”, “(3, 6)-trees” and “(5, 8)-trees”.
Given this, the 8-round simulator functions entirely analogously to the 10-round simulator, only
with more different types of paths and of trees (which does not make an important difference) and
with a slightly modified mechanism for adapting (2, 7)- and (3, 6)-trees, which are the trees for
which the path endpoints are not directly adjacent to the adapt zone (which does not make an
important difference either).

To wit, concerning the latter point, when a (2, 7)- or (3, 6)-tree is adapted, some additional
queries have to be lazy sampled for each path before reaching the adapt zone. (In the case of a
(3, 6)-tree, each path even requires a query to P−1.) But because the endpoints of each path are
lazy sampled as the first step of the batch adaptation process, there is negligible chance that these
extra queries will trigger a new path completion. So for those queries the 8-round simulator directly
lazy samples the tables Fi without even calling its own F(·, ·) interface.

As a small piece of trivia (since it doesn’t really matter to the simulator), one can check, for
instance, that a (1, 4)-tree may be followed either by a (2, 7)-, (3, 6)-, or a (5, 8)-tree on the stack—
i.e., while making a (1, 4)-path ready, we may trigger any of the other three types of paths—and
symmetrically the growth of a (5, 8)-tree may be interrupted by any of the three other types of
trees. On the other hand, (2, 7)-trees and (3, 6)-trees have shorter paths, and in fact when such
trees are grown no queries to F(·, ·) are made, which means that such trees never see their growth
interrupted by anything. In other words, a (3, 6)- or (2, 7)-tree will only appear as the last tree in
the tree stack, if at all.

Overall, it is imperative that pending queries be kept unsampled until the relevant tree becomes
stable, and is adapted. In particular, the simulator must not overwrite the pending queries of trees
lower down in the tree stack while working on the current tree.

In fact, our simulator cannot overwrite pending queries because it keeps a list of all pending
queries, and aborts rather than overwrite a pending query. Nonetheless, one must show that the
chance of such an event is negligible. The analysis of this bad event is lengthy but also straightfor-
ward. Briefly, this bad event can only occur if ready and non-ready paths arrange to form a certain
type of cycle, and the occurence of such cycles can be reduced to the occurence of a few different
“local” bad events whose (negligible) probabilities are easily bounded.

The Termination Argument. The basic idea of Seurin’s termination argument (which only
needs to be lightly adapted for our use) is that each path detected in one of the outer detect zones
is associated with high probability to a P-query previously made by the distinguisher. Since the
distinguisher only has q queries total, this already implies that the number of path completions
triggered by the outer detect zones is at most q with high probability.

Secondly, whenever a path is triggered by one of the middle detect zones, this path completion
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does not add any new entries to the tables F4, F5, that would not have been added had the path
completion not occured. Hence, only two mechanisms add entries to the tables F4 and F5: queries
directly made by the distinguisher and path completions triggered by the outer detect zones. Each
of these accounts for at most q table entries in each of F4, F5, so that the tables F4, F5 do not
exceed size 2q. But every completed path corresponds to a unique pair of entries in F4, F5. (I.e.,
no two completed paths have the same x4 and the same x5.) So the total number of paths ever
completed is at most (2q)2 = 4q2.

4 Technical Simulator Description and Pseudocode Overview

In this section we “reboot” the simulator description, with a view to the proof of Theorem 1. A
number of terms introduced informally in Section 3 are given precise definitions here. Indeed, the
provisory definitions and terminology of Section 3 should not be taken seriously as far as the main
proof is concerned.

The pseudocode describing our simulator is given in Figs. 4–6, and more specifically by the
pseudocode for game G1, which is the simulated world. In Fig. 4 one finds the function F (to
be called with an argument (i, x) ∈ [8] × {0, 1}n), which is the simulator’s only interface to the
distinguisher. The random permutation P and its inverse P−1—which are the other interfaces
available to the distinguisher—can be found on the left-hand side of Fig. 7, which is also part of
game G1.

Our pseudocode uses explicit random tapes, similarly to [18]. On the one hand there are tapes
f1, ..., f8 where fi is a table of 2n random n-bit values for each 1 ≤ i ≤ 8, i.e., fi(x) is a uniform
independent random n-bit value for each 1 ≤ i ≤ 8 and each x ∈ {0, 1}n. Moreover there is a tape
p : {0, 1}2n → {0, 1}2n that implements a random permutation from 2n bits to 2n bits. The inverse
of p is accessible via p−1. The only procedures to access p and p−1 are P and P−1.

As described in the previous section, the simulator maintains a table Fi : {0, 1}
n → {0, 1}n for

the i-th round function, 1 ≤ i ≤ 8. Initially, Fi(x) = ⊥ for all 1 ≤ i ≤ 8 and all x ∈ {0, 1}n. The
simulator fills the tables Fi progressively, and never overwrites a value Fi(x) such that Fi(x) 6= ⊥.
If a call to F(i, x) occurs and Fi(x) 6= ⊥, the call simply returns Fi(x).

The permutation oracle P/P−1 also maintains a pair of private tables T/T−1 that encode a
subset of the random tapes p/p−1. We refer to Fig. 7 for details (briefly, however, the tables T/T−1

remember the values on which P/P−1 have already been called). These tables serve no tangible
purpose in G1, where P/P−1 implement black-box two-way access to a random permutation, but
they serve a role subsequent games, and they appear in some of the definitions below.

In certain situations, and following [1], our simulator explicitly aborts (‘abort’). In such cases
the distinguisher is notified of the abort and the game ends.

In order to describe the operation of the simulator in further detail we introduce some more
terminology.

A query cycle is the portion of simulator execution from the moment the distinguisher makes a
query to F(·, ·) until the moment the simulator either returns a value to the distinguisher or aborts.
A query cycle is non-aborted if the simulator does not abort during that query cycle.

A query is a pair (i, x) ∈ [8]× {0, 1}n. The value i is the position of the query.

A query (i, x) is defined if Fi(x) 6= ⊥. Like many other predicates defined below, this is a
time-dependent property.

Our simulator’s central data type is a Node. (See Fig. 4.) Nodes are arranged into trees. A
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node n is the root of its tree if and only if n.parent = null. Node b is the child of node a if and
only if b ∈ a.children and if and only if b.parent = a. Each tree has a root.

Typically, several disjoint trees will coexist during a given query cycle. Distinct trees are never
brought to merge. Moreover, new tree nodes are only added beneath existing nodes, as opposed to
above the root. (Thus the first node of a tree to be created is the root, and this node remains the
root as long as the tree exists.) Nodes are never deleted from trees, either. However, a tree is “lost”
once the last reference to the root pops off the execution stack, at which point we say that the
tree and its nodes have been discarded. Instead of garbage collecting discarded nodes, however, we
assume that such nodes remain in memory somewhere, for convenience of description within the
proof. Thus, once a node is created it is not destroyed, and we may refer to the node and its fields
even while the node has no more purpose for the simulator.

Besides the parent/child fields, a node contains a beginning and an end, that are both queries,
possibly null, i.e., beginning, end ∈ {[8]×{0, 1}n,null}. (The beginning and end fields correspond
to the “endpoints” of a path, mentioned in Section 3.)

The beginning and end fields are never overwritten after they are set to non-null values. A
node n such that n.end 6= null is said to be ready, and a node cannot have children unless it is
ready. The root n of a tree has n.beginning = null, while a non-root node n has n.beginning =
n.parent.end (which is non-null since the parent is ready). Hence n is the root of its tree if and
only if n.beginning = null.

A query (i, x) is pending if and only if Fi(x) = ⊥ and there exists a node n such that n.end =
(i, x). Intuitively, a query (i, x) is pending if Fi(x) = ⊥ but the simulator has already decided to
assign a value to Fi(x) during that query cycle. In particular, one can observe from the pseudocode
that when a call F(i, x) occurs such that Fi(x) = ⊥, a call NewTree(i, x) occurs that results a new
tree being created, with a root n such that n.end = (i, x), so that (i, x) becomes a pending query.

The following additional useful facts about trees will be seen in the proof:

1. We have

a.end 6= b.end

for all nodes a 6= b, presuming a.end, b.end 6= null, and regardless of whether a and b are in the
same tree or not. (Thus all query fields in all trees are distinct, modulo the fact that a child’s
beginning is the same as its parent’s end .)

2. If n.beginning = (i, xi) 6= null, n.end = (j, xj) 6= null then

{i, j} ∈ {{1, 4}, {5, 8}, {2, 7}, {3, 6}}.

3. Each tree has at most one non-ready node, i.e., at most one node n with n.end = null. This
node is necessarily a leaf, and, if it exists, is called the non-ready leaf of the tree.

4. GrowTree(root) is only called once per root root, as syntactically obvious from the code. While
this call has not yet returned, moreover, we have Fi(x) = ⊥ for all (i, x) such that n.end = (i, x)
for some node n of the tree. (In other words, a pending query remains pending as long as the
node to which it is associated belongs to a tree which has not finished growing.)

The origin of a node n is the position of n.beginning, if n.beginning 6= null. The terminal of a
node n is the position of n.end, if n.end 6= null. (Thus, as per the second bullet above, for each
ready non-root node the origin and the terminal uniquely determines each other.)

A 2chain is a triple of the form (i, xi, xi+1) ∈ {0, 1, . . . , 8} × {0, 1}
n × {0, 1}n. The position of
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the 2chain is i.
Each node has a 2chain field called id , which is non-null if and only if the node isn’t the root

of its tree. Intuitively, each node is associated to a path which “needs to be completed”, and the
id contains two queries that are on the path at the moment when the node is created; indeed the
two queries (in adjacent positions) are enough to uniquely determine the path.

Detect zone Origin Position of id

8, 1, 2 2 or 8 1

7, 8, 1 1 or 7 7

3, 4, 5 3 or 5 3

4, 5, 6 4 or 6 4

Table 1. For nodes triggered by each detect zone, position of the id and possible values of the origin.

The value of id is assigned to a non-root node when the node is created by Trigger, such that
id lies in the relevant detect zone. Specifically, for a node of origin i ∈ [8], the position of id is 7 if
i ∈ {1, 7}, is 1 if i ∈ {2, 8}, is 3 if i ∈ {3, 5}, and is 4 if i ∈ {4, 6} (see Table 1). We note that the
position of id is always the (cyclically) first position of the detect zone except for the outer detect
zone 8, 1, 2, because the first two positions of the latter detect zone are not adjacent.

The simulator also maintains a global list N of nodes that are ready. This list is maintained
for the convenience of the procedure IsPending, which would otherwise require searching through
all trees that have not yet been discarded (and, in particular, maintaining a set of pointers to the
roots of such trees).

Recursive call structure. Trees are grown according to a somewhat complex recursive mech-
anism. Here is the overall recursive structure of the stack:

– F calls NewTree (at most one call to NewTree per call to F)
– NewTree calls GrowTree (one call to GrowTree per call to NewTree)
– GrowTree calls GrowTreeOnce (one or more times)
– GrowTreeOnce calls FindNewChildren (one or more times) and also calls GrowTreeOnce (zero

or more times)
– FindNewChildren calls Trigger (zero or more times)
– Trigger calls MakeNodeReady (at most one call to MakeNodeReady per call to Trigger)
– MakeNodeReady calls Prev or Next (zero or more times)
– Prev and Next call F (zero or once)

We observe that new trees are only created by calls to F. Moreover, a node n is not ready
(i.e., n.end = null) when MakeNodeReady(n) is called, and n is ready (i.e., n.end 6= null) when
MakeNodeReady(n) returns, whence the name of the procedure. Since MakeNodeReady calls Prev
and Next (which themselves call F), entire trees might be created and discarded while making a
node ready.

Tree Growth Mechanism and Path Detection. Recall that every pending query (i, x) is
uniquely associated to some node n (in some tree) such that n.end = (i, x). Every pending query
is susceptible of triggering zero or more path completions, each of which incurs the creation of
a new node that will be a child of n. The trigger mechanism (implemented by the procedures
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FindNewChildren and Trigger) is now discussed in more detail.

Firstly we must define equivalence of 2chains. This definition relies on the functions Val+, Val−

and is implemented by the function Equivalent, which we invite the reader to consult at this point.
(See Figs. 5–6.) Briefly, a 2chain (i, xi, xi+1) is equivalent to a 2chain (j, x′j , x

′
j+1) if and only if:

(1) (i, j) equals (7, 4), (1, 7), (3, 1) or (4, 3) and Val−(i, xi, xi+1, h) = x′h for h = j, j + 1 (or,
equivalently, Val+(j, x′j , x

′
j+1, h) = xh for h = i, i+ 1), or

(2) the 2chain (j, x′j , x
′
j+1) is equivalent to (i, xi, xi+1) in the sense of case (i), or

(3) the two 2chains are identical, i.e., i = j, xi = x′j and xi+1 = x′j+1.

Equivalence is defined in these specific cases only, and it is symmetric but not transitive. It can be
noted that equivalence is time-dependent (like most of our definitions), in the sense that entries
keep being added to the tables Fi.

Let (i, xi) be a pending query and let n be the node such that n.end = (i, xi). (We remind that
such a node n exists and is unique; existence follows by definition of pending, uniqueness is argued
within the proof.)

We define triggers for (i, xi) as follows, considering different values of i (note that the cases
with i = 1, 2, 3, 4 are symmetric to cases with i = 8, 7, 6, 5 respectively):

– If i = 1, a trigger for (i, xi) = (1, x1) is a pair (x7, x8) ∈ F7×F8 such that P−1(x8, x9) = (∗, x1)
where x9 = x7 ⊕ F8(x8) and such that the 2chain (7, x7, x8) is not equivalent to n.id and not
equivalent to c.id for any existing child c of n.

– If i = 2, a trigger for (i, xi) = (2, x2) is a pair (x8, x1) ∈ F8 × F1 such that P(x0, x1) = (x8, ∗)
where x0 = F1(x1) ⊕ x2 and such that the 2chain (1, x1, x2) is not equivalent to n.id and not
equivalent to c.id for any existing child c of n.

– If i = 3, a trigger for (i, xi) = (3, x3) is a pair (x4, x5) ∈ F4 × F5 such that x5 = x3 ⊕ F4(x4)
and such that the 2chain (3, x3, x4) is not equivalent to n.id and not equivalent to c.id for any
existing child c of n.

– If i = 4, a trigger for (i, xi) = (4, x4) is a pair (x5, x6) ∈ F5 × F6 such that x6 = x4 ⊕ F5(x5)
and such that the 2chain (4, x4, x5) is not equivalent to n.id and not equivalent to c.id for any
existing child c of n.

– If i = 5, a trigger for (i, xi) = (5, x5) is a pair (x3, x4) ∈ F3 × F4 such that x3 = F4(x4) ⊕ x5
and such that the 2chain (3, x3, x4) is not equivalent to n.id and not equivalent to c.id for any
existing child c of n.

– If i = 6, a trigger for (i, xi) = (6, x6) is a pair (x4, x5) ∈ F4 × F5 such that x4 = F5(x5) ⊕ x6
and such that the 2chain (4, x4, x5) is not equivalent to n.id and not equivalent to c.id for any
existing child c of n.

– If i = 7, a trigger for (i, xi) = (7, x7) is a pair (x8, x1) ∈ F8×F1 such that P−1(x8, x9) = (∗, x1)
where x9 = x7 ⊕ F8(x8) and such that the 2chain (7, x7, x8) is not equivalent to n.id and not
equivalent to c.id for any existing child c of n.

– If i = 8, a trigger for (i, xi) = (8, x8) is a pair (x1, x2) ∈ F1 × F2 such that P(x0, x1) = (x8, ∗)
where x0 = F1(x1) ⊕ x2 and such that the 2chain (1, x1, x2) is not equivalent to n.id and not
equivalent to c.id for any existing child c of n.

We note that the trigger and (i, xi) form three queries in a detect zone, where i is not in the
middle of the detect zone. The non-equivalence conditions ensures that the triggered path is not
the same as the path corresponding to the parent node n or another path that has already been
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triggered.
The procedure that checks for triggers is FindNewChildren. Specifically, FindNewChildren

takes as argument a node n, and checks if there exist triggers for the pending query10 n.end.
FindNewChildren(n) enumerates all “potential triggers” (i.e., all pairs of defined queries in the
specific positions) and calls Trigger to check whether it is a valid trigger.

The arguments of Trigger consist of a position i, three values xi, xi+1 and u, and a node node.
The position i specifies one of the four detect zones, and the three values constitute queries in
the three positions of the detect zone; in particular, the first two values corresponds to queries in
positions i and i+1 respectively. If Trigger identifies a trigger, it creates a new child c for n; the id
of c is set to (i, xi, xi+1). Therefore the relations between i and detect zones follow Table 1. After
creating c, Trigger calls MakeNodeReady(c).

As a subtlety, one should observe that, in FindNewChildren(n), certain value pairs that are not
triggers before a call to Trigger might be triggers after the call, because Trigger has called MakeN-
odeReady, which has created fresh table entries. However one can also observe that FindNewChil-
dren will in any case be called again on node n by virtue of having returned child added = true.
(Indeed, GrowTree(root) only returns after doing a complete traversal of the tree such that no calls
to FindNewChildren(·) during the traversal result in a new child.)

Partial Paths and Completed Paths. We define an (i, j)-partial path11 to be a sequence of
values xi, xi+1, . . . , xj if i < j, or a sequence xi, xi+1, . . . , x9, x0, x1, . . . , xj if i > j satisfying the
following properties: xh ∈ Fh and xh−1 ⊕ Fh(xh) = xh+1 for subscripts h such that h /∈ {i, j, 0, 9};
if i > j, then i ≤ 8, j ≥ 1, and T (x0, x1) = (x8, x9); if i < j, then 0 ≤ i < j ≤ 9.

We notate the partial path as {xh}
j
h=i regardless of whether i < j or i > j, with the under-

standing that x9 is followed by x0 if i > j.
The values i and j are called the endpoints of the path. One can observe that two adjacent

values xh, xh+1 on a partial path (h 6= 9) along with two endpoints (i, j) uniquely determine the
partial path, if it exists.

An (i, j)-partial path {xh}
j
h=i contains a 2chain (ℓ, yℓ, yℓ+1) if xℓ = yℓ and xℓ+1 = yℓ+1; moreover

if i = j + 1, the case ℓ = j is excluded.
We say an (i, j)-partial path {xh}

j
h=i is full if 1 ≤ i, j ≤ 8 and if xi /∈ Fi, xj /∈ Fj .

A completed path is a (0, 9)-partial path {xh}
9
h=0 such that T (x0, x1) = (x8, x9).

The MakeNodeReady Procedure. Next we discuss the procedure MakeNodeReady. One can
firstly observe that MakeNodeReady(node) is not called if node is the root of its tree, as clear from
the pseudocode. In particular node.beginning 6= null when MakeNodeReady(node) is called.

MakeNodeReady(node) behaves differently depending on the origin i of node. If i = 1 then
node.id = (7, u7, u8) for some values u1, u2, where (1, u1) = node.beginning. Starting with j = 7,
MakeNodeReady executes the instructions

(u1, u2)← Prev(j, u1, u2)

j ← j − 1 mod 11

until j = 4. One can note (from the pseudocode of Prev) that after each call of the form Prev(j, u1, u2)

10 Let n.end = (i, xi). By definition, then, (i, xi) is “pending” only if Fi(xi) = ⊥. This is indeed always the case when
FindNewChildren(n) is called—and throughout the execution of that call—as argued within the proof.

11 This is a slightly simplified definition. The “real” definition of a partial path is given by Definition 7, Section 5.1.
However, the change is very minor, and does not affect any statement or secondary definition made between here
and Definition 7.

24



with j 6= 0, Fj(u1) 6= ⊥. (When j = 0 the call Prev(j, u1, u2) entails a call to P−1 instead of to
F.) Thus, after this sequence of calls, there exists a partial path x4, x5, . . . , x1 with endpoints
(i, j) = (1, 4) and with (7, x7, x8) = node.id.

We also have F1(x1) = ⊥ by item 4 above and, if MakeNodeReady doesn’t abort, F4(x4) = ⊥
as well when MakeNodeReady returns. In particular, x4, x5, . . . , x1 is a full (4, 1)-partial path when
MakeNodeReady returns, containing node.id.

For other origins i, MakeNodeReady similarly creates a partial path whose endpoints are the
origin and terminal of the node by repeated calls to Prev (if i = 2, 5, 6) or Next (if i = 3, 4, 7, 8). The
partial path is also full when MakeNodeReady returns, and likewise contains node.id. In Table 2,
the positions of queries issued by MakeNodeReady are listed in the column “MakeNodeReady”.
The non-colored positions are those that are defined when the node is created. In particular, we
observe that when i = 2, 3, 6, 7, MakeNodeReady doesn’t issue new queries to F.

In summary, when MakeNodeReady(node) returns one has node.beginning 6= null, node.end 6=
null, and there exists a full (i, j)-partial path containing node.id such that

{(i, xi), (j, xj)} = {node.beginning,node.end}.

Origin Terminal Existing MakeNodeReady PrepareTree AdaptNode

1 4 7, 8 7, 6, 5 2, 3

2 7 1, 8 8 3, 6 4, 5

3 6 4, 5 5 7, 8 1, 2

4 1 5, 6 5, 6, 7, 8 2, 3

5 8 3, 4 3, 2, 1 6, 7

6 3 4, 5 4 7, 8 1, 2

7 2 8, 1 8, 1 3, 6 4, 5

8 5 1, 2 2, 3, 4 6, 7

Table 2. This table shows the positions of queries issued by MakeNodeReady and of table values sampled by
PrepareTree and adapted by AdaptNode as a function of the origin (and terminal) of a path, as well as the positions
of queries that are already defined when MakeNodeReady is called (the ‘Existing’ column). In the MakeNodeReady
column, queries in black are already defined when MakeNodeReady issues the query to F(·, ·), so that F returns
immediately for those queries. By contrast, blue positions may spawn a (2, 7)- or (3, 6)-tree while red positions may
spawn a (1, 4)- or (5, 8)-tree.

Path Completion Process. We say that node n is stable if no triggers exist for the query n.end.
When GrowTree(root) returns in NewTree, each node in the tree rooted at root is both ready

and stable. (This is rather easy to see syntactically from the pseudocode.) Moreover each non-root
node of the tree is associated to a partial path, which is the unique partial path containing that
node’s id and whose endpoints are the node’s origin and terminal.

After GrowTree(root) returns, SampleTree(root) is called, which calls ReadTape(i, x) for each
(i, x) such that (i, x) = n.end for some node n in the tree rooted at root. This effectively assigns a
uniform independent random value to Fi(x) for each such pair (i, x).

One can observe that the only nodes whose stability is potentially affected by a change to the
table Fi are nodes with terminal i±1, 2 (taken modulo 8) since each detect zone has length 3. Given
that all nodes in the tree have terminals i ∈ {1, 4}, i ∈ {5, 8}, i ∈ {2, 7} or i ∈ {3, 6}, the calls to
ReadTape that occur in SampleTree(root) do not affect the stability of the nodes the current tree,
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i.e., the tree rooted at root. (On the other hand the stability of nodes of trees lower down in the
stack is potentially affected.)

After SampleTree(root) returns, PrepareTree(root) is called to further extend the partial paths
associated12 to each non-root node of the tree until only the queries about to be adapted are
undefined. If the origin of a node is 1, 4, 5 or 8, PrepareTree does nothing since the associated
partial path only contains two undefined queries after SampleTree returns; on the other hand,
PrepareTree samples queries in positions 3 and 6 if the origin is 2 or 7, and samples queries in
positions 7 and 8 if the origin is 3 or 6. We note that queries sampled by PrepareTree relies on the
randomness sampled in SampleTree, thus it is unlikely that they trigger a new path completion
together with pre-existing queries or amongst themselves (this is also true for queries adapted by
AdaptTree).

Finally, AdaptTree(root) is called, which “adapts” each associated partial path into a completed
path. In more detail, the two undefined queries in the path are adapted (by a call to the procedure
Adapt) as in equations (2) and (3); the positions of the adapted queries are shown in Table 2.

Further Pseudocode Details: The Tables Tsim/T
−1
sim. In order to reduce its query complexity,

and following an idea of [12], our simulator keeps track of which queries it has already made to
P or P−1 via a pair of tables Tsim and T−1

sim. These tables are maintained by the procedures SimP
and SimP−1 (Fig. 4), which are “wrapper functions” that the simulator uses to access P and P−1.
If the simulator did not use the tables Tsim and T−1

sim to remember its queries to P/P−1, the query
complexity would be quadratically higher: O(q8) instead of O(q4). (This is the route taken by [18],
and their query complexity could be indeed be lowered from O(q8) to O(q4) by using the trick of
remembering past queries to P/P−1.)

We also note that the tables Tsim, T
−1
sim are accessed by the procedures Val+ and Val− of game

G1 (see Fig. 6), while in games G2–G4 Val+ and Val− access the tables T and T−1 directly, which
are not accessible to the simulator in game G1. As it turns out, games G1–G4 would be unaffected
if the procedures Val+, Val− called SimP/SimP−1 (or even P/P−1) instead of doing table look-ups
“by hand”, because it turns out that Val+, Val− never return ⊥ in any of games G1–G4 (see Lemma
21); but we choose the latter presentation (i.e., accessing the tables Tsim/T

−1
sim or T/T−1, depending)

in order to emphasize—and to more easily argue within the proof—that calls to Val+, Val− do not
cause “new” queries to P/P−1.

5 Proof of Indifferentiability

In this section we give a proof for Theorem 1, using the simulator described in Section 4 as the
indifferentiability simulator.

In order to prove that our simulator successfully achieves indifferentiability as defined by Def-
inition 1, we need to upper bound the time and query complexity of the simulator, as well as the
advantage of any distinguisher. These three bounds are the objects of Theorems 33, 30 and 97
respectively.

Game Sequence.Our proof uses a sequence of five games, G1, . . . , G5, with G1 being the simulated
world and G5 being the real world. Games G1–G4 are described by the pseudocode of Figs. 4–7
while game G5 is given by the pseudocode of Fig. 8. Every game offers the same interface to the
distinguisher, consisting of functions F, P and P−1.

12 The partial path is namely uniquely determined by the node’s id .
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A brief synopsis of the changes that occur in the games is as follows:
In G2: The simulator’s procedures CheckP+ and CheckP−(Fig. 5) used by the simulator in

FindNewChildren (Fig. 4) “peeks” at the table T : CheckP+ returns ⊥ if (x8, x9) /∈ T−1, and
CheckP− returns ⊥ if (x0, x1) /∈ T ; this modification ensures that a call to CheckP+/CheckP− does
not result in a “fresh” call to P. Also, the procedures Val+, Val− use the tables T , T−1 instead of
Tsim, T

−1
sim. (As mentioned at the end of the last section, the second change does not actually alter

the behavior of Val+, Val−, despite the fact that the tables Tsim, T
−1
sim may be proper subsets of the

tables T , T−1 (see Lemma 21). On the other hand, the change to CheckP+/CheckP− may result
in “false negatives” being returned.)

In G3: The simulator adds a number of checks that may cause it to abort in places when it did
not abort in G2. Some of these involve peeking at the random permutation table T , which means
they cannot be included in G1. Otherwise, G3 is identical to G2, so the only difference between G2

and G3 is that G3 may abort when G2 does not. The pseudocode for the new checking procedures
called by G3 are in Figs. 9–10.

In G4: The only difference occurs in the implementation of the oracles P, P−1 (see Fig. 7). In G4,
these oracles no longer rely on the random permutation table p : {0, 1}2n → {0, 1}2n, but instead
evaluate an 8-round Feistel network using the random tapes f1, . . . , f8 as round functions.

In G5: This is the real world, meaning that F(i, x) directly returns the value fi(x). As will be
shown in the proof, the only “visible” difference between G4 and G5 is that G4 may abort, while
G5 does not.

The advantage of a distinguisher D at distinguishing games Gi and Gj is defined as

∆D(Gi,Gj) = Pr
Gi

[DF,P,P−1
= 1]− Pr

Gj

[DF,P,P−1
= 1] (4)

where the probabilities are taken over the coins of the relevant game as well as over D’s coins, if
any. Most of the proof is concerned with upper bounding ∆D(G1,G5) for a distinguisher D that is
limited to q queries (in a nonstandard sense defined below); the simulator’s efficiency, as well its
query complexity (Theorems 32 and 30 respectively) will be established as byproducts along the
way.

Normalizing the Distinguisher. In the following proof we fix an information-theoretic distin-
guisher D with access to oracles F, P, and P−1. The distinguisher can issue at most q queries to
F(i, ·) for each i ∈ [8] and at most q queries to P and P−1 in total. In particular, the distinguisher
is allowed to make q queries to each round of the Feistel network, which is a relaxed condition.
The same relaxation is implicitly made in most if not all previous work in the area, but explicitly
acknowledging the extra power of the distinguisher actually helps to improve the final bound, as
we shortly explain.

SinceD is information-theoretic, we can assume without loss of generality thatD is deterministic
by fixing the best possible sequence of coin tosses for D. (See, e.g., the appendix in the proceedings
version of [6].)

We can also assume without loss of generality that D outputs 1 if an oracle abort. Indeed, since
the real world G5 does not abort, this can only increase the distinguishing advantage ∆D(G1,G5).

Some of our lemmas, moreover, only hold if D is a distinguisher that completes all paths, as per
the following definition:

Definition 1. A distinguisherD completes all paths if at the end of every non-aborted execution, D
has made the queries F(i, xi) for i = 1, 2, . . . , 8 where xi = F(i−1, xi−1)⊕xi−2 for i = 2, 3, . . . , 8, for
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every pair (x0, x1) such that D has either queried P at (x0, x1) at some point during the execution
or such that P−1 returned (x0, x1) to D at some point during the execution.

Lemmas that only hold if D completes all paths (and which are confined to sections 5.5, 5.7) are
marked with a (*).

It is not difficult to see that for every distinguisher D that makes at most q queries to each of its
oracles, there is a distinguisher D∗ that completes all paths, that achieves the same distinguishing
advantage as D, and that makes at most 2q queries to each of its oracles. Hence, the cost of
assuming a distinguisher that completes all paths is a factor of two in the number of queries.
(Previous papers [1, 18, 20] pay for the same assumption by giving r times as many queries to the
distinguisher, where r is the number of rounds. Our trick of explicitly giving the distinguisher the
power to query each of its oracles q times reduces this factor to 2 without harming the final bound;
indeed, current proof techniques effectively give the distinguisher q queries to each of its oracles
anyway. Our trick also partially answers a question posed in [1].)

Miscellaneous. Unless otherwise specified, an execution refers to a run of one of the games G1,
G2, G3, G4 (excluding, thus, G5) with the fixed distinguisher D mentioned above.

5.1 Efficiency of the Simulator

We start the proof by proving that the simulator is efficient in games G1 through G4. This part is
similar to previous efficiency proofs such as [12, 18], and ultimately relies on Seurin’s termination
argument, outlined at the end of Section 3.

Unless otherwise specified, lemmas in this section apply to games G1 through G4. As the proof
proceeds, and for ease of reference, we will restate some (but not all) of the definitions made in
Section 4.

Definition 2. A query (i, xi) is defined if Fi(xi) 6= ⊥. It is pending if it is not defined and there
exists a node n such that n.end = (i, xi).

Definition 3. A completed path is a sequence x0, . . . , x9 such that xi+1 = xi−1⊕Fi(xi) for 1 ≤ i ≤ 8
and such that T (x0, x1) = (x8, x9).

Definition 4. A node n is created if its constructor has returned. It is ready if n.end = (i, xi) 6=
null, and it is sampled if Fi(xi) 6= ⊥. A node n is completed if there exists a completed path
x0, x1, . . . , x9 containing the 2chain n.id.

We emphasize that a completed node is also a sampled node, that a sampled node is also a ready
node, etc. We thus have the following chain of containments:

created nodes ⊇ ready nodes ⊇ sampled nodes ⊇ completed nodes

We also note that a root node r cannot become completed because r.id = null (and remains null)
for root nodes. Moreover, we remind that nodes are never deleted (even after the last reference to
a node is lost).

Lemma 1. The parent, id, beginning, and end fields of a node are never overwritten after they are
assigned a non-null value.
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Proof. This is easy to see from the pseudocode. The parent, id and beginning of a node are only
assigned in the constructor. The only two functions to edit the end field of a node are NewTree and
MakeNodeReady. NewTree creates a root with a null end field and immediately assigns the end
field to a non-null value, while MakeNodeReady(n) is only called for nodes n that are not roots,
and is called at most once for each node.

Lemma 2. A node is a root node if and only if it is a root node after its constructor returns, and
if and only if it is created in the procedure NewTree.

Proof. Recall that by definition a node n is a root node if and only if n.beginning = null. The first
“if and only if” therefore follows from the fact that the beginning field of a node is not modified
outside the node’s constructor.

The second “if and only if” follows by inspection of the procedures NewTree and Trigger (Fig.
4), which are the only two procedures to create nodes.

The above lemmas show that all fields of a node are invariant after the node’s definition, except
for the set of children, which grows as new paths are discovered. Therefore when we refer to these
variables in the following discussions, we don’t need to specify exactly what time we are talking
about (as long as they are defined).

Lemma 3. The entries of the tables Fi are not overwritten after they are defined.

Proof. The only two procedures that modify tables Fi are ReadTape and Adapt. In both procedures
the simulator checks that xi /∈ Fi (and aborts if otherwise) before assigning a value to Fi(xi).

Lemma 4. Entries in tables T and T−1 are never overwritten and Tsim (T−1
sim) is a subset of T

(T−1). In G1, G2 and G3, the tables T and T−1 are compatible with the permutation encoded by
tape p and its inverse.

Proof. The tables T and T−1 are only modified in P or P−1. Entries are added according to a
permutation, which is the permutation encoded by the random tape p in G1, G2 and G3, and is
the 8-round Feistel network built from the round functions (random tapes) f1, . . . , f8 in G4. By
inspection of the pseudocode, the entries are never overwritten.

The table Tsim is only modified in SimP and SimP−1. The entry added to Tsim is obtained via
a call to P or P−1, where the corresponding entry in T is returned, and hence the same entry also
exists in T .

Lemma 5. A node is immediately added to the set N after becoming ready.

Proof. A node becomes ready when its end is assigned a query. This only occurs in NewTree and
MakeNodeReady, and in both cases the node is added into N immediately after the assignment.

Lemma 6. Let n be a ready node with n.end = (i, xi). Then IsPending(i, xi) = true or xi ∈ Fi

from the moment when n is added to N until the end of the execution.

Proof. The procedure IsPending(i, xi) returns true while n is in N . Note that n is removed from
N only in SampleTree, right after ReadTape(n.end). Therefore, at the moment when n is removed
from N we already have xi ∈ Fi. Since entries in Fi are not overwritten, this remains true for the
rest of the execution.
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Lemma 7. We have n1.end 6= n2.end for distinct nodes n1 and n2 with n1.end 6= null.

Proof. Assume by contradiction that there exist two nodes n1, n2 such that n1.end = n2.end =
(i, xi). Without loss of generality, suppose n1 becomes ready before n2.

If n2 is the root of a tree, it becomes ready after it is created in NewTree, called by F(i, xi).
Between the time when F(i, xi) is called and the time NewTree executes its second line, no modifi-
cation is made to the other nodes, so n1 is already ready when the call F(i, xi) occurs. By Lemmas 5
and 6, when F(i, xi) is called, we have IsPending(i, xi) = true or xi ∈ Fi. But F(i, xi) aborts if
IsPending(i, xi) = true, and it returns Fi(xi) directly if xi ∈ Fi. NewTree is not called in either
case, leading to a contradiction.

If n2 is not a root node, its end is assigned in MakeNodeReady. Before n2.end is assigned, two
assertions are checked. Since no modification is made to the other nodes during the assertions, n1 is
ready before the assertions. By Lemmas 5 and 6, we must have IsPending(i, xi) = true (violating
the second assertion) or xi ∈ Fi (violating the first assertion). In both cases the simulator aborts
before the assignment, which is also a contradiction.

Lemma 8. FindNewChildren(n) is only called if n is a ready node.

Proof. Recall that ready nodes never revert to being non-ready (cf. Lemma 1).
If n is created by NewTree then n.end is assigned by NewTree immediately after creation, and

hence n is ready.
If n is created by AddChild, on the other hand, then AddChild calls MakeNodeReady(n) imme-

diately, which does not return until n is ready. Moreover, while MakeNodeReady(n) calls further
procedures, it does not pass on a reference to n to any of the procedures that it calls, so it is impos-
sible for a call FindNewChildren(n) to occur while MakeNodeReady(n) has not yet returned.

Lemma 9. A node n is a child of n′ if and only if n.beginning = n′.end 6= null.

Proof. If n′ = n.parent, then in the constructor of n, its beginning is assigned the same value as
n′.end. Since FindNewChildren is only called on ready nodes, n′.end 6= null. By Lemma 1, neither
n.beginning nor n′.end can be overwritten, thus n.beginning = n′.end 6= null until the end of the
execution.

On the other hand, if n.beginning = n′.end 6= null, then n is a non-root node. As proved in the
“if” direction, we must have n.parent.end = n.beginning = n′.end. By Lemma 7, the end of ready
nodes are distinct, thus n.parent = n′.

Lemma 10. For every node n, the query n.end only becomes defined when SampleTree(n) is called.

Proof. Consider an arbitrary node n with n.end = (i, xi). n.end can only be assigned in a call to
NewTree or MakeNodeReady. NewTree(i, xi) must be called in a call to F(i, xi), when (i, xi) is not
defined or pending. The MakeNodeReady procedure aborts if the query being assigned to n.end is
defined or pending. Therefore, n.end is not defined or pending when n becomes ready.

After n becomes ready, it is added to the set N immediately and will not be removed from N
until SampleTree(n) is called. Before n is removed, IsPending(i, xi) always returns true. Thus calls
to ReadTape(i, xi) and Adapt(i, xi, ·) will abort without defining the queries. Therefore, the query
n.end = (i, xi) remains undefined before SampleTree(n) is called.

Lemma 11. When FindNewChildren(n) is called, as well as during the call, n.end is pending.
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Proof. By definition, we only need to prove that the query n.end has not been defined. By Lemma 10,
n.end is not defined before SampleTree(n) is called. Let r be the root of the tree containing n.
Observe that FindNewChildren(n) is only called before GrowTree(r) returns, while the call to
SampleTree(r) (and to SampleTree(n)) occurs after GrowTree(r) returns.

Lemma 12. The set N consists of all nodes that are ready but not sampled, except for the moments
right before a node is added to N or right before a node is deleted from N .

Proof. By Lemma 5, a node is added to N right after it becomes ready. On the other hand, a node
is added to N only in procedures NewTree and MakeNodeReady, and in both procedures the end
of the node is assigned a non-null value before it is added.

Then we prove that a node is removed from N if and only if it becomes sampled, which imme-
diately follows from an observation of the pseudocode: A node n must be removed from N during
the call to SampleTree(n), and right after ReadTape(n.end) is called.

Therefore, the set N always equals the set of nodes that are ready but not sampled, except for
the gaps right before the sets are changed.

Lemma 13. At all points when calls to IsPending occur in the pseudocode, the call IsPending(i, xi)
returns true if and only if the query (i, xi) is pending.

Proof. IsPending(i, xi) returns true if and only if there exists a node n in N such that n.end =
(i, xi). Since IsPending is not called immediately before a modification to N , Lemma 12 implies that
this occurs if and only if there exists a node n such that n.end = (i, xi) and such that Fi(xi) = ⊥.

Definition 5. Let F̃i denote the set of queries in position i that are pending or defined, for i ∈ [8].

For any i ∈ [8], since Fi is the set of defined queries in position i, we have Fi ⊆ F̃i. The sets F̃i are
time-dependent, like the sets Fi.

Lemma 14. The sets F̃i are monotone increasing, i.e., once a query becomes pending or defined,
it remains pending or defined for the rest of the execution.

Proof. By Lemma 3, we know that after an entry is added to a table, it will not be overwritten.
Therefore any defined query will remain defined through the rest of the execution.

For each pending query (i, xi), there exists a node n such that (i, xi) = n.end. By Lemma 1,
n.end will not change and thus (i, xi) must be pending if it is not defined.

Lemma 15. At the end of a non-aborted query cycle, there exist no pending queries (i.e., all
pending queries have been defined).

Proof. Observe that in each call to NewTree, SampleTree is called on every node in the tree before
NewTree returns, unless the simulator aborts. Therefore, all pending queries in the tree become
defined before NewTree successfully returns. A non-aborted query cycle ends only after all calls to
NewTree have returned, so all pending queries are defined by then.

Next we upper bound the number of nodes created by the simulator and the sizes of the tables.
We will separate the nodes into two types as in the following definition, and upper bound the
number of each type. Recall that in the simulator overview we defined the origin and terminal of
a non-root node n to be the positions of n.beginning and n.end respectively.
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Definition 6. A non-root node is an outer node if its origin is 1, 2, 7 or 8, and is an inner node if
its origin is 3, 4, 5 or 6.

The names imply by which detect zone a path is triggered: an inner node is associated with a
path triggered by an inner detect zone; an outer node is associated with a path triggered by an
outer detect zone.

Lemma 16. The number of outer nodes created in an execution is at most q.

Proof. It is easy to see from the pseudocode that before an outer node is added in FindNewChildren,
the counter NumOuter is incremented by 1. The simulator aborts when the counter exceeds q, so
the number of outer nodes is at most q.

Now we give a formal definition of partial path, superseding (or rather augmenting) the definition
given in Section 4.

Definition 7. An (i, j)-partial path is a sequence of values xi, xi+1, . . . , xj if i < j, or a sequence
xi, xi+1, . . . , x9, x0, x1, . . . , xj if i > j, satisfying the following properties: i 6= j and 0 ≤ i, j ≤ 9;
xh ∈ Fh and xh−1 ⊕ Fh(xh) = xh+1 for subscripts h such that h /∈ {i, j, 0, 9}; if i > j, we also
require (i, j) 6= (9, 0), T (x0, x1) = (x8, x9) if 1 ≤ j < i ≤ 8, T (x0, x1) = (∗, x9) if i = 9, and
T−1(x8, x9) = (x0, ∗) if j = 0.

As can be noted, the only difference with the definition given in Section 4 is that the cases i = 9
and j = 0 (though not both simultaneously) are now allowed.

Let {xh}
j
h=i be an (i, j)-partial path. Each pair (h, xh) with

h ∈ {i, i + 1, . . . , j}

if i < j, or with

h ∈ {i, i + 1, . . . , 9} ∪ {0, 1, . . . , j}

if i > j is said to be in the partial path. We also say the partial path contains (h, xh). We may
also say that xh is in the partial path (or that the partial path contains xh) without mentioning
the index h, if h is clear from the context.

Note that a partial path may contain pairs of the form (9, x9) and (0, x0) even though such
pairs aren’t queries, technically speaking.

As previously, a partial path {xh}
j
h=i contains a 2chain (ℓ, xℓ, xℓ+1) (with 0 ≤ ℓ ≤ 8) if (ℓ, xℓ)

and (ℓ+ 1, xℓ+1) are both in {xh}
j
h=i and if ℓ 6= j.

There are two different versions of Val+ and Val− in the pseudocode: one is used in G1 (the
G1-version) and the other is used in G2,G3,G4 (the G2-version). In the following definition, as
well as for the rest of the proof, Val+ and Val− refer to the G2-version of these procedures.

Lemma 17. Given a 2chain (ℓ, xℓ, xℓ+1) and two endpoints i and j, there exists at most one
(i, j)-partial path {xh}

j
h=i that contains the 2chain. Moreover, the values in the partial path can be

obtained by xh = Val+(ℓ, xℓ, xℓ+1, h) if xh is to the right of xℓ+1 in the sequence xi, . . . , xj
13, and

by xh = Val−(ℓ, xℓ, xℓ+1, h) if xh is to the left of xℓ in the sequence xi, . . . , xj.

13 The sequence xi, . . . , xj has the form xi, . . . , x11, x0, . . . , xj if j < i and xi, xi+1, . . . , xj if j > i.
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Proof. By Definition 7, we can see that each pair of values xi, xi+1 uniquely determines the previous
and the next value in the sequence (if they exist), and x8, x9 uniquely determines x0, x1 and vice
versa. Thus, starting from xℓ and xℓ+1, we can evaluate the path in each direction step by step
according to the definition.

Moreover, we can see from the pseudocode that the procedures Val+ and Val− implements the
above iterations and thus return the corresponding value in the partial path.

Definition 8. Define the length of a partial path {xh}
j
h=i as j− i+1 if i < j and equals j− i+11

if i > j.

Thus the length of a partial path {xh}
j
h=i is the number of distinct values of h for which there

exists a pair (h, xh) in the path, including possibly the values h = 0 and h = 9.
We note that a partial path cannot have length more than 10, because Definition 7 doesn’t

allow “self-overlapping” paths.

Definition 9. Let n be a non-root node with origin h ∈ [8]. If h ∈ {3, 4, 7, 8} the maximal path of
n is the longest (i, j)-partial path with i = h containing n.id. If h ∈ {1, 2, 5, 6} the maximal path of
n is the longest (i, j)-partial path with j = h containing n.id.

We note that a node’s maximal path can have length at most 10, being defined as a partial path,
even if the path could be further extended past its endpoint (in the standard Feistel sense) in some
pathological cases.

Lemma 18. A non-root node has a unique maximal path.

Proof. This directly follows from the fact that a partial path’s length is upper bounded by 10 by
definition, and that an (i, j)-partial path is uniquely determined by the values i, j and by any
2chain contained in the path.

The following lemma gives the observation that if a query is added to the sets F̃i in a procedure
related to n, it must be in the maximal path of n.

Lemma 19. The following statements hold for every non-root node n:

1. Let n.id = (i, xi, xi+1), then (i, xi) and (i+ 1, xi+1) are in the maximal path of n.
2. After F(i, xi) is called in MakeNodeReady(n), the query (i, xi) is in the maximal path of n.
3. After SimP(x0, x1) is called in MakeNodeReady(n), both (0, x0) and (1, x1) are in the maximal

path of n; after the call returns with value (x8, x9), (8, x8) and (9, x9) are in the maximal path
of n. Symmetrically for a call to SimP−1.

4. The query that is assigned to n.end is in the maximal path of n (even if the assignment doesn’t
occur because the assertions fail).

Proof. In the following we assume that the origin of n is 1, 2, 5 or 6. The other four cases are
symmetric.

We note that since the table entries and n.id are not overwritten, if (i, xi) is in the maximal
path of n at some point in the execution, it remains so until the end of the execution.

The first statement directly follows from the definition of a maximal path, which is a partial
path containing the 2chain n.id.

In a call to MakeNodeReady, F and SimP are called in Prev(i, xi, xi+1). We prove by induction
on the number of times Prev has been called in MakeNodeReady that both xi and xi+1 are in the
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maximal path of n, and as well as the two output values of Prev(i, xi, xi+1) (whose positions may
be i − 1 and i or 8 and 9) are in the maximal path of n. In fact the latter statement follows from
the former, since if i > 0 the output values of Prev are xi and xi−1 = F(i, xi)⊕ xi+1, which are in
the same partial path as xi and xi+1, whereas if i = 0 the output values are (x8, x9) = T (x0, x1),
which are in the same partial path as x0 and x1, given that we are not overextending the partial
path past length 10.

Since the next input to Prev is its former output (except for the first call) all that remains is
to show the base case, i.e., that the first argument (i, xi, xi+1) given to Prev in MakeNodeReady is
in the maximal path of n. However (i, xi, xi+1) = n.id for the first call, so this is the case.

The query (j, xj) is also in the output of Prev, so it is also in the maximal path by the above
argument.

In the following discussion, we will use xi to denote queries in the maximal path of n unless no
node n is involved or otherwise specified.

Lemma 20. If a non-root node n is not ready, it has been created in a call to AddChild and the
call hasn’t returned. Specifically, each tree contains at most one non-ready node at any point of the
execution.

Proof. The first part is a simple observation: the call to AddChild returns only after MakeN-
odeReady(n) returns, at which point n has become ready.

Now consider any tree with root r. The node r becomes ready right after it is created. Non-root
nodes are created in FindNewChildren via AddChild; before AddChild returns, no new node is
added to the tree (the nodes created in F called by MakeNodeReady are in a new tree). Therefore,
other nodes can be added to the tree only after AddChild returns, when the previous new node has
become ready.

Lemma 21. The calls to Val+ and Val− in procedures Equivalent and AdaptNode don’t return
⊥.

Proof. The procedure Equivalent(C1, C2) is called inside FindNewChildren(n), either directly or
via InChildren, where C1 and C2 are 2chains. The first 2chain C1 is either n.id or the id of a child
of n. In the latter case, C1 has the same position as C2, therefore the values are directly compared
without calling Val+ or Val−.

Now consider the first case, when C1 = n.id. If n is the root of a tree, Equivalent returns
false without calling Val+ or Val−. Otherwise, since AddChild(n) must have returned before Find-
NewChildren(n) can be called, n is ready by Lemma 20. By Lemma 19, the maximal path of n
contains n.end. We can check that in every case, the calls to Val+ or Val− won’t “extend” over the
terminal of the node. We show the cases where the origin of n is 1 for example: if the origin of n is
1, then the position of n.id is 7 and the terminal of n is 4. A call to Equivalent(n.id, (4, x4, x5)) is
made in FindNewChildren(n), in which Val−(n.id, 4) and Val−(n.id, 5) are called. Since n is ready,
by Lemma 19 we know n.end is in the maximal path of n, so Val−(n.id, 4) = n.end 6= ⊥. This also
implies Val−(n.id, 5) 6= ⊥. The other cases are similar.

The call to AdaptNode(n) occurs after SampleTree(n) and PrepareTree(n), therefore the path
containing n.id has defined queries in all positions except possibly the two positions to be adapted,
and Val+ and Val− called in AdaptNode(n) will return a non-⊥ value.
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Lemma 22. After AdaptNode(n) returns, the node n is completed. In particular, the queries in
n’s maximal path forms a completed path.

Proof. Recall that n is completed if n.id is contained in a completed path. Consider the execution
in AdaptNode(n). Since the calls to Val+ and Val− don’t return ⊥ by Lemma 21, there exists
a partial path {xh}

m
h=m+1 containing n.id. Moreover, in AdaptNode(n) the queries (m,xm) and

(m + 1, xm+1) are adapted such that Fm(xm) = xm−1 ⊕ xm+1 and Fm+1(xm+1) = xm ⊕ xm+2.
Along with the properties of a partial path, it is easy to check that {xh}

9
h=0 is a completed path,

which contains n.id.

Lemma 23. The children of a node n must be created in AddChild called by FindNewChildren(n).
The following properties hold for any node n: (i) n doesn’t have two children with the same id;
(ii) If n is a non-root node, the maximal path of n doesn’t contain both queries in c.id for any
c ∈ n.children.

Proof. It is easy to see from the pseudocode that a non-root node is only created in AddChild,
which is only called in FindNewChildren(n) and the node becomes a child of n.

Before AddChild is called in FindNewChildren(n), a call to InChildren is made to check that
the id of the new node doesn’t equal the id of any existing child of n. All children of n have the
same position of id and in this case, Equivalent returns true when the input 2chains are identical.

Property (ii) is ensured by the Equivalent call in FindNewChildren. By Lemma 21, the calls
to Val+ and Val− in Equivalent return non-⊥ values. Therefore, when c is created and c.id =
(i, xi, xi+1), the maximal path of n already contains queries in positions i and i + 1, and at least
one of them is different to the corresponding query in c.id.

Lemma 24. The maximal path of an inner node contains pending or defined queries in positions 4
and 5. Moreover, for any two distinct inner nodes n1 and n2, their maximal paths contain different
pairs of queries in positions 4 and 5.

Proof. If n is an inner node, it must be created in a call to Trigger(i, j, x, u, v,node) where i ∈
{3, 4, 5, 6}. We can observe from the pseudocode that j ∈ {3, 4} in this case, and the three queries
(j, x), (j + 1, u) and (j + 2, v) must consist of one pending query and two defined queries, all of
which should be in the maximal path of node. Therefore the maximal path of every newly-created
inner node already contains pending or defined queries in positions 4 and 5, and at least one of the
two queries is defined.

Now we prove the second part of the lemma. Assume by contradiction that there exist distinct
inner nodes n1 and n2 such that their maximal paths both contain queries (4, x4) and (5, x5). When
they are created, at least one of the (4, x4) and (5, x5) is defined as discussed before. Without loss
of generality, assume (4, x4) becomes defined after (5, x5); then (5, x5) is defined when n1 or n2 is
created.

The origins of n1 and n2 cannot be the same: Otherwise, by assumption their maximal paths
both contain queries (4, x4) and (5, x5), which uniquely determines their id and beginning with the
origin. Thus n1.id = n2.id and n1.beginning = n2.beginning. By Lemmas 7 and 9, the parents of n1

and n2 should be the unique node whose end equals n1.beginning. This implies that n1 and n2 are
siblings with the same id, contradicting Lemma 23.

Next we show that the origins of n1 and n2 cannot be 4 or 5: We prove by contradiction, and
without loss of generality, we assume that the origin of n1 is 4. By Lemma 10, the query (4, x4)
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is not defined until SampleTree(n1.parent) is called. The origin of n2 is not 4, so it must be 3,
5 or 6. In all these cases, (4, x4) should be defined when n2 is created, so n2 must be created
after n1 is completed. However, this is not possible since after n1 is completed the queries (3, x3),
(5, x5) and (6, x6) are all defined and hence cannot be n2.beginning (we let x3 = F4(x4) ⊕ x5 and
x6 = x4 ⊕ F5(x5) as usual).

The only possibility left is that the origins of n1 and n2 are 3 and 6 (or 6 and 3, which is
symmetric) respectively. Without loss of generality, assume n1 is created before n2. After n1 is cre-
ated, MakeNodeReady(n1) is called and immediately assigns n1.end = (6, x6). Since n2.beginning =
(6, x6), by Lemma 7 we have n2.parent = n1. However, both queries of n2.id are contained by the
maximal path of n1, contradicting the second part of Lemma 23.

Lemma 25. The simulator creates at most 4q2 − q inner nodes in an execution.

Proof. By Lemma 24, each inner node corresponds to a unique pair of defined or pending queries
in positions 4 and 5.

Other than the queries issued by the distinguisher, a query can only be added to F̃i in calls to
MakeNodeReady(n) or AdaptNode(n). Specifically, for i ∈ {4, 5}, a query is added to F̃i only when
n is an outer node. Indeed, the issued queries are in the maximal path of n by Lemma 19. If n is
an inner node, the queries in positions 4 and 5 of its maximal path are already pending or defined
when n is created.

For each outer node n, at most one query in each of positions 4 and 5 becomes pending or
defined during MakeNodeReady(n) and AdaptNode(n). By Lemma 16, there exist at most q outer
nodes during the execution.

On the other hand, the distinguisher issues at most q queries in each position. Therefore we
have |F̃4| ≤ 2q, |F̃5| ≤ 2q. This is enough for upper bounding the number of inner nodes by 4q2;
the following discussion will improve the bound to 4q2 − q.

If the number of outer nodes is less than q, or if at least one outer node n contains a query in
position 4 or 5 in its maximal path such that the query is defined or pending before the query is
issued in MakeNodeReady(n) or AdaptNode(n), the size of one of F̃4 and F̃5 is at most 2q − 1. In
this case we have |F̃4| · |F̃5| ≤ 2q(2q − 1) < 4q2 − q, implying that there are less than 4q2 − q inner
nodes.

On the other hand, assume the above event does not occur, i.e., there are q outer nodes and
each of them issues or adapts new queries in positions 4 and 5. Consider an arbitrary outer node n
whose maximal path contains (4, x4) and (5, x5). We will prove that there exists no inner node n′

whose maximal path contains (4, x4) and (5, x5).

If the origin of n is 2 or 7, then (4, x4) and (5, x5) are defined in AdaptNode(n) and (3, x3)
and (6, x6) are defined in PrepareTree(n)14. None of the queries has been pending and therefore no
inner path can be triggered by any of them.

Otherwise the origin of n is 1 or 8, and we showcase the former case. The query (4, x4) only
becomes pending at the end of the call to MakeNodeReady(n), before which (6, x6) and (5, x5) are
queried. Since (4, x4) has not been defined when (6, x6) and (5, x5) become defined, the origin of n′

cannot be 5 or 6. If the origin is 4, then n′.beginning = (4, x4). Since n.end = (4, x4), by Lemma 9 n′

must be a child of n, which contradicts Lemma 23. If the origin of n′ is 3, n′ must be created after

14 By assumption (4, x4) and (5, x5) are adapted successfully in AdaptNode(n). When PrepareTree(n) is called neither
(3, x3) nor (6, x6) is defined or pending, otherwise the simulator aborts before adapting the two queries.
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(4, x4) is defined and before the query (3, x3) is adapted in AdaptNode(n).15 However, after (4, x4)
is defined and before (3, x3) is adapted, the simulator is in procedures SampleTree, PrepareTree
and AdaptTree where no node is created.

By the above discussion, we know each inner node corresponds to a distinct pair of queries in
F̃4× F̃5, such that the two queries are not contained in the maximal path of an outer node. Since by
assumption q outer nodes exist, whose maximal paths contain different pairs of queries in positions
4 and 5, the number of inner nodes is upper bounded by

|F̃4| · |F̃5| − q ≤ (2q)2 − q = 4q2 − q.

Lemma 26. At most 4q2 non-root nodes are created in an execution.

Proof. A non-root node is either an inner node or an outer node. By Lemmas 25 and 16, The total
number of non-root nodes is upper bounded by (4q2 − q) + q = 4q2.

Lemma 27. At any point of an execution, the number of pending or defined queries satisfies
|F̃i| ≤ 2q for i ∈ {4, 5}, |F̃i| ≤ 4q2 for i ∈ {1, 8}, and |F̃i| ≤ 4q2 + q for i ∈ {2, 3, 6, 7}.

Proof. In the proof for Lemma 25, we proved that |F̃4| ≤ 2q, |F̃5| ≤ 2q.

The queries in F̃i for i ∈ {1, 8} are added by distinguisher queries or if the query is in the
maximal path of an inner node (similarly to the analysis in the proof of Lemma 25, the queries in
positions 1 and 8 in the maximal path of an outer node are defined or pending when the node is
created). There are at most q distinguisher queries and at most 4q2 − q inner nodes by Lemma 25,
therefore each of F̃1 and F̃8 contains at most 4q2 queries.

The queries positions 2, 3, 6 and 7 can become pending or defined for both inner nodes and
outer nodes. There are at most 4q2 non-root nodes and at most q distinguisher queries in each
position, thus the size of F̃i is upper bounded by 4q2 + q for i ∈ {2, 3, 6, 7}.

Lemma 28. We have |Fi| ≤ 2q for i ∈ {4, 5}, |Fi| ≤ 4q2 for i ∈ {1, 8}, and |Fi| ≤ 4q2 + q for
i ∈ {2, 3, 6, 7}. In games G2,G3 and G4, we have |T | ≤ 4q2.

Proof. Since Fi are subsets of F̃i, the upper bounds on |Fi| follow by Lemma 27.

In G2,G3 and G4, procedures CheckP
+ and CheckP− do not add entries to T . Therefore, new

queries are added to T only by distinguisher queries or by simulator queries in MakeNodeReady.
Moreover, if n is an outer node, the permutation query made in MakeNodeReady(n) (if exists)
is the one queried in the call to CheckP+ or CheckP− before n is added (which preexists in T
even before the call occurs). Thus only when n is an inner node does the simulator make new
permutation queries in MakeNodeReady(n). By Lemma 25, the number of inner nodes is at most
4q2− q. The distinguisher queries the permutation oracle at most q times, so the size of T is upper
bounded by (4q2 − q) + q = 4q2.

Lemma 29. Consider an execution of G1. If the simulator calls SimP(x0, x1), we have x1 ∈ F1

and x2 := F1(x1)⊕ x0 ∈ F̃2. Symmetrically, if the simulator calls SimP−1(x8, x9), we have x8 ∈ F8

and x7 := F8(x8)⊕ x9 ∈ F̃7.

15 The call to Adapt(3, x3, y3) may define (3, x3) or may abort; in both cases n′ cannot be created after the call.
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Proof. First consider the first statement. The simulator queries SimP only in procedures CheckP−

and MakeNodeReady.

If the query to SimP is made in a call to CheckP−, we can see from the pseudocode that x1 and
x2 equals the first two arguments of the call. CheckP− is only called by FindNewChildren(n) (via
Trigger) when the origin of n is 8 or 2. If the origin is 2, x1 ∈ F1 and (2, x2) = n.end (so x2 ∈ F̃2 by
Lemma 6); if the origin is 8, we must have x1 ∈ F1 and x2 ∈ F2 by observing the FindNewChildren
procedure.

If the query to SimP is made in a call to MakeNodeReady(n), then the origin of n must be 1,
2, 5 or 6 so that Prev is used. If the origin of n is 1, Prev(i, xi, xi+1) is never called with i = 0
and SimP is never called. If the origin is 2, then the call to SimP is exactly the same as the call
in CheckP− right before the node is created (and the result has been proved for this case). If the
origin is 5 or 6, MakeNodeReady(n) calls Prev and make queries in positions 2 and 1 before the
permutation query is made in the next Prev call. By the time the permutation query is called, both
F(2, x2) and F(1, x1) have been called and thus both queries are defined.

For the second statement, SimP−1 is called by CheckP+, MakeNodeReady and PrepareTree.
The first two cases are symmetric to the first statement. For the call in PrepareTree, we can observe
that right before SimP−1(x8, x9) is called, (7, x7) and (8, x8) are defined in the two calls to ReadTape
made by PrepareTree.

The next lemma upper bounds the query complexity of the simulator (in G1).

Theorem 30. In the simulated world G1, the simulator calls each of P and P−1 for at most
16q4 + 4q3 times.

Proof. The simulator calls P and P−1 via the wrapper functions SimP and SimP−1 respectively.
The functions maintain tables Tsim and T−1

sim, consisting of previously made permutation queries.
When SimP (resp. SimP−1) is called, they first check whether the query already exists in the tables;
if so, the table entry is directly returned without actually calling P (P−1). Therefore, P (P−1) is
queried only when SimP (SimP−1) receives a new query for the first time, and we only need to
upper bound the number of distinct queries to SimP and SimP−1.

Again we only give a proof for SimP, and the proof for SimP−1 is symmetric. By Lemma 29,
if the simulator calls SimP(x0, x1), we have x1 ∈ F1 and x2 := F1(x1) ⊕ x0 ∈ F̃2 by the end of the
execution. Note that each pair of x1 and x2 determines a unique query (F1(x1)⊕x2, x1). Thus, the
number of distinct queries to SimP is at most

|F1 × F̃2| = |F1| · |F̃2| ≤ (4q2) · (4q2 + q) = 16q4 + 4q3

where the inequality is due to Lemmas 27 and 28.

Lemma 31. The number of root nodes created in an execution is upper bounded by 24q2 + 8q.

Proof. Root nodes immediately become ready after being created. By Lemma 7, each root node has
a distinct end (i, xi) which is in the set F̃i. Therefore, the number of root nodes is upper bounded
by the sum of sizes of F̃i, which is at most 24q2 + 8q by Lemma 27.

Finally we upper bound the time complexity of the simulator.

Theorem 32. The running time of the simulator in G1 is O(q10).
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Proof. Note that most procedures in the pseudocode runs in constant time without making calls
to other procedures, thus can be treated as a single command. We only need to upper bound the
running time of the procedures with loops and those that call other procedures. Unless otherwise
specified, the following discussion considers the running time inside a procedure, i.e., the running
time of the called procedures (that are not constant-time) is not included in the running time of
the caller.

First consider the procedures that are called at most once per node, including procedures
AddChild, MakeNodeReady, SampleTree, PrepareTree and AdaptNode. AdaptTree is called once
for each tree (i.e., each root node). Next and Prev are called in MakeNodeReady for a constant
number of times. F is called once in each call to Next or Prev, and at most 8q times by the
distinguisher. NewTree is only called in F, and IsPending is called in F and MakeNodeReady. By
Lemmas 26 and 31, there are at most 4q2 non-root nodes and at most 24q2 + 8q root nodes, thus
each of these procedures is called O(q2) times.

The running time of the above procedures are also related to the number of nodes. The loops in
IsPending, SampleTree, AdaptTree, and AdaptNode iterates over a subset of all nodes, whose size
is at most O(q2). The other procedures run in constant time. Therefore, the total running time of
the aforementioned procedures is O(q2) ·O(q2) = O(q4).

Now consider a call to GrowTree(root) where root is the root of a tree that has τ nodes after
GrowTree returns. GrowTree repeatedly calls GrowTreeOnce to add newly triggered nodes into the
current tree, until no change is made in an iteration. At most τ − 1 calls can add new nodes to the
tree, therefore GrowTreeOnce(root) is called at most τ times. GrowTreeOnce is called recursively
on every node in the tree, and calls FindNewChildren on each node. Therefore, FindNewChildren
is called at most τ times in each iteration, and thus a total of τ2 times in GrowTree(root).

The procedure FindNewChildren iterates through two tables. By Lemma 28, the number of
pairs in the tables is at most (4q2 + q)2 < 25q4, which is the number of times Trigger is called.
Equivalent runs in constant time and InChildren runs in O(q2) time (the node has at most O(q2)
children by Lemma 26). Thus the total running time of the life cycle of FindNewChildren is at
most O(q6), including the called procedures.

By Lemmas 26 and 31, the total number of nodes in the trees is at most 4q2+24q2+8q = O(q2),
i.e.,

∑

τ = O(q2). The time complexity the GrowTree cycle is dominated by the the running time
of FindNewChildren, which is

(

∑

τ2
)

·O(q6) ≤
(

∑

τ
)2
·O(q6) =

(

O
(

q2
))2
· O(q6) = O(q10).

In conclusion, the time complexity of the simulator in G1 is O(q10).

The last theorem upper bounds the running time of our simulator as programmed in our pseudocode.
However, it is possible to significantly speed up the tree-growing procedures by using hash tables
instead of tree traversals. In particular, we can improve the running time of the simulator to O(q4)
at the cost of spending O(q4) extra space to store the hash tables.

For the following modified analysis, we assume that hash tables can be accessed with constant
time, just like the tables Fi and T . In a real world implementation, the overhead of the tables is at
most logarithmic.

Theorem 33. The simulator of game G1 can be implemented to run in time O(q4).
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Proof Sketch. Recall that every position i ∈ [8] is at the endpoint of a unique detect zone. For
this proof, the two other positions in the detect zone will be called the trigger positions of i. For
example, the trigger positions of 1 are 7 and 8, and so on.

We can optimize the simulator as follows, while keeping an equivalent functionality:

– For each position i ∈ [8], we maintain a set Pendingi containing the values xi such that (i, xi)
is a pending query.

– For each position i ∈ [8], we maintain a hash table Triggeri that maps a n-bit string xi to a
stack,16 such that if (i, xi) is a pending query then Triggeri(xi) contains the set of triggers for
(i, xi).

– The procedure FindNewChildren(node) with node.end = (i, xi) doesn’t iterate through all pairs
of defined queries in the trigger positions of i; instead, it empties Triggeri(xi) and calls Trigger
with these values only.

– The procedure Trigger does not call CheckP+, CheckP−, Equivalent or InChildren, but creates
the child without checking anything.

The correctness follows by the assumption that Triggeri(xi) contains exactly the triggers for (i, xi)
at all points in time such that (i, xi) is a pending query. The latter assumption will be ensured by
the following properties, maintained throughout an execution: (1) before a query (i, xi) becomes
pending, Triggeri(xi) is empty; (2) when a query (i, xi) becomes pending, all of (i, xi)’s triggers are
pushed onto Triggeri(xi); (3) when a query becomes defined, any new triggers involving this query
are pushed onto the relevant stacks; (4) when a non-root node is created, the trigger responsible
for creating the node is no longer in the stack.

We give more details about how the hash tables and stacks are updated. The tables Pendingi
are modified whenever the set of ready nodes N is modified, which costs O(q2) time since there are
at most O(q2) nodes by Lemmas 26, 31.

The stack Triggeri(xi) is initialized when the query (i, xi) becomes pending. This can be done
in time O(q2) if (i, xi) is adjacent to one of i’s trigger positions. For example, if i = 2, then the
simulator checks all x1 ∈ F1, queries P(x0, x1) = (x8, x9) for x0 = F1(x1)⊕ x2, and pushes (x8, x1)
onto the stack only if x8 ∈ F8. However, if i = 1 (or i = 8), the simulator has to check all pairs of
(x7, x8), which takes O(q4) time.

We can reduce this cost by additionally maintaining two hash tables:

– For i ∈ {1, 8}, a hash table Permi maps a value xi to a stack of pairs, where Perm1(x1) contains all
pairs (x7, x8) such that x7 ∈ F7, x8 ∈ F8 and such that P(x8, x9) = (∗, x1) for x9 = x7⊕F8(x8),
and where Perm8(x8) contains all pairs (x1, x2) such that x1 ∈ F1, x2 ∈ F2 and such that
P(x0, x1) = (x8, ∗) for x0 = F1(x1)⊕ x2.

The stacks are only updated when a query in position 1, 2, 7 or 8 are defined, and each update
requires going through all defined queries in one position, taking O(q2) time. At most O(q2) queries
are defined, and the total cost of the tables is O(q4).

With these tables, when (1, x1) becomes pending, the simulator can empty the stack Perm1(x1)
and check for triggers.17 Since the sum of the sizes of the lists is at most

|F7| · |F8| ≤ O(q4),

16 Initially, the table maps everything to null-value. A stack Triggeri(xi) is created when Triggeri(xi) is called for the
first time. Therefore the space consumption is due to the sizes of the stacks, and unused stacks will not take up
space. This is also how we implement the other mappings in the proof.

17 At most one of the entries is not a trigger, i.e., if (1, x1) is the end of a non-root node n, the pair contained by the
maximal path of n is not a trigger.
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the total time for initializing Trigger1 is O(q4). The same bound can be proved for Trigger8.

When a query (h, xh) becomes defined (either in ReadTape or in Adapt), the stack Triggeri
must be updated for every i such that h is a trigger position of i. If the trigger positions of i are
adjacent (i.e., i 6= 2, 7), the update is easy: for example, if (2, x2) becomes defined, the simulator
checks all x1 ∈ F1 and computes x8 = Val−(1, x1, x2, 8); if (8, x8) is pending and (1, x1, x2) is not
in the maximal path of n (with n.end = (8, x8)), we push (x1, x2) onto Trigger8(x8). (Note that we
only need to check that the trigger is not contained in the maximal path of the node; no child can
be equivalent since the query has just been defined.)

However, the trigger positions of 2 (and 7) are 1 and 8, which are not adjacent and cannot be
updated using this näıve approach. For these positions we need more hash tables TrigHelperi:

– For i ∈ {1, 8}, we maintain a hash table TrigHelperi that maps a value xi to a stack of pairs, where
TrigHelper8(x8) contains all pairs (x1, x2) such that x1 ∈ F1, x2 ∈ F̃2 and P(F1(x1)⊕ x2, x1) =
(x8, ∗), and where TrigHelper1(x1) contains all pairs (x7, x8) such that x8 ∈ F8, x7 ∈ F̃7 and
P(x8, x7 ⊕ F8(x8)) = (∗, x1).

The stacks TrigHelper8 are updated each time a query in position 2 becomes pending or a query in
position 1 becomes defined, and symmetrically for the stacks TrigHelper1. The cost for every such
update is O(q2) as before.

Now we describe how triggers for pending queries in position 2 are updated; it is symmetric for
pending queries in position 7. When (2, x2) becomes pending, the simulator scans all pairs of defined
queries in positions 1 and 8, adding triggers for (2, x2) to Trigger2(x2). (It also updates TrigHelper8
and performs the other jobs described before.) Whenever a query in position 1 becomes defined, the
simulator updates Trigger2(x2) for all x2 ∈ Pending2 by checking whether P(F1(x1)⊕x2, x1) = (x8, ∗)
for some x8 ∈ F8; if so, (x8, x1) is pushed onto Trigger2(x2). On the other hand, when a query in
position 8 becomes defined, the simulator checks whether TrigHelper8(x8) is nonempty; if so, the
entries are “translated” to entries in Trigger2(x2). More formally, when (8, x8) is defined, for each
entry (x1, x2) ∈ TrigHelper8(x8), an entry (x8, x1) is pushed onto Trigger2(x2).

We note that the stacks Triggeri(xi) are also modified by FindNewChildren: as mentioned before,
when FindNewChildren creates a node using a trigger, the trigger is popped from Triggeri(xi).

When a query becomes pending or defined, the cost of updating all of the stacks is O(q2). Since
at most O(q2) queries become pending or defined throughout the execution, and combining other
upper bounds, the total cost of maintaining the stacks is at most O(q4).

As proved in Theorem 32, the running time of the procedures outside GrowTree is O(q4). The
running time inside GrowTree is dominated by FindNewChildren. For the improved version, the
running time of FindNewChildren is constant for each call plus a constant for each triggered path.
Recall that FindNewChildren is called O(q4) (proved in Theorem 32) times and the number of
triggered paths is O(q2). Therefore, the total running time of the optimized simulator is O(q4).

Although the optimized simulator makes some additional permutation queries, each permutation
query still always corresponds to some pair x1 ∈ F1, x2 ∈ F̃2 or to some pair x7 ∈ F̃7, x8 ∈ F8, so
the same query complexity bound (cf. Theorem 30) holds as before.

5.2 Transition from G1 to G2

Modifications in G2. The game G2 differs from G1 in two places: the procedures CheckP+ and
CheckP− and the procedures Val+ and Val−. We will use the previous convention and call the
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version of a procedure used in G1 the G1-version of the procedure, while the version used in G2 is
called the G2-version of the procedure. We note that the G2-version of CheckP+, CheckP−, Val+

and Val− are also used in games G3 and G4.

In the G2-version of CheckP+ and CheckP−, the simulator checks whether the permutation
query already exists in the table T ; if not, false is returned without calling SimP or SimP−1.
Therefore, if a permutation query is issued in CheckP+ or CheckP−, it must already exist in the
table T , i.e., the query has been issued by the distinguisher or by the simulator before.

Note that the CheckP+ and CheckP− are called by FindNewChildren and are responsible for
determining whether a triple of queries are in the same path. The G2-version may return false
negatives if the permutation query in the path hasn’t been made, and the path won’t be triggered
in G2. We will prove that such a path is unlikely to be triggered in G1, either.

We say two executions of G1 and G2 are identical if every procedure call returns the same value
in the two executions. Since the distinguisher is deterministic and it only interacts with procedures
F, P, and P−1, it issues the same queries and outputs the same value in identical executions.

Lemma 34. We have

∆D(G1,G2) ≤ 500q6/2n.

Proof. This proof uses the divergence technique of Lemma 40 in [12].

Note that if q ≥ 2n−2 the bound trivially holds, so we can assume q ≤ 2n−2.

Consider executions of G1 and G2 with the same random tapes f1, . . . , f8, p.

We say the two executions diverge in a call to CheckP+(x7, x8, x1) (resp. CheckP
−(x1, x2, x8)),

if in the execution of G2, we have p
−1(x8, x9) = (∗, x1) and (x8, x9) /∈ T−1 (resp. p(x0, x1) = (x8, ∗)

and (x0, x1) /∈ T ). Note that x9 and x0 are defined as in the pseudocode of CheckP+ and CheckP−,
i.e., according to the Feistel construction. It is easy to check that a call to CheckP+ or CheckP−

returns the same answer in the two executions, unless the two executions diverge in this call.

Now we argue that two executions are identical if they don’t diverge. We do this by induction
on the number of function calls. Firstly note that the only procedures to use the tables T , T−1

and/or Tsim, T
−1
sim are CheckP+, CheckP− P, P−1, PSim, PSim−1, Val+ and Val−. CheckP+ and

CheckP− always return the same answer as long as divergence doesn’t occur, as discussed above.
The procedures P, P−1, PSim, PSim−1 always return the same values as well, because the value
returned by these procedures is in any case compatible with p. Lastly the table entries read by Val+

and Val− in G1 and G2 must exist by Lemma 21, and are in both cases compatible with the tape p
by Lemma 4, so Val+ and Val− behave identically as well. Moreover CheckP+, CheckP−, P, P−1,
PSim, PSim−1, Val+ and Val− do not make changes to other global variables besides the tables T ,
T−1, Tsim and T−1

sim, so the changes to these tables do not propagate via side-effects. Hence, two
executions are identical if they do not diverge.

Next we upper bound the probability that the two executions diverge. The probability is taken
over the choice of the random tapes. Note that divergence is well defined in G2 alone: An execution
of G2 diverges if and only if in a call to CheckP+ we have (x8, x9) /∈ T−1 and p−1(x8, x9) = (∗, x1),
or in a call to CheckP− we have (x0, x1) /∈ T and p(x0, x1) = (x8, ∗). We compute the probability
of the above event in G2.

Due to symmetry of CheckP+ and CheckP−, we only discuss CheckP− below, and the same
bound applies for CheckP+. We will upper bound the probability that divergence occurs in each
call to CheckP−, and then apply a union bound.

If (x0, x1) ∈ T , divergence won’t occur. Otherwise if (x0, x1) /∈ T , the tape entry p(x0, x1)
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hasn’t been read in the execution, because p is only read in P and P−1 and an entry is added to T
immediately after it is read. The value of p(x0, x1) is uniformly distributed over {0, 1}2n\{T (x′0, x

′
1) :

x′0, x
′
1 ∈ {0, 1}

n}. By Lemma 28, the size of T is at most 4q2, so p(x0, x1) is distributed over at
least 22n − 4q2 values. There are 2n values of the form (x8, ∗), and p(x0, x1) equals one of them
with probability at most 2n/(22n − 4q2). In both cases, the probability that divergence occurs in
the CheckP− call is upper bounded by 2n/(22n − 4q2).

CheckP− is only called in FindNewChildren, and its arguments correspond to three queries that
are pending or defined in positions 1, 2, 8. By Lemma 27, the number of pending or defined queries
in each of these positions is at most 4q2 + q, and CheckP− is called on at most (4q2 + q)3 distinct
arguments.

If CheckP− is called multiple times with the same argument (x1, x2, x8), divergence either occurs
for the first of these calls or else occurs for none of these calls. Thus we only need to consider the
probability of divergence in the first call to CheckP− with a given argument. Using a union bound
over the set of all distinct arguments with which CheckP− is called, the probability that divergence
occurs is at most

(4q2 + q)3 ·
2n

22n − 4q2
≤ 125q6 ·

2n

22n − 22n/4
≤

250q6

2n

where the first inequality is due to the assumption mentioned at the start of the proof that q ≤ 2n−2.

The same upper bound holds for the probability that divergence occurs in a call to CheckP+.
With a union bound, divergence occurs in an execution of G2 with probability at most 500q6/2n.

The distinguisher D outputs the same value in identical executions, so the probability that D
has different outputs in the two executions is upper bounded by 500q6/2n, which also upper bounds
the advantage of D in distinguishing G1 and G2.

5.3 Transition from G2 to G3

Modifications in G3. Compared to G2, the calls to procedures CheckBadP, CheckBadR, Set-
ToPrep and CheckBadA are added in G3. These procedures make no modification to the tables;
they only cause the simulator to abort in certain situations. Thus a non-aborted execution of G3

is identical to the G2-execution with the same random tapes.

There is no need to compute ∆D(G2,G3); instead, we prove that the advantage of D in distin-
guishing between G3 and G5 is greater than or equal to that between G2 and G5.

Lemma 35. We have

∆D(G2,G5) ≤ ∆D(G3,G5).

Proof. By the definition of advantage in equation (4), we have

∆D(Gi,G5) = Pr
Gi

[DF,P,P−1
= 1]− Pr

G5

[DF,P,P−1
= 1].

Thus we only need to prove that D outputs 1 in G3 with at least as high a probability as in
G2. This trivially follows from the observation that the only difference between G3 and G2 is
that additional abort conditions are added in G3, and that the distinguisher outputs 1 when the
simulator aborts.
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5.4 Bounding the Abort Probability in G3

Categorizing the Aborts. The simulator in G3 aborts in many conditions. We can categorize
the aborts into two classes: those that occur in the Assert procedure, and those that occur in
procedures CheckBadP, CheckBadR, and CheckBadA. As will be seen in the proof, the Assert
procedure never aborts in G3. On the other hand, CheckBadP, CheckBadR and CheckBadA will
abort with small probability.

Let BadP, BadR, and BadA denote the events that the simulator aborts in CheckBadP, Check-
BadR, and CheckBadA respectively. These three events are collectively referred to as the bad events.
CheckBadP is called in P and P−1, CheckBadR is called in ReadTape, and CheckBadA is called
right before the nodes are adapted in NewTree. A more detailed description of each bad event will
be given later.

This section consists of two parts. We first upper bound the probability of bad events. Then we
prove that in an execution of G3, the simulator does not abort inside of calls to Assert.

5.4.1 Bounding Bad Events

We start by making some definitions. In this section, we say a query is active if it is pending or
defined. A 2chain is active if it is both left active and right active as defined below:

Definition 10. A 2chain (i, xi, xi+1) is left active if i ≥ 1 and the query (i, xi) is active, or if i = 0
and (xi, xi+1) ∈ T . Symmetrically, the 2chain is right active if i ≤ 7 and the query (i + 1, xi+1) is
active, or if i = 8 and (xi, xi+1) ∈ T−1.

We note that ActiveQueries returns not only the active queries, but also the queries in the set
ToPrep. The reason will be clear after seeing the definition of the event BadRPrepare. If we treat
the queries in BadRPrepare as active, the procedures IsLeftActive, IsRightActive, and IsActive in
the pseudocode check whether a 2chain is left active, right active, and active, respectively.

Incidences Between 2Chains and Queries. The following definitions involve the procedures
Val+ and Val−, which are defined in the pseudocode. Recall that we are using the G2-version of
the procedures.

The answers of Val+ and Val− are time dependent: ⊥ may be returned if certain queries in the
path hasn’t been defined. Thus the following definitions are also time dependent.

The notion of a query being “incident” with a 2chain is defined below, which will be used in
the bad events.

Definition 11. A query (i, xi) is incident with a 2chain (j, xj , xj+1) if i /∈ {j, j + 1} and if either
Val+(j, xj , xj+1, i) = xi or Val

−(j, xj , xj+1, i) = xi.

Lemma 36. A query (i, xi) is incident with an active 2chain if and only if at least one of the
following is true:

– i ≥ 2 and there exists an active 2chain (i−2, xi−2, xi−1) such that Val+(i−2, xi−2, xi−1, i) = xi;

– i ∈ {0, 1} and there exists an active 2chain (8, x8, x9) such that Val+(8, x8, x9, i) = xi;

– i ≤ 7 and there exists an active 2chain (i+1, xi+1, xi+2) such that Val−(i−2, xi−2, xi−1, i) = xi;

– i ∈ {8, 9} and there exists an active 2chain (0, x0, x1) such that Val−(0, x0, x1, i) = xi.
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Proof. The “if” direction is trivial since the query (i, xi) is incident with the active 2chain in each
case.

For the “only if” direction, suppose the query is incident with an active 2chain (k, x′k, x
′
k+1)

where i /∈ {k, k + 1}. We assume Val+(k, x′k, x
′
k+1, i) = xi, and the other case is symmetric.

From the implementation of Val+, we observe that there exists a partial path {x′h}
i
h=k such

that x′i = xi, where x′h equals the value of the variable xh in the pseudocode.
If i ≥ 2, since i /∈ {k, k + 1}, x′i−2 and x′i−1 exist in the partial path. If k = i − 2, the 2chain

(i− 2, x′i−2, x
′
i−1) = (k, x′k, x

′
k+1) and is active by assumption. Otherwise, neither i− 1 nor i− 2 is

an endpoint of the partial path, which implies that x′i−1 ∈ Fi−1 and that x′i−2 ∈ Fi−2 if i > 2 and
(x′i−2, x

′
i−1) ∈ T if i = 2. Thus the 2chain is active. Moreover, Val+(i− 2, x′i−2, x

′
i−1, i) = x′i = xi.

If i ∈ {0, 1}, we have k > i. Similarly one can see that the 2chain (8, x′8, x
′
9) is active by looking

separately at the cases k = 8 and k < 8, and that Val+(8, x′8, x
′
9, i) = xi.

Number of Active 2chains. In order to upper bound the probability of bad events, we need to
upper bound the number of active 2chains.

Recall F̃i is the set of active queries in position i. By Definition 10, if a 2chain (i, xi, xi+1) is
left active and i ≥ 1, we must have xi ∈ F̃i; if (i, xi, xi+1) is right active and i ≤ 7, xi+1 ∈ F̃i+1.

We extend the definition of sets F̃i for i = 0, 9 as follows: F̃0 is the set of values x0 such that
(0, x0, x1) is left active for some x1, while F̃9 is the set values of x9 such that (8, x8, x9) is right
active for some x8. Or, equivalently:

F̃0 := {x0 : ∃x1 s.t. T (x0, x1) 6= ⊥}, and

F̃9 := {x9 : ∃x8 s.t. T−1(x8, x9) 6= ⊥}.

In particular we have |F̃0| ≤ |T | and |F̃9| ≤ |T |.

Lemma 37. If a 2chain (i, xi, xi+1) is left active, xi ∈ F̃i; if it is right active, xi+1 ∈ F̃i+1.

Proof. Recall that F̃i is the set of active queries (i, xi) for 1 ≤ i ≤ 8. This lemma follows from the
definition of left active, right active, and from the definition of the sets F̃i for 0 ≤ i ≤ 9.

We note that Lemma 37 is not if-and-only-if; for example, if x0, x1 are values such that x0 ∈ F̃0

and T (x0, x1) = ⊥, then (0, x0, x1) is not left active. (However, the first part of Lemma 37 is
if-and-only-if for 1 ≤ i ≤ 8, and symmetrically, the second part is if-and-only-if for 0 ≤ i ≤ 7.)

Lemma 38. We have |F̃i| ≤ 4q2 for i ∈ {0, 9}, and |F̃i| ≤ 4q2 + q for all F̃i.

Proof. By Lemma 28, we have |F̃0| ≤ |T | ≤ 4q2 and |F̃9| ≤ |T | ≤ 4q2. The second statement then
follows by Lemma 27.

Definition 12. Let Ci denote the set of xi such that (i, xi) is incident with an active 2chain.

Lemma 39. We have |Ci| ≤ 2(4q2 + q)2, i.e., the number of queries in position i that are incident
with an active 2chain is at most 2(4q2 + q)2.

Proof. By Lemma 36, a query (i, xi) is incident with an active 2chain only if there exists an active
2chain (j, xj , xj+1) for

j =

{

i− 2 if i ≥ 2

8 if i ≤ 1
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such that Val+(j, xj , xj+1, i) = xi, or if there exists an active 2chain (j, xj , xj+1) for

j =

{

i+ 1 if i ≤ 7

0 if i ≥ 8

such that Val−(j, xj , xj+1, i) = xi. Moreover, the total number of active 2chains in each position is
at most (4q2 + q)2 by Lemma 38.

The explicit definitions of the bad events BadP, BadR and BadA given below in Definitions 13,
15 and 16 are equivalent to the abort conditions that are checked in the procedures CheckBadP,
CheckBadR and CheckBadA respectively.

Bad Permutation. The procedure CheckBadP is called in P and P−1. BadP is the event that
a new permutation query “hits” a query in position 1 or 8 (depending on the direction of the
permutation query) that is active or is incident with an active 2chain:

Definition 13. BadP occurs in P(x0, x1) if at the beginning of the procedure, we have (x0, x1) /∈ T
and for (x8, x9) = p(x0, x1), either x8 ∈ F̃8 or x8 ∈ C8. Similarly, BadP occurs in P−1(x8, x9) if at
the beginning of the procedure, (x8, x9) /∈ T−1 and for (x0, x1) = p−1(x8, x9), either x1 ∈ F̃1 or
x1 ∈ C1.

Lemma 40. The probability that BadP occurs in an execution of G3 is at most 432q6/2n.

Proof. As in Lemma 34 we can assume that q ≤ 2n−2 since the statement trivially holds otherwise.
When a query P(x0, x1) is issued with (x0, x1) /∈ T , the tape entry p(x0, x1) has not been read.

Since p encodes a permutation, and since whenever an entry of p is read it is added to the table T ,
the value of p(x0, x1) is uniformly distributed on the 2n-bit strings that are not in T . By Lemma 28
we have |T | ≤ 4q2, thus p(x0, x1) is distributed on at least 22n−4q2 values, and each value is chosen
with probability at most 1/(22n − 4q2).

BadP occurs in P(x0, x1) only if x8 ∈ F̃8 ∪ C8 where x8 is the first half of the tape entry
p(x0, x1) = (x8, x9). By Lemma 28 we have |F8| ≤ 4q2, and by Lemma 39 we have |C8| ≤ 2(4q2+q)2.
There are at most 2n possible values for x9, therefore BadP occurs when (x8, x9) equals one of the
at most (4q2+2(4q2+ q)2) · 2n pairs. The probability of each pair is at most 1/(22n− 4q2), so BadP

occurs in P(x0, x1) with probability at most 2n · (4q2 + 2(4q2 + q)2)/(22n − 4q2).
The same bound can be proved symmetrically for a call to P−1(x8, x9) with (x8, x9) /∈ T−1.
Each call to P(x0, x1) with (x0, x1) /∈ T or to P−1(x8, x9) with (x8, x9) /∈ T−1 adds an entry to

the table T . By Lemma 28, the size of T is at most 4q2, so the total number of such calls is upper
bounded by 4q2. With a union bound, the probability that BadP occurs in at least one of these
calls is at most

4q2 ·
2n · (4q2 + 2(4q2 + q)2)

22n − 4q2
≤

216q6

2n − 4q2/2n
.

Since q ≤ 2n−2, 4q2/2n < 2n−1 and 216q6/(2n − 4q2/2n) < 432q6/2n.

Type of Trees. At this point it will be useful to establish some terminology for distinguishing
trees that have nodes with different origin/terminal. Indeed:

Lemma 41. A ready node with origin 1 (resp. 2, 3, 4, 5, 6, 7, 8) has terminal 4 (resp. 7, 6, 1, 8,
3, 2, 5).
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Proof. This is obvious from MakeNodeReady.

Moreover, recall that a non-root node’s origin is the terminal of its parent (Lemma 9). In particular,
it follows from Lemma 41 that the terminal of r determines the origins and terminals of nodes in
a tree rooted at r.

Definition 14. A tree is called a (1, 4)-tree if its root has terminal 1 or 4; a tree is a (2, 7)-tree if
its root has terminal 2 or 7; a tree is a (3, 6)-tree if its root has terminal 3 or 6; a tree is a (5, 8)-tree
if its root has terminal 5 or 8.

By the above remarks, every ready node of a (i, j)-tree has terminal i or j.

Bad Read. The procedure CheckBadR is called in ReadTape, before the new query is written to
the table. We emphasize that the new entry has not been added to the tables at this moment. The
event BadR defined below occurs if and only if CheckBadR aborts.

Note that the set ToPrep is maintained by procedures SetToPrep and CheckBadR during Pre-
pareTree(r) if r is the root of a (2, 7)-tree. The set contains undefined queries that are about to be
defined in PrepareTree(n) for some node n in the tree; its size decreases as ReadTape is called in
PrepareTree, and when PrepareTree(r) returns ToPrep is empty.

Definition 15. Let ReadTape be called with argument (i, xi) such that xi /∈ Fi. Then we define
the following four events:

– BadRHit is the event that there exists xi−1 and xi+1 such that xi−1 ⊕ xi+1 = fi(xi), such that
the 2chain (i− 1, xi−1, xi) is left active, and such that the 2chain (i, xi, xi+1) is right active.

– BadREqual is the event that there exists x′i ∈ Fi such that fi(xi) = Fi(x
′
i).

– BadRCollide is the event that there exists xi−1 such that the 2chain (i− 1, xi−1, xi) is left active
and the query (i + 1, xi−1 ⊕ fi(xi)) is incident with an active 2chain, or that there exists xi+1

such that the 2chain (i, xi, xi+1) is right active and the query (i − 1, fi(xi) ⊕ xi+1) is incident
with an active 2chain.

– Suppose ReadTape(i, xi) is called in PrepareTree(n) where n is a node in a (2, 7)-tree. If i = 3,
BadRPrepare is the event that there exists (6, x′6) ∈ ToPrep such that u2⊕ f3(x3) = F5(u5)⊕x′6
for some u2 ∈ F̃2 and u5 ∈ F5. Symmetrically if i = 6, BadRPrepare is the event that there
exists (3, x′3) ∈ ToPrep such that f6(x6)⊕ u7 = x′3 ⊕ F4(u4) for some u4 ∈ F4 and u7 ∈ F̃7.

Moreover, we let BadR = BadRHit ∨ BadREqual ∨ BadRCollide ∨ BadRPrepare.

Lemma 42. BadRHit occurs in a call to ReadTape(i, xi) with probability at most (4q2 + q)2/2n.

Proof. BadRHit only occurs if xi /∈ Fi, in which case the value of fi(xi) is uniformly distributed
over {0, 1}n.

By Lemma 37, BadRHit occurs only if there exists xi−1 ∈ F̃i−1 and xi+1 ∈ F̃i+1 such that
fi(xi) = xi−1 ⊕ xi+1, i.e., only if fi(xi) ∈ F̃i−1 ⊕ F̃i+1. By Lemma 38, we have

|F̃i−1 ⊕ F̃i+1| ≤ |F̃i−1| · |F̃i+1| ≤ (4q2 + q)2.

Therefore, the probability that BadRHit occurs is at most (4q2 + q)2/2n.

Lemma 43. BadREqual occurs in a call to ReadTape(i, xi) with probability at most (4q2 + q)/2n.
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Proof. By Lemma 28, we have |Fi| ≤ 4q2+ q. Since xi /∈ Fi by the assertion in ReadTape, the value
of fi(xi) is uniformly distributed and is independent of existing queries in Fi. The probability that
fi(xi) equals Fi(x

′
i) for x

′
i ∈ Fi is at most |Fi|/2

n ≤ (4q2 + q)/2n.

The event BadRPrepare is similar to BadRCollide; in fact, if we include the queries in ToPrep
in the set of “active queries”, then BadRCollide ∨ BadRPrepare = BadRCollide. (This is exactly
how BadRPrepare is detected in our pseudocode: the procedure ActiveQueries returns not only
active queries but also queries in ToPrep. We can check that this modification does not affect the
correctness of other bad events, since ToPrep is non-empty only during PrepareTree of (2, 7)-trees.)

Lemma 44. The probability that BadRCollide or BadRPrepare occurs in a call to ReadTape(i, xi)
is at most 5(4q2 + q)3/2n.

Proof. BadRCollide and BadRPrepare only occur if xi /∈ Fi, in which case the value of fi(xi) is
uniformly distributed over {0, 1}n.

Consider the first part of BadRCollide. If (i−1, xi−1, xi) is left active, we must have xi−1 ∈ F̃i−1

by Lemma 37. We also require that xi+1 := xi−1 ⊕ fi(xi) ∈ Ci+1. Therefore, fi(xi) = xi−1 ⊕ xi+1 ∈
F̃i−1 ⊕ Ci+1. By Lemmas 38 and 39, we have

|F̃i−1 ⊕ Ci+1| ≤ (4q2 + q) · 2(4q2 + q)2 = 2(4q2 + q)3.

We can interpret BadRPrepare in a similar way: Let (3, x3) be defined during PrepareTree(n)
and let r be the root of the tree containing n. Recall that ToPrep is the set of queries that will
be defined during PrepareTree(r) (but hasn’t been defined). The event BadRPrepare occurs if there
exists u2 ∈ F̃2, u5 ∈ F5 and (6, x′6) ∈ ToPrep such that f3(x3) = u2⊕F5(u5)⊕x′6. The nodes in the
tree are all outer nodes, and by Lemma 16 the tree contains at most q nodes. Each node contributes
at most one query in position 6 to the set ToPrep, so there are at most q different possible values
for x′6. By Lemma 27 we have |F̃5| ≤ 2q and |F̃2| ≤ 4q2 + q. Therefore BadRPrepare occurs if f3(x3)
equals one of the (at most) q · 2q · (4q2 + q) = 2q2(4q2 + q) values.

Symmetrically the bounds can be proved for the second part of BadRCollide and BadRPrepare.
Note that BadRPrepare occurs with probability 0 for ReadTape calls not issued by PrepareTree(n),
thus the upper bound applies to all ReadTape calls. The two events occur for at most

2 · (2(4q2 + q)3 + 2q2(4q2 + q)) ≤ 5(4q2 + q)3

values of fi(xi), which are chosen with probability at most 5(4q2 + q)3/2n.

Lemma 45. In an execution of G3, BadR occurs with probability at most 26200q8/2n.

Proof. Every time ReadTape(i, xi) is called with xi /∈ Fi, an entry is added to the tables. Therefore
the number of such calls is at most

∑

i|Fi| ≤ 8q+32q2 ≤ 40q2, where the first inequality is obtained
by Lemma 28.

By Lemmas 42, 43 and 44 and by applying a union bound, the probability that BadRHit,
BadREqual, BadRCollide or BadRPrepare occurs in one of the calls to ReadTape(i, xi) with xi /∈ Fi

is thus upper bounded by

40q2 ·
((4q2 + q)2

2n
+

4q2 + q

2n
+

5(4q2 + q)3

2n

)

≤
26200q8

2n
.
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Properties of G3. Before we give the definition of the last bad event BadA, we show some
properties of executions of G3 that are obtained due to the fact that the simulator aborts when
BadP or BadR occurs. These properties will be used when we upper bound the probability of BadA.
They are also useful for the equivalence of the event BadA and the abortion in CheckBadA.

Lemma 46. Consider an execution of G3. When a query is sampled in PrepareTree(n), it is not
pending or defined, and it is not incident with an active 2chain unless the 2chain is contained by
the maximal path of n.

Proof. The proof relies on the fact that a query sampled in PrepareTree is determined by the
adjacent query that is freshly sampled. If it is already defined or pending when the adjacent query is
sampled, BadRHit occurs and the simulator should have aborted. Moreover, two calls to PrepareTree
will not try to sample the same query, otherwise BadRCollide occurs. Similarly the query is not
incident with an active 2chain, or BadRCollide occurs.

We will showcase the proof for the case where n is a non-root node with n.end = (3, x3). The
proof for other positions is similar.

Let r be the root of the tree containing n. The tree is a (3, 6)-tree, so the queries sampled during
SampleTree(r) (including the sub-calls) are in positions 3 and 6. Recall the convention that (h, xh)
denotes the queries in the maximal path of n, and in particular (7, x7) and (8, x8) are the queries
sampled in PrepareTree(n).

Note that x7 = F6(x6) ⊕ x5, where F6(x6) is sampled in SampleTree(n.parent) and the query
(5, x5) has been defined in MakeNodeReady(n). When ReadTape(6, x6) is called, the query (7, x7)
is not pending or defined, since otherwise BadRHit occurs for the left active 2chain (5, x5, x6).
Furthermore, (7, x7) is not incident with an active 2chain or BadRCollide occurs.

After the call to ReadTape(6, x6), (7, x7) is incident with an active 2chain (5, x5, x6) (and
(i, xi, xi+1) for i = 3, 4); however, the 2chain is in the maximal path of n and is excluded in the
lemma.

Similarly, we have x8 = F7(x7)⊕ x6, where ReadTape(7, x7) has just been called and x6 ∈ F6.
The query (8, x8) is not pending or defined, and isn’t incident with an active 2chain, since otherwise
BadRHit or BadRCollide occurs. After ReadTape(7, x7) returns the query is incident with 2chains
contained in the maximal path of n, which is compatible with the lemma.

We note that ReadTape(8, x8) is called immediately after ReadTape(7, x7), therefore the proof
is done for this case. However, more queries are sampled between the calls to ReadTape(6, x6) and
ReadTape(7, x7), and we need to prove that the result still holds after the changes.

If (7, x7) is pending or defined when PrepareTree(n) is called, it must be sampled in Prepare-
Tree(n′) which is called before PrepareTree(n). Let (h, x′h) denote the queries in the maximal path
of n′. Since the origin of n′ is also 3 or 6, the query (6, x′6) is sampled in SampleTree(n′) (if the origin
is 3) or SampleTree(n′.parent) (if the origin is 6). Moreover, x′5 ∈ F5 before SampleTree(r) is called.
If ReadTape(6, x6) is called after ReadTape(6, x′6), we have f6(x6) ⊕ x5 = x7 = x′7 = F6(x

′
6) ⊕ x′5

where x5, x
′
5 ∈ F5, so BadRCollide occurs in ReadTape(6, x6). Symmetrically if ReadTape(6, x′6) is

called later, BadRCollide occurs in ReadTape(6, x′6).

If (7, x7) is incident with an active 2chain, by Lemma 36 it is incident with an active 2chain
(5, x′5, x

′
6) or (8, x′8, x

′
9). Note that such an active 2chain did not exist when ReadTape(6, x6) is

called. Between the calls ReadTape(6, x6) and PrepareTree(n), no query becomes pending and only
queries in positions 3, 6, 7 or 8 get sampled in SampleTree or PrepareTree. Therefore, if the incident
active 2chain is (5, x′5, x

′
6), ReadTape(6, x

′
6) must be called after ReadTape(6, x6) while (5, x′5) has
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been defined before. However, BadRCollide occurs in ReadTape(6, x′6) since (5, x′5, x
′
6) is left active

and (7, x7) is incident with an active 2chain (5, x5, x6). Similarly, if the active 2chain is (8, x′8, x
′
9),

BadRCollide occurs in the call to ReadTape(8, x′8).

Lemma 47. In an execution of G3, if the origin of a node n is 3 or 6, then the call to SimP−1 in
PrepareTree(n) defines a new permutation query (i.e., the parameter of the call (x8, x9) /∈ T−1).

Proof. Before the call to SimP−1(x8, x9), ReadTape(8, x8) has just been called. If (x8, x9) is already
in T , then BadRHit occurs since (7, x7, x8) is left active and (8, x8, x9) is right active.

Lemma 48. Consider an execution of G3. When a query (i, xi) is adapted in AdaptNode(n) it is
not pending or defined. Moreover, if i = 1, there don’t exist x′8 and x′9 such that (8, x′8, x

′
9) is not

in the maximal path of n and such that T−1(x′8, x
′
9) = (∗, x1).

Proof. If i 6= 1, the query (i, xi) must be adjacent to a freshly sampled query in the maximal path
of n (which is sampled in SampleTree(n) or PrepareTree(n)). Therefore, it can be proved like in
Lemma 46 that the adapted query is not pending or defined when the adjacent query is sampled,
since otherwise BadRHit occurs.

The query can also become defined in another call to AdaptNode. Now we prove that (i, xi) is
not adapted in AdaptNode(n′) for another node n′ 6= n. This is also similar to the counterpart for
PrepareTree.

Let (h, xh) and (h, x′h) denote the queries in the maximal paths of n and n′ respectively, and
assume by contradiction that the adapted queries xi = x′i for i 6= 1. Without loss of generality,
assume i is in the left of the adapt zone (i.e., the adapt zone used by the tree is (i, i + 1)).
Then ReadTape(i − 1, xi−1) is called during SampleTree(n) or PrepareTree(n) (and similarly for
x′i−1 and n′). We assume without loss of generality that ReadTape(i − 1, xi−1) is called before
ReadTape(i − 1, x′i−1). Since both n and n′ are about to be adapted, when ReadTape(i − 1, x′i−1)
is called (i − 2, x′i−2, x

′
i−1) is left active and (i, x′i) = (i, xi) is incident with an active 2chain

(i− 2, xi−2, xi−1). Thus BadRCollide occurs, leading to a contradiction.
Now consider the case i = 1. If (1, x1) is adapted in AdaptNode(n), n’s origin is 3 or 6 and a

permutation query SimP−1(x8, x9) has been made in PrepareTree(n). By Lemma 47 (x8, x9) /∈ T−1

before the call. Since BadP did not occur, (1, x1) is not pending or defined, and there does not exist
(x′8, x

′
9) such that (x′8, x

′
9) 6= (x8, x9) and T−1(x′8, x

′
9) = (∗, x1).

Now prove that (1, x1) is not adapted in AdaptNode(n′) for another node n′ in the same tree.
Let (h, x′h) denote the queries in the maximal path of n′ and assume by contradiction that x1 = x′1.
Without loss of generality, let PrepareTree(n) be called before PrepareTree(n′). Then the entry
T−1(x8, x9) = (∗, x1) exists when SimP−1(x′8, x

′
9) is called. Since (x′8, x

′
9) /∈ T−1 by Lemma 47 and

since p−1(x′8, x
′
9) = (x′0, x

′
1) = (x′0, x1), BadP occurs in P−1(x′8, x

′
9).

The above discussion also proves that no entry of the form (∗, x1) is added to T in Prepare-
Tree(n′). Moreover, no permutation query is defined during AdaptTree, thus T (x0, x1) = (x8, x9)
is the only entry in T that has the form (∗, x1) when AdaptNode(n) is called.

Bad Adapt. The CheckBadA procedure is called once per tree. For a tree with root r, Check-
BadA(r) is called after PrepareTree(r) returns and before AdaptTree(r) is called. At this point, for
every node n in the tree, all queries in the full partial path containing n.id, except the two to be
adapted, are defined. Such a full partial path is a (i+1, i)-partial path where (i, xi) and (i+1, xi+1)
are about to be adapted, and we say it is ready to be adapted.
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Recall that by Lemmas 10 and 19, before SampleTree(r) is called, each node n in the tree is
associated to a (unique) full partial path containing n.id and whose endpoints are the origin and
terminal of the node. The call to SampleTree assigns the values fi(xi) and fj(xj) to Fi(xi), Fj(xj)
where (i, j) are the endpoints of the path, extending the full partial path by one query in each
direction. In the case of a (1, 4)-tree, each node in the tree is associated to a unique (3, 2)-partial
path; in the case of a (5, 8)-tree, each node in the tree is associated to a unique (7, 6)-partial
path. In the aforementioned cases, the paths associated to the nodes are ready to be adapted.
However, in other cases, more queries are sampled by PrepareTree before adaptations occur: for a
(2, 7)-tree, PrepareTree assigns F3(x3) = f3(x3) and F6(x6) = f6(x6); for a (3, 6)-tree, PrepareTree
assigns F7(x7) = f7(x7) and F8(x8) = f8(x8), and calls the permutation query SimP−1(x8, x9).
Then each node in the tree can be associated to a unique (5, 4)- or (2, 1)-partial path in the two
cases respectively. After PrepareTree(r) returns, each node in the tree is associated to a unique
(i+ 1, i)-partial path which is ready to be adapted.

Focusing for concreteness on the case of a (1, 4)-tree, AdaptTree assigns

F2(x2)← x1 ⊕ x3

F3(x3)← x2 ⊕ x4

for each non-root node n, where {xh}
2
h=3 is the (3, 2)-partial path associated to n. (See the proce-

dures AdaptTree, AdaptNode and Adapt.) We say that the queries (2, x2) and (3, x3) are adapted
in the call to AdaptTree. The assignments to F2 and F3 are also called adaptations. Thus, two
adaptations occur per non-root node in the tree.

As mentioned, the procedure CheckBadA(r) is called before any adaptations take place. To
briefly describe this procedure, CheckBadA starts by “gathering information” about all the adap-
tations to take place for the current tree, i.e., two adaptations per non-root node. For this it uses
the Adapt class. The Adapt class has four fields: query, value, left and right.

For example, given a non-root node n in a (1, 4)-tree with associated (3, 2)-partial path {xh}
2
h=3,

and letting

y2 = x1 ⊕ x3

y3 = x2 ⊕ x4

be the future values of F2(x2) and F3(x3) respectively, GetAdapts will create the two instances of
Adapt with the following settings:

(query, value, left, right) = ((2, x2), y2, x1, x4),

(query, value, left, right) = ((3, x3), y3, x1, x4).

These two instances are added to the set A, which contains all the instance of Adapt for the
current tree (A is reset to ∅ at the top of CheckBadA).

In our proof, A refers to the state of this set after GetAdapts(r) returns. Abusing notation a
little, we will write

(i, xi, yi) ∈ A

as a shorthand to mean that there exists some a ∈ A of the form

((i, xi), yi, ∗, ∗)

after GetAdapts returns. We may even omit yi and simply say a query (i, xi) is in A.
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Lemma 49. Assume that GetAdapts(r) has returned. Then for every (i, xi, yi) ∈ A there exists a
unique a ∈ A of the form ((i, xi), ∗, ∗, ∗).

Proof. In the proof of Lemma 48 we showed that two calls AdaptNode(n) and AdaptNode(n′) for
n 6= n′ would not adapt the same query. In particular, we note that the proof still holds even if the
simulator aborts before one of the calls is made (i.e., the queries supposed to be adapted must be
distinct, even in the cases where abortion occurs). Each entry in A corresponds to one query about
to be adapted by a call to AdaptNode. Since each query (i, xi) is adapted at most once, the set A
contains at most one entry of the form ((i, xi), ∗, ∗, ∗).

By Lemma 49 each tuple (i, xi, yi) ∈ A can be uniquely associated to a node in the tree being
adapted, specifically the node n whose associated partial path contains (i, xi). For convenience we
will say that (i, xi, yi) is adapted in n or, equivalently, adapted in the path {xh}, where {xh} is a
shorthand for {xh}

2
h=3 (for (1, 4)-trees), for {xh}

6
h=7 (for (5, 8)-trees), for {xh}

1
h=2 (for (3, 6)-trees)

or for {xh}
4
h=5 (for (2, 7)-trees).

Definition 16. Let r be a root node, and consider the point in the execution after GetAdapts(r)
is called. Then we define the following bad events with respect to the state of the tables at this
point (in particular, before AdaptTree(r) is called):

– BadAHit is the event that for some (i, xi, yi) ∈ A, i 6= 1, there exist x′i−1 ∈ F̃i−1 and x′i+1 ∈ F̃i+1

such that yi = x′i−1 ⊕ x′i+1.
– If the tree rooted at r is not a (3, 6)-tree, BadAPair is the event that there exists two tuples

(i, xi, yi) ∈ A and (i + 1, ui+1, vi+1) ∈ A adapted in different paths {xi} and {ui}, such that
xi−1 6= ui−1 and the query (i+2, xi⊕vi+1) is active or is incident with an active 2chain, or such
that xi+2 6= ui+2 and the query (i− 1, yi ⊕ ui+1) is active or is incident with an active 2chain.

– If r is the root of a (2, 7)-tree, BadAEqual is the event that for some (i, xi, yi) ∈ A, there exists
x′i ∈ Fi such that yi = Fi(x

′
i) or there exists (i, x′i, y

′
i) ∈ A such that x′i 6= xi and yi = y′i.

– If r is the root of a (2, 7)-tree, BadAMid is the event that there exists (4, x4, y4), (5, x
′
5, y

′
5),

(4, u4, v4) and (5, u′5, v
′
5) such that x4 ⊕ y′5 = u4 ⊕ v′5 /∈ F6, where yi = Fi(xi) or (i, xi, yi) ∈ A

for i = 4, 5, where vi = Fi(ui) or (i, ui, vi) ∈ A for i = 4, 5, where (x4, x
′
5) 6= (u4, u

′
5), and where

at least one of (4, x4, y4), (5, x
′
5, y

′
5), (4, u4, v4) and (5, u′5, v

′
5) is in A.

Moreover, we let BadA = BadAHit ∨ BadAPair ∨ BadAEqual ∨ BadAMid.

In the rest of this section, we will let r denote the root of the tree being adapted as in the above
definition.

The probabilities in the following lemmas are over the randomness of tape entries read in
SampleTree(r) and PrepareTree(r). If CheckBadA is called, the simulator did not abort in Sam-
pleTree(r) and PrepareTree(r). This implies that the sampled queries are not defined before, and
thus are sampled uniformly at random. When we use the notations {xh}

i
h=i+1 (often shortened to

{xh}, as above) for the path associated to a node n in the tree rooted at r, our meaning is that
the endpoints xi and xi+1 of the path are random variables defined over the coins read by Sam-
pleTree and PrepareTree. More precisely, xi+1 is determined by fi+2(xi+2), while xi is determined
by fi−1(xi−1) if i > 1 and by p−1(x8, x9) if i = 1. By extension, each (i, xi, yi) ∈ A is a random
variable over the same set of coins.

Lemma 50. Let n be a non-root node in the tree rooted at r, then the probability that BadAHit

occurs for a query adapted in AdaptNode(n) is at most 2(4q2 + q)2/2n.
The probability that BadAHit occurs in a G3-execution is at most 200q6/2n.
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Proof. As in Lemma 34 we can assume that q ≤ 2n−2 since the statement trivially holds otherwise.

If n is a node in a (1, 4)-tree, let the path associated to n be {xh}, and consider the adapted
query (2, x2, y2) ∈ A. We have y2 = x1⊕x3 = x1⊕F4(x4)⊕x5, where F4(x4) = f4(x4) is uniformly
distributed and is independent of x1, x5 and the sets F̃i. Each of F̃1 and F̃3 contains at most 4q2+q
queries by Lemma 38. Therefore, the probability that x1 ⊕ f4(x4) ⊕ x5 equals a value in F̃1 ⊕ F̃3

is at most (4q2 + q)2/2n. Similarly, the same bound can be proved for (3, x3, y3) ∈ A. The lemma
follows from a union bound.

The proof when n is a node in a (5, 8)- or (2, 7)-tree is the same. (In the latter case, one
difference is that the query F3(x3) = f3(x3) or F6(x6) = f6(x6) is sampled in PrepareTree instead
of SampleTree, and the set of active queries F̃i is changed during PrepareTree. However, only
queries in ToPrep are added to F̃i, which are fixed before f3(x3) or f6(x6) is sampled and thus are
independent of the sampled values.)

If n is a node in a (3, 6)-tree, then we only need to consider the query (2, x2, y2) ∈ A (since
the event requires i 6= 1). We have y2 = x1 ⊕ x3, where x1 equals the second half of p(x8, x9). By
Lemma 47 the permutation query is newly made, after x3, F̃1 and F̃3 are fixed (indeed, for a (3, 6)-
tree PrepareTree only defines queries in positions 7 and 8). The number of different y2 ∈ F̃1 ⊕ F̃3

is at most (4q2 + q)2, thus BadAHit occurs for (4q2 + q)2 different x1 = y2 ⊕ x3. Moreover, there
are at most 2n possible values for x0. As discussed in the proof for Lemma 40, p(x8, x9) equals any
value with probability at most 1/(22n − 4q2). Thus the probability that p(x8, x9) equals one of the
pairs (x0, x1) that cause BadAHit is at most

(4q2 + q)2 · 2n/(22n − 4q2) ≤ (4q2 + q)2 · 2n/(22n − 22n/2) = 2(4q2 + q)2/2n

where the inequality is due to the assumption that q ≤ 2n−2.

By Lemma 26, there are at most 4q2 non-root nodes in an execution. With a union bound, the
probability that BadAHit occurs in an execution is at most 4q2 · 2(4q2 + q)2/2n ≤ 200q6/2n.

Lemma 51. Let n1 and n2 be non-root nodes in the tree rooted at r, where the tree is not a
(3, 6)-tree. The probability that BadAPair occurs for the position-i query adapted in n1 and the
position-(i + 1) query adapted in n2 is at most (8q2 + 2q + 4(4q2 + q)2)/2n.

The probability that BadAPair occurs in a G3-execution is at most (1760q8 − 440q6)/2n.

Proof. We have i = 2 if r is the root of a (1, 4)-tree, i = 6 if r is the root of a (5, 8)-tree, and i = 4
if r is the root of a (2, 7)-tree. Let (i, xi, yi) and (i + 1, ui+1, vi+1) be adapted in paths {xh} and
{uh} of n1 and n2 respectively.

Note that xi = xi−2⊕fi−1(xi−1) and vi+1 = ui⊕ui+2 = ui−2⊕fi−1(ui−1)⊕ui+2. If xi−1 6= ui−1,
the value of xi ⊕ vi+1 is uniformly distributed since fi−1(xi−1) and fi−1(ui−1) are uniform and
independent. Moreover, the values are also independent of F̃i+2 and of Ci+2 (which is determined
by Fi+1 and F̃i). Thus the probability that the value is in F̃i+2 ∪ Ci+2 is

|F̃i+2 ∪ Ci+2|/2
n ≤ (|F̃i+2|+ |Ci+2|)/2

n ≤ (4q2 + q + 2(4q2 + q)2)/2n

where the second inequality uses Lemmas 38 and 39.
By a symmetric argument, the same bound can be proved for the event that xi+2 6= ui+2 and

(i− 1, yi, ui+1) is active or is incident with an active 2chain. The first part of the lemma follows by
a union bound on the above results.

By Lemma 26, the number of non-root nodes is at most 4q2. Moreover, if n1 = n2 we have
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xi−1 = ui−1 and xi+2 = ui+2, so BadAPair wouldn’t occur. With a union bound over the 4q2(4q2−1)
ways of choosing distinct n1 and n2, the probability of BadAPair in an execution is at most

(16q4 − 4q2) ·
8q2 + 2q + 4(4q2 + q)2

2n
≤

1760q8 − 440q6

2n
.

Lemma 52. The number of queries in each of positions 4 and 5 that are defined or are in A is
upper bounded by 2q.18

Proof. As discussed in the proof of Lemma 27, the distinguisher makes at most q queries in each
position and the simulator adapts or defines queries in positions 4 and 5 only when completing an
outer node, where there are at most q outer nodes in an execution (cf. Lemma 16). Note that a
query is in A only if it is about to be adapted, so the number of queries in position 4 (resp. 5) that
are defined or are in A is at most 2q.

Lemma 53. Let n be a non-root node in a (2, 7)-tree. The probability that BadAEqual occurs for a
query adapted in AdaptNode(n) is at most 4q/2n.

The probability that BadAEqual occurs in a G3-execution is at most 4q2/2n.

Proof. Let the maximal path of n be {xh}, and consider the adapted query (4, x4, y4) ∈ A. We
have y4 = x3 ⊕ x5 = x3 ⊕ F6(x6) ⊕ x7. By Lemma 46, the value F6(x6) = f6(x6) (sampled
in PrepareTree(n)) is uniformly distributed and is not used in other calls to PrepareTree. Thus,
the value of F6(x6) is independent of queries adapted in other paths as well as x3, x7 and F4. By
Lemma 52, there are at most 2q x′4 such that x′4 ∈ F4 or (4, x

′
4, y

′
4) ∈ A for some y′4. The probability

that y4 = x3 ⊕ F6(x6)⊕ x7 equals one of F4(x
′
4) or y

′
4 is hence at most 2q/2n.

The same bound can be proved for the query (5, x5, y5) symmetrically. With a union bound,
the probability that BadAEqual occurs for either query adapted in AdaptNode(n) is at most 4q/2n.

Moreover, nodes in (2, 7)-trees are all outer nodes. There are at most q outer nodes by Lemma 16,
so the probability that BadAEqual occurs in an execution can be upper bounded by 4q2/2n with a
union bound on the nodes.

Lemma 54. For i = 4, 5 and xi, x
′
i ∈ Fi such that xi 6= x′i, we have Fi(xi) 6= Fi(x

′
i).

Proof. A query in position 4 or 5 can be defined by ReadTape or in AdaptNode(n) with n being a
node in a (2, 7)-tree. Assume without loss of generality that the query (i, x′i) is defined later than
(i, xi).

If (i, x′i) is defined by ReadTape, we have xi ∈ Fi when ReadTape(i, x′i) is called. Then Fi(x
′
i) =

fi(x
′
i) 6= Fi(xi), since otherwise BadREqual occurs. If (i, x

′
i) is defined in AdaptNode(n), let r be the

root of the tree containing n. Then (i, x′i, y
′
i) is in the set A when GetAdapts(r) returns. If xi ∈ Fi

is defined when AdaptTree(r) is called, we have y′i = Fi(xi) and the first case of BadAEqual occurs.
Otherwise (i, xi) is also defined during AdaptTree(r) and (i, xi, yi = y′i) ∈ A, and the second case
of BadAEqual occurs.

18 This lemma is implied by Lemma 27, unless the simulator aborts before adapting all queries in A.
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Lemma 55. Let r be the root of a (2, 7)-tree with τ nodes. In AdaptTree(r), the probability of
BadAMid∧ ¬BadAEqual is at most 16q3τ/2n.

In a G3-execution, the probability that BadAMid occurs and BadAEqual doesn’t occur is at most
16q4/2n.

Proof. Recall that the event BadAMid involves four queries (4, x4, y4), (5, x
′
5, y

′
5), (4, u4, v4) and

(5, u′5, v
′
5), at least one of which is in A.

First we prove x4 6= u4. Assume by contradiction that x4 = u4, then x′5 6= u′5. Since x4 ⊕ y′5 =
u4⊕v′5, we have y

′
5 = v′5. If (5, x

′
5, y

′
5) ∈ A or (5, u′5, v

′
5) ∈ A (or both), BadAEqual occurs. Otherwise

we have F5(x
′
5) = F5(u

′
5), contradicting Lemma 54.

Then we prove that x′5 = u′5 implies y′5 = v′5: If x
′
5 ∈ F5, by Lemma 48 we have (5, x′5, y

′
5) /∈ A

and (5, u′5, v
′
5) /∈ A. Thus y′5 = F5(x

′
5) = F5(u

′
5) = v′5. On the other hand, if x′5 /∈ F5, we have

(5, x′5, y
′
5) ∈ A and (5, u′5, v

′
5) ∈ A. Since x′5 = u′5 and there is a unique entry in A of the form

(5, x′5, ∗) (cf. Lemma 49), we have y′5 = v′5. This implies x′5 6= u′5 since we already proved x4 6= u4,
which implies x4 ⊕ y′5 6= u4 ⊕ v′5 if y′5 = v′5.

In the following discussion, if (4, x4, y4) (resp. (5, x′5, y
′
5), (4, u4, v4) (5, u′5, v

′
5)) is in A, we will

use {xh} (resp. {x
′
h}, {uh}, {u

′
h}) to represent the path in which it is adapted.

We note that for each adapted path {xh}, the value F3(x3) = f3(x3) is sampled in PrepareTree.
By Lemma 46, F3(x3) is newly sampled and is not used in another path. Thus F3(x3) is distributed
uniformly and is independent of existing queries as well as the queries about to be adapted in other
paths (i.e., the only values that are not independent of F3(x3) are x4 and y5, both of which are in
the adapted path).

Consider the case where at least one of (4, x4, y4) and (4, u4, v4) is in A. By symmetry we can
assume (4, x4, y4) ∈ A. We have x′5 6= x5, otherwise x4 ⊕ y′5 = x4 ⊕ y5 = x6 ∈ F6 (x6 is in the
path {xh}, which is ready to be adapted). If u′5 6= x5, none of u4, x

′
5 and u′5 is in the path {xh},

so F3(x3) is independent of u4, y
′
5 and v′5. Then x4 = x2⊕F3(x3) is also uniform and independent,

and the probability that x4 ⊕ y′5 = u4 ⊕ v′5 is 1/2n.

If u′5 = x5, then v′5 = y5 (as proved before). This implies u4 ⊕ y′5 = x4 ⊕ v′5 = x4 + y5 = x6,
which will be used in the following discussion. We consider the following possibilities of x′5 and u4:

– If u4 ∈ F4 and x′5 ∈ F5, we have F4(u4) = v4 and F5(x
′
5) = y′5 before SampleTree(r) is

called since no queries in positions 4 and 5 get defined during SampleTree(r) or PrepareTree(r).
However, BadRCollide occurs when ReadTape(7, x7) is called by SampleTree(n), because (6, x6)
is incident with an active 2chain (4, u4, x

′
5) and x6 = f7(x7) ⊕ x8 where x8 ∈ F8. Hence, this

case can never occur.

– If (4, u4, v4) ∈ A and x′5 6= u5, then since u4 = u2 ⊕ f3(u3) where f3(u3) is independent of u2,
y′5 and x6, the probability that u4 ⊕ y′5 = f3(u3)⊕ u2 ⊕ y′5 = x6 is 1/2n.

– If (4, u4, v4) ∈ A and x′5 = u5, then using the same argument before we have (5, x′5, y
′
5) ∈ A

and y′5 = v5. Then we have x6 = u4 ⊕ y′5 = u4 ⊕ v5 = u6. Moreover, since x5 6= x′5 = u5, the
paths {xh} and {uh} are distinct. The query (6, x6) = (6, u6) is sampled twice in PrepareTree
of the two paths, which is impossible since the simulator would have aborted when ReadTape
is called on the same query more than once.

– If (5, x′5, y
′
5) ∈ A and u4 6= x′4,

19 we have y′5 = x′4 ⊕ x′6 = x′2 ⊕ f3(x
′
3) ⊕ x′6 where f3(x

′
3) is

independent of x′2, u4, x6 and x′6. Similarly the probability of u4 ⊕ y′5 = x6 is 1/2n.

19 This case (and the next) overlaps with the previous ones.
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– If (5, x′5, y
′
5) ∈ A and u4 = x′4, we have x6 = u4 ⊕ y′5 = x′4 ⊕ y′5 = x′6. The rest of the proof is

similar to the third case.

Now consider the case where x4, u4 ∈ F4. Then at least one of (5, x′5, y
′
5) and (5, u′5, v

′
5) is in A,

and without loss of generality let (5, x′5, y
′
5) ∈ A. We have y′5 = x′4⊕x

′
6 = x′2⊕f3(x

′
3)⊕x

′
6 and f3(x

′
3)

is independent of x′2, x
′
6, x4, u4 and v′5 (since x′5 6= u′5). Thus the probability that x4⊕ y′5 = u4⊕ v′5

is 1/2n.

The above discussion shows that for all possible ways of choosing the four queries, the probability
that BadAMid occurs for these queries is at most 1/2n.

At least one of the four queries should be in A, which contains 2τ queries; each of the other
three queries has a fixed position and can be either a defined query or a query in A, where there
are at most 2q choices (cf. Lemma 52). Therefore, the number of different ways to choose these
queries is at most 2τ · (2q)3 = 16q3τ , and the lemma follows from a union bound.

Finally, let T2,7 be the set of (2, 7)-trees and let τ(T ) be the number of nodes in a tree T . Take
a union bound over all (2, 7)-trees, the probability of BadAMid∧ ¬BadAEqual in an execution is at
most

∑

T∈T2,7

16q3τ(T )

2n
=

16q3

2n

∑

T∈T2,7

τ(T ) ≤
16q4

2n

where the inequality follows from Lemma 16 and the fact that nodes in (2, 7)-trees are outer
nodes.

Lemma 56. The probability that BadA occurs in an execution of G3 is at most 1760q8/2n.

Proof. Since BadA = BadAHit ∨ BadAPair ∨ BadAEqual ∨ BadAMid, by a union bound we have

Pr[BadA] ≤ Pr[BadAHit] + Pr[BadAPair] + Pr[BadAEqual] + Pr[¬BadAEqual ∧ BadAMid]

≤
200q6

2n
+

1760q8 − 440q6

2n
+

4q2

2n
+

16q4

2n
≤

1760q8

2n

where the second inequality follows from Lemmas 50, 51, 53 and 55.

We say that an execution of G3 is good if none of the bad events occurs.

Lemma 57. An execution of G3 is good with probability at least 1− 28392q8/2n.

Proof. With a union bound on the results in Lemmas 40, 45 and 56, the probability that at least
one of BadP, BadR and BadA occurs is at most

432q6

2n
+

26200q8

2n
+

1760q8

2n
≤

28392q8

2n
.

Thus the probability of obtaining a good execution is at least 1− 28392q8/2n.

5.4.2 Assertions don’t Abort in G3

Now we prove that assertions never fail in executions of G3.

We recall that assertions appear in procedures F, ReadTape, Trigger, MakeNodeReady, and
Adapt.

56



Lemma 58. In an execution of G3, the simulator doesn’t abort in Assert called by Trigger.

Proof. The counter NumOuter is increased only before an outer node is added in FindNewChildren,
so the assertion fails only if the (q + 1)th outer node is about to be added. We only need to prove
that even without the assertions in Trigger at most q outer nodes are created in G3.

When an outer node is created, the permutation query in its maximal path must be defined
because of the call to CheckP+ or CheckP− in Trigger. Therefore each outer node can be associated
with an entry in T .

Next we prove that the outer nodes are associated with distinct permutation queries in T .
Assume by contradiction that the maximal paths of two outer nodes n1 and n2 contain the same
permutation query T (x0, x1) = (x8, x9). Let x2 = F1(x1) ⊕ x0, x7 = F8(x8) ⊕ x9. Without loss of
generality, assume n1 is created before n2 and the origin of n1 is 1 or 2.

If the origin of n1 is 1, we already have x7 ∈ F7 and x8 ∈ F8 when n1 is created. Thus
when n2 is created, its origin cannot be 7 or 8. If n2.beginning = (1, x1) = n1.beginning, then
n1.id = n2.id = (7, x7, x8). By Lemmas 7 and 9 n1 and n2 have the same parent, which contradicts
part (i) of Lemma 23. If the origin of n2 is 2, then by observing FindNewChildren, n2 can only be
created when (1, x1) is defined. By Lemma 10, the query (1, x1) is defined when SampleTree(n1) is
called. But after the call and before a new node can be created, the maximal path of n1 is completed
and, in particular, AdaptTree(n1) has been called and (2, x2) is defined. But n2 can only be defined
when (2, x2) is pending, which is impossible.

Next we consider the entries in the table T . Each of them is added when the permutation oracle
is called, either by the simulator or by the distinguisher.

In an execution of G3, the simulator makes new permutation queries only in MakeNodeReady(n)
or, when the origin of n is 3 or 6, in PrepareTree(n). Moreover, if n is an outer node, the permutation
query made in MakeNodeReady(n) already exists when n is created, because otherwise CheckP+

or CheckP− will return false and the node wouldn’t be created in the first place. Therefore, new
entries are added to T in MakeNodeReady(n) or PrepareTree(n) only if n is an inner node.

However, we are going to prove that if a permutation query is added (i.e., queried for the first
time) during MakeNodeReady(n) or PrepareTree(n) where n is an inner node, no outer node con-
tains the permutation query. Without loss of generality, assume the origin of n is 3 or 4. Let SimP−1

(x8, x9) = (x0, x1) be the permutation query made in MakeNodeReady(n) or PrepareTree(n), which
does not exist in T before.

Assume by contradiction that an outer node n′ contains the permutation query T (x0, x1) =
(x8, x9) in its maximal path. n′ must be created after the permutation query is added to T . Fur-
thermore, when the permutation query is added, the queries (8, x8) and (7, x7) (x7 = F8(x8) ⊕ x9
as usual) have been defined in MakeNodeReady(n) or PrepareTree(n) (or before). Thus (8, x8) and
(7, x7) are defined when n′ is created, implying that n′.beginning equals (1, x1) or (2, x2).

If the origin of n is 3, after the call to PrepareTree(n) the queries (1, x1) and (2, x2) are adapted
in the call to AdaptNode(n), before which no new outer node is created. If the origin of n is 4,
after making the permutation query the simulator sets n.end = (1, x1). If n

′.beginning = (1, x1), n
′

is a child of n, which contradicts Lemma 23 because n′.id = (7, x7, x8) is contained by the maximal
path of n. If n′.beginning = (2, x2), n

′ must be created after (1, x1) becomes defined, i.e., after
SampleTree(n) is called (cf. Lemma 10). But after SampleTree(n) (2, x2) is adapted before n′ can
be created; since n′.beginning should be pending when it is created, this is impossible.

Therefore, each outer node must contain a distinct permutation query made by the distinguisher.
Since the distinguisher makes at most q permutation queries, at most q outer nodes are created.
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Lemma 59. Let (i, xi, yi) ∈ A with i 6= 1 be adapted during AdaptNode(n), and let r be the root
of the tree containing n. When AdaptTree(r) is called, the query (i, xi) is not incident with any
active 2chain that is not contained by the maximal path of n.

Proof. As discussed in the proof for Lemma 48, in the maximal path of n the adapted query (i, xi)
is adjacent to a newly sampled query (i± 1, xi±1) (where “±” is “−” if i = 4, 6 or if i = 2 and n’s
origin is 1 or 4, and is “+” otherwise). Similar to the proof for Lemma 46, (i, xi) is not incident to
an active 2chain when the call ReadTape(i ± 1, xi±1) is made, otherwise BadRCollide occurs. The
newly sampled query creates an active 2chain with which (i, xi) is incident, but the 2chain is in the
maximal path of n.

More queries are sampled after ReadTape(i± 1, xi±1) and before AdaptTree(r), and we need to
prove that the property still holds after the new queries are added.

If the tree rooted at r is a (1, 4)-tree, more queries in positions 1 and 4 are sampled by Sam-
pleTree. These queries are already pending before they are sampled, thus the activeness of 2chains
is not changed. If i = 2, the query (i, xi) can become incident with an active 2chain only if a query
(1, x′1) becomes defined such that there exists an active 2chain (0, x′0, x

′
1) with x′0 ⊕ F1(x

′
1) = x2;

however, then BadRCollide occurs in ReadTape(1, x′1) because the query (2, x2) is already incident
with an active 2chain (0, x0, x1). If i = 3, the proof is symmetric.

The case where the tree is a (5, 8)-tree is symmetric to the case of a (1, 4)-tree.
If the tree is a (2, 7)-tree, by symmetry we only consider i = 4. The queries sampled in Sam-

pleTree are in positions 2 and 7, which doesn’t change the activeness of 2chains and cannot make
a 2chain become incident with (4, x4). The queries sampled in PrepareTree are in positions 3 and
6 and are not pending before. We prove by contradiction and assume that (4, x4) becomes incident
with an active 2chain that is not in the maximal path of n after a query (i′, x′i′) (with i′ ∈ {3, 6})
is defined in PrepareTree. If i′ = 3, then as the previous case, BadRCollide occurs when Read-
Tape(3, x′3) is called. If i

′ = 6, then (4, x4) must be incident to a 2chain (5, x′5, x
′
6) for some x′5 ∈ F5.

When ReadTape(3, x3) is called (in PrepareTree(n)), we have x2 ⊕ f3(x3) = x4 = F5(x
′
5) ⊕ x′6

for (6, x′6) ∈ ToPrep, x2 ∈ F2 and x′5 ∈ F5. Therefore BadRPrepare have occurred, leading to a
contradiction.

If the tree is a (3, 6)-tree, then i = 2. The newly defined queries are in positions 7 and
8, which does not affect the incidence of (2, x2) with active 2chains (cf. the equivalent condi-
tions in Lemma 36). However, new permutation queries are also defined in PrepareTree. Consider
SimP(x′8, x

′
9) called in PrepareTree(n′): Since BadP didn’t occur, the returned value (x′0, x

′
1) sat-

isfies x′1 /∈ F1. If a 2chain (u0, x
′
1) becomes active after the permutation query, since x′1 /∈ F1, it

cannot satisfy the conditions in Lemma 36. Thus, the conditions in Lemma 36 remain unsatisfied
and (2, x2) is not incident with an active 2chain by the lemma.

Lemma 60. Let n and n′ be distinct non-root nodes in a (2, 7)-tree rooted at r, and let (4, x4) and
(5, x′5) be adapted in AdaptNode(n) and AdaptNode(n′) respectively. Then the queries (3, F4(x4)⊕
x′5) and (6, x4 ⊕ F5(x

′
5)) are not active when AdaptTree(r) returns.

Proof. Since the queries getting defined in AdaptTree(r) are in positions 4 and 5, we only need to
prove the two queries are not active when AdaptTree(r) is called.

The queries (3, x3) and (3, x′3) are defined in PrepareTree(n) and PrepareTree(n′) respectively.
We have x3 6= x′3 by Lemma 46. Then BadAPair occurs if the query (6, x4 ⊕ F5(x

′
5)) is active

when AdaptTree(r) is called. Similarly we have x6 6= x′6 and hence (3, F4(x4)⊕ x′5) is not active or
BadAPair occurs.
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Lemma 61. In an execution of G3, the assertions in procedures ReadTape and Adapt always
hold.

Proof. ReadTape is called in SampleTree and PrepareTree, and Adapt is called in AdaptNode.
In a call to SampleTree(n), n.end is sampled. By Lemma 10, the query n.end is not defined

when SampleTree(n) is called. Moreover, n is deleted from N before ReadTape is called, thus the
query is not pending.

For ReadTape called in PrepareTree and Adapt called in AdaptNode, the queries being sampled
or adapted are not pending or defined due to Lemmas 46 and 48.

We are left with the assertions in MakeNodeReady and F. The procedure F is only called by the
distinguisher and by MakeNodeReady.

A call to NewTree can be split into two phases: the construction phase consists of the first part
of NewTree until GrowTree returns, and the completion phase consists of the next five instructions
in NewTree, i.e., until AdaptTree returns. By extension, we say that a tree is in its construction
phase or in its completion phase if the call to NewTree that created the tree is in the respective
phase. The phase of the simulator is the phase of the tree being handled currently, i.e., is the phase
of the last call to NewTree that has not yet returned.

A tree is completed if its completion phase is over, i.e., if AdaptTree(r) has returned, where r
is the root of the tree. This is quasi-synonymous with a tree being discarded, where we recall that
a tree is “discarded” when its root drops off the stack, i.e., when the call to NewTree in which the
tree was created returns.

The simulator switches from the construction phase of a tree to the construction phase of another
tree when a call to F causes a new tree to be created. The simulator will enter the construction
phase of the new tree and will only resume the construction phase of the previous tree after the new
tree is completed (and discarded). On the other hand, once the simulator enters the completion
phase of a tree, it remains inside the completion phase of that tree until the phase is finished. In
particular, at most one tree is in its completion phase at a time, and if the simulator is not in a
completion phase then no tree is in its completion phase.

We note that calls to F and to MakeNodeReady do not occur when the simulator is in a com-
pletion phase, and, in particular, the assertions in these procedures take place when the simulator
is not in a completion phase. This explains why for the following proof, we focus on properties that
hold when the simulator is not in a completion phase.

Lemma 62. For i = 3, 4, if xi ∈ Fi, xi+1 ∈ Fi+1, xi+2 ∈ Fi+2 and Fi+1(xi+1) = xi ⊕ xi+2, there
exists a node n whose maximal path contains (i, xi), (i+ 1, xi+1) and (i+ 2, xi+2).

If x1 ∈ F1, x2 ∈ F2, x8 ∈ F8 and T (x0, x1) = (x8, ∗) where ∗ is an arbitrary n-bit string
and where x0 = F1(x1) ⊕ x2, there exists a node n whose maximal path contains x1, x2 and x8.
Symmetrically, if x7 ∈ F7, x8 ∈ F8, x1 ∈ F1 and T−1(x8, x9) = (∗, x1) where ∗ is an arbitrary n-bit
string and where x9 = F8(x8)⊕ x7, there exists a node n whose maximal path contains x7, x8 and
x1.

Moreover, if the simulator is not in a completion phase, the node n is completed.

Proof. For the first part of the lemma, the proof for i = 3 is given; the case where i = 4 is symmetric.
Let the three queries be (3, x3), (4, x4) and (5, x5).

20 We discuss the query that is defined latest

20 The three queries are not necessarily in the maximal path of the same node n, i.e., we don’t follow the convention
that (i, xi) denotes a query in the maximal path of n.
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among these three queries.

First consider the case where the query is adapted. Assume that the latest query is defined in
AdaptNode(n) for some node n in the tree rooted at r.

If neither of the other two queries is adapted in AdaptTree(r), they must have been defined
when AdaptTree(r) is called. The latest query cannot be (4, x4), otherwise BadAHit occurs since
x3 ∈ F3 and x5 ∈ F5. If the latest query is (3, x3), then (4, x4, x5) is an active 2chain incident with
(3, x3) when AdaptTree is called; by Lemma 59, x4 and x5 must be in the maximal path of n, so n
is the node whose maximal path contains all three queries. If the latest query is (5, x5), the proof
is similar to the previous case.

If at least two of the queries are adapted during AdaptTree(r), from Table 2 we can observe
that r must be the root of a (2, 7)-tree (in other cases, at least one of the adapt positions is not
in {3, 4, 5, 6}), and the adapted queries are in positions 4 and 5. If the two queries are adapted
during the same call AdaptNode(n), the maximal path of n contains (4, x4) and (5, x5); since the
node is successfully adapted, its maximal path also contains (3, x3 = F4(x4) ⊕ x5)

21. If (4, x4)
and (5, x5) are adapted in AdaptNode(n) and AdaptNode(n′) for n 6= n′, by Lemma 60 the query
(3, x3 = F4(x4)⊕ x5) is not active, leading to a contradiction.

Next we consider the case where the latest query is defined by ReadTape. The query cannot
be (4, x4), otherwise BadRHit occurs since F4(x4) = x3 ⊕ x5 for x3 ∈ F3, x5 ∈ F5. If the query is
(3, x3) and is sampled in PrepareTree(n), then it is incident with an active 2chain (4, x4, x5). By
Lemma 46, the maximal path of n contains the 2chain and hence it contains all three queries.

We are left with the possibility that the latest query is (3, x3) or (5, x5), sampled in Sample-
Tree(n) for some node n. We let the latest query be (3, x3) and the other case is similar. Let r
be the root of the tree containing n. Consider the call GrowTree(r), where GrowTreeOnce(r) is
called repeatedly. In the last iteration, modified is not set to true and thus no new node is added.
In particular, no query becomes pending or defined in the last iteration. Moreover, the tree is a
(3, 6)-tree and neither (4, x4) nor (5, x5) can be sampled during SampleTree(r). Therefore, we have
x4 ∈ F4 and x5 ∈ F5 when the last call to GrowTreeOnce(r) occurs.

Consider FindNewChildren(n) called during the last call to GrowTreeOnce(r). When the triple
(x3, x4, x5) is checked, no child is added (as discussed before). Thus, we have either Equiva-
lent(n.id, (3, x3, x4)) = true or InChildren(n, (3, x3, x4)) = true. In both cases, a node n′ (n′ = n
in the first case and n′ ∈ n.children in the second case) exists such that the maximal path of n′

contains x3 and x4. Moreover, since n′ is ready (recall that all existing nodes in a tree are ready
when FindNewChildren is called) and is in a (3, 6)-tree, the endpoints of its maximal path are 3
and 6. Thus, the maximal path of n′ can be extended to the endpoints and contains x5 = x3⊕F4(x4).

The second part of the lemma is proved similarly, so we will omit some details. We give the proof
for the first statement (i.e., the one about x1, x2 and x8), and the proof for the second statement
is almost symmetric (a difference is that (7, x7) may be queried in PrepareTree; this case can be
handled using Lemma 46, as in the first part of the lemma).

We discuss which of the entries F1(x1), F2(x2) and F8(x8) is defined latest. Note that the
permutation query T (x0, x1) (where x0 = F1(x1)⊕x2 as usual) must be defined before F8(x8), since
otherwise BadPHit occurs. In particular, we have (x0, x1) ∈ T when the latest query is defined.

If F1(x1) is the latest query, it cannot be defined by ReadTape, or BadRHit occurs. If F1(x1)

21 Note that the result cannot be obtained by simply extending the path, since in some pathological situation the
maximal path is not “closed”. Note that we can extend a completed path, which is closed by definition.
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is adapted in AdaptNode(n), by assumption there exists x9 such that T−1(x8, x9) = (x0, x1). By
Lemma 48, (8, x8) and (9, x9) are in the maximal path of n. Since (1, x1) is adapted successfully,
the path also contains x2 = F1(x1)⊕ x0.

If F2(x2) is defined latest, then it is incident with an active 2chain (0, x0, x1) when it is defined.
If it is defined during SampleTree(n) for some node n, then similarly to the first part of the lemma,
we can prove that the maximal path of n or one of n’s children contains the three queries. If it
is defined in AdaptNode(n), let r be the root of the tree containing n. If (1, x1) is not defined
during AdaptTree(r), by Lemma 59, n’s maximal path contains the 2chain (0, x0, x1). If (1, x1) is
also defined in AdaptNode(n), the maximal path of n contains both x1 and x2. In the above cases,
since AdaptNode(n) is successful, the maximal path of n is completed and thus also contains x8.
If (1, x1) is defined in AdaptNode(n′) where n′ 6= n is another node in the tree rooted at r, then
since T (x8, x9) = (x0, x1) and by Lemma 48, the maximal path of n′ contains x8 and x9. The query
(2, x2 = F1(x1)⊕x0) is adapted during the call AdaptNode(n′), which occurs before AdaptNode(n)
is called, contradicting our assumption.

If F8(x8) is defined last, it is incident with an active 2chain (1, x1, x2) and the proof is similar
to the previous case.

Finally, consider the last part of the lemma. We prove that if a node has not entered the completion
phase, it cannot contain defined queries in the required positions (i.e., positions {3, 4, 5}, {4, 5, 6},
{1, 2, 8} or {7, 8, 1}). Observe that each of the triples consist of three positions in either {1, 2, 7, 8}
or {3, 4, 5, 6}. From Table 2 we observe that when a node becomes ready, its maximal path contains
at most two defined queries in each set of positions {1, 2, 7, 8} and {3, 4, 5, 6}.

Therefore, the tree containing the node n must have entered the completion phase. Since the
completion phase of a tree cannot be interrupted and the simulator is not in a completion phase,
the completion phase of the tree must have finished and n has been completed.

The above lemma implies that if the simulator is not in a completion phase, each triple of defined
queries as in the lemma is contained in a completed path.

Lemma 63. In an execution of G3, the first assertion in MakeNodeReady always holds.

Proof. The assertions in MakeNodeReady(n) occur right before n.end is assigned. As in the pseu-
docode, let (j, xj) be the query that is about to be assigned to n.end, where j equals the terminal
of n. The first assertion asserts that the query (j, xj) is not defined.

Note that when n is created, its maximal path already contains two defined queries as per
FindNewChildren. More queries are made during the call to MakeNodeReady(n), which are also in
n’s maximal path according to Lemma 19. Let {xh} be the maximal path of n. Let i be the origin
of n, and the positions of the defined queries are determined by i.

If i = 1, we have j = 4. The maximal path contains (6, x6) and (5, x5), both of which have been
queried in MakeNodeReady(n). Assume by contradiction that (j, xj) = (4, x4) is defined, then by
Lemma 62, there exists a completed path containing the three queries (4, x4), (5, x5) and (6, x6).
By extension, the completed path contains all queries in {xh}. Thus n.beginning = (1, x1) is in a
completed path and should be defined (recall that all the queries in a completed path are defined).
However, the tree containing n hasn’t entered the completion phase and hence SampleTree(n.parent)
hasn’t been called. By Lemma 10, (1, x1) = n.parent.end cannot be defined, which leads to a
contradiction.

The proof for i = 2, 3, 4 is similar, and we only give a sketch below. Again we will prove that if
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the (j, xj) is defined, the maximal path of n contains a triple of defined queries that are contained
by a completed path due to Lemma 62. The positions of the triple of queries are:

– If i = 2, then j = 7. Queries (7, x7), (8, x8) and (1, x1) are defined.

– If i = 3, then j = 6. Queries (4, x4), (5, x5) and (6, x6) are defined.

– If i = 4, then j = 1. Queries (7, x7), (8, x8) and (1, x1) are defined.

The completed path also contains n.beginning by extension, thus n.beginning is defined. However,
SampleTree(n.parent) hasn’t been called, contradicting Lemma 10.

The cases i = 5, 6, 7, 8 are symmetric to i = 4, 3, 2, 1 respectively.

Lemma 64. In a call to F made by the distinguisher, the assertion in F holds.

Proof. If F is called by the distinguisher, there is no pending query at the moment and the assertion
trivially holds.

The following group of lemmas build up to the proof that the second assertion in MakeNodeReady
as well as the assertion in F called by MakeNodeReady do not abort.

We begin the analysis by giving some definitions that enable us to discuss all non-completed
trees collectively.

Definition 17. The tree stack is a list of trees (T1,T2, . . . ,Tℓ) consisting of all trees such that
SampleTree(ri) hasn’t been called yet, where ri is the root of Ti, and where Ti is created before Tj
for i < j.

A new tree is created when F calls NewTree and NewTree creates a new root node. Since a tree Ti
with root ri is removed from the tree stack when SampleTree(ri) is called in NewTree, and since
only the last call to NewTree on the stack can be in its completion phase, Tℓ will be the first to
be removed from the tree stack. Hence the tree stack behaves in LIFO fashion, as indicated by its
name.

If the simulator is in a construction phase and a tree rooted at r is not in the tree stack then
the tree rooted at r must be completed. Indeed, the call SampleTree(r) has occurred by definition,
so AdaptTree(r) must already have occurred and returned, given that the simulator is not in a
completion phase.

Definition 18. A node n is is in the tree stack if n is in a tree Ti in the tree stack.

Lemma 65. Assume the simulator is not in a completion phase. Then a query (i, xi) is pending if
and only if (i, xi) = n.end for some node n in the tree stack.

Proof. Recall that a query is pending if and only if there exists a node n such that n.end equals
the query, and the query hasn’t been defined. We only need to prove that n.end is defined if and
only if n is not in a tree in the tree stack.

If a tree rooted at r is not in the tree stack, then SampleTree(r) has been called. Moreover, as
the simulator is not in a completion phase, SampleTree(r) has returned and thus the end of each
node in the tree has been sampled.

On the other hand, SampleTree(ri) hasn’t been called for the roots ri of trees in the tree stack,
thus by Lemma 10 the end of the nodes in the tree stack are not defined.
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Lemma 66. Let (T1,T2, . . . ,Tℓ) be the tree stack. If ℓ ≥ 1 the tree T1 is created by a distinguisher
query to F. Moreover Ti+1 is created during the call to MakeNodeReady(ni), where ni is the unique
non-ready node in Ti, for 1 ≤ i < ℓ.

Proof. The first tree to be created during a query cycle obviously comes from a distinguisher query
to F, since if the distinguisher query to F does not cause a call to NewTree the simulator returns
an answer immediately to the distinguisher. Moreover, this tree is only removed from the tree stack
when the first call to NewTree enters its completion phase, after which no more calls to NewTree
occur, since the simulator returns an answer to the distinguisher once the first call to NewTree
returns.

The simulator calls F only in MakeNodeReady. Whenever a new tree is created, the simulator
will not call MakeNodeReady on nodes in the old tree until the new tree is completed. Therefore
Ti+1 must be created in MakeNodeReady(n) for some n in Ti, since Ti is the newest tree that
hasn’t been completed at the moment when Ti+1 is created. Moreover, a call to F is made in
MakeNodeReady(n) only when n is not ready. By Lemma 20, there is at most one non-ready node
in a tree. Therefore, n must be the unique non-ready node in tree Ti at the moment when Ti+1 is
created.

Later, nodes may be added to Ti+1 (and more trees may be added to the tree stack), but the
root of Ti+1 never changes and the state of Ti doesn’t change until after Ti+1 leaves the tree stack.
This completes the lemma.

For the rest of the proof ℓ will denote the number of trees in the tree stack. The above lemma
implies that each tree Ti for i < ℓ in the tree stack contains a non-ready node. The non-ready node
is a leaf, because non-ready nodes cannot have children. Thus each tree in the tree stack (except
possibly Tℓ) contains a unique non-ready leaf, where the uniqueness is by Lemma 20.

Lemma 67. If the origin of a node n is 2, 3, 6 or 7, then the calls to F made by MakeNodeReady(n)
are for queries that are already defined.

Proof. Table 2 shows the positions of queries to F made during MakeNodeReady(n) and the posi-
tions of queries that are already defined.

This lemma is an observation from Table 2.

Lemma 68. Let (T1,T2, . . . ,Tℓ) be the tree stack. If Ti is a (2, 7)-tree or a (3, 6)-tree, then i = ℓ,
i.e., Ti must be the last tree in the tree stack.

Proof. By Lemma 66, the tree Ti+1 is created when F is called during MakeNodeReady(ni), where
ni is a node in Ti. By Lemma 67, if the origin of ni is 2, 3, 6 or 7, F is only called on defined queries
during MakeNodeReady(ni), so NewTree is never called. Thus, Ti+1 can never be created if Ti is a
(2, 7)- or (3, 6)-tree, and Ti must be the last tree in the tree stack.

In the following discussion, we will focus on a point in time when the second assertion in MakeNodeReady(n)
aborts or when F called by MakeNodeReady(n) aborts. In such a case n must be a node in Tℓ since
a tree is always “put on hold” while a new tree is created and completed. Thus n must be the
unique non-ready leaf of Tℓ and, in particular, the last tree on the tree stack has a non-ready leaf.

We let ri denote the root of Ti and ni denote the unique non-ready leaf in Ti, 1 ≤ i ≤ ℓ.
Next we reiterate the formal definition of a full partial path (already given in Section 4) and

introduce the notion of a proper partial path. Every proper path is also full.
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Definition 19. An (i, j)-partial path {xh}
j
h=i is full if 1 ≤ i, j ≤ 8 and if xi /∈ Fi and xj /∈ Fj .

Moreover, a full (i, j)-partial path is proper if (i, j) ∈ {(5, 1), (4, 1), (4, 8), (1, 5), (8, 5), (8, 4)}. A
proper partial path is an outer proper partial path if i > j, and is an inner proper partial path if
i < j.

Observe that an inner proper partial path must be a (1, 5)-partial path or a (4, 8)-partial path.

Lemma 69. A 2chain is contained in at most one full partial path.

Proof. This is easy to see, but we provide a detailed proof for completeness.
Let {xh}

j
h=i be a partial path containing the 2chain (k, xk, xk+1). Then the sequence xk+2, . . . , xj

(where, as usual, x9 is followed by x0) is uniquely determined by (k, xk, xk+1) and j, and the
sequence xk−1, . . ., xi (where, as usual, x0 is followed by x9) is uniquely determined by (k, xk, xk+1)
and i. Also, we have Fh(xh) 6= ⊥ for h 6= i, j, 0, 9 by the definition of a partial path. The full partial
path containing (k, xk, xk+1) (if it exists) is thus uniquely determined by the additional requirement
that xi /∈ Fi, xj /∈ Fj .

Definition 20. The queries (i, xi) and (j, xj) are called the endpoint queries of the partial path

{xh}
j
h=i.

Definition 21. An oriented partial path is a pair R = (P, σ) where P = {xh}
j
h=i is a partial path

and where σ ∈ {+,−}. The starting point of R is (i, xi) if σ = + and is (j, xj) if σ = −. The ending
point of R is (j, xj) if σ = + and is (i, xi) if σ = −.

Definition 22. A path cycle is a sequence of oriented full partial paths ((P1, σ1), . . . , (Pt, σt)),
t ≥ 2, such that:

1. Adjacent paths in the cycle are distinct, i.e., Ps 6= Ps+1 for all 1 ≤ s ≤ t, where (Pt+1, σt+1) :=
(P1, σ1).

2. The ending point of (Ps, σs) is the starting point of (Ps+1, σs+1) for 1 ≤ s ≤ t.

Definition 23. A path cycle ((P1, σ1), . . . , (Pt, σt)) is a (3, 6)-cycle (resp. (7, 2)-cycle) if for 1 ≤
s ≤ t, Ps is a (3, 6)-full path (resp. (7, 2)-full path).

Definition 24. A path cycle ((P1, σ1), . . . , (Pt, σt)) is a proper cycle if Ps is a proper path for
1 ≤ s ≤ t, and not both Ps and Ps+1 are proper inner partial paths for 1 ≤ s ≤ t, where Pt+1 := P1.

Next we prove that if abortion occurs in the second assertion in MakeNodeReady or in the assertion
in F, there exists a (3, 6)-cycle, a (7, 2)-cycle or a proper cycle.

Lemma 70. For i < ℓ, the endpoint queries of ni’s maximal path are ni.beginning and ri+1.end.

Proof. By Lemma 66, Ti+1 is created during the call to MakeNodeReady(ni). The query ri+1.end =
(j, xj) is issued by MakeNodeReady(ni) and thus is in the maximal path of ni by Lemma 19. Since
Ti+1 has not entered the completion phase, ri+1.end is still pending. So it must be an endpoint
query of the maximal path.

Moreover, the fact that ni.beginning is also an endpoint of the maximal path follows directly by
Definition 9.

Lemma 71. For i < ℓ, if the origin of ni is 1 (resp. 4, 5, 8) and if Ti+1 is not a (3, 6)- or (2, 7)-tree,
then the position of ri+1.end is 5 (resp. 8, 1, 4).
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Proof. We can observe from Table 2 that when the origin of n is 1 (resp. 4, 5, 8) the only call to F
that issues a (possibly) new query in positions other than 2, 3, 6, 7 is the call in position 5 (resp.
8, 1, 4). These positions are colored red in the table.

Lemma 72. Suppose Tℓ is not a (3, 6)-tree or a (2, 7)-tree. If Ti is a (1, 4)-tree (resp. (5, 8)-tree)
and i < ℓ, then Ti+1 is a (5, 8)-tree (resp. (1, 4)-tree).

Proof. This is a direct consequence of Lemma 71.

Lemma 73. When the simulator aborts in a call to F(i, xi) by MakeNodeReady(n), we have n = nℓ

and the origin of n is 1, 4, 5 or 8. Moreover, when the origin of n is 1 (resp. 4, 5, 8), i equals 5
(resp. 8, 1, 4).

Proof. That n = nℓ follows from the fact that MakeNodeReady is only called on a node in the
latest tree in the tree stack, and the node is not ready when abortion occurs.

Abortion occurs in the call F(i, xi) if and only if (i, xi) is pending. By Lemma 67, if the origin
of n is 2, 3, 6 or 7, the calls to F by MakeNodeReady(n) must be on defined queries. These calls
return immediately and don’t abort. Thus the origin of n must be 1, 4, 5 or 8, which implies that Tℓ

is a (1, 4)- or (5, 8)-tree. By Lemma 68, there is no (3, 6)- or (2, 7)-tree in the tree stack, so queries
in positions 2, 3, 6 or 7 are not pending as per Lemma 65.

Since (i, xi) is pending, we must have i ∈ {1, 4, 5, 8}. Table 2 summarizes the queries to F by
MakeNodeReady(n), where queries in positions 1, 4, 5 or 8 that are not necessarily defined are
colored red. We can observe that if the origin of n is 1 (resp. 4, 5, 8), i equals 5 (resp. 8, 1, 4).

Lemma 74. Suppose the second assertion in MakeNodeReady or the assertion in F fails. If Tℓ

is a (3, 6)-tree, the maximal path of each non-root node in Tℓ is a (3, 6)-full partial path; if Tℓ is a
(2, 7)-tree, the maximal path of each non-root node in Tℓ is a (7, 2)-full partial path; if Tℓ is a (1, 4)-
or (5, 8)-tree, the maximal path of each non-root node in the tree stack is a proper partial path.

Moreover, the endpoint queries of the aforementioned full partial paths are pending.

Proof. As a preliminary to the proof, we remind that pending queries are undefined.

Let n be a non-root node in the tree stack. By Lemma 65, the end of ready nodes in the tree
stack are all pending. Since n.beginning = n.parent.end, n.beginning is pending.

In particular, if n is ready, the endpoint queries of its maximal path are n.beginning and n.end,
both of which are pending; moreover, by the positions in Table 2, the maximal path of n is a
(3, 6)-full partial path if n is in a (3, 6)-tree, is a (7, 2)-full partial path if n is in a (2, 7)-tree, and
is a proper partial path if n is in a (1, 4)- or (5, 8)-tree. Therefore the statement holds for ready
nodes, and in the following discussion we only consider non-ready leaves.

Consider the case when Tℓ is a (3, 6)-tree, and let n be the non-ready leaf of Tℓ (i.e., n = nℓ).
By Lemma 73, abortion cannot occur in a call to F and hence must occur in the second assertion
in MakeNodeReady. The statement follows by part 4 of Lemma 19 since the query which was going
to be assigned to n.end is pending by the abort condition.

The case when Tℓ is a (2, 7)-tree can be proved similarly.

Finally, consider the case when Tℓ is a (1, 4)- or (5, 8)-tree. In this case the statement should be
proved for all non-root, non-ready nodes in the tree stack (whereas the previous cases only concerns
nodes in Tℓ).

By Lemma 68 and the assumption, the tree stack contains no (3, 6)- or (2, 7)-tree. If n = nk for
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k < ℓ then the statement follows by Lemmas 70 and 71 and because nk.beginning and rk+1.end are
both pending.

If n = nℓ, we discuss which abort condition is triggered. If the second assertion in MakeN-
odeReady(n) fails, then the proof is similar to the first case (of a (3, 6)-tree). Otherwise the abor-
tion occurs in a call F(h, xh) made by MakeNodeReady(n), and in which case (h, xh) is necessarily
pending. The statement follows by Lemma 19 (which tells us that (h, xh) is in the maximal path of
n) and Lemma 73 (which tells us the possible origins of n and the corresponding values of h).

Lemma 75. If a node’s maximal path is an inner proper path, then the node has origin 4, 5 and
moreover the node is not ready.

Proof. Recall that an inner proper path must be a (1, 5)- or (4, 8)-full partial path. Thus if the
maximal path of a node is an inner proper path, its origin must be 1, 4, 5 or 8.

In particular, the maximal path of a ready node is not an inner path, which establishes the last
part of the statement.

When a node n with origin 1 (resp. 8) is created, its maximal path contains n.id, which includes
queries a query in position 8 (resp. 1). But inner paths don’t contain queries in both positions 1
and 8, which establishes the first part of the statement.

Lemma 76. If the second assertion in MakeNodeReady or the assertion in F fails, then the nodes
in the tree stack have distinct maximal paths.

Proof. We assume by contradiction that there exists two distinct nodes m1 and m2 whose maximal
paths are identical.

First we prove that neither m1 nor m2 is ready. Assume by contradiction that m1 is ready, then
the two endpoint queries of the maximal path of m1 are m1.beginning and m1.end. m2.beginning
is also an endpoint query of m2’s maximal path. Since the maximal paths are identical, we have
m1.beginning = m2.beginning or m1.end = m2.beginning. In the former case, by Lemma 9 we have
m1.parent.end = m2.parent.end and furthermore by Lemma 7 we have m1.parent = m2.parent. In
the latter case, by Lemma 9 we know m1 = m2.parent. However, the maximal path of m1 contains
both queries in m2.id, contradicting Lemma 23 in both cases. Similarly we can prove that m2 is
not ready.

Since the only non-ready node in Ti is ni, we have m1 = ni and m2 = nj, where we assume
i < j without loss of generality.

By Lemma 74, the maximal paths of nodes in (3, 6)-trees, in (2, 7)-trees and in (1, 4)- and (5, 8)-
trees are of different types. If the maximal paths of m1 and m2 are (3, 6)- or (7, 2)-full paths, then
both m1 and m2 must be in Tℓ by Lemma 68. However, m1 = ni is not in Tℓ since i < j ≤ ℓ, which
is a contradiction.

Therefore, the maximal paths of m1 and m2 must be proper paths and the origins of m1 and
m2 are 1, 4, 5 or 8.

For i < ℓ, the maximal path of ni is a (5, 1)-, (4, 8)-, (1, 5)- or (8, 4)-full path, by Lemmas 71
and 70. We note that if two partial paths are identical, their endpoints must be identical22. If j = ℓ,
then the maximal path of nℓ must also be in the aforementioned positions. In this case abortion
cannot occur in the second assertion of MakeNodeReady(n), otherwise the maximal path of nℓ is
a (4, 1)- or (8, 5)-full path.

22 To wit, an (i, j)-partial path and an (i′, j′)-partial path have identical endpoints if and only if i = i′ and j = j′.
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By Lemmas 71 and 73, the endpoints of the maximal paths of ni and nj are determined23 by
the origins of ni and nj, and their endpoints are identical only if the origins are the same (this also
holds when j = ℓ, because the positions in Lemma 73 are the same as in Lemma 71).

Since ni and nj are in different trees, they must have different parent nodes, and by Lemma 7 we
have ni.beginning 6= nj.beginning. But ni.beginning and nj.beginning are in their respective maximal
paths, and the two queries are in the same position since the origins are the same. Thus the maximal
paths contain different queries in the position and cannot be identical.

Lemma 77. If the second assertion in MakeNodeReady or the assertion in F fails, there exists a
(3, 6)-cycle, a (7, 2)-cycle or a proper cycle (cf. Definitions 23, 24).

Proof. By Lemma 64, the assertion in F never fails if called by the distinguisher. Thus we only
need to consider calls to F by MakeNodeReady.

As usual, let (T1, . . . ,Tℓ) be the tree stack when the simulator aborts, and let ri and ni denote
the root and the non-ready leaf respectively in Ti for i = 1, . . . , ℓ. Then the abortion occurs in
MakeNodeReady(nℓ) or in a call to F made by MakeNodeReady(nℓ), as discussed before Lemma 71.

When the second assertion in MakeNodeReady or the assertion in F fails, both endpoint queries
of the maximal path of nℓ are pending by Lemma 74. Let (h, xh) be the query which causes the
assertion to fail, and which is therefore one of the endpoint queries of the maximal path of nℓ (the
other endpoint query being nℓ.beginning). By Lemma 65 there exists a node n′ in the tree stack
such that n′.end = (h, xh). Let Tk be the tree containing n′.

In each tree Ti, there exists a unique route from ni to ri. Let τi be the sequence of nodes in the
route except the last node ri. Note that ni 6= ri, therefore τi contains at least one node ni.

Moreover, in the tree Tk, there exists a unique route from nk to n′. Let γ be the sequence of
nodes in this route, and let ntop be the highest node in the sequence (i.e., ntop is the node in the
sequence closest to the root). Let γ1 be the prefix of γ consisting of nodes to the left of ntop, and let
γ2 be the suffix of γ consisting of nodes to the right of ntop, with neither sub-sequence containing
ntop.

Because nk is a non-ready leaf while n′ is ready, we have nk 6= n′ and γ contains at least two
nodes. The leaf nk can only be adjacent to its parent, thus nk 6= ntop. Thus nk must be in the
prefix γ1 since it is the first node in γ, so γ1 is not empty. (However, γ2 may be empty if ntop = n′.
This is also the only case in which n′ /∈ γ1 ∪ γ2.) Moreover, if the root rk is in γ, then we must
have ntop = rk. This implies that neither γ1 nor γ2 may contain rk, i.e., the nodes in γ1 and γ2 are
non-root nodes.

For each non-root node n we define the following two oriented partial paths:

– Let n+ denote the positive oriented path of n, whose partial path equals the maximal path of n
and whose starting point equals n.beginning;

– Let n− denote the negative oriented path of n, whose partial path equals the maximal path of
n and whose ending point equals n.beginning.

Moreover, for a sequence τ of non-root nodes, let τ+ and τ− be the sequences of positive and
negative oriented paths of the nodes respectively. We claim that the concatenated sequence

(τ−ℓ , τ−ℓ−1, . . . , τ
−
k+1, γ

−
1 , γ

+
2 ) (5)

23 In more detail, Lemmas 71 and 73 imply that if the origin of n ∈ {ni, nj} is 1, 4, 5, 8 respectively, then the maximal
path of n is a (5, 1)-, (4, 8)-, (1, 5)- and (8, 4)-partial path, respectively.
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is a path cycle satisfying the requirements of the lemma.

Each oriented path in (5) contains the maximal path of a non-root node n in the tree stack. By
Lemma 74, these maximal paths are full partial paths.

The sequence is of length at least 2: if k < ℓ, both τℓ and γ1 contain at least one node;
otherwise k = ℓ, and it suffices to show that n′ 6= nℓ and that n′ is not the parent of nℓ; the former
follows from the fact that n′ is ready whereas nℓ is not, while the latter follows from the fact that
n′.end = (h, xh) 6= nℓ.beginning.

By Lemma 76, the maximal paths of non-root nodes in the tree stack are distinct. Since each
node appears in (5) at most once, the partial paths in the cycle are distinct and property 1 of
Definition 22 holds.

If the origin of nℓ is 3 or 6, then h equals 6 or 3. Tℓ is the only (3, 6)-tree in the stack, so n′

must also be a node in Tℓ (i.e., k = ℓ). Thus all paths in (5) are maximal paths of the nodes in Tℓ,
which are (3, 6)-full paths by Lemma 74. Similarly we can prove if the origin of nℓ is 2 or 7, the
paths in (5) are (7, 2)-full paths.

If the origin of nℓ is 1, 4, 5 or 8, then Tℓ is a (1, 4)- or (5, 8)-tree. By Lemma 74, the maximal
paths of all nodes in the tree stack are proper partial paths. We remind that for (5) to be a proper
cycle, it should not contain two consecutive inner proper paths. For convenience, we will call this
property “property 3” in the following proof. (Property 3 also holds for a (3, 6)- or (7, 2)-cycle,
since such a cycle contains no inner proper paths.) Both property 2 (of a path cycle) and property
3 concerns two adjacent paths in (5). In the following discussion, we will prove the two properties
for each pair of adjacent paths.

Let t ≥ 2 be the length of (5). Let Rs = (Ps, σs) and Rs+1 = (Ps+1, σs+1) be adjacent oriented
paths in (5), with s + 1 = 1 if s = t, and let ms and ms+1 be the nodes corresponding to Rs and
Rs+1. We will distinguish between the following four cases: (case 1) ms is not the last node of τi,
γ1 or γ2, (case 2) ms is the last node of τi, (case 3) ms is the last node of γ1, and (case 4) ms is
the last node of γ2.

Case 1. If ms is in τi or γ1 and is not the last node in that sequence then ms+1 is in the same
sequence and is the parent of ms since these sequences represent a route towards the root (or
towards ntop). Moreover we have Rs = m−

s and Rs+1 = m−
s+1 so the ending point of Rs and the

starting point of Rs+1 are ms.beginning = ms+1.end.

Only ready nodes have children, so ms+1 is ready. By Lemma 75, Ps+1 is not an inner proper
path, and property 3 follows.

Similarly, if ms is in γ2 and is not the last node of γ2, ms+1 is also in γ2 and is a child of ms.
We have Rs = m+

s and Rs+1 = m+
s+1, and the proof is symmetric to the previous case.

Case 2. If ms is the last node of τi then its parent is ri; furthermore, ms+1 = ni−1 (i.e., the
non-ready leaf in Ti−1) and Rs = m−

s , Rs+1 = n−
i−1. The ending point of m−

s is ms.beginning and,
by Lemma 71, the starting point of n−

i−1 is ri.end = ms.beginning. This establishes property 2 of a
path cycle.

For property 3, if the origin of ms+1 = ni−1 is 1, 4, 5 or 8, the position of ri.end = ms.beginning
is 5, 8, 1 or 4 respectively. Either way at most one of the origins of ms, ms+1 is 4 or 5, thus at most
one of Ps and Ps+1 is an inner proper path by Lemma 75.

Case 3. If ms is the last node in γ1 and γ2 is not empty, then ms+1 is the first node in γ2. Both
ms and ms+1 are children of ntop, so we have ms.beginning = ms+1.beginning = ntop.end. The
beginning of the two nodes are the ending point of m−

s and the starting point of m+
s+1 respectively,
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thus property 2 holds. Since nk is the unique non-ready node in Tk and nk ∈ γ1, the node ms+1 ∈ γ2
is ready and, by Lemma 75, Ps+1 is not an inner proper path.

On the other hand, if γ2 is empty, then ms is the last node of (5) and ms+1 = m1 = nℓ and
ntop = n′. The ending point of m−

s is ms.beginning = n′.end = (h, xh), which is in the maximal
path of nℓ. More precisely, since this query is pending, it is the starting point of n−

ℓ (while the
ending point of n−

ℓ is nℓ.beginning).

Next we prove that the maximal paths of ms and nℓ can’t both be inner proper paths. By
Lemma 75, the paths are inner proper paths only if both ms and nℓ have origins 4 or 5. If nℓ has
origin 4 or 5, then no matter whether the abortion occurs in the second assertion of MakeNodeReady
or in the call to F, the query (h, xh) is in position 1 or 8, i.e., the origin of ms is h ∈ {1, 8}. Thus,
ms cannot be an inner proper path at the same time.

Case 4. If ms is the last path in γ2 (assuming γ2 is non-empty), then ms = n′ and ms+1 = nℓ. The
ending point of n′+ is n′.end = (h, xh), which is also the starting point of n−

ℓ . Since n′ is ready, its
maximal path is not an inner proper path by Lemma 75, so property 3 holds.

Next we will prove that the aforementioned types of path cycles never exist in executions of G3.
Note that a path cycle can only be created when the tables are modified. The procedures that
modify the tables are P, P−1, ReadTape and Adapt. We will go through these procedures one-by-
one and prove that none of them may create such a path cycle, provided that such a path cycle
didn’t previously exist.

Lemma 78. In an execution of G3, no (3, 6)-, (7, 2)- or proper cycle is created during a call to P
or P−1.

Proof. We prove the lemma for a call to P, with the argument being symmetric for a call to P−1.

The paths in a (3, 6)-cycle don’t contain permutation queries, thus such cycles are not created
after a call to P.

Suppose an entry T (x0, x1) = (x8, x9) is added in a call to P. We must have x8 /∈ F8, otherwise
BadPHit occurs. Thus, the path containing the permutation query cannot be a (7, 2)-path and hence
no (7, 2)-cycle is created. Moreover, if a proper path p contains the permutation query, the proper
path must be a (8, 5)- or (8, 4)-full path. This implies that (8, x8) is an endpoint query of p.

Assume a proper cycle is created after the call to P, then by definition, one of the paths adjacent
to p also has (8, x8) as an endpoint query. Let the path be p′. It does not contain the permutation
query, otherwise p and p′ both contain the 2chain (8, x8, x9) and are identical by Lemma 69, violating
property 1 of Definition 22. Therefore the proper path p′ already exists when the call to P is issued.
The path p′ is a (4, 8)-, (8, 5)- or (8, 4)-full partial path, so (8, x8) is incident with an active 2chain
when P(x0, x1) is called. But then BadPCollide occurs in the call.

Lemma 79. In an execution of G3, no (3, 6)-, (7, 2)- or proper cycle is created during a call to
ReadTape.

Proof. Consider a call ReadTape(i, xi). For any path cycle created during the call, at least one of
the partial paths in the cycle contains the query (i, xi). Let {xh}

t
h=s denote a partial path in the

cycle that contains xi. Since xi ∈ Fi, it cannot be in an endpoint of the path. Moreover, (i, xi) must
be adjacent to an endpoint of the path; otherwise (i − 1, xi−1, xi) is left active and (i, xi, xi+1) is
right active (since neither xi−1 nor xi+1 is an endpoint query), and BadRHit occurs when ReadTape
is called.
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Without loss of generality, assume i− 1 is an endpoint of the path, i.e., s = i− 1. Observe that
the length of a (3, 6)-, (7, 2)- or proper path is at least 4, so i+1 is not an endpoint of the path and
hence the 2chain (i, xi, xi+1) is right active. On the other hand, an adjacent path in the path cycle,
which we can denote {x′h}

t′

h=s′ , also contains the endpoint query xi−1. If {x
′
h}

t′

h=s′ also contains
xi, by Lemma 69, the two paths are identical, violating the definition of a path cycle. Therefore
{x′h}

t′

h=s′ cannot contain xi, and exists before ReadTape(i, xi) is called. But BadRCollide occurs
when ReadTape(i, xi) is called, because the 2chain (i, xi, xi+1) is right active and (i − 1, xi−1) =
(i− 1, fi(xi)⊕ xi+1) is incident with an active 2chain (contained in the path {x′h}

t′

h=s′).

Finally we are left with the Adapt procedure.

Lemma 80. In an execution of G3, no (7, 2)-cycle is created during a call to Adapt.

Proof. A (7, 2)-full path only contains defined queries in positions 1 and 8. The procedure Adapt
is never called on queries in position 8. It is called on queries in position 1 during AdaptNode(n) if
the origin of n is 3 or 6. Let xi denote the queries in the maximal path of n, and in particular the
adapted query is (1, x1).

Assume that a (7, 2)-full path {x′h}
2
h=7 is created after the call to Adapt. We have T−1(x′8, x

′
9) =

(x′0, x
′
1), which implies x′8 = x8 and x′9 = x9 by Lemma 48. Thus x′7 = F8(x

′
8)⊕x′9 = F8(x8)⊕x9 =

x7. However, the query (7, x7) has been defined in PrepareTree(n), while (7, x′7) is an endpoint query
of a (7, 2)-full path and should be undefined, leading to a contradiction. Therefore, no (7, 2)-full
path is created, and hence no (7, 2)-cycle is created.

For (3, 6)- and proper cycles, we will not prove the result for each individual adaptation; instead,
we will consider the adaptations that occur in a call to AdaptTree(r) all at once, where r is a root
node.

In the following discussion, we will use the same notations and shorthands as in Definition 16.
E.g., A denotes the set of adapted queries in AdaptTree (constructed by GetAdapts), and {xh}
denotes the partial path associated to a node.

Lemma 81. In an execution of G3, no (3, 6)-cycle is created during a call to AdaptTree.

Proof. The defined queries contained by (3, 6)-full paths are in positions 4 and 5. From Table 2 we
can see that queries in positions 4 and 5 are only adapted when the origin of a node is 2 or 7. Thus
we only need to consider a call to AdaptTree(r) where r is the root of a (2, 7)-tree.

Assume by contradiction that a (3, 6)-cycle is created during AdaptTree(r), then at least one
(3, 6)-full path in the cycle contains an adapted query. Let the path be {xh}

6
h=3, and by the definition

of a cycle, one of its adjacent paths in the cycle {x′h}
6
h=3 has x′6 = x6. Moreover, the two paths are

not identical, and x6 = x′6 /∈ F6 since they are (3, 6)-full paths. However, the queries (4, x4), (5, x5),
(4, x′4) and (5, x′5) are either defined at the beginning of AdaptTree(r) or are adapted during the
call (where at least one of (4, x4) and (5, x5) is adapted), with x4⊕F5(x5) = x′4 ⊕F5(x

′
5) /∈ F6 and

(x4, x5) 6= (x′4, x
′
5), so BadAMid occurs and the simulator should have aborted when AdaptTree(r)

is called.

Lemma 82. In an execution of G3, if no proper cycle has existed before a call to AdaptTree, no
proper cycle is created during the call.
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Proof. Consider a call to AdaptTree(r) where r is a root node. If a proper cycle is created in the
call, one of the proper partial paths in the cycle must contain an adapted query. Let P = {uh} be
a proper path in the proper cycle that contains an adapted query (i, xi, yi) ∈ A (with xi = ui). Let
the query be adapted in the call AdaptNode(n), and let (h, xh) denote queries in the maximal path
of n.

If i = 1 the proper path P contains a defined query in position 1 and must be a (8, 5)- or
(8, 4)-full path. Thus T−1(u8, u9) = (u0, x1), and by Lemma 48 we have u8 = x8 and u9 = x9.
The node n is in a (3, 6)-tree, and (8, x8) is sampled in PrepareTree(n) before (1, x1) is adapted.
Thus (8, x8) is defined and cannot be an endpoint query of a full path, a contradiction! Therefore
P cannot contain an adapted query in position 1.

Note that an adapted query cannot be in position 8.

If P contains exactly one adapted query (i, xi, yi) ∈ A (1 < i < 8), we discuss the position of
the query. If both (i − 1, ui−1) and (i + 1, ui+1) are defined, then yi = ui−1 ⊕ ui+1 and BadAHit

occurs. Thus (i, xi) is next to an endpoint query of P ; without loss of generality let (i − 1, ui−1)
be undefined. Note that a proper path contains at least three consecutive defined queries (which is
easy to check from Definition 19). Because (i, xi) is the only adapted queries, queries (i + 1, ui+1)
and (i+2, ui+2) are defined when AdaptTree(r) is called, and the query (i, xi) is incident with the
active 2chain (i + 1, ui+1, ui+2). By Lemma 59 the 2chain must be contained in the maximal path
of n. Since P is a full path, by extension P contains all defined queries in the maximal path of n.
Since AdaptNode(n) has been called, P contains at least 6 defined queries, which is too many for
P to be a proper path.

Therefore, P must contain two adapted queries. The tree rooted at r cannot be a (3, 6)-tree,
where the adapted queries are in positions 1 and 2 and P can only contain one in position 2. The
tree cannot be a (2, 7)-tree either: the adapted queries are in positions 4 and 5, but we can observe
that one of the endpoints of a proper path is 4 or 5, i.e., one of (4, u4) and (5, u5) is not defined.
Without loss of generality we assume r is the root of a (1, 4)-tree, with the proof for a (5, 8)-tree
being symmetric.

The queries in A are in positions 2 and 3. Let P contain (2, x2, y2) ∈ A and (3, x′3, y
′
3) ∈ A,

adapted in paths {xh} and {x′h} respectively. The two paths cannot be identical, otherwise by
extension {uh} is identical to {xh} and cannot be a proper path. For the same reason, we have
u1 6= x1 and u4 6= x′4. If P is a (8, 4)- or (8, 5)-full path, (0, u0, u1) is an active 2chain with which
(2, x2) is incident. This contradicts Lemma 59 since u1 6= x1. Thus P must be a (1, 5)-full path. The
above argument applies to all proper paths containing queries in A, i.e., if a proper path contains
at least one query in A, it must be a (1, 5)-full path.

The query u4 ∈ F4 is not adapted and has been defined since AdaptTree(r) is called. Note that
u4 = x2⊕ y′3; if x1 6= x′1, BadAPair occurs for the pair (2, x2, y2) and (3, x′3, y

′
3). Thus we must have

x1 = x′1.

Now consider the path adjacent to P in the proper cycle that also contains the endpoint query
(1, u1). Let P ′ = {u′h} denote the path, then u′1 = u1 and P ′ is a proper path. The path P ′

cannot contain a query in A, otherwise it is also a (1, 5)-full path (as proved above), but a proper
cycle cannot contain two adjacent inner proper paths (cf. Definition 24). Thus P ′ exists when
AdaptTree(r) is called, so the query (1, u′1) = (1, u1) is incident with an active 2chain (contained
in P ′). Since u1 = y2 ⊕ x′3, BadAPair occurs for the pair (2, x2, y2) and (3, x′3, y

′
3) if x4 6= x′4. Hence

we must have x4 = x′4.

From the above discussion, we have x1 = x′1 and x4 = x′4. Now we consider the point in
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time right before SampleTree(r) was called: Since SampleTree(n) and SampleTree(n′) haven’t been
called, {xh} and {x

′
h} are distinct proper (4, 1)-paths, and ({xh},+) and ({x′h},−) form a proper

cycle of length 2. This contradicts the assumption that no path cycle existed before AdaptTree(r)
is called!

Lemma 83. The simulator does not abort in good executions of G3.

Proof. Bad events don’t occur in good executions, so the simulator doesn’t abort in CheckBadP,
CheckBadR or CheckBadA.

By Lemmas 78 through 82, none of the procedures P, P−1, ReadTape and Adapt may create the
first (3, 6)-, (7, 2)- or proper cycle. Since these are the only procedures that modify the tables, no
query cycle can be created in any execution of G3. By Lemma 77, the assertion in F and the second
assertion in MakeNodeReady never fail. Moreover, by Lemmas 58, 61 and 63, the other assertions
of the simulator don’t fail.

Therefore, no abortion occurs in good executions of G3.

Lemma 84. The probability that an execution of G3 aborts is at most 28392q8/2n.

Proof. This directly follows by Lemmas 57 and 83.

5.5 Transition from G3 to G4

With the result in the previous section, we can prove the indistinguishability of G3 and G5. We
will upper bound ∆D(G3,G4) and ∆D(G4,G5), and use a triangle inequality to complete the
transition. Our upper bound on ∆D(G3,G4) holds only if D completes all paths (see Definition
1), which means that our final upper bound on ∆D(G1,G5) holds only if D completes all paths.
However, an additional reduction (see Theorem 97) implies the general case, at the cost of doubling
the number of distinguisher queries. We also remind that lemmas marked with (*) are only hold
under the assumption that D completes all paths.

The general idea for the following section is similar to the randomness mapping in [18], but since
(and following [1]) we didn’t replace the random permutation with a two-sided random function
in intermediate games, the computation is slightly different. We also adapt a trick from [12] that
ensures the probability of abortion in G3 is not counted twice in the transition from G3 to G5,
saving a factor of two overall.

Footprints. In the following discussion, we will rename the random tapes used in G4 as g1, g2,
. . . , g8 (all of which are random oracle tapes), in contrast to the tapes f1, f2, . . . , f8 used in G3. The
permutation tape p is only used in G3, so need not be renamed.

We will use the notion of a footprint (from [1]) to characterize an execution of G3 or G4.
Basically, the footprint of an execution is the subset of the random tapes that are actually used.
Note that the footprint is defined with respect to the fixed distinguisher D.

Definition 25. A partial random tape is a table f̃ of size 2n such that f̃(x) ∈ {0, 1}n ∪ {⊥} for
each x ∈ {0, 1}. A partial random permutation tape is a pair of tables p̃, p̃−1 of size 22n such that
p̃(u), p̃−1(v) ∈ {0, 1}2n ∪ {⊥} for all u, v ∈ {0, 1}2n, such that p̃−1(p̃(u)) = u for all u such that
p̃(u) 6= ⊥, and such that p̃(p̃−1(v)) = v for all v such that p̃−1(v) 6= ⊥.

72



We note that random (permutation) tapes—in the sense used so far—can be viewed as special cases
of partial random (permutation) tapes, namely, they are partial tapes with no ⊥ entries. We also
note that p̃ determines p̃−1 and vice-versa in the above definition, so that we may use either p̃ or
p̃−1 to designate the pair p̃/p̃−1.

Definition 26. A random tape fi extends a partial random tape f̃i if fi(x) = f̃i(x) for all x ∈
{0, 1}n such that f̃i(x) 6= ⊥. A random permutation p extends a partial random permutation tape
p̃ if p(u) = p̃(u) for all u ∈ {0, 1}2n such that p̃(u) 6= ⊥. We also say that fi (resp. p) is compatible
with f̃i (resp. p̃) if fi (resp. p) extends f̃i (resp. p̃).

We use the term partial tape to refer either to a partial random tape or to a partial random
permutation tape.

Definition 27. Given an execution of G3 with random tapes f1, f2, . . . , f8, p, the footprint of the
execution is the set of partial tapes f̃1, f̃2, . . . , f̃8, p̃ consisting of entries of the corresponding tapes
that are accessed at some point during the execution. (For the case of p̃, an access to p(u) also
counts as an access to p−1(p(u)) and vice-versa.) Similarly, for an execution of G4 with random
tapes g1, g2, . . . , g8, the footprint is the set of partial tapes g̃1, g̃2, . . . , g̃8, with g̃i containing the
entries of gi that are accessed at some point during the G4-execution.

Note that Definition 27 exclusively refers to the state of tape accesses at the end of an execution:
we do not consider footprints as they evolve over time; rather, and given the fixed distinguisher D,
the footprint is a deterministic function of the initial random tapes f1, . . . , f8, p in G3 or g1, . . . , g8
in G4.

Note that for the fixed distinguisher D, some combinations of partial tapes cannot be obtained
as footprints. We thus let FP3 and FP4 denote the set of obtainable footprints in G3 and G4

respectively. For i = 3, 4, let PrGi
[ω] denote the probability of obtaining the footprint ω ∈ FPi in

an execution of Gi.

We say that a set of random tapes is compatible with a footprint ω if each random tape is
compatible with the corresponding partial tape in ω.

Lemma 85. For i = 3, 4 and ω ∈ FPi, an execution of Gi has footprint ω if and only if the random
tapes are compatible with ω.

Proof. Let T = (f1, f2, . . . , f8, p) if i = 3, T = (g1, g2, . . . , g8) if i = 4.

The “only if” direction is trivial: If the footprint of the execution with tapes T is ω, then by
definition, ω consists of partial tapes that are compatible with the tapes in T .

For the “if” direction, consider an arbitrary ω ∈ FPi. There exist random tapes T ′ such that
the execution of Gi with T

′ has footprint ω. During the execution with T ′, only entries in ω are
read. If we run in parallel the executions of Gi with T and with T ′, the two executions can never
diverge: as long as they don’t diverge, the tape entries read in both executions exist in ω and hence
are answered identically in the two execution. This implies that the executions with T ′ and T are
identical and should have identical footprints.

A corollary of Lemma 85 is that for ω ∈ FPi, PrGi
[ω] equals the probability that the random tapes

are compatible with ω. Let |f̃ | = |{x ∈ {0, 1}n : f̃(x) 6= ⊥}|, |p̃| = |{u ∈ {0, 1}2n : p̃(u) 6= ⊥}|. Then
the probability that random tapes in G3 are compatible with a footprint ω = (f̃1, . . . , f̃8, p̃) ∈ FP3
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is
( 8
∏

i=1

1

2n|f̃i|

)( |p̃|−1
∏

ℓ=0

1

22n − ℓ

)

= Pr
G3

[ω], (6)

by elementary counting. Similarly, the probability that random tapes in G4 are compatible with
ω = (g̃1, . . . , g̃8) ∈ FP4 is

8
∏

i=1

1

2n|g̃i|
= Pr

G4

[ω]. (7)

Let PrGi
[S] denote the probability that one of the footprints in a set S ⊆ FPi is obtained. As

every execution corresponds to a unique footprint, the events of obtaining different footprints are
mutually exclusive, so

Pr
Gi

[S] =
∑

ω∈S

Pr
Gi

[ω].

Since the distinguisher D is deterministic, we can recover a Gi-execution from a footprint
ω ∈ FPi by simulating the execution, answering tape queries using entries in ω. We say a footprint
is non-aborting if the corresponding execution does not abort. Let FP∗

3 ⊆ FP3 and FP∗
4 ⊆ FP4 be

the set of all non-aborting footprints of G3 and G4 respectively.

Randomness Mapping. The heart of the randomness mapping is an injection ζ : FP∗
3 → FP∗

4 such
that executions with footprints ω and ζ(ω) have the same output. Moreover, PrG3 [ω] will be close
to PrG4 [ζ(ω)].

Definition 28. The injection ζ : FP∗
3 → FP∗

4 is defined as follows: for ω = (f̃1, . . . , f̃8, p̃) ∈ FP∗
3,

ζ(ω) = (g̃1, . . . , g̃8) where

g̃i = {(x, y) ∈ {0, 1}
n × {0, 1}n : Fi(x) = y}

and where Fi refers to the table Fi at the end of the execution of G3 with footprint ω.

Since we can recover an execution using its footprint, the states of the tables Fi at the end of the
execution, as well as the output of the distinguisher, are determined by the footprint. Thus, the
mapping ζ is well-defined. We still need to prove that ζ is an injection and that ζ(ω) ∈ FP∗

4 (i.e.,
ζ(ω) is a footprint of G4 and is non-aborting).

We start by showing that answers to permutation queries in G3 are compatible with the Feistel
construction of the tables Fi.

Lemma 86. (*) At the end of a non-aborting execution in G3 or G4, a permutation query
T (x0, x1) = (x8, x9) exists in T if and only if there exists a non-root node whose maximal path
contains x0, x1, x8 and x9.

Proof. By Lemma 22, at the end of a non-aborting execution, each non-root node corresponds to a
completed path formed by the queries in its maximal path. Therefore, if the maximal path contains
x0, x1, x8 and x9, then we have T (x0, x1) = (x8, x9) due to the definition of a completed path.

To prove the “only if” direction, consider an arbitrary entry T (x0, x1) = (x8, x9). If the entry
is added by a simulator query, then it must be added during a call to MakeNodeReady(n) and, by
Lemma 19, the values x0, x1, x8 and x9 are in the maximal path of n. Otherwise the entry is added
by a distinguisher query. Since the distinguisher completes all paths, the distinguisher calls F(i, xi)
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for i ∈ {1, 2, . . . , 5}, where xi := xi−2⊕F(i−1, xi−1) for 2 ≤ i ≤ 5. In particular, the queries (3, x3),
(4, x4) and (5, x5) are defined before the end of the execution. By Lemma 62, there exists a node
whose maximal path contains x3, x4 and x5. The path also contains x0 and x1 (by definition of a
completed path), as well as x8 and x9 (since T (x0, x1) = (x8, x9) and by definition of a completed
path).

In the following lemma, we will prove that an execution of G3 with footprint ω has the same output
as an execution of G4 with footprint ζ(ω). Note that the simulators of G3 and G4 are not identical,
thus the two executions cannot be “totally identical”. Nonetheless, we can run an execution of G3

and an execution of G4 in parallel, and say they are identical if neither execution aborts, if the
tables are identical anytime during the executions, and if calls to procedures that return a value
return the same value in the two executions (note that some procedure calls only occur in G3, but
none of them return a value). In particular, if two executions of G3 and G4 are identical, then
the answers to distinguisher queries are identical in the two executions and thus the deterministic
distinguisher outputs the same value.

Lemma 87. (*) The executions of G3 and G4, with footprints ω and ζ(ω) respectively, are identical.

Proof. Let ω = (f̃1, . . . , f̃8, p̃) ∈ FP∗
3. First we prove that ζ(ω) ∈ FP4, i.e., ζ(ω) is the footprint

of some execution of G4. We arbitrarily extend the partial tapes in ζ(ω) = (g̃1, . . . , g̃8) into a set
of full random tapes λ = (g1, . . . , g8). We will prove that the execution of G4 with tapes λ has
footprint ζ(ω).

Consider an execution of G3 with footprint ω, and an execution of G4 with random tapes λ.
We will prove that the two executions are identical as defined before this lemma. Note that the
only differences between G3 and G4 are in the calls to CheckBadR and CheckBadA in G3, in the
permutation oracles P and P−1, and in the different random tapes. Since ω ∈ FP∗

3, the execution
of G3 does not abort. Moreover, the procedures CheckBadP, CheckBadR and CheckBadA don’t
modify the global variables, therefore they can be ignored without affecting the execution. Now
we prove by induction that as long as the executions are identical until the last line, they remain
identical after the next line is executed. We only need to consider the case where the next line of
code is different in G3 and G4.

If the next line reads a tape entry fi(xi) in G3, this must occur in a call to ReadTape and the
entry will be written to Fi(xi) = fi(xi). By Lemma 3 the entry is never overwritten, so we have
Fi(xi) = fi(xi) at the end of the execution and hence g̃i(xi) = fi(xi). Moreover, gi is an extension
of g̃i, which implies that the entry read in G4 is gi(xi) = fi(xi).

If the next line calls P or P−1(issued by the distinguisher or by the simulator), the call outputs
an entry of T . If the entry pre-exists before the call, then by the induction hypothesis, the output
is identical in the two executions. Otherwise, the entry does not pre-exist in either execution, and
a new entry will be added in both executions. We only need to prove that the same entry is added
in both executions.

Let T (x0, x1) = (x8, x9) be the new entry added by the call to P or P−1 in the G3-execution.
By Lemma 86, there exists a node whose maximal path contains x0, x1, x8, x9. By Lemma 22, the
queries are in a completed path, which implies Val+(0, x0, x1, i) = xi for i = 8, 9. As discussed above,
the defined queries also exist in gi. Because in G4 the call to P and P−1 is answered according to
the Feistel network of gi, the new entry in the G4-execution is also T (x0, x1) = (x8, x9).

By induction, we can prove that the two executions are identical. Furthermore, we can observe
from the above argument that an entry gi(xi) is read in G4 if and only if the corresponding table
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entry Fi(xi) is defined in G3: The calls to ReadTape are identical in the two executions, thus the
query defined in G3 is the same as the tape entry read in G4. Entries of gi read by P and P−1 in
the G4-execution are in a completed path in the G3-execution and thus are defined. The queries
defined by Adapt in the G3-execution must be read in G4 when the corresponding permutation
query is being answered for the first time. Therefore, the footprint of the G4-execution with tapes
λ is ζ(ω).

The G4-execution does not abort by the definition of identical executions, so ζ(ω) ∈ FP∗
4.

Lemma 88. (*) The mapping ζ defined in Definition 28 is an injection from FP∗
3 to FP∗

4.

Proof. By Lemma 87, for any ω ∈ FP∗
3, the G4-execution with footprint ζ(ω) is identical to the

G3-execution with footprint ω. In particular, neither execution aborts and thus ζ(ω) ∈ FP∗
4.

That the executions are identical also implies that ζ is injective: Given ζ(ω), the execution of
G4 can be recovered. In particular, we have the state of tables Fi and T at the end of the execution,
which we denote by Σ = (F1, . . . , F10, T ). Since the execution of G3 with footprint ω is identical,
the state of tables at the end of the execution is also Σ. We note that all tape entries read in a
G3-execution will be added to the corresponding table (entries of fi are added to Fi, and entries of
p are added to T ). Thus ω can only contain entries in Σ.24 Assume ω′ ∈ FP∗

3 is also a preimage of
ζ(ω) under ζ, i.e., ζ(ω′) = ζ(ω). Similarly ω′ only contains entries in Σ. In both executions with
footprints ω and ω′, tape queries receive answers compatible with Σ and the two executions can
never diverge. This implies that the executions are identical and the footprints ω = ω′. Therefore,
ζ(ω) has a unique preimage ω ∈ FP∗

3, i.e., ζ is injective.

Lemma 89. (*) At the end of a non-aborting execution of G3, the size of T equals the number of
non-root nodes created throughout the execution.

Proof. We only need to prove that maximal paths of different non-root nodes contain distinct
(x0, x1) pairs, then by Lemma 86, there is a one-one correspondence between non-root nodes and
permutation queries in T , implying that the numbers are equal.

By contradiction, assume that the maximal paths of two nodes both contain x0 and x1. By
Lemma 22, the queries in the maximal paths of the nodes form two completed paths. Since a
completed path can be determined by two queries in consecutive positions, the completed paths of
the two nodes are identical. However, this is impossible in a non-aborting execution: After one of
the nodes is completed, all queries in the completed path are defined. When AdaptNode is called
on the other node (which must occur by the end of the execution), the queries to be adapted are
defined and abortion will occur in the call to Adapt.

Lemma 90. (*) Let ω = (f̃1, . . . , f̃8, p̃) ∈ FP∗
3 and ζ(ω) = (g̃1, . . . , g̃8) ∈ FP∗

4. Then

8
∑

i=1

|g̃i| =
8

∑

i=1

|f̃i|+ 2 · |p̃|.

Proof. Consider an execution of G3 with footprint ω, and in the following discussion let Fi and T
denote the state of the tables at the end of the execution. By the definition of the mapping ζ, gi
consists of entries in Fi, so the left-hand side of the equality equals the sum of |Fi|.

24 More accurately, ω only contains entries in the corresponding tables in Σ, where Fi corresponds to fi and T
corresponds to p. We will abuse notations and not mention the transformation explicitly.
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The queries in Fi are added exactly once, by either ReadTape or Adapt. We split Fi into
two sub-tables FR

i and FA
i consisting of queries added by ReadTape and Adapt respectively. Let

FA =
⋃

i({i} × FA
i ) be the set of adapted queries in all positions (note that elements of FA also

include the position of the query).

In the execution of G3, fi are only read by ReadTape, and it is easy to see that fi(xi) is read
if and only if xi ∈ FR

i , which implies |f̃i| = |F
R
i |.

The queries in FA are adapted in Adapt called by AdaptNode. Two queries are adapted for
each non-root node. By Lemma 89, the number of non-root nodes equals the size of T at the end
of a non-aborting execution. Moreover, entries in T are only added by P and P−1, and each entry
T (x0, x1) = (x8, x9) exists if and only if p(x0, x1) = (x8, x9) is read. Thus |T | = |p̃| and the number
of adapted queries is |FA| = 2 · |T | = 2 · |p̃|.

Putting everything together, we have

8
∑

i=1

|g̃i| =
8

∑

i=1

|Fi| =
8

∑

i=1

|FR
i |+ |F

A| =
8

∑

i=1

|f̃i|+ 2 · |p̃|.

Lemma 91. (*) For every ω ∈ FP∗
3, we have

Pr
G4

[ζ(ω)] ≥ Pr
G3

[ω] · (1− 16q4/22n)

Proof. Let ω = (f̃1, . . . , f̃8, p̃) ∈ FP∗
3, then by Lemma 88, ζ(ω) = (g̃1, . . . , g̃8) ∈ FP∗

4. By equa-
tions (6) and (7), we have

Pr
G4

[ζ(ω)]/Pr
G3

[ω] = 2−n
∑

|g̃i|

/(

2−n
∑

|f̃i| ·

|p̃|−1
∏

ℓ=0

1

22n − ℓ

)

= 2−n(
∑

|f̃i|+2|p̃|) · 2n
∑

|f̃i| ·

|p̃|−1
∏

ℓ=0

(22n − ℓ)

= 2−2n·|p̃| ·

|p̃|−1
∏

ℓ=0

(22n − ℓ)

≥

(

22n − |p̃|

22n

)|p̃|

(8)

where the second equality uses Lemma 90.

Note that each entry in p̃ corresponds to a distinct permutation query in T . By Lemma 28, we
have |T | ≤ 4q2, so |p̃| ≤ 4q2. Since (8) is monotone decreasing with respect to |p̃|, we have

(

22n − |p̃|

22n

)|p̃|

≥

(

22n − 4q2

22n

)4q2

≥ 1−
16q4

22n

and the lemma follows.
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Lemma 92. (*) We have

∆D(G3,G4) ≤ Pr
G4

[FP∗
4]− Pr

G3

[FP∗
3] +

16q4

22n
.

Proof. Let DG3(ω) denote the output of D in an execution of G3 with footprint ω ∈ FP3, and let
DG4(ω) denote the output of D in an execution of G4 with footprint ω ∈ FP4.

Recall that by assumption D outputs 1 when it sees abortion. Also note that abortion occurs
in an execution of G3 (resp. G4) if and only if the footprint is not in FP∗

3 (resp. FP∗
4). For i ∈ {3, 4}

we have
Pr
Gi

[DF,P,P−1
= 1] = 1− Pr

Gi

[FP∗
i ] +

∑

ω∈FP∗

i ,D
Gi(ω)=1

Pr
Gi

[ω]. (9)

By Lemma 87, executions with footprints ω and ζ(ω) have the same output; by Lemma 88, ζ
is injective. So ζ(ω) is distinct for distinct ω and {ζ(ω) : ω ∈ FP∗

3, D
G3(ω) = 1} is a subset of

{ω : ω ∈ FP∗
4, D

G4(ω) = 1}. Thus we have

∑

ω∈FP∗

4 ,D
G4(ω)=1

Pr
G4

[ω] ≥
∑

ω∈FP∗

3 ,D
G3(ω)=1

Pr
G4

[ζ(ω)]

≥ (1−
16q4

22n
)

∑

ω∈FP∗

3 ,D
G3(ω)=1

Pr
G3

[ω] (10)

where the second inequality is due to Lemma 91.
Furthermore, combining (4) and (9), we have

∆D(G3,G4) = Pr
G3

[DF,P,P−1
= 1]− Pr

G4

[DF,P,P−1
= 1]

= Pr
G4

[FP∗
4]− Pr

G3

[FP∗
3] +

∑

ω∈FP∗

3,D
G3(ω)=1

Pr
G3

[ω]−
∑

ω∈FP∗

4,D
G4(ω)=1

Pr
G4

[ω]

≤ Pr
G4

[FP∗
4]− Pr

G3

[FP∗
3] +

(

1−
(

1−
16q4

22n

)

)

∑

ω∈FP∗

3,D
G3(ω)=1

Pr
G3

[ω]

≤ Pr
G4

[FP∗
4]− Pr

G3

[FP∗
3] +

16q4

22n

where the first inequality follows by (10), and the second inequality uses the fact that the sum of
probabilities of obtaining a subset of footprints is at most 1.

5.6 Transition from G4 to G5

Lemma 93. At the end of a non-aborting execution of G4, the tables Fi are consistent with the
tapes gi.

Proof. The entries of Fi added by ReadTape are read from gi and thus are consistent with gi.
For the entries added by Adapt, we prove the claim by induction on the number of calls to

AdaptNode. Consider a call to AdaptNode(n), assuming that the entries added during the previous
calls to AdaptNode are consistent with the tapes. When AdaptNode(n) is called, queries in the
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maximal path of n are defined except the queries to be adapted; in particular, its maximal path
contains x0, x1, x8, x9 such that T (x0, x1) = (x8, x9). The entry of T is added by P or P−1, and from
the pseudocode of G4, we observe that there exists x2, x3, . . . , x7 such that xi = gi−1(xi−1)⊕xi−2 for
i = 2, 3, . . . , 9. By the induction hypothesis, pre-existing queries in Fi are compatible with tapes gi.
Furthermore, when the call to AdaptNode(n) occurs the maximal path of n contains x0, x1, . . . , x9,
and all these queries except the two queries to be adapted are defined. Note that gi(xi) = xi−1⊕xi+1

also holds for each (i, xi) to be adapted. By the pseudocode of AdaptNode, we can see that the
queries adapted during the call to AdaptNode(n) are compatible with gi.

Lemma 94. In a non-aborting execution of G4, the distinguisher queries are answered identically
to an execution of G5 with the same random tapes. In particular, the distinguisher outputs the
same value in the two executions.

Proof. The permutation oracles in the two executions are identical and are independent to the state
of tables, the answers to the permutation queries are identical in the two executions.

In G4, calls to F return the corresponding entry in Fi. By Lemma 93, the tables Fi at the end of
a G4-execution are compatible with tapes gi, and so are the answers of calls to F. In G5, F directly
returns the entry of gi, which is the same as the answer in G4.

Lemma 95. We have

∆D(G4,G5) ≤ 1− Pr
G4

[FP∗
4].

Proof. By Lemma 94, if random tapes g1, . . . , g8 result in a non-aborting execution of G4, the
execution of G5 with the same random tapes have the same output. Therefore, the probabilities
of outputting 1 with such tapes cancel out. The distinguisher only gains advantage in aborting
executions of G4, whose probability is 1− PrG4 [FP

∗
4].

5.7 Concluding the Indifferentiability

Now we can put everything together and give the indistinguishability between G1 and G5.

Lemma 96. (*) The advantage of D in distinguishing G1 and G5 is at most 24185q8/2n.

Proof. We have

∆D(G1,G5) ≤ ∆D(G1,G2) +∆D(G2,G5)

≤ ∆D(G1,G2) +∆D(G3,G5)

≤ ∆D(G1,G2) +∆D(G3,G4) +∆D(G4,G5)

≤
500q8

22n
+ (Pr

G4

[FP∗
4]− Pr

G3

[FP∗
3] +

16q4

22n
) + (1− Pr

G4

[FP∗
4])

≤
516q8

22n
+ 1− Pr

G3

[FP∗
3]

≤
516q8

22n
+

28392q8

2n

≤
28908q8

2n
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where the second inequality is due to Lemma 35, the fourth inequality uses Lemmas 34, 92 and 95,
and the second-to-last inequality is due to Lemma 84.

Lemma 96 only holds if D completes all paths, because it relies on Lemma 92, which requires the
same assumption. (This is what the ‘(*)’ indicates, as we recall.) Our last step, thus, is to derive a
bound that holds for all q-query distinguishers.

Theorem 97. Any distinguisher that issues at most q queries to each of the round functions and
at most q queries to the permutation oracle cannot distinguish the simulated world from the real
world with advantage more than 7400448q8/2n.

Proof. Let D be an arbitrary distinguisher that issues at most q queries to each of its oracles. From
D we can construct a distinguisher D∗ that completes all paths, makes at most 2q queries in each
position, and such that ∆D(G1,G5) = ∆D∗(G1,G5). To wit, D∗ starts by simulating D until D has
finished its queries; assuming that the game has not aborted yet, D∗ then completes all paths as in
Definition 1, with respect to D’s queries to P/P−1. Since D has issued at most q queries to P/P−1,
D∗ makes at most q extra queries in each position, for a total of at most 2q queries in each position.
After doing this (or after the game aborts during this second phase, potentially) D∗ outputs D’s
value, regardless of the result of the extra queries. Hence D∗’s output is always the same as D’s,
and the two distinguishers have the same advantage.

By Lemma 96, moreover, which applies to an arbitrary distinguisher making at most q queries
to each oracle and completing all paths, D∗ advantage at distinguishing G1 and G5 is at most
28908(2q)8/2n = 7400448q8/2n.
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6 Pseudocode
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G1, G2, G3, G4:
Global variables:

Tables F1, . . . , F8

Permutation tables Tsim, T−1
sim, T, T−1

Set of nodes N // Nodes that are ready
Counter NumOuter // Initialized to 0

Random oracle tapes: f1, . . . , f8

class Node

Node parent

Set of Node children

2chain id

Queries beginning, end
constructor Node(p,C)

self.parent ← p
self.children← ∅
self.id← C
self.beginning← null

if (p 6= null) then
self.beginning ← p.end

self.end← null

private procedure Assert(fact)
if ¬fact then abort

private procedure SimP(x0, x1)
if (x0, x1) /∈ Tsim then

(x8, x9)← P(x0, x1)
Tsim(x0, x1)← (x8, x9)
T−1
sim(x8, x9)← (x0, x1)

return Tsim(x0, x1)

private procedure SimP−1(x8, x9)
if (x8, x9) /∈ T−1

sim then

(x0, x1)← P−1(x8, x9)
Tsim(x0, x1)← (x8, x9)
T−1
sim(x8, x9)← (x0, x1)

return T−1
sim(x8, x9)

public procedure F(i, x)
if x ∈ Fi then return Fi(x)
Assert(¬IsPending(i, xi))
return NewTree(i, x)

private procedure NewTree(i, xi)
root← new Node(null,null)
root.end← (i, xi)
N.add(root)
GrowTree(root)
SampleTree(root)
SetToPrep(root) // G3

PrepareTree(root)
CheckBadA(root) // G3

AdaptTree(root)
return Fi(xi)

private procedure ReadTape(i, xi)
Assert(xi /∈ Fi and ¬IsPending(i, xi))
CheckBadR(i, xi) // G3

Fi(xi)← fi(xi)
return Fi(xi)

private procedure GrowTree(root)
do modified← GrowTreeOnce(root)
while modified

private procedure GrowTreeOnce(node)
modified← FindNewChildren(node)
forall c in node.children do

modified← modified or GrowTreeOnce(c)
return modified

private procedure FindNewChildren(node)
(i, x)← node.end
added ← false

if i = 1 then forall (x7, x8) in (F7, F8) do
added ← added or Trigger(7, x7, x8, x,node)

if i = 8 then forall (x1, x2) in (F1, F2) do
added ← added or Trigger(1, x1, x2, x,node)

if i = 2 then forall (x8, x1) in (F8, F1) do
added ← added or Trigger(1, x1, x, x8,node)

if i = 7 then forall (x8, x1) in (F8, F1) do
added ← added or Trigger(7, x, x8, x1,node)

if i = 3 then forall (x4, x5) in (F4, F5) do
added ← added or Trigger(3, x, x4, x5,node)

if i = 6 then forall (x4, x5) in (F4, F5) do
added ← added or Trigger(4, x4, x5, x,node)

if i = 4 then forall (x5, x6) in (F5, F6) do
added ← added or Trigger(4, x, x5, x6,node)

if i = 5 then forall (x3, x4) in (F3, F4) do
added ← added or Trigger(3, x3, x4, x,node)

return added

private procedure Trigger(i, xi, xi+1, u,node)
if i = 7 then

if ¬CheckP+(xi, xi+1, u) then return false

else if i = 1 then

if ¬CheckP−(xi, xi+1, u) then return false

else // i = 3, 4
if Fi+1(xi+1) 6= xi ⊕ u then return false

if Equivalent(node.id, (i, xi, xi+1)) or
InChildren(node, (i, xi, xi+1)) then return false

if i ∈ {1, 7} then Assert(++NumOuter ≤ q)
new child← new Node(node, (i, xi, xi+1))
node.children.add(new child)
MakeNodeReady(new child)
return true

private procedure IsPending(i, xi)
forall n in N do

if (i, xi) = n.end then return true

return false

Fig. 4. First part of pseudocode for games G1–G4. Game G1 implements the simulator. Lines commented with ‘// Gi’
appear in game Gi only.
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private procedure CheckP+(x7, x8, x1)
x9 ← x7 ⊕ F8(x8)
if (x8, x9) /∈ T−1 then return false // G2,G3,G4

(x′

0, x
′

1)← SimP−1(x8, x9)
return x′

1 = x1

private procedure CheckP−(x1, x2, x8)
x0 ← x2 ⊕ F1(x1)
if (x0, x1) /∈ T then return false // G2,G3,G4

(x′

8, x
′

9)← SimP(x0, x1)
return x′

8 = x8

private procedure Equivalent(C1, C2)
if C1 = null then return false

(i, xi, xi+1), (j, x
′

j , x
′

j+1)← C1, C2

if i = j then return xi = x′

j and xi+1 = x′

j+1

if (i, j) ∈ {(7, 4), (1, 7), (3, 1), (4, 3)} then
return x′

j = Val−(C1, j) and

x′

j+1 = Val−(C1, j + 1)
if (i, j) ∈ {(4, 7), (7, 1), (1, 3), (3, 4)} then

return x′

j = Val+(C1, j) and
x′

j+1 = Val+(C1, j + 1)

private procedure InChildren(node, C)
forall n in node.children do

if Equivalent(n.id, C) then return true

return false

private procedure MakeNodeReady(node)
(i, x)← node.beginning
(j, u1, u2)← node.id
if i ∈ {1, 2, 5, 6} then

while j 6= Terminal(i) do

(u1, u2)←Prev(j, u1, u2)
j ← j − 1 mod 9

xj ← u1

else

while j + 1 6= Terminal(i) do
(u1, u2)←Next(j, u1, u2)
j ← j + 1 mod 9

j ← j + 1
xj ← u2

Assert(xj /∈ Fj)
Assert(¬IsPending(j, xj))
node.end← (j, xj)
N.add(node)

private procedure Terminal(i)
if i = 1 then return 4
if i = 2 then return 7
if i = 3 then return 6
if i = 4 then return 1
if i = 5 then return 8
if i = 6 then return 3
if i = 7 then return 2
if i = 8 then return 5

private procedure Next(i, xi, xi+1)
if i = 8 then

(x0, x1)← SimP−1(xi, xi+1)
return (x0, x1)

else

xi+2 = xi ⊕ F(i+ 1, xi+1)
return (xi+1, xi+2)

private procedure Prev(i, xi, xi+1)
if i = 0 then

(x8, x9)← SimP(xi, xi+1)
return (x8, x9)

else

xi−1 = F(i, xi)⊕ xi+1

return (xi−1, xi)

private procedure SampleTree(node)
N.delete(node)
ReadTape(node.end)
forall c in node.children do

SampleTree(c)

private procedure PrepareTree(node)
(i, xi)← node.end
if i ∈ {2, 7} and node.id 6= null then

ReadTape(3,Val+(node.id, 3))
ReadTape(6,Val−(node.id, 6))

if i ∈ {3, 6} and node.id 6= null then

ReadTape(7,Val+(node.id, 7))
ReadTape(8,Val+(node.id, 8))
SimP−1(Val+(node.id, 8),Val+(node.id, 9))

forall c in node.children do

PrepareTree(c)

private procedure AdaptTree(root)
forall c in root.children do

AdaptNode(c)

private procedure AdaptNode(node)
(i, xi), C ← node.beginning,node.id
(m,n)← AdaptPositions(i)
xm−1, xm ← Val+(C,m− 1),Val+(C,m)
xn, xn+1 ← Val−(C, n),Val−(C, n+ 1)
Adapt(m,xm, xm−1 ⊕ xn)
Adapt(n, xn, xm ⊕ xn+1)
forall c in node.children do

AdaptNode(c)

private procedure Adapt(i, xi, yi)
Assert(xi /∈ Fi and ¬IsPending(i, xi))
Fi(xi)← yi

private procedure AdaptPositions(i)
if i ∈ {1, 4} then return (2, 3)
if i ∈ {5, 8} then return (6, 7)
if i ∈ {2, 7} then return (4, 5)
if i ∈ {3, 6} then return (1, 2)

Fig. 5. Second part of games G1, G2, G3 and G4.
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private procedure Val+(i, xi, xi+1, k)
if k ∈ {i, i+ 1} then return xk

j ← i+ 1
U,U−1 ← Tsim, T−1

sim

U,U−1 ← T, T−1 // G2,G3,G4

while j 6= k do

if j < 9 then

if xj /∈ Fj then return ⊥
xj+1 ← xj−1 ⊕ Fj(xj)
j ← j + 1

else

if (x8, x9) /∈ U−1 then return ⊥
(x0, x1)← U−1(x8, x9)
if k = 0 then return x0

j ← 1
return xk

private procedure Val−(i, xi, xi+1, k)
if k ∈ {i, i+ 1} then return xk

j ← i
U, U−1 ← Tsim, T−1

sim

U,U−1 ← T, T−1 // G2,G3,G4

while j 6= k do

if j > 0 then

if xj /∈ Fj return ⊥
xj−1 ← Fj(xj)⊕ xj+1

j ← j − 1
else

if (x0, x1) /∈ U then return ⊥
(x8, x9)← U(x0, x1)
if k = 9 then return x9

j ← 8
return xk

Fig. 6. Third part of games G1, G2, G3 and G4.

G1,G2,G3:
Random permutation tape: p

public procedure P(x0, x1)
if (x0, x1) /∈ T then

(x8, x9)← p(x0, x1)
CheckBadP((8, x8)) // G3

T (x0, x1)← (x8, x9)
T−1(x8, x9)← (x0, x1)

return T (x0, x1)

public procedure P−1(x8, x9)
if (x8, x9) /∈ T−1 then

(x0, x1)← p−1(x8, x9)
CheckBadP((1, x1)) // G3

T (x0, x1)← (x8, x9)
T−1(x8, x9)← (x0, x1)

return T−1(x8, x9)

G4:

public procedure P(x0, x1)
if (x0, x1) /∈ T then

for i← 2 to 9 do

xi ← xi−2 ⊕ fi−1(xi−1)
T (x0, x1)← (x8, x9)
T−1(x8, x9)← (x0, x1)

return T (x0, x1)

public procedure P−1(x8, x9)
if (x8, x9) /∈ T−1 then

for i← 7 to 0 do

xi ← xi+2 ⊕ fi+1(xi+1)
T (x0, x1)← (x8, x9)
T−1(x8, x9)← (x0, x1)

return T−1(x8, x9)

Fig. 7. Permutation oracles for G1, G2, G3 (at left) and G4 (at right).

G5:
Variables:
Random tapes: f1, . . . , f10

public procedure F(i, x)
return fi(x)

public procedure P(x0, x1)
for i← 2 to 11 do

xi ← xi−2 ⊕ fi−1(xi−1)
return (x10, x11)

public procedure P−1(x10, x11)
for i← 7 to 0 do

xi ← xi+2 ⊕ fi+1(xi+1)
return (x0, x1)

Fig. 8. Game G5 (the real world).
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G3:
Variables:

Sets A,ToPrep,ToAdapt(4),ToAdapt(5)

class Adapt

Query query

String value, left, right
constructor Adapt(i, xi, yi, l, r)

self.query ← (i, xi)
self.value← yi
self.left← l // Left edge
self.right ← r // Right edge

private procedure CheckBadP(i, xi)
if xi ∈ Fi then abort

private procedure SetToPrep(node)
(i, xi)← node.end
if i /∈ {2, 7} then return

if node.id 6= null then

ToPrep.add((3,Val+(node.id, 3)))
ToPrep.add((6,Val−(node.id, 6)))

forall c in node.children do

SetToPrep(c)

private procedure CheckBadR(i, xi)
CheckEqual(i, fi(xi))
CheckBadlyHit(i, xi, fi(xi))
CheckRCollide(i, xi, fi(xi))
if (i, xi) ∈ ToPrep then ToPrep.delete((i, xi))

private procedure CheckBadA(root)
A,ToAdapt(4),ToAdapt(5) ← ∅, ∅, ∅
GetAdapts(root)
forall a in A do

(i, xi), yi ← a.query, a.value
CheckBadlyHit(i, xi, yi)
if i ∈ {4, 5} then CheckEqual(i, yi)

forall a, b in A×A do

CheckAPair(a, b)
CheckAMid(root)

private procedure ActiveQueries(i)
P ← ∅
forall n in N do

(j, xj)← n.end
if j = i then P.add(xj)

// For the BadRPrepare event
forall (j, xj) in ToPrep do

if j = i then P.add(xj)
return P ∪ Fi

private procedure IsRightActive(i, xi, xi+1)
if i ≤ 9 then

return xi+1 ∈ ActiveQueries(i+ 1)
else return (xi, xi+1) ∈ T−1

private procedure IsLeftActive(i, xi, xi+1)
if i ≥ 1 then

return xi ∈ ActiveQueries(i)
else return (xi, xi+1) ∈ T

private procedure IsIncident(i, xi)
if i ≥ 2 then j ← i− 2 else j ← 10
forall uj , uj+1 in {0, 1}n × {0, 1}n do

if IsLeftActive(j, uj , uj+1) and
Val+(j, uj , uj+1, i) = xi then return true

if i ≤ 9 then j ← i+ 1 else j ← 0
forall uj , uj+1 in {0, 1}n × {0, 1}n do

if IsRightActive(j, uj , uj+1) and
Val−(j, uj , uj+1, i) = xi then return true

return false

private procedure CheckEqual(i, yi)
forall xi in Fi do

if Fi(xi) = yi then abort

private procedure CheckBadlyHit(i, xi, yi)
forall xi−1 in {0, 1}n do

xi+1 ← xi−1 ⊕ yi
if IsRightActive(i, xi, xi+1) and

IsLeftActive(i− 1, xi−1, xi) then abort

private procedure CheckRCollide(i, xi, yi)
forall xi−1 in {0, 1}n do

if IsLeftActive(i− 1, xi−1, xi) and
IsIncident(i+ 1, xi−1 ⊕ yi) then abort

forall xi+1 in {0, 1}n do

if IsRightActive(i, xi, xi+1) and
IsIncident(i− 1, yi ⊕ xi+1) then abort

private procedure CheckAPair(a, b)
(i, xi), yi ← a.query, a.value
(j, uj), vj ← b.query, b.value
if i = j and i ∈ {4, 5} then

// Check the second part of BadAEqual
if xi 6= uj and yi = vj then abort

if j 6= i+ 1 then return

if a.left 6= b.left then
if xi ⊕ vj ∈ ActiveQueries(i+ 2) then abort

if IsIncident(i+ 2, xi ⊕ vj) then abort

if a.right 6= b.right then
if yi ⊕ uj ∈ ActiveQueries(i− 1) then abort

if IsIncident(i− 1, yi ⊕ uj) then abort

Fig. 9. The abort-checking procedures for G3.
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private procedure CheckAMid(root)
(i, xi)← root.end
if i /∈ {4, 5} then return

S ← ∅
forall x4, x5 ∈ ActiveQueries(4), F5 do

S.add(x4 ⊕ F5(x5))
forall x4, x5 ∈ ToAdapt(4), F5 do

x6 ← x4 ⊕ F5(x5)
if x6 /∈ F6 and x6 ∈ S then abort

if S.add(x6)
forall x4, x5 ∈ ActiveQueries(4) ∪ ToAdapt(4),

ToAdapt(5) do

x6 ← x4 ⊕GetAdaptVal(x5)
if x6 /∈ F6 and x6 ∈ S then abort

S.add(x6)

private procedure GetAdapts(node)
if node.id 6= null

(i, xi), (j, xj)← node.beginning,node.end
C ← node.id
m,n← AdaptPositions(i)
xm−1, xm ← Val+(C,m− 1),Val+(C,m)
xn, xn+1 ← Val−(C, n),Val−(C, n+ 1)
ym, yn ← xm−1 ⊕ xn, xm ⊕ xn+1

A.add(new Adapt(m,xm, ym, xm−1, xn+1))
A.add(new Adapt(n, xn, yn, xm−1, xn+1))
if m = 4 then

ToAdapt(4).add(xm), ToAdapt(5).add(xn)
forall c in node.children do

GetAdapts(c)

private procedure GetAdaptVal(i, xi)
forall a in A do

if (i, xi) = a.query then return a.value

Fig. 10. The abort-checking procedures in G3 (continued).
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