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Phase-Sensitive Detection for Unconventional Bose-Einstein Condensations
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We propose a phase-sensitive detection scheme to identify the unconventional px ± ipy symme-
try of the condensate wavefunctions of bosons, which have already been proposed and realized in
high bands in optical lattices. Using the impulsive Raman operation combining with time-of-flight
imaging, the off-diagonal correlation functions in momentum space give rise to the relative phase
information between different components of condensate wavefunctions. This scheme is robust
against the interaction and interband effects, and provides smoking gun evidence for unconventional
Bose-Einstein condensations with nontrivial condensation symmetries.
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Macroscopic condensates of bosons and paired
fermions are of central interest in condensed matter
physics. Order parameters of Cooper pairings are termed
“unconventional” if they belong to non-trivial represen-
tations of rotational symmetry groups. Celebrated exam-
ples include the d-wave pairing states of high Tc cuprates
[1, 2], the p-wave pairing states of 3He A and B-phases
[3], and Sr2RuO4 [4, 5]. Among various experimen-
tal tools, phase-sensitive detections are exceptional as
they provide the smoking-gun evidence for unconven-
tional pairing symmetries, such as the π-phase shifts in
the joint corner SQUID junctions [1] and the tri-crystal
superconducting ring experiments [2] of high Tc cuprates.
Unconventional symmetries have also been generalized to
the particle-hole channel pairings, i.e., the Pomeranchuk
type Fermi surface instabilities in both density [6] and
spin channels [7, 8]. The spin instabilities in high orbital
angular momentum channels are denoted as “unconven-
tional magnetism”.

Recently, unconventional symmetries have been intro-
duced to the single-boson condensates [9, 10], denoted as
“unconventional” Bose-Einstein condensations (UBEC).
Their condensate wavefunctions belong to non-trivial
representations of the lattice point group. Such states
have been proposed in high orbital bands of optical lat-
tices [11–16]. These systems have been experimentally
realized by pumping bosons into high orbital bands [17–
19]. Bosons have been observed to develop phase coher-
ence before they decay to the lowest band. In addition, in
the artificial lattice systems of exciton-polariton in semi-
conductor quantum wells, a d-wave condensation in the
excited bands of bosons have also been observed [20].
These UBECs are beyond Feynman’s “no-node” theorem
[9, 21], which states that the ground-state wavefunctions
of bosons are positive-definite under very general circum-
stances. This theorem applies for the system of superfluid
4He [21] and many experiments of alkali bosons [22]. It
also implies that time-reversal (TR) symmetry cannot be
spontaneously broken in usual BECs. However, UBECs
escape from the “no-node” constraint. Their condensate

wavefunctions are nodal, which are able to break TR
symmetry spontaneously under certain conditions [9].

The recent UBECs realized in Hemmerich’s group is
an exciting progress [18], where the time-of-flight (TOF)
spectrum has revealed signatures of both the real and
complex UBECs by tuning the anisotropy of the optical
lattice. However, the TOF images can only provide the
single-particle density distribution in momentum space,
thus in the complex UBECs, the key information about
the relative phase between the condensate components
is lost during TOF. Without the phase information, the
TOF images of the px ± ipy BEC can be interpreted by
other plausible scenarios such as the phase separation
between two real condensates at different momenta or the
incoherent mixing between them. It would be important
to have the smoking gun evidence of the phase difference
±π

2 between the two condensate components.

In this paper, we propose a phase-sensitive detection
scheme to identify the px ± ipy symmetry of UBECs
by measuring the relative phases of ±π

2 . This proposal
is based on the scheme in Ref. [23], which has been
used to construct the off-diagonal correlation functions
in momentum space for UBECs. By implementing a
momentum-kick Raman pulse, we build up the connec-
tion between bosons with different condensate momenta
in the complex UBEC. As we will show below, the rela-
tive phase information is uniquely tied to the off-diagonal
correlations between the different condensate momenta,
which can be measured in time-of-flight imaging through
the impulsive Raman pulse. We note that a different
scheme has been proposed recently by Kitagawa et al.
for phase-sensitive detection of nontrivial pairing sym-
metries in ultracold fermions based on the two-particle
interferometry [24].

Our scheme is connected with the experiment in Ref.
[18], where the bosons are pumped to the first excited
band of a s-p hybridized system (hybridization between
the s-orbital of the shallow sublattice A and the p-orbital
of the deep sublattice B as illustrated in Fig. 1(a). Two
degenerate band minima (denoted as K1,2 below) locate
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FIG. 1: (a) The bipartite lattice structure (along the x-
direction) in Hemmerich’s experiment [18], where bosons are
loaded into the second band. (b) The first Brillouin zone (blue

area) and the basis vectors of the reciprocal lattice ~b1,2.

at the lattice momenta 1
2
~b1,2 with ~b1,2 = (±π, π) the re-

ciprocal lattice vectors (we set the lattice constant a = 1),
as shown in Fig.1 (b). Bloch-wave states Ψ1,2(r) at K1,2

points are real-valued wavefunctions with nodal lines sim-
ilar to standing waves, and thus are time-reversal invari-
ant. The complex combination of Ψ± = (Ψ1 ± iΨ2)/

√
2

only have nodal points from intersections of the nodal
lines of Ψ1,2. With repulsive interaction, the complex
condensates Ψ± with nodal points are favored since their
spatial distributions of particle density are more uniform
and extensive than other states, minimizing the interac-
tion energy [10].

Both of the wavefunctions Ψ1,2(r) have odd parity with
the p-wave symmetry. Rigorously speaking, the lattice
configuration in Ref. [18] does not have 4-fold rotational
symmetry, and thus Ψ1,2 are not transformable to each
other by the rotation of 90◦. Nevertheless, for simplic-
ity, we still denote these condensates with the px ± ipy
symmetry. The TOF imaging in the experiment [18] has

observed four peaks at (K1,2, K
′
1,2 ≡ K1,2 − ~b1,2) with

the same height, which implies that the condensate has
equal weights of the components Ψ1 and Ψ2. However,
the phase difference between the two components Ψ1 and
Ψ2, which is critical for verifying the novel px ± ipy con-
densation symmetry, is not clear.

FIG. 2: Using two Raman pulses with different propagating
directions to built up the momentum transfer between bosons
at K1 and K2.

The spirit of our proposal for the phase-sensitive de-
tection can be outlined of as follows: for the conden-
sate |Ψc〉 = 1

2Nc/2
√
Nc!

(C†
K1

+ eiθC†
K2

)Nc |O〉, where Nc is

the boson number in the condensate; C†
K1

(C†
K2

) is the
bosonic operator creating a boson at K1 (K2); θ is the
relative phase between bosons in K1 and K2. If θ 6= 0
and π, the condensate exhibits a vortex-antivortex lat-
tice structure. The staggered orbital angular momen-
tum (OAM) density wave order parameter is defined

Lz( ~Q) = i(C†
K1
CK2

− C†
K2
CK1

) where ~Q = ~K1 − ~K2.

Its magnitude reads as 〈Ψc|Lz( ~Q)|Ψc〉 = Nc sin θ, which
is just the off-diagonal correlation. It reaches maximum
for the px ± ipy state (θ = ± 1

2π). If we implement a
Raman transition to transform the bosons in the original
condensate into [23]:

C′
K1

=
1√
2
(CK1

− iCK2
); C′

K2
=

1√
2
(CK2

− iCK1
), (1)

we can measure the density difference of the new BECs
δn′ ≡ 〈ΨC |C′†

K2
C′

K2
− C′†

K1
C′

K1
|Ψc〉 through the TOF

imaging. δn′ exactly gives the desired off-diagonal corre-
lation as

δn′ = i〈Ψc|C†
K1
CK2

− C†
K2
CK1

|Ψc〉. (2)

Now we turn back to the Hemmerich’s experiment and
show how to implement the Raman transition. Similar
to Ref. [23], the Raman transition can be realized by
two traveling-wave laser beams propagating along differ-
ent directions (as plotted in Fig.2) with corresponding
wavevector k1,2 and frequency ω1,2, which introduce an
effective Raman Rabi frequency with a spatially varying
phase Ω(r, t) = Ω0e

i(δk·r−δωt+φ), where δk = k1 − k2,
δω=ω1 −ω2, and φ is the relative phase between the two
Raman beams. Ω0 is expressed as Ω0 = Ω1Ω

∗
2/∆, where

∆ is the detuning, Ω1(2) are the resonant Rabi frequencies
for the individual transitions between the initial (finial)
states and the intermediate state, and are proportional to
the strength of the electric field of the corresponding Ra-
man beams. This spatially dependent Raman transition
builds up the connection between the condensation com-
ponents in two degenerate points K1,2 = (±π/2, π/2),
which demands that δk = K2 −K1 = (π, 0) (Notice that
δk and −δk are connected by a reciprocal lattice vector
and thus equivalent. Because of this feature, the Raman
scheme here is simpler compared with the one in Ref. [23]
which needs to use transitions between two different hy-
perfine levels). The effective Hamiltonian for the Raman
process is described by

HR =

∫

drΩ(r, t)Ψ†(r)Ψ(r) + h.c, (3)

which, together with the original atomic Hamiltonian H0

in the optical lattice[18], gives the full Hamiltonian of the
system.
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FIG. 3: The energy spectra along the lines between the high
symmetry points with the experimental values of the param-
eters given in Ref.[18].

Different from Ref.[23], in the experiment [18] the op-
tical lattice is too shallow to apply the tight binding ap-
proximation. Instead, we expand the field operator in
the Bloch representation as

Ψ(r) =
∑

nk

Cnkψnk(r), (4)

where Cnk is the bosonic operator annihilating a bo-
son in the nth band with momentum k, ψnk(r) is the
Bloch wavefunction, and the summation of k is over
the first BZ. We choose the effective Rabi frequency Ω0

of the Raman pulse so that it is small compared with
the band gap but large compared with the atomic hop-
ping rate in the lattice (t ≪ ~Ω0 ≪ ∆12). Under this
condition, we can neglect the interband tunneling as
well as the time-dependence of the wavepackets Ψ1(r)
and Ψ2(r) during the Raman transition. For the typ-
ical values of the experimental parameters, the energy
band structure is shown in Fig. 3. The hopping rate
is estimated by t ≈ 0.05Er ≈ 2π~ × 0.1 kHz and the
smallest bandgap ∆12 ≈ 1.08Er ≈ 2π~ × 2.2 kHz. If
we choose ~Ω0 ∼ 2π~ × 0.5 kHz, the corrections to
the above approximation, estimated by t2/ (~Ω0)

2
and

(~Ω0)
2
/∆2

12, are pretty small. In our case, the Raman
operation induces a transition between the complex and
polar UBECs with the same kinetic energy but different
interaction energy. ~δω should match the energy differ-
ence between the initial (complex UBEC) and final (real
UBEC) states of the Raman transition, which can be es-
timated as 10−3Er ≈ 2π~ × 2.1 Hz and much smaller
than ~Ω0. Therefore, the phase accumulation induced
by δω within the duration of Raman pulses δt can be
neglected (δωδt≪ π/4), and the Raman Rabi frequency
in Eq.(3) can be considered as time-independent during
the Raman transition.
Under the above approximations, HR is simplified to

HR = eiφ
∑

k

Ω(k)C†
k+δkCk + h.c, (5)

FIG. 4: TOF imagings after the Raman transition with φ = 0
for (a) the complex UBEC (Ψ1 + iΨ2) and (b) incoherent
mixing of the real UBECs (Ψ1 and Ψ2).

which is constrained only to the relevant band. The sum-
mation of k is over the first BZ, and the effective Raman-
Rabi frequency Ω(k) is k dependent and can be calcu-
lated based on the eigenvectors obtained in the band-
structure calculation. Before the Raman transition, the
momentum distribution of the px ± ipy condensate is
sharply peaked at K1 and K2 with a small distribution
width Λ, and within this small region Ω(k) can be con-
sidered as a constant, estimated by Ω ≈ 0.98Ω0 for the
typical values of the experimental parameters. So dur-
ing the Raman transition, the small wave-packets around
K1 and K2 are transferred by the same formula without
distortion. When we choose the duration of the Raman
pulse as Ωδt = π/4, the wave-packets around K1 and K2

with |dk| ≤ Λ are transferred by

C′
K1+dk = (CK1+dk − ieiφCK2+dk)/

√
2,

C′
K2+dk = (CK2+dk − ie−iφCK1+dk)/

√
2. (6)

Right after this Raman transition, we turn off the trap-
ping optical potential and perform the TOF imaging to
measure the particle density distribution in momentum
space around K1(2). The density difference 〈δn′ (dk)〉 ≡
〈n′

K2+dk−n′
K1+dk〉 = 〈C′†

K2+dkC
′
K2+dk−C

′†
K1+dkC

′
K1+dk〉

gives the off diagonal correlation for the original UBEC

δn′ (dk) = i〈eiφC†
K1+dkCK2+dk − e−iφC†

K2+dkCK1+dk〉.
(7)

Notice that the experimental observable δn′ (dk =0), the
height difference between the peaks in K1 and K2, is de-
pendent on the phase difference of the two Raman pulses
φ. For the px ± ipy BEC, after the Raman pulse, we
see that δn′ (dk =0) ∝ cosφ from Eq.(7). The oscilla-
tion of δn′ with φ indicates coherence of the two Ra-
man pulses, which is critical for phase-sensitive detec-
tion. For φ = 0, δn′ (dk =0) = i〈C†

K1
CK2

− C†
K2
CK1

〉
represents the order parameter of the orbital ordering of
the original UBEC. With this phase-sensitive measure-
ment, we can easily distinguish the complex condensate
|Ψ〉 ∝ 1

2Nc/2
√
Nc!

(C†
K1

+eiθC†
K2

)Nc |O〉 and other plausible

scenarios, such as the phase separation or incoherent mix-
ing between the polar UBECs |Ψ1〉 = 1√

Nc!
(C†

K1
)Nc |O〉

and |Ψ2〉 = 1√
Nc!

(C†
K2

)Nc |O〉. In the conventional TOF
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imagings, both of them exhibit four peaks with the same
height thus can not be distinguished. Under this phase-
sensitive TOF imaging, we find that for the px ± ipy
UBEC, 〈Ψ|n′

K2+dk|Ψ〉 = 0, which means that after Ra-
man transition, the initial complex UBEC turns to the
polar UBEC condensing only at K1, and the predicted
new TOF images are shown in Fig.4 (a) with only two
peaks, in contrast with the four peaks that one expects
to see for the incoherent mixing state between the con-
densates Ψ1 and Ψ2 show in Fig. 4 (b).

FIG. 5: (a) The vortex-antivortex lattice pattern of the
px± ipy BEC before the Raman transition; (b) the real-space
current pattern during the Raman transition, solid (dashed)
arrows denote original (reflected) currents.

To get a better understanding of our results, we pro-
vide a real space picture to illustrate the complex-real
UBEC transition during the Raman process. Before
the Raman transition, the px ± ipy UBEC exhibits a
vortex-antivortex lattice structure in sublattice B (p-
orbital sites), as shown in Fig.5(a). The Raman beams
introduce an extra potential with the form of Eq.(3), as
shown in Fig.5 (b). Without loss of generality, we fo-
cus on one site in sublattice B, initially the local wave-
function within this site can be approximately considered
as ϕ(r) ∼ ei

π
4 [ϕx(r) + iϕy(r)], where ϕx(y)(r) denote

the px(y)-orbital Wannier function. During the Raman
transition, the initial current is reflected by the extra
potential, and the local wavefunction turns to ϕ(t) =
cos(Ωt)ϕ(r)+ sin(Ωt)ϕ∗(r), where ϕ∗(r) is the TR coun-
terpart of ϕ(r) carrying a current with an opposite direc-
tion. Initially, ϕ(0) = ϕ(r) denotes the px + ipy state, at
the momentum of t0Ω = π/4, the reflected current hap-
pens to cancel with the initial one, and it turns to a polar
state with the real wavefunction ϕ(t0) ∼ ϕx(r) − ϕy(r),
and the corresponding polar UBEC exhibits two peaks
in the TOF spectrum, as shown in Fig.4 (a).
In above analysis of the Raman transition, we have ne-

glected the effect of interaction, which is responsible for
the broadening of the TOF imaging peaks [25, 26]. Now
we estimate the interaction effect by solving the time evo-
lution from the Gross-Pitaevskii (GP) equations (the GP
equation gives an adequate description of the interaction
since the initial state of the system is a BEC). A simi-
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FIG. 6: Time evolution of the condensation fraction at ΨK1

with Raman frequency Ω = 2π × 0.5kHz, and interaction pa-
rameter g0ρ = 0 (solid line) and 0.6Er (dashed line), respec-
tively

lar problem has been addressed for the many-body Rabi
oscillation in a two-component BEC [27]. As analyzed
above, we neglect the deformation of Ψ1(r) and Ψ2(r)
during the time evolution, and the dynamics of the sys-
tem can be approximately considered as two-mode tran-
sition, thus the wavefunction during the time evolution
can be expressed as: Ψ(t) = C1(t)Ψ1 + C2(t)Ψ2. The
corresponding GP equation reads:

i
∂Ψ

∂t
=

{

H0 +Ω(r) + g0ρ|Ψ(~r)|2
}

Ψ(~r), (8)

where H0 = −~
2~∇2

2M + V0(~r) is the original optical lattice
Hamiltonian, ρ is the average density, g0 is the s-wave
scattering interaction parameter. In the experiment[18],
g0ρ is estimated to be 0.6Er. Notice that ψ1(2) are eigen-
functions of H0. thus we get:

i
∂C1(t)

∂t
= ΩC2 + (2g|C1|2 + 4g′|C2|2)C1 + 2g′C∗

1C
2
2 ,

i
∂C2(t)

∂t
= ΩC1 + (4g′|C2|2 + 2g|C2|2)C2 + 2g′C∗

2C
2
1 ,

where g = g0ρ
∫

d2r|Ψ1(r)|4 = g0ρ
∫

d2r|Ψ2(r)|4,
g′ = g0ρ

∫

d2r|Ψ1(r)|2|Ψ2(r)|2.Using the initial condi-

tion: C1(0) = 1/
√
2, C2(0) = i/

√
2 (ΨK1

+ iΨK2
state)

and Ω = 2π × 0.5 kHz, we obtain the time evolution
of condensation fraction of bosons at K1 wave-packet,
and compare the result with the non-interacting case.
As shown in Fig. 6, the interaction barely changes the
Rabi oscillation within the duration of the Raman pulses
in our case, which implies the single-particle Rabi os-
cillation approximation we adopted above provides an
accurate description for the many-body dynamics of the
system during the Raman transition.
To conclude, we propose a phase-sensitive detection

scheme to identify the nontrivial symmetry of recently
observed px ± ipy orbital UBEC, where the connection
between different condensate components is built up by
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the momentum kick provided by impulsive Raman pulses.
Our scheme can also be applied to the phase-sensitive de-
tections for unconventional BECs with other symmetries,
eg. the recently observed UBEC in f -orbital bands of the
optical lattice [19].
This work was supported by the NSF DMR-1105945,
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