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In this paper, we develop a novel virtual-queue-based online algorithm for online convex
optimization (OCO) problems with long-term and time-varying constraints and conduct
a performance analysis with respect to the dynamic regret and constraint violations. We
design a new update rule of dual variables and a new way of incorporating time-varying
constraint functions into the dual variables. To the best of our knowledge, our algorithm
is the first parameter-free algorithm to simultaneously achieve sublinear dynamic regret
and constraint violations. Our proposed algorithm also outperforms the state-of-the-
art results in many aspects, e.g., our algorithm does not require the Slater condition.
Meanwhile, for a group of practical and widely-studied constrained OCO problems
in which the variation of consecutive constraints is smooth enough across time, our
algorithm achieves O(1) constraint violations. Furthermore, we extend our algorithm
and analysis to the case when the time horizon T is unknown. Finally, numerical
experiments are conducted to validate the theoretical guarantees of our algorithm, and
some applications of our proposed framework will be outlined.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Online Convex Optimization (OCO) with long-term constraints has become one of the most popular online learning
rameworks in recent years due to its powerful modeling capability for various problems such as network routing [1],
nline display advertising [2], and resources management [3]. In the formulation of OCO with long-term constraints, the
gent wants to minimize the accumulated loss while satisfying the constraints as much as possible in the long-term. Most
xisting works consider the scenarios where the constraints are time-invariant [4,5]. However, time-varying constraints
rise in many practical applications in which the underlying time-varying system is dynamic and uncertain, e.g., smart grid
ith uncertain renewable energy supply [6] and data centers with dynamic user demands [7]. Thus, this paper considers
ecently proposed OCO framework with long-term and time-varying constraints [8–10], which is more general and practical
han the one with time-variant constraints setting.
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Table 1
Comparison of performance bounds for OCO with long-term and time-varying constraints w.r.t. dynamic benchmark.
Reference Regret (R) Constraint

violations (C)
Parameter-
free

Slater
condition-freea

Simultaneous
sublinear R&C

[3] O(max{VxT a, VgT a, T 1−a
}) O(T 1−a) ✓ × ×

[11] O(T
7
8 Vx) O(max{T

15
16 , T

7
8 Vx}) ✓ ✓ ×

[9] O(VxT
3
4 ) O(T

3
4 ) ✓ × ×

[9] O(VxT
1
2 ) O(T

1
2 ) ✓ × ×

[8] O(V
1
2
x T

1
2 ) O(V

1
4
x T

3
4 ) × × ✓

Thm.1 O(max{
√
TVx, Vg }) O(max{

√
T , Vg }) ✓ ✓ ✓

Thm.1 O(
√
TVx) O(max{T

3
4 , Vg }) ✓ ✓ ✓

a[8] assumes a slightly stronger Slater condition.

1.1. Prior work

OCO with long-term and time-invariant constraints has been extensively studied in the past few years. This branch of
iterature usually focuses on the minimization of the static regret. [12] first studied OCO with long-term and time-invariant
onstraints and developed an online algorithm with sublinear static regret and accumulated constraint violations. Later,
13,14] improved the performance bounds in [12]. These bounds are further improved in the recent work [4,5], where
state-of-the-art static regret and constraint violations upper bounds are shown under the assumption of the Slater
ondition. However, the setting of time-invariant constraints means the constraints will be learned by the agent easily,
nd hence does not capture the scenarios in which the underlying environment is dynamic and uncertain.
The Time-varying constraints. To overcome the limitations above, recent advances in OCO with long-term constraints

onsidered the time-varying constraints and usually adopt a more practical but challenging metric, the dynamic regret.
n this setting, a crucial challenge is to achieve sublinear dynamic regret and constraint violation simultaneously. [8]
tudied OCO with long-term and time-varying constraints both in full-information setting and bandit setting with two-
oint feedback. It is the first work to simultaneously achieve sublinear dynamic regret and constraint violations. But the
erformance bounds attained in [8] are only valid when the order of the accumulated variations of the environment is
nown to the agent in advance, i.e., parameter-dependent. For parameter-free results, [3] analyzed the performance of a
odified online saddle-point (MOSP) method and showed that sublinear dynamic regret and constraint violation may be
chieved if the accumulated variations of the environment are sublinear. Later [11] improves upon it in terms of fewer
ssumptions but incurs a degradation of the performance. [9] proposed a variant of MOSP method for bandit setting
ith two-point feedback and established the state-of-the-art performance upper bounds. However, all these parameter-

ree methods do not always guarantee the sublinear regret and constraint violations simultaneously, even given the
ccumulated variations of the environment is sublinear. Besides, most of them assume the Slater condition holds while
t is not true in many scenarios. We list these works in Table 1.

Most related to our work is [4,5], which developed virtual-queue-based online algorithms and achieved the best
erformance bounds on static regret for the time-invariant constraints setting and the time-varying constraints setting,
espectively. These results provide an inspiring insight for OCO with long-term constraints. However, a challenging
uestion remains if a virtual-queue-based algorithm can improve the state-of-the-art performance on OCO with long-term
nd time-varying constraints in terms of dynamic regret, and achieve sublinear regret and constraint violations simultaneously
nder only common assumptions. The answer is yes and our main contributions are summarized in the following part.

.2. Contributions

We summarize our main contributions as follows.

• We develop and analyze a novel parameter-free virtual-queue-based algorithm for OCO with long-term and time-
varying constraints. Specifically, we prove that our algorithm achieves sublinear dynamic regret and constraint
violations simultaneously without the Slater condition. The dynamic regret and constraint violations bounds of our
developed algorithm outperform the state-of-the-art in many aspects. See also Table 1 for details.

• We show that when the variation of consecutive constraints is smooth enough across time, which holds in many
practical applications [3], our algorithm can achieve O(1) constraint violations.

• To the best of our knowledge, we are the first to consider the unknown time horizon case for OCO with long-
term and time-varying constraints. Furthermore, our algorithm with a doubling trick can still preserve the order of
performance bounds when the time horizon is unknown.

• We outline some examples of applications, and fit them in the framework of OCO with long-term and time-varying
constraints.
2
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. Problem setup

In this section, we first introduce the formulation of OCO problems with long-term and time-varying constraints. Then,
e present the assumptions in our paper, which are widely-adopted.

.1. Formulation

In each round t, the agent incurs a loss function ft and a constraint requirement g t , i.e., the agent wants to make a deci-
ion xt ∈ χ to minimize the loss ft (xt ) while satisfying g t (xt ) ≤ 0, where g t (x) is defined as [gt,1(x), gt,2(x), . . . , gt,K (x)]T . In
his paper, we assume that ft (x) and gt,i(x) are defined over a closed convex set χ ⊆ Rn. Denote {ft (x)}∞t=1 and {g t (x)}∞t=1 as
he sequence of the time-varying loss functions and constraint functions, respectively. Thus, the agent’s goal is to compute
he x∗

t defined as follows:

x∗

t = argmin
x∈χ

{ft (x)|g t (x) ≤ 0}.

owever, solving this problem is challenging in the online setting since the information about the loss and constraint
unctions is unknown a priori to the agent. In particular, since g t is unknown a priori, the constraint g t (xt ) ≤ 0 is hard to
e satisfied in every time slot t . Rather, previous work [3,8,9] allows instantaneous constraints to be violated at each round,
ut tries to satisfy the constraints in the long run. In other words, the agent wants to ensure the long-term constraint of
T
t=1 g t (xt ) ≤ 0 over some given period of length T . This type of long-term constraint is appropriate in many applications

e.g., smart grid with renewable energy supply [8]). Thus, we aim to solve the following online optimization problem:

min
{xt }Tt=1

T∑
t=1

ft (xt ), s.t.
T∑

t=1

g t (xt ) ≤ 0. (P1)

olving problem (P1) exactly is still impossible in the online setting, since the information about the ft and g t is unknown
efore the action xt is chosen. Instead, our goal is to make the total loss

∑T
t=1 ft (xt ) as low as possible compared

o the total loss incurred by the benchmark sequence {x∗
t }

T
t=1 (x∗

t is commonly termed the per-slot minimizer since
∗
t = argminx∈χ,g t (x)≤0 ft (x)) and meanwhile, to ensure that

∑T
t=1 g t (xt ) is not too large, i.e., the long-term constraint

s not violated too much. Therefore, for any sequence {xt}Tt=1 yielded by online algorithms, we define the dynamic regret
nd the constraint violations, respectively as follow,

Regret =

T∑
t=1

ft (xt ) −

T∑
t=1

ft (x∗

t ),

Viok =

T∑
t=1

gt,k(xt ), k ∈ {1, 2, . . . , K }.

(1)

In this paper, we consider the dynamic regret and constraint violations as the performance metrics. We emphasize
hat the definition of dynamic regret and constraint violations in (1) are prevalent and widely adopted in the literature
3,8,9,11]. Our goal is to choose xt in each round t such that both the dynamic regret and constraint violations grow sub-
inearly with respect to the time horizon T . Note that the regret defined in (1) may be negative but this also makes sense.
his is because we aim to minimize the total cost defined in (P1) as small as possible, while the comparator sequence can
e arbitrarily given. The significance of the regret bound guarantee is to make sure the total cost incurred by the agent does
ot exceed that incurred by a comparator sequence too much, and we would like to see the appearance of the negative
egret, i.e, the total cost incurred by the agent is smaller than that incurred by a comparator sequence. Indeed, negative
egret is very common in the standard OCO in terms of universal dynamic regret in which the comparator sequence is
rbitrary given [15–17].
Intuitively, the performance bounds of any online algorithm should depend on how drastically {ft} and {g t} vary across

ime, that is, the temporal variations of {ft} and {g t}. Thus we need to quantify the temporal variations of the dynamic
nvironment. Specifically, we need to quantify the temporal variations of functions sequence. There are mainly two kinds
f regularities used in the literature of constrained OCO [3,8–11,18].

• Path-length: the accumulated variation of per-slot minimizers {x∗
t }

Vx =

T∑
t=2

∥x∗

t − x∗

t−1∥.

• Function variation: the accumulated variation of consecutive constraints

Vg =

T∑
t=2

sup
x∈χ

∥g t (x) − g t−1(x)∥.
3
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he reason we define the accumulative variation Vx with respect to x∗
t is that it can quantify the temporal vari-

tions of the entire dynamic environment including loss functions {ft} and constraint functions {g t} since x∗
t =

rgminx∈χ {ft (x)|g t (x) ≤ 0}. While other definitions of it like
∑T

t=2 maxx∈χ |ft − ft−1| can only quantify the temporal
ariations of the loss functions.
We let ∥·∥ be the Euclidean norm throughout this paper. In general, it is challenging to achieve sublinear performance

ounds for any online algorithm unless regularity measures are sublinear; that is, the optimization problem is feasible. For
xample, a non-oblivious adversary may choose a new objective function ft and constraint function gt such that the current
er-slot minimizer x∗

t is at least O(1) distance away from the selected action xt at each round t (i.e., the accumulative
ariations are the of order T ). In such case, any online algorithm cannot track the per-slot minimizers sequence {x∗

t } well
nd guarantee the sublinear dynamic regret/constraint violations.

.2. Assumptions

After specifying the problem, here we introduce some assumptions in this paper, which are also common in the
iterature of constraint OCO [4,8,9].

ssumption 1. We make following assumptions with respect to feasible set χ , objective functions {ft (x)}Tt=1 and
onstraint functions {g t (x)}Tt=1:

• The feasible set χ is closed, convex, and compact with diameter R, i.e., ∀x, y ∈ χ , it holds that ∥x − y∥ ≤ R.
• The loss functions and constraint functions are convex, and bounded on χ , i.e., there exists a positive constant F

such that max{|ft (x)|, ∥g t (x)∥} ≤ F , ∀x ∈ χ, t .
• The gradients of gk,t and ft are upper-bounded by G over χ , i.e., max{∥∇ft (x)∥, ∥∇gk,t (x)∥} ≤ G, ∀x ∈ χ, k, t . This is

equivalent to g t is Lipschitz continuous with parameter β (β = KG), i.e., ∥g t (x) − g t (y)∥ ≤ β∥x − y∥, ∀x, y ∈ χ, t .

Under Assumption 1, we study problem (P1) in the full-information setting; that is, at round t , the agent can observe
he complete loss and constraint functions after the decision xt is submitted. In the following sections, we will propose a
irtual-queue-based parameter-free algorithm and show that it simultaneously achieves sublinear regret and constraint
iolations without the Slater condition.

. Algorithm

In this section, we propose a novel virtual-queue-based algorithm, VQB, which is illustrated in Algorithm 1. It
ntroduces a sequence of dual variables {λ(t)}, which is also called virtual queue. The purpose of introducing the virtual
ueues is that we can characterize the regret and constraint violations through the drift-plus-penalty expression and then
nalyze the regret and the constraint violations based on it. Similar ideas of updating dual variables based on the virtual
ueues are adopted in several very recent works (e.g., [4,5]) for OCO with long-term and time-invariant constraints.

Algorithm 1 VQB

1: Initialize: α1, γ0 > 0, g0 = λ(0) = 0, and x1 ∈ χ .
2: for round t = 1...T − 1 do
3: Update the dual iterate λ(t):
4: λ(t) = max{λ(t − 1) + γt−1g t−1(xt ), −γt−1g t−1(xt )}
5: Update the primal iterate that satisfies:
6: xt+1 = argminx∈χ∇ft (xt )T (x − xt ) + [λ(t) + γt−1g t−1(xt )]

T (γtg t (x)) + αt ||x − xt ||2
7: Choose the action xt+1
8: end for

But there are some differences between our algorithm and theirs. First, in order to ensure both regret and constraint
violations are simultaneously sublinear for the time-varying constraints setting, we design a new way of involving
instantaneous per-slot constraint violation into the virtual queues and decision sequence update. Moreover, the learning
rates of our algorithm, i.e., αt and γt are time-varying, while the learning rates of algorithm in [1,4,5] are unchanged in
the whole time horizon. Therefore, our algorithm needs a new regret and constraint violation analysis due to the new
update rule of virtual queues and the time-varying parameters. We will show more details about it in the theoretical
analysis part of Section 4.

Here we elaborate on the novelty and intuition of the entire algorithmic approach of VQB. Note that if there are no
constraints {g t} (i.e., g t = 0), then VQB has λt = 0, ∀t and becomes the OGD algorithm, which has been commonly used
in classic OCO with learning rate η =

1
2αt

since

xt+1 = argmin
x∈χ

∇ft (xt )T (x − xt ) + αt∥x − xt∥2   = Πχ (xt −
1

2αt
∇ft (xt )). (2)
penalty

4
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We call the term marked by an underbrace in (2) the penalty. Hence, the OGD algorithm is to minimize the penalty term
nd is a special case of VQB. In our algorithm VQB, if we define Q (t) = λ(t)+γt−1g t−1(xt ) = max{λ(t−1)+2γt−1g t−1(xt ), 0}
o be the vector of virtual queue backlogs and define Lyapunov drift ∆(t) =

1
2∥Q (t + 1)∥2

−
1
2∥Q (t)∥2, then the intuition

ehind VQB is to choose xt+1 to minimize an upper bound of the following expression. (Since xt+1 has not been determined
at round t , we replace g t (xt+1) with g t (x) in ∆(t) and omit the constant term.)

∆(t)+ ∇ft (xt )T (x − xt ) + αt∥x − xt∥2   .

drift penalty

Thus, the intention is to minimize penalty plus the Lyapunov drift, which is a natural method in stochastic network
optimization incorporated with the stability condition (e.g., [19–21]). The drift term ∆(t) could be used to evaluate
he constraint violations and is closely related to the virtual queues. The penalty term includes the regularization
erm ∥xt − xt−1∥

2 which could smoothen the difference between the coherent actions and make the whole expression
trongly-convex. The remaining term describes the optimization problem.
Our algorithm also has a close connection with the saddle point methods proposed in the literature of constrained

CO [3,12], which also incorporates dual variables to the decision-making process. For example, in Algorithm 1, λ(t) =

ax{λ(t − 1) + γt−1g t−1(xt ), −γt−1g t−1(xt )} is a virtual queue vector for the constraint violations. The role of [λ(t) +

t−1g t−1(xt )]T is similar to a dual variable vector in saddle point-typed OCO algorithms. The main differences between
ur algorithm and theirs is the update of dual variables and the way of incorporating constraint functions into the dual
ariables (e.g., our algorithm uses a virtual queue to track the constraint violation, and the dual variables in our algorithm
re adaptively adjusted by the per-time slot constraint violation). These differences render our algorithm some advantages
ver saddle point methods in terms of performance guarantees.

. Results

In this section, we first present the analysis and major theoretical results of our algorithm. Next, we extend our results
o the case when the time horizon is unknown and the variation of consecutive constraints is smooth enough across time,
hich captures many practical scenarios and has been frequently considered in [3,22,23].

.1. Main results

Within this subsection, we present the upper bounds on the dynamic regret and constraint violations for VQB.

heorem 1. Consider OCO problem (P1) under Assumption 1, let {x∗
t }

T
t=1 be the per-slot minimizers sequence which satisfies

∗
t = argminx∈χ,g t (x)≤0ft (x).

• (Case 1) Setting αt =

√
T

R+
∑

i≤t ∥x∗i −x∗i−1∥
and γ 2

t =
1

2β2
1

√
2R

in VQB, then we have the following performance upper bounds

Regret ≤ O(max{
√
TVx, Vg }),

Viok ≤ O(max{
√
T , Vg }), ∀k = 1, 2, . . . , K .

(3)

• (Case 2) Setting αt =

√
T

R+
∑

i≤t ∥x∗i −x∗i−1∥
and γ 2

t =
1

2β2
1

√
2R

1
√
t+1

in VQB, then we have the following performance upper
bounds

Regret ≤ O(
√
TVx),

Viok ≤ O(max{T
3
4 , Vg }), ∀k = 1, 2, . . . , K .

(4)

There are several advantages stated as following that makes our results outperform previous studies. First, Theorem 1
implies that VQB can guarantee sublinear regret and constraint violations simultaneously, as long as the accumulated
variations of the environment are sublinear, i.e., Vx = o(T ) and Vg = o(T ). Previous studies listed in Table 1 do
not always simultaneously guarantee the sublinear performance bounds since they introduce the o(T )Vx or o(T )Vg
erm in their performance bounds, which may be at least of the order T even the optimization problem is feasible,
.e., max{O(Vx),O(Vg )} = o(T ).

Second, the dynamic regret upper bound guaranteed by both two cases of Theorem 1 could match the state-of-the-art
ynamic regret bound O(

√
TVx) in general OCO [15,17,24], when the path-length of the benchmark sequence is Vx.

Moreover, our algorithm is parameter-free, that is, the parameters in our algorithm do not require prior information
f the regularities (e.g., Vx or Vg ). Meanwhile, Theorem 1 holds whether the Slater condition holds or not. The theoretical
esults of most previous study are valid either under the Slater condition, or the order of the regularities are known
rior to the learner. Only [11] is both parameter-free and independent of the assumption of the Slater condition,
owever, it introduced degraded performance bounds and cannot guarantee the sublinear regret and constraint violations
imultaneously. Readers could see Table 1 for the detailed comparisons.
5
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We compare the performance bounds of our algorithm with the previous studies listed in Table 1. When Vx is not
too large (e.g., Vx = o(

√
T )), the regret and constraint violations bounds presented in the first case of Theorem 1 are

all no worse than the state-of-the-art results, i.e., O[
√
TVx,

√
T ] and O[

√
TVx, V

1/4
x T 3/4

], established in [8,9], respectively.
esides, the dynamic regret bound presented in the second case of Theorem 1 is superior to all existing works, and the
orresponding constraint violations are also strictly sublinear when the optimization problem is feasible.

roof sketch of Theorem 1. Within this subsection, we give a proof sketch of Theorem 1. All the proof details of listed
emmas could be found in the Appendix A. Since the drift-plus-penalty expression characterizes the dynamic regret
xpression, and we can translate the bounds of virtual queues {λ(t)} into bounds of constraint violations. Thus, our proof
tarts with the analysis of virtual queues properties and drift-plus-penalty expression, that is, the Lyapunov drift term
(t) =

1
2 [∥λ(t+1)∥2

−∥λ(t)∥2
] plus the penalty term ft (xt ), which is associated with the loss value after choosing an action.

First, we present the main properties for virtual queues {λ(t)}Tt=1 introduced in Algorithm 1 and Lyapunov drift term.

emma 1 (Properties of Virtual Queues). In Algorithm 1, we have the following properties for virtual queues λ(t) and Lyapunov
rift term ∆(t):

1. λ(t) ≥ 0
2. λ(t) + γt−1g t−1(xt ) ≥ 0
3. ∥λ(t)∥ ≥ γt−1∥g t−1(xt )∥
4. γt−1g t−1(xt ) ≤ λ(t) − λ(t − 1), furthermore, ∥λ(t)∥ − ∥λ(t − 1)∥ ≤ γt−1∥g t−1(xt )∥
5. ∆(t) ≤ γt [λ(t)]Tg t (xt+1) + γ 2

t ∥g t (xt+1)∥2

The proof of this lemma is motivated by [4,5]. However, due to our new algorithm, different constraints setting
nd fewer assumptions, our proof techniques are slightly different from theirs. Then we present the upper bound of
rift-plus-penalty expression in the following lemma.

emma 2 (Upper Bound of the Drift-Plus-Penalty Expression). Under Assumption 1, let δ > 0 and {αt}
T
t=1, {γt}

T
t=1 be any

ositive non-increasing sequences, if 2γt ≤ γt−1 + γt+1 holds for all t , then VQB ensures that

ft (xt ) + ∆(t) ≤ αt∥x∗

t − xt∥2
− αt+1∥xt+1 − x∗

t+1∥
2
+ 4Rαt∥x∗

t+1 − x∗

t ∥ + (β2γ 2
t−1 +

δ

2
− αt )∥xt+1 − xt∥2

+
1
2δ

G2
+

1
2
γtγt+1∥g t (xt+1)∥2

−
1
2
γt−1γt∥g t−1(xt )∥

2
+ γt−1γt∥g t−1(xt ) − g t (xt )∥

2
+ ft (x∗

t ).
(5)

This is the key lemma in our theoretical analysis, which is used to yield the eventual bounds of regret and virtual
queues. Next, we bound the dynamic regret as follows based on Lemma 2.

Lemma 3 (Regret Bound). Under Assumption 1, for arbitrary δ > 0 which satisfies αt ≥ β2γ 2
t−1 +

δ
2 , if γt ≤ γt+1, αt ≤ αt+1

nd 2γt ≤ γt−1 + γt+1 hold for all t, then VQB ensures that
T∑

t=1

ft (xt ) ≤

T∑
t=1

ft (x∗

t ) + α1R2
+ 4R

T∑
t=1

αt∥x∗

t+1 − x∗

t ∥ +
TG2

2δ
+

1
2
γTγT+1∥gT (xT+1)∥2

+
1
2
∥λ(1)∥2

+ 2F
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥.

(6)

Here we define x∗

T+1 = x∗

T .
We further bound the eventual length of virtual queues in the following lemma based on Lemma 2.

Lemma 4. Under Assumption 1, setting δ, αt and γt to be the same as Lemma 3, then VQB ensures that

∥λ(T )∥ ≤ 2
√
F (T − 1) +

√
2α1R2 +

√
(T − 1)G2

δ
+ γT−1∥gT−1(xT )∥

+ 2

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ + 2

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥.

(7)

This is another critical lemma in our theoretical analysis that could be used to yield the constraint violations’ upper
bounds. We derive the upper bounds of the constraint violations in the following two lemmas.

Lemma 5. For any non-increasing sequence {γt}, VQB ensures that
T∑

gk,t (xt ) ≤
∥λ(T )∥

γ
+ Vg , ∀k = 1, 2, . . . , K . (8)
t=1 T

6
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Recall that Lemma 4 bounds the virtual queue length. Thus combining this lemma with Lemma 5, we can bound the
constraint violations in the following lemma.

Lemma 6 (Constraint Violations’ Bounds). Setting δ, αt and γt to be the same as Lemma 3, then VQB ensures that
T∑

t=1

gk,t (xt ) ≤
2
γT

√
F (T − 1) +

1
γT

√
2α1R2 + Vg +

γT−1

γT
∥gT−1(xT )∥

+
2
γT

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ +

2
γT

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ +

G
γT

√
T − 1

δ
.

(9)

According to Lemmas 3 and 6, with parameters stated in Theorem 1, we could prove the theoretical results of
Theorem 1. First we consider the Case 1 in Theorem 1, by the setting of αt and according to Lemma 13, we can obtain

T∑
t=1

αt∥x∗

t+1 − x∗

t ∥ =

T∑
t=1

√
T

R +
∑

i≤t ∥xi − xi−1∥
∥x∗

t+1 − x∗

t ∥

=
√
T

T∑
t=1

∥x∗

t+1 − x∗
t ∥√

R +
∑

i≤t ∥xi − xi−1∥

≤ 2
√
T

√ T∑
t=0

∥x∗

t+1 − x∗
t ∥ = 2

√
TVx.

(10)

y the setting of γt and according to Lemma 12, we also have
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ =

1
2β2

1
√
2R

T∑
t=1

∥g t−1(xt ) − g t (xt )∥

≤
1

2β2

1
√
2R

T∑
t=1

max
x∈χ

∥g t−1(x) − g t (x)∥ =
1

2β2

1
√
2R

Vg .

(11)

etting δ =
1
2

√
T

R+Vx
, it is easy to verify that αt ≥ β2γ 2

t−1 +
δ
2 , 2γt ≤ γt−1 +γt+1, and both {αt} and {γt} are non-increasing

equences. Thus combining Lemma 2 with (10), (11) and rearranging terms yields
T∑

t=1

ft (xt ) −

T∑
t=1

ft (x∗

t )

≤ 4R
T∑

t=1

αt∥x∗

t+1 − x∗

t ∥ + α1R2
+

TG2

2δ
+

1
2
γTγT+1∥gT (xT+1)∥2

+ 2F
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ +

1
2
∥λ(1)∥2

≤ 8R
√
TVx +

√
T
R
R2

+
TG2

2δ
+

1
4β2

1
√
2R

F 2
+

F
β2

Vg
√
2R

+
1
2
∥λ(1)∥2

(a)
≤ 8R

√
TVx +

√
T
R
R2

+ TG2

√
R + Vx

T
+

1
4β2

1
√
2R

F 2
+

F
β2

Vg
√
2R

+
1
2
∥λ(1)∥2

= 8R
√
TVx + R2/3

√
T + G2

√
T (R + Vx) +

1
4β2

1
√
2R

F 2
+

F
β2

Vg
√
2R

+
1
2
∥λ(1)∥2

= O(max{
√
TVx, Vg }),

(12)

here (a) holds since we set δ =
1
2

√
T

R+Vx
. According to Lemma 5 and Assumption 1, we have

T∑
t=1

gt,k(xt ) ≤
2
γT

√
F (T − 1) +

1
γT

√
2α1R2 +

γT−1

γT
∥gT−1(xT )∥ +

G
γT

√
T − 1

δ

+
2
γT

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ +

2
γT

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ + Vg

(a)
≤

√
1

2
√
2Rβ2

[2
√
F (T − 1) + R

√
2

√
T
R

+ G

√
2
(T − 1)

√
R + Vx

√
T

]

7
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+ F +

√
2

√
2Rβ2

[

√
4R

√
TVx +

√
F

2β2

Vg
√
2R

] + Vg

(b)
≤

√
1

2
√
2Rβ2

[2
√
F (T − 1) + R

√
2

√
T
R

+ G
√
2R

√
T (1 + T )]

+ F +

√
2

√
2Rβ2

[

√
4R

√
RT +

√
F

2β2

Vg
√
2R

] + Vg = O(max{
√
T , Vg }),

(13)

here (a) is due to (10) and (11); (b) is due to Vx ≤ RT . For the Case 2 in Theorem 1, since the settings of αt in both two
ases are the same, we can also derive that

T∑
t=1

αt∥x∗

t+1 − x∗

t ∥ ≤ 2
√
TVx. (14)

or term
∑T

t=1 γ 2
t−1∥g t−1(xt ) − g t (xt )∥, according to Lemma 12 and by the setting of γt , we have

T∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ =

1
2β2

1
√
2R

T∑
t=1

1
√
t
∥g t−1(xt ) − g t (xt )∥

≤
F
β2

1
√
2R

T∑
t=1

1
√
t

≤
F
β2

√
2T

√
R

.

(15)

etting δ =
1
2

√
T

R+Vx
, it is easy to verify that αt ≥ β2γ 2

t−1 +
δ
2 , 2γt ≤ γt−1 +γt+1, and both {αt} and {γt} are non-increasing

equences. Based on Lemma 2, combining (14), (15) and Assumption 1 gives
T∑

t=1

ft (xt ) −

T∑
t=1

ft (x∗

t )

≤ 4R
T∑

t=1

αt∥x∗

t+1 − x∗

t ∥ + α1R2
+

TG2

2δ
+

1
2
γTγT+1∥gT (xT+1)∥2

+ 2F
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ +

1
2
∥λ(1)∥2

≤ 8R
√
TVx + R3/2

√
T + TG2

√
R + Vx

T
+

F 2

4β2

1
√
2R

1
√
T

+
2F 2

β2

√
2T

√
R

+
1
2
∥λ(1)∥2

= O(
√
TVx).

(16)

urthermore, based on Lemma 5, we obtain the bounds of constraint violations as follows
T∑

t=1

gt,k(xt ) ≤
2
γT

√
F (T − 1) +

1
γT

√
2α1R2 +

γT−1

γT
∥gT−1(xT )∥ +

G
γT

√
T − 1

δ

+
2
γT

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ +

2
γT

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ + Vg

(a)
≤ T 1/4

√
1

2
√
2Rβ2

[2
√
F (T − 1) + R

√
2

√
T
R

+ G

√
2
(T − 1)

√
R + Vx

√
T

]

+ (
T + 1
T

)
1/4

F + T 1/4

√
2

√
2Rβ2

[

√
4R

√
TVx +

F
β

√
√
2T

√
R

] + Vg

(b)
≤ T 1/4

√
1

2
√
2Rβ2

[2
√
F (T − 1) + R

√
2

√
T
R

+ G
√
2R

√
T (1 + T )]

+ 21/4F + T 1/4

√
2

√
2Rβ2

[

√
4R

√
TVx +

F
β

√
√
2T

√
R

] + Vg = O(max{T 3/4, Vg }),

(17)

here (a) follows from (14) and (15); (b) holds by the fact that Vx ≤ RT and T+1
T ≤ 2. It completes the proof.
8
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emark 1. When feasible set χ is time-varying, i.e., χ (t), our algorithm VQB is valid and we can verify that its
orresponding theoretical results also hold.

.2. Slater condition

In the previous section, we have shown that as long as the optimization problem is feasible, our algorithm could
imultaneously achieve sublinear dynamic regret and constraint violation with only limited common assumptions in
he literature of constrained OCO. Meanwhile, [3] pointed out that in many practical constrained OCO problems, the
ariation of consecutive constraints is smooth across time. Thus, we examine whether the smoothness of the dynamic
nvironment’s temporal variations can lead to better bounds of constraint violations for VQB. Within this subsection,
e consider a slightly stronger Slater condition that has been considered in [3]. We will show that our variant of VQB,

llustrated in Algorithm 2, could guarantee an O(1) constraint violations under this assumption. The difference between
QB and Algorithm 2 is the way of incorporating constraints into the virtual queues updates and decision iterations,
.e., Algorithm 2 uses g t (xt ) instead of g t−1(xt ) to update the dual iterate λ(t) and primal iterate xt compared with VQB.
Technically, the update step in Algorithm 2 can yield much lower constraint violations when the variation of consecutive
constraints is smooth across time, as shown in Theorem 2. First, we give the definition of the Slater condition.

Algorithm 2
1: Initialize: α, γ > 0, g0 = λ(0) = 0, and x1 ∈ χ .
2: for round t = 1...T − 1 do
3: Update the dual iterate λ(t):
4: λ(t) = max{λ(t − 1) + γ g t (xt ), −γ g t (xt )}
5: Update the primal iterate that satisfies:
6: xt+1 = argminx∈χ∇ft (xt )T (x − xt ) + [λ(t) + γ g t (xt )]

T (γ g t (x)) + α||x − xt ||2
7: Choose the action xt+1
8: end for

Assumption 2 (Slater Condition). There exists ϵ > 0 and x̂ ∈ χ such that g t (x̂) ≤ −ϵI, ∀t .

Assumption 2 is known as the interior point condition or Slater condition, which is also used widely in the literature
of OCO with time-varying constraints [3,9,10,18]. Based on Assumption 2, we next introduce a slightly stronger Slater
condition assumption, which is valid in many practical scenarios [3,22,23].

Assumption 3. The Slater constant ϵ is larger than the maximum variation of consecutive constraints, i.e., ϵ > V̄g =

max
t

max
x∈χ

∥g t+1(x) − g t (x)∥.

Note that this assumption was adopted in [3], which is valid when the region defined by {x|x ∈ χ, g t (x) ≤ 0} is large
enough, or the variation of consecutive constraints is smooth enough across time.

With a similar intuition of VQB, if we define Q (t) = λ(t) + γtg t (xt ) = max{λ(t − 1) + 2γtg t (xt ), 0} as the vector of
virtual queue backlogs and let parameters αt , γt be time-invariant, Algorithm 2 also chooses xt+1 to minimize an upper
bound of the following expression:

∆(t)+ ∇ft (xt )T (x − xt ) + αt∥x − xt∥2   .

drift penalty

The reason we replace g t−1(xt ) with g t (xt ) in Algorithm 2 is motivated by the observation that g t (xt ) could be directly
accumulated into queue λ(t) (recall that λ(t) = max{λ(t − 1) + γ g t (xt ), −γ g t (xt )}) and we intend to have small queue
backlogs when the variation of consecutive constraint functions is smooth across time. This is important for a much tighter
analysis of the constraint violations under the strongly Slater condition. If we use g t (xt ) instead of g t−1(xt ) in VQB, we
could get γ g t,k(xt ) ≤ λk(t) − λk(t − 1). Then, we can characterize the constraint violations only by the bounds of virtual
queues {λ(t)} without the term Vg (comparing with Lemma 5), i.e.,

∑T
t=1 gt,k(xt ) ≤

λk(T )
γ

≤
∥λ(T )∥

γ
, ∀k. In such case, the

length of virtual queues {∥λ(t)∥}Tt=1 is upper bounded by a constant under the strongly Slater condition (Lemma 11). Then
we could obtain an O(1) bound of constraint violations, shown in the following theorem.

Theorem 2. Under Assumptions 1–3, setting α = T a and γ 2
=

1
2β2 T a in Algorithm 2, the dynamic regret and constraint

violations are upper bounded by

Regret ≤ O(max{T aVx, T aVg , T 1−a
}),

Viok ≤ O(1), ∀k = 1, 2, . . . , K .
(18)

n particular, the performance upper bounds become O(max {
√
TV ,

√
TV }) and O(1) if we set α = 2β2γ 2

=
√
T .
x g

9
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Note that our performance bounds established by Algorithm 2 are strictly better than [3] under the same assumptions.
Besides, the constraint violations for Algorithm 2 can decrease to O(1) when the variations of consecutive constraints are
smooth enough across time.

Proof sketch of Theorem 2. Here we give a proof sketch of Theorem 2. All the proof details of listed lemmas could be
found in Appendix B. Note that both {αt} and {γt} are constant sequences in Algorithm 2, thus here we omit the subscript
t . Similar as Lemma 1, in Algorithm 2, we have the following lemma for the properties of virtual queues and Lyapunov
drift term.

Lemma 7. In Algorithm 2, at each round t, we have

1. λ(t) ≥ 0
2. λ(t) + γ g t (xt ) ≥ 0
3. ∥λ(t)∥ ≥ γ ∥g t−1(xt )∥
4. γ g t (xt ) ≤ λ(t) − λ(t − 1), furthermore, ∥λ(t)∥ − ∥λ(t − 1)∥ ≤ γ ∥g t (xt )∥
5. ∆(t) ≤ γ [λ(t)]Tg t+1(xt+1) + γ 2

∥g t+1(xt+1)∥2
2

The proof of this Lemma is similar as the proof of Lemma 1 and hence we omit the details.

Lemma 8. Under Assumptions 1–3, setting α, γ , δ such that α ≥
1
2 (β

2γ 2
+ δ), then Algorithm 2 ensures that

ft (xt ) + ∆(t)

≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t+1∥
2
+ 4Rα∥x∗

t+1 − x∗

t ∥
2
+ γ 2F∥g t+1(xt+1) − g t (xt+1)∥

+
1
2δ

G2
+

1
2
γ 2

∥g t+1(xt+1)∥2
−

1
2
γ 2

∥g t (xt )∥
2
+ γ ∥λ(t)∥∥g t+1(xt+1) − g t (xt+1)∥.

(19)

Take a similar derivation process as the proof of Theorem 1, we also characterize the regret and constraint violations
hrough the bound of drift-plus-penalty expression stated above. Therefore, we bound the dynamic regret and constraint
iolations in the following lemmas, respectively.

emma 9. Under Assumptions 1–3, setting α, γ , δ such that α ≥
1
2β

2γ 2
+

1
2δ, then Algorithm 2 ensures that

T∑
t=1

ft (xt ) ≤

T∑
t=1

ft (x∗

t ) + α∥x∗

1 − x1∥2
+ 4RαVx +

TG2

2δ
+ γ 2FVg +

1
2
∥λ(1)∥2

+ γ max
t

∥λ(t)∥Vg . (20)

emma 10. In Algorithm 2, we have
T∑

t=1

gt,k(xt ) ≤
λk(T )

γ
≤

∥λ(T )∥
γ

, ∀k ∈ {1, 2, . . . , K }. (21)

Note that the above two lemmas show that the final bounds of dynamic regret and constraint violations can be obtained
by bounding the λ(t). Since we are allowed to introduce the assumption of strongly Slater condition, we will show that
the length of virtual queues is upper bounded by a constant in this case. Hence we adopt different techniques for the
virtual queues analysis compared with the proof of Lemma 4, and bound them by accomplishing the following lemma.

Lemma 11. In Algorithm 2, we have

∥λ(t)∥ ≤ γ F +
GR + γ 2ϵF + 2γ 2F 2

+ αR2

γ (ϵ − V̄g )
, ∀t. (22)

Finally, based on the above lemmas, we prove Theorem 2 as follows. Setting δ =
1
2T

a, and it is easy to verify that
t ≥

1
2β

2γ 2
+

δ
2 . Combining Lemma 9 with Lemma 11, we have

T∑
t=1

ft (xt ) −

T∑
t=1

ft (x∗

t )

≤ α∥x∗

1 − x1∥2
+ 4RαVx +

TG2

2δ
+ γ 2FVg +

1
2
∥λ(1)∥2

+ γ max
t

∥λ(t)∥Vg

≤

T∑
t=1

ft (x∗

t ) + αR2
+ 4RαVx +

TG2

2δ
+ γ 2FVg +

1
2
∥λ(1)∥2

+ (γ 2F +
GR + γ 2ϵF + 2γ 2F 2

+ αR2

(ϵ − V̄g )
)Vg

a 2 1−a a a 1−a

(23)
= O(max{T Vx, γ Vg , T }) = O(max{T Vx, VgT , T }).
10
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urthermore, combining Lemma 10 with Lemma 11, we can obtain
T∑

t=1

gt,k(xt ) ≤
∥λ(T )∥

γ
≤ F +

GR + γ 2ϵF + 2γ 2F 2
+ αR2

γ 2(ϵ − V̄g )

= O(
α

γ 2 ) = O(T 1−a), ∀k = 1, 2, . . . , K .

(24)

n particular, when setting α =
1
2

√
T and γ 2

=
1

2β2

√
T , the performance upper bounds become O(max{

√
TVx,

√
TVg })

nd O(1). This completes the proof.

.3. Unknown time horizon T

In this subsection, we extend our algorithm and analyze the case when time horizon T is unknown. Recall that the
arameters of VQB, i.e., γt and αt , and previous methods for OCO with long-term and time-varying constraints all depend
n the time horizon T, while the total rounds T are not known prior to the learner in many practical scenarios. In such
ases, we use the doubling trick strategy to tune the parameters for our algorithm. To the best of our knowledge, we are
he first to consider the unknown time horizon case for OCO with long-term and time-varying constraints. For any online
lgorithm A whose parameters depend on the time horizon T , the doubling trick is described in Algorithm 3.

Algorithm 3 The Doubling Trick for Online Algorithm A
1: Let i = 1.
2: while not reach the end of the time horizon do
3: Reset A with parameters chosen for T = 2i.
4: Run A for 2i rounds.
5: Let i = i + 1.
6: end while

Theorem 3. Under Assumption 1, for any unknown time horizon T, run VQB until reaching the end of the time horizon. Let
ti = 2i be the index of the first round of i-th epoch.

• (Case 1) Setting αt =

√
2i

R+
∑

ti≤i≤t ∥x∗i −x∗i−1∥
and γ 2

t =
1

2β2
1

√
2R

for t ∈ [ti, ti+1 − 1], then VQB with doubling trick ensures

regret ≤ O(max{
√
TVx, Vg}),

Viok ≤ O(max{
√
T , Vg}), ∀k = 1, 2, . . . , K .

(25)

• (Case 2) Setting αt =

√
2i

R+
∑

ti≤i≤t ∥x∗i −x∗i−1∥
and γ 2

t =
1

2β2
1

√
2R

1√
t−ti+2

for t ∈ [ti, ti+1 − 1], then VQB with doubling trick

ensures

regret ≤ O(
√
TVx),

Viok ≤ O(max{T
3
4 , Vg}), ∀k = 1, 2, . . . , K .

(26)

Theorem 3 shows that our algorithm with the doubling trick can still preserve the order of dynamic regret and
constraint violations bounds even though the time horizon T is unknown. Note that our algorithm adapts to the doubling
trick because of the property of parameter-free, while parameter-dependent methods (e.g., [8]) cannot do this.

Proof of Theorem 3. Here we give a proof of Theorem 3. For the Case 1 in Theorem 3, since the i-th epoch consists of
t most 2i rounds, the unknown time horizon T is divided into N = ⌈log2T⌉ epochs. Let ∆i

x =
∑t=ti−1

t=ti
∥x∗

t − x∗

t−1∥ and
i
g =

∑t=ti−1
t=ti

sup
x∈χ

∥g t (x) − g t−1(x)∥. By Theorem 1, in the i-th epoch there exists a constant C such that the dynamic

egret and constraint violations are at most max{C
√
T∆i

x, C∆i
g} and max{C

√
2i, C∆i

g} respectively. The final bound could
e obtained by summing the individual bounds over all the epochs. Therefore, we could upper bound the total dynamic
egret and constraint violations as follows

Regret ≤ max{
N∑
i=0

C
√
2i∆i

x,

N∑
i=0

C∆i
g}

(a)
≤ max{C

√ N∑
i=0

∆i
x

√ N∑
i=0

2i, C
N∑
i=0

∆i
g}

≤ max{C
√
Vx

√
2N+1 − 1, C

N∑
i=0

∆i
g} = max{C

√
Vx

√
2⌈log2T⌉+1 − 1, CVg }√ √

log T+2
√

(27)
≤ max{C Vx 2 2 , CVg } = max{2C TVx, CVg },

11
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Table 2
Parameters of our algorithm and baselines.
Methods Parameters

Baseline [8] δ = 8nC2
+ 1, η =

2
√
T

Baseline [3] α = µ = T
1
3

Baseline [11] δ = 1, λ1 = 4
√
2T

1
8

Baseline [9] µ = T−
1
2 , α = 2T−

1
2

VQB(Case 1) αt =

√
T

R+
∑

i≤t ||x∗i −x∗i−1 ||
, γ 2

t =
1

2β2
1

√
2R

VQB(Case 2) αt =

√
T

R+
∑

i≤t ||x∗i −x∗i−1 ||
, γ 2

t =
1

2β2
1

√
2R

1
√
t+1

where (a) is due to the Cauchy–schwarz inequality. And the total constraint violations are at most

Viok ≤ max{
N∑
i=0

C
√

2i,

N∑
i=0

C∆i
g} = max{

C
√
2 − 1

[
√
2
N+1

− 1], CVg }

≤ max{
2C

√
2 − 1

√
2
log2T

, CVg } = max{
2C

√
2 − 1

√
T ,DVg }, ∀k = 1, 2, . . . , K .

(28)

or the Case 2, we conduct similar analysis as Case 1. By Theorem 1, in the i-th epoch there exists a constant D such that
the dynamic regret and constraint violations are at most D

√
T∆i

x and max{D2
3
4 i,D∆i

g} respectively. According to (27), the
total regret is still at most the order of

√
TVx without changing. For the total constraint violations, we also have

Viok ≤ max{D
N∑
i=0

2
3
4 i,

N∑
i=0

D∆i
g} ≤ max{

D
23/4 − 1

(2
3
4 ⌈log2T⌉

− 1),DVg }

≤ max{
2D

23/4 − 1
2

3
4 log2T ,DVg } = max{

2D
23/4 − 1

T 3/4,DVg }, ∀k = 1, 2, . . . , K .

(29)

his completes the proof.

. Numerical experiments

In this section, we conduct numerical experiments to validate the theoretical performance of our algorithm. Specifically,
e consider the online ridge regression (ORR) problem [25] as the numerical example. We compare the time-averaged
egrets and constraint violations of our algorithm with previous work in two different dynamic environments. The problem
ormulation of ORR at round t is as follows.

Minimize
xt∈χ

n∑
i=1

(xTt pi,t + b − qi,t )2

s.t. ∥xt∥ ≤ at

(30)

Here {pi,t , qi,t}ni=1 are the training data at round t , and at characterizes the t-th round constraint on the l2 norm of the
ecision variable, i.e., weight vector. We define {x|∥x∥∞ ≤ C, x ∈ Rk

} as the feasible set. The above ORR formulation
ould be applied in accurate and reliable forecasting of traffic in intelligent transportation systems [26]. The training data
pi,t , qi,t}ni=1 and constraint at may not be known prior to the agent at round t due to the delayed arrival training data.

Experimental setting. At round t , we generate the parameters {pi,t , qi,t , ∀i}, at and the per-slot minimizer x∗
t in the

ollowing way. Let x∗
t = Πχ (x∗

t−1 + τt ), where each entry of τt is a uniform random variable, sampled from a time-varying
et Bt (we will specialize it later). Then we generate at and {pi,t , qi,t}ni=1 as follows. (i) pi,t = pi,t−1 +ui,t , where each entry
f ui,t is i.i.d, uniformly sampled from set Bt . (ii) qi,t = pTi,tx

∗
t + b. (iii) at = ∥x∗

t ∥.
Next, we introduce the baselines [3,8,9,11] for comparison. The algorithms in [3,11] are based on MOSP method.

Although [9] only considered the bandit setting, their algorithm and theoretical guarantees are also valid in the full-
information setting. Meanwhile, note that the theoretical guarantees in [8] are valid only when the agent has prior
knowledge of Vx (or the order of it). For fair comparison, we set the learning rates in their algorithm to be parameter-free,
and obtain the O(VxT 1/2) regret and O(max{V 1/2

x T 1/2, T 3/4
}) constraint violations. Finally, we introduce our experimental

etails. In our experiment, we let n = k = 5, C = 7. The parameters of our algorithm and other baselines are presented
n Table 2.

Results and analysis. We first consider the case when Vx = Vg = O(log(T )). To do this, we set Bt to be [−
1
2t ,

1
2t ].

rom Fig. 1(a) and (b), we can see that our algorithm VQB achieves lowest time-averaged regret Regret(t)
t and constraint

iolation Vio(t)
t , which validates our theoretical results. Moreover, we can also see that the regrets achieved by VQB under

wo parameter settings are very close, which is consistent with the theoretical results in Theorem 1 that the regret upper
ounds between them are identical by noting that V = O(log(T )).
g

12
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Fig. 1. (a) Evolutions of Regret(t)/t; (b) Evolutions of Vio(t)/t .

Fig. 2. (a) Evolutions of Regret(t)/t; (b) Evolutions of Vio(t)/t .

We also consider the case when Vx = Vg = O(
√
T ). To do this, we set Bt to be [−

1
2
√
t
, 1

2
√
t
]. In this case, the regret

ounds of all baselines are at least the order of T . From Fig. 2, we notice that all methods can guarantee sublinear
onstraint violation in this case, which matches the theoretical results listed in Table 1. Fig. 2 also shows that VQB can
chieve simultaneous sublinear regret and constraint violation, while other baselines [3,9,11] cannot, which matches their
heoretical results. We observe that baseline [8] achieves a near sublinear regret in this setting, yet this may not always
e the case due to its O(T ) regret bound, or the performance bounds established by [8] may not be tight. Besides, the
egrets of the VQB are better, which also coincides our theoretical bounds in this case.

. Applications

In this section, we show several applications of our formulation to diverse problems across resource allocation and job
cheduling. We emphasize that none of these applications would be possible without an algorithm that simultaneously
chieves sublinear regret and constraint violations, which is not attainable with previous approaches.

.1. Online network resource allocation

Within this subsection, we consider an online resource allocation problem over a cloud network [3,27]. The network
onsists of mapping nodes J = {1, . . . , J} and data centers K = {1, . . . , K }. We use a directed graph G = (I, ϵ) to
represent it, where I = J ∪ K, |I| = J + K , and |ϵ| = E. ϵ includes all the links which connect mapping nodes with
data centers, and the ‘‘virtual’’ exogenous edges coming out of the data centers. At each time slot t , each mapping node
j receives a data request bjt from exogenous user, and schedules xjkt workload to data center k. Each data center k serves
workload ykt based on its source availability. We assume each node (including data center and mapping node) could buffer
the unserved workloads into its local queue. Next we describe the workflow of the overall system, which is illustrated in
Fig. 3. Specifically, at each time slot t , mapping node j has an exogenous workload bjt plus that stored in its local queue
qjt , then it schedules workload xjkt to data center k. Data center k has a received workload of the amount of

∑J
j=1 x

jk
t plus

that stored in its local queue qJ+k
t , and serves an amount of workload ykt .

We define a resource allocation vector xt = [x11t , . . . , xJKt , y1t , . . . , y
K
t ]

T
∈ RE

+
, and load arrival vector bt =

[b1t , . . . , b
J
t , 0, . . . , 0]T ∈ RI

+
to represent the exogenous load arrival rates of all nodes at time slot t . We also define

I × E node-incidence matrix A, where (i, j)-th entry A = 1 if link j enters node i, or A = −1 if link j leaves node i,
(i,j) (i,j)

13
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Fig. 3. The overview of the system.

otherwise A(i,j) = 0. Hence the vector Axt + bt represents the aggregate workloads of all nodes. There is service residual
at node i if (Axt + bt )i > 0, otherwise the current load of node i exceeds its service capacity. At each time slot t , the
ueue length vector of all nodes is given by qt = [q1t , . . . , q

J+K
t ]

T , and its update rule of qt is qt+1 = (qt + Axt + bt )+. We
enote Bjk be the maximum bandwidth of link (j, k), and Ck be the resource capacity of data center k. Thus the feasible
et is χ = {x|0 ≤ x ≤ c}, where c = [B11, . . . , BJK , C1, . . . , CK ].
Here we formulate the accumulated cost of the overall system. We divide it into two parts, the one is power cost, the

ther is bandwidth cost. The power cost characterizes the energy price and renewable generation, and the bandwidth
ost characterizes the transmission delay. The power cost of each data center k at time slot t is ft,k(ykt ). The bandwidth
ost of link (j, k) is ft,jk(x

jk
t ). Both of them are unknown before the resource allocation at time slot t . Hence at each time

lot t , the instantaneous cost of the overall system is

ft (xt ) =

∑
k∈K

ft,k(ykt ) +

∑
j∈J

∑
k∈K

ft,jk(x
jk
t ) (31)

ur goal is to minimize the accumulated cost of the overall system while ensuring all workloads are served, shown in
he following optimization problem P1:

P1 : min
{xt∈χ}

T∑
t=1

ft (xt )

s.t. qt+1 = [qt + Axt + bt ]
+, ∀t,

q1 = qT+1 = 0,

(32)

here the initial queue length is given by q1, and qT+1 = 0 implies that all workloads should be served before the end of
cheduling horizon T . However, solving P1 is generally challenging using traditional methods since the future workload
rrivals are not known a prior. Therefore, we could relax the first constraint in P1 as follows:

qT+1 ≥ qT + AxT + bT ≥ · · · ≥ q1 +

T∑
t=1

(Axt + bt ) ⇒

T∑
t=1

(Axt + bt ) ≤ qT+1 − q1 = 0. (33)

hen we transform P1 into the following optimization problem P2:

P2 : min
{xt∈χ}

T∑
t=1

ft (xt ) s.t.
T∑

t=1

(Axt + bt ) ≤ 0, (34)

hich could be solved by our framework of OCO with long-term and time-varying constraints.

.2. Online job scheduling

Within this subsection, we consider an online job scheduling problem [28–30], in which the computing cluster consists
f multiple servers with heterogeneous computation resources. Specifically, consider a computing cluster, and it consists of
servers, which indexed from 1 to M . We assume server i has Ci CPU cores and can process multiple jobs simultaneously

nless the total demand of its execution jobs exceeds Ci. Time is slotted and job j arrives the cluster at time slot aj. The
otal number of jobs is N . Each incoming job joins a global queue managed by a scheduler, waiting to be assigned to an
vailable server(s) for execution in the subsequent time slots. At the beginning of each time slot, the scheduler has to
ecide which job(s) to schedule and which sever(s) assigned to it(them). We assume job j requires d CPU cores to run
j

14
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nd pj units of time to finish when its demand of dj CPU cores are fully satisfied, where both dj and pj are integers and
will be reported to the scheduler once job j arrives at the cluster. Thus the quantity vj = pjdj is the volume of job j. We
also assume that preemption and migration are allowed, i.e., a running job can be check-pointed, preempted, and then
recovered on the same server or on a different server.

We denote ui
j(t) be the number of CPU cores allocated to job j on server i at time-slot t . By time-division-multiplexing

of CPU cores, any job could also be processed even if it is allocated fewer than dj CPU cores, but it needs to take more
than pj time-slots to finish. We say job j finishes when its completion time cj satisfies

∑cj
t=aj+1

∑M
i=1 u

i
j(t) ≥ djpj, that is, its

olume is fully served, and the flowtime of job j is cj −aj. We assume that any job j cannot benefit from the extra number
f cores (i.e., it is allocated more than dj cores). To avoid the waste of resources, we have

∑M
i=1 u

i
j(t) ≤ dj. The online

cheduler strikes a balance between fairness and job latency. Hence, like [30], we adopt the lk norm of job flowtime [30]
o represent job’s ‘‘cost’’. Then our goal is to minimize the sum of lk norm of all jobs’ flowtime while satisfying some
onstraints, shown in the following optimization problem P3:

P3 : min
{uij(t)}

N∑
j=1

(cj − aj)k

s.t.
cj∑

t=aj+1

M∑
i=1

ui
j(t) ≥ djpj, ∀j,∑

i

ui
j(t) ≤ dj, ∀j, t,∑

j:t>aj

ui
j(t) ≤ Ci, ∀i, t,

ui
j(t) ∈ N,

(35)

here the third constraint means the total number of allocated CPU cores on server i cannot exceed its capacity Ci at
ny time slot. However, it can be verified that P3 is NP-hard since it is an integer programming problem. Hence, here we
ould adopt the approximation algorithm to solve P3. Specifically, we approximate lk norm of flowtime (cj − aj)k with its
ractional job flowtime counterpart [31], that is,

(cj − aj)k ≈

∑
t=aj+1

M∑
i=1

((t − aj)k/pj + pk−1
j )ui

j(t)/dj.

We define yj(t) =
∑

i u
i
j(t)/dj(t) be the total CPU cores rates allocated to job j at time slot t . We could transform P3 into

the following optimization problem P4:

P4 : min
{uij(t)}

∑
t=1

∑
j:t≥aj+1

((t − aj)k/pj + pk−1
j )yj(t)

s.t.
∑

t=aj+1

yj(t) ≥ pj, ∀j,

0 ≤ yj(t) ≤ 1, ∀j, t,∑
j:t>aj

djyj(t) ≤

M∑
i=1

Ci, ∀t,

djyj(t) ∈ N, ∀j, t.

(36)

We denote by OPT ∗

P3
and OPT ∗

P4
the optimal objective values of optimization problem P3 and P4 respectively, then by

using the same argument as [31], we have OPT ∗

P4
≤ 2OPT ∗

P3
. Next we show that we could use the framework of OCO with

long-term and time-varying constraints to solve problem P4.
Solve P4 using the framework of OCO with long-term and time-varying constraints. We formulate the third

constraint in P4 as the short-term constraint which needs to be satisfied strictly at each time slot. We also notice that
the first constraint could be formulated as the long-term constraint. Thus, we separate the first constraint in P4 into each
time slot constraint:

gt,j(yj(t)) =
pj

T − aj
− yj(t) ≤ 0, (37)

here T is the predicted completion time for all jobs, which could be known or estimated ahead of time in many scenarios.
he per time slot constraint (37) could be violated in some time slots but the accumulated constraint violations should
15
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b
e controlled. We relax the integer constraint of yj(t) and define the feasible set of it as:

χ (t) = {y|

∑
j:t>aj

djyj ≤

M∑
i=1

Ci, 0 ≤ yj ≤ 1.}.

Indeed, we could still make the resultant online algorithm satisfies the integer constraint in the sequel. Therefore, the
optimization problem P4 could be transformed into the following optimization problem P5:

P5 : min
y(t)∈χ (t)

ft (y(t)) =

T∑
t=1

∑
j:t≥aj+1

((t − aj)k/pj + pk−1
j )yj(t)

s.t.
T∑

t=aj+1

gt,j(yj(t)) ≤ 0, ∀j,

(38)

which could be solved by our framework of OCO with long-term and time-varying constraints. As stated before, although
feasible set χ is a time-varying set, our algorithm is valid and the corresponding theoretical results also hold.

7. Conclusion and future work

In this paper, we develop and analyze a novel algorithm for OCO with long term and time-varying constraints. To the
best of our knowledge, our algorithm is the first parameter-free algorithm to simultaneously achieve sublinear dynamic
regret and violation under common assumptions. We then extend our algorithm and analysis to some practical cases. For
future work, It is a good direction to investigate sharper performance bounds for OCO with long-term and time-varying
constraints. Moreover, whether incorporating other properties, like strong convexity and smoothness, can lead to better
performance bounds is also an open question.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Proofs for Section 4.1

A.1. Preliminary lemmas

Lemma 12. For any t ≥ 1, we have
t∑

i=1

1
√
i
≤ 2

√
t − 1. (A.1)

Lemma 13 (Proposition A.5 in [32]). Let R > 0 and any real numbers x1, x2, . . . , xT ∈ [0, R], then we have

T∑
t=1

xt√
R +

∑
i<t xi

≤ 2

√ T∑
t=1

xt . (A.2)

A.2. Proof of Lemma 1

Proof.

1. We prove the inequality (1) by induction. Assume λ(τ ) ≥ 0 holds for all τ ∈ {0, 1, . . . , t}, then ∀k we consider two
cases.
Case 1: If gk,t (xt+1) ≥ 0, then we have

λk(t + 1) = max{λk(t) + γtgk,t (xt+1), −γtgk,t (xt+1)} ≥ λk(t) + γtgk,t (xt+1) ≥ 0.

Case 2: If gk,t (xt+1) < 0, then we have

λk(t + 1) = max{λk(t) + γtgk,t (xt+1), −γtgk,t (xt+1)} ≥ −γtgk,t (xt+1) ≥ 0.

Thus, λ(t) ≥ 0 holds for ∀t .
16
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2. Since λ(t) = max{λ(t − 1) + γt−1g t−1(xt ), −γt−1g t−1(xt )} ≥ −γt−1g t−1(xt ), then we can derive that λ(t) +

γt−1g t−1(xt ) ≥ 0, ∀t .
3. It is obvious that (3) holds if t = 1, then for t ≥ 2 and ∀k we consider two cases.

Case 1: If gk,t (xt+1) ≥ 0, then we have

λk(t) = max{λk(t − 1) + γt−1gk,t−1(xt ), −γt−1g,t−1(xt )}
≥ λk(t − 1) + γt−1gk,t−1(xt ) ≥ γt−1|gk,t−1(xt )|.

Case 2: If gk,t (xt+1) < 0, then we have

λk(t) = max{λk(t − 1) + γt−1gk,t−1(xt ), −γt−1g,t−1(xt )} ≥ −γt−1g,t−1(xt ) = γt−1|gk,t−1(xt )|.

Thus, we have λk(t) ≥ γt−1|gk,t−1(xt )|, ∀t . Squaring both sides of it and summing over k, we obtain ∥λ(t)∥2
≥

γ 2
t−1∥g t−1(xt )∥2, which is equivalent to the inequality (3).

4. Since λ(t) = max{λ(t − 1) + γt−1g t−1(xt ), −γt−1g t−1(xt )} ≥ λ(t − 1) + γt−1g t−1(xt ), then we have γt−1g t−1(xt ) ≤

λ(t) − λ(t − 1). Furthermore,

λk(t) = max{λk(t − 1) + γt−1gk,t−1(xt ), −γt−1g,t−1(xt )}
≤|λk(t − 1)| + |γt−1gk,t−1(xt )| = λk(t − 1) + γt−1|gk,t−1(xt )|.

Squaring both sides of the above inequality and summing over k, we obtain

∥λ(t)∥2
≤ ∥λ(t − 1) + γt−1g t−1(xt )∥

2
⇔ ∥λ(t)∥ ≤ ∥λ(t − 1) + γt−1g t−1(xt )∥.

By the triangle inequality we have ∥λ(t)∥ ≤ γt−1∥g t−1(xt )∥ + ∥λ(t − 1)∥.
5. According to the above inequality ∥λ(t)∥ ≤ γt−1∥g t−1(xt )∥ + ∥λ(t − 1)∥, we have

∥λ(t + 1)∥ ≤ γt∥g t (xt+1)∥ + ∥λ(t)∥

⇒∥λ(t + 1)∥2
≤ ∥λ(t)∥2

+ 2γt [λ(t)]Tg t (xt+1) + γ 2
t ∥g t (xt+1)∥2

Rearranging terms yields the inequality (5). □

A.3. Proof of Lemma 2

Proof. Since ∇ft (xt )T (x − xt ) + [λ(t) + γt−1g t−1(xt )]T (γtg t (x)) + αt∥x − xt∥2 is a 2αt-strong convex function with respect
to x and xt+1 minimizes this expression over χ , we have

∇ft (xt )T (xt+1 − xt ) + [λ(t) + γt−1g t−1(xt )]
T (γtg t (xt+1)) + αt∥xt+1 − xt∥2

≤ ∇ft (xt )T (x∗

t − xt ) + [λ(t) + γt−1g t−1(xt )]
T (γtg t (x

∗

t )) + αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2

(a)
≤ ∇ft (xt )T (x∗

t − xt ) + αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2,

(A.3)

where (a) follows from the fact that g t (x∗
t ) ≤ 0 and Lemma 13. Adding ft (xt ) on both sides of (A.3) and using the convexity

of ft , we have

ft (xt ) + ∇ft (xt )T (xt+1 − xt ) + [λ(t) + γt−1g t−1(xt )]
T (γtg t (xt+1)) + αt∥xt+1 − xt∥2

≤ ft (xt ) + ∇ft (xt )T (x∗

t − xt ) + αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2

≤ ft (x∗

t ) + αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2.

(A.4)

Rearranging terms in (A.4), we have

ft (xt ) + [λ(t)]T (γtg t (xt+1)) − ft (x∗

t )

≤ αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2
− αt∥xt+1 − xt∥2

− γt−1γt [g t−1(xt )]
Tg t (xt+1) − ∇ft (xt )T (xt+1 − xt )

(a)
≤ αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2
− αt∥xt+1 − xt∥2

− γt−1γt [g t−1(xt )]
Tg t (xt+1) + ∥∇ft (xt )∥∥xt+1 − xt∥

(b)
≤ αt∥x∗

− xt∥2
− αt∥xt+1 − x∗

t ∥
2
− αt∥xt+1 − xt∥2

− γt−1γt [g t−1(xt )]
Tg t (xt+1) +

1
2δ

∥∇ft (xt )∥2
+

δ

2
∥xt+1 − xt∥2

(c)
≤ αt∥x∗

t − xt∥2
− αt∥xt+1 − x∗

t ∥
2
− αt∥xt+1 − xt∥2

− γt−1γt [g t−1(xt )]
Tg t (xt+1) +

1
2δ

G2
+

δ

2
∥xt+1 − xt∥2,

(A.5)

where (a) holds by the Cauchy–Schwarz inequality; (b) comes from the AM–GM inequality; (c) holds due to Assumption 1.
Based on Assumption 1, we note that

∥x∗

t − xt∥2
− ∥xt+1 − x∗

t ∥
2

= ∥x∗

t − xt∥2
− ∥xt+1 − x∗

t+1 + x∗

t+1 − x∗

t ∥
2

≤ ∥x∗

t − xt∥2
− ∥xt+1 − x∗

t+1∥
2
− ∥x∗

t+1 − x∗

t ∥
2
− 2∥xt+1 − x∗

t+1∥∥x
∗

t+1 − x∗

t ∥

∗ 2 ∗ 2 ∗ ∗

(A.6)
≤ ∥xt − xt∥ − ∥xt+1 − xt+1∥ + 4R∥xt+1 − xt ∥.
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A

w

I

nd

− [g t−1(xt )]
Tg t (xt+1) = −

1
2
∥g t−1(xt )∥

2
−

1
2
∥g t (xt+1)∥2

+
1
2
∥g t−1(xt ) − g t (xt+1)∥2

= −
1
2
∥g t−1(xt )∥

2
−

1
2
∥g t (xt+1)∥2

+
1
2
∥g t−1(xt ) − g t (xt ) + g t (xt ) − g t (xt+1)∥2

(a)
≤ −

1
2
∥g t−1(xt )∥

2
−

1
2
∥g t (xt+1)∥2

+
1
2
[2∥g t−1(xt ) − g t (xt )∥

2
+ 2∥g t (xt ) − g t (xt+1)∥2

]

(b)
≤ −

1
2
∥g t−1(xt )∥

2
−

1
2
∥g t (xt+1)∥2

+ ∥g t−1(xt ) − g t (xt )∥
2
+ β2

∥xt+1 − xt∥2,

(A.7)

where (a) follows from the AM–GM inequality; (b) holds by the Lipschitz continuity of g t (Assumption 1). Substituting
(A.6) and (A.7) into (A.5) we obtain

ft (xt ) + [λ(t)]T (γ g t (xt+1)) − ft (x∗

t )

≤ αt∥x∗

t − xt∥2
− ∥xt+1 − x∗

t+1∥
2
+ 4R∥x∗

t+1 − x∗

t ∥ + (β2γtγt−1 +
δ

2
− αt )∥xt+1 − xt∥2

+
1
2δ

G2
−

1
2
γt−1γt∥g t−1(xt )∥

2
−

1
2
γt−1γt∥g t (xt+1)∥2

+ γt−1γt∥g t−1(xt ) − g t (xt )∥
2

(a)
≤ αt∥x∗

t − xt∥2
− αt+1∥xt+1 − x∗

t+1∥
2
+ 4Rαt∥x∗

t+1 − x∗

t ∥ + (β2γt−1 +
δ

2
− αt )∥xt+1 − xt∥2

+
1
2δ

G2
−

1
2
γt−1γt∥g t−1(xt )∥

2
−

1
2
γt−1γt∥g t (xt+1)∥2

+ γ 2
t−1∥g t−1(xt ) − g t (xt )∥

2,

(A.8)

where (a) comes from the fact that both {αt} and {γt} are non-increasing sequence. According to Lemma 1 and adding
Lyapunov drift term on both sides of (A.8) yields

ft (xt ) + ∆(t) − ft (x∗

t )

≤ αt∥x∗

t − xt∥2
− αt+1∥xt+1 − x∗

t+1∥
2
+ 4Rαt∥x∗

t+1 − x∗

t ∥ + (β2γt−1 +
δ

2
− αt )∥xt+1 − xt∥2

+
1
2δ

G2
−

1
2
γt−1γt∥g t−1(xt )∥

2
+ (γ 2

t −
1
2
γt−1γt )∥g t (xt+1)∥2

+ γ 2
t−1∥g t−1(xt ) − g t (xt )∥

2

(a)
≤ αt∥x∗

t − xt∥2
− αt+1∥xt+1 − x∗

t+1∥
2
+ 4Rαt∥x∗

t+1 − x∗

t ∥ + (β2γt−1 +
δ

2
− αt )∥xt+1 − xt∥2

+
1
2δ

G2
−

1
2
γt−1γt∥g t−1(xt )∥

2
+

1
2
γtγt+1∥g t (xt+1)∥2

+ γ 2
t−1∥g t−1(xt ) − g t (xt )∥

2,

(A.9)

where (a) is due to the fact that 2γt ≤ γt−1 + γt+1. This completes the proof. □

A.4. Proof of Lemma 3

Proof. According to Lemma 2, taking a telescoping sum over t = 1, . . . , T , we obtain
T∑

t=1

ft (xt ) +

T∑
t=1

∆(t) ≤

T∑
t=1

ft (x∗

t ) + 4R
T∑

t=1

αt∥x∗

t+1 − x∗

t ∥ + α1∥x∗

1 − x1∥2
+

TG2

2δ

+
1
2
γTγT+1∥gT (xT+1)∥2

+

T∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥

2
+

T∑
t=1

(β2γ 2
t−1 +

δ

2
− αt )∥xt+1 − xt∥2

(a)
≤

T∑
t=1

ft (x∗

t ) + 4R
T∑

t=1

αt∥x∗

t+1 − x∗

t ∥ + α1R2
+

TG2

2δ

+
1
2
γTγT+1∥gT (xT+1)∥2

+ 2F
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥,

(A.10)

here (a) holds by Assumption 1 and the fact that αt ≥ β2γ 2
+

δ
2 . Rearranging terms yields

T∑
t=1

ft (xt ) ≤

T∑
t=1

ft (x∗

t ) + 4R
T∑

t=1

αt∥x∗

t+1 − x∗

t ∥ + α1R2
+

TG2

2δ

+
1
2
γTγT+1∥gT (xT+1)∥2

+ 2F
T∑

t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ +

1
2
∥λ(1)∥2.

(A.11)

t completes the proof. □
18
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.5. Proof of Lemma 4

roof. According to Lemma 2, taking a telescoping sum over t = 1, . . . , T − 1 and using the fact that αt ≥ β2γ 2
t−1 +

δ
2 ,

e obtain
T−1∑
t=1

ft (xt ) +

T−1∑
t=1

∆(t) ≤

T−1∑
t=1

ft (x∗

t ) + 4R
T−1∑
t=1

αt∥x∗

t+1 − x∗

t ∥ + α1R2

+
(T − 1)G2

2δ
+

1
2
γT−1γT∥gT−1(xT )∥

2
+ 2F

T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥.

(A.12)

Rearranging terms and multiplying both sides by 2 yields

∥λ(t)∥2
≤ 2(

T−1∑
t=1

ft (x∗

t ) −

T−1∑
t=1

ft (xt )) + 8R
T−1∑
t=1

αt∥x∗

t+1 − x∗

t ∥ + 2α1R2

+
(T − 1)G2

δ
+ γT−1γT∥gT−1(xT )∥

2
+ 4F

T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥

(a)
≤ 2F (T − 1) + 8R

T−1∑
t=1

αt∥x∗

t+1 − x∗

t ∥ + 2α1R2
+

(T − 1)G2

δ

+ γ 2
T−1∥gT−1(xT )∥

2
+ 4F

T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥,

(A.13)

where (a) holds by Assumption 1 and the fact that γT ≤ γT−1. Taking the square root of both sides and using the fact that√∑
i ai ≤

∑
i
√
ai, ∀ai ≥ 0. Then we obtain

∥λ(t)∥ ≤

√
2F (T − 1) + 2

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ +

√
2α1R2

+

√
(T − 1)G2

δ
+ γT−1∥gT−1(xT )∥ + 2

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥.

(A.14)

It completes the proof. □

A.6. Proof of Lemma 5

Proof. According to Lemma 1, we have γt−1g t−1,k(xt ) ≤ λk(t) − λk(t − 1) ⇔ gt−1,k(xt ) ≤
λk(t)
γt−1

−
λk(t−1)

γt−1
. Adding gt,k(xt ) on

oth sides of it and summing over t yields

T∑
t=1

gt−1,k(xt ) + gt,k(xt ) ≤

T∑
t=1

gt,k(xt ) +

T∑
t=1

λk(t)
γt−1

−
λk(t − 1)

γt−1

(a)
≤

T∑
t=1

gt,k(xt ) +

T∑
t=1

λk(t)
γt

−
λk(t − 1)

γt−1
≤

T∑
t=1

gt,k(xt ) +
λk(T )
γT

⇒

T∑
t=1

gt,k(xt ) ≤

T∑
t=1

gt,k(xt ) − gt−1,k(xt ) +
λk(T )
γT

(b)
≤

T∑
t=1

max{|gt,k(x) − gt−1,k(x)|} +
λk(T )
γT

(c)
≤

∥λ(T )∥
γT

+ Vg , ∀k = 1, 2, . . . , K ,

(A.15)

here (a) comes from the fact that γt is non-increasing with respect to t; (b) follows from the fact that |gt,k(xt ) − gt−1,k(xt )|
≤ max{|gt,k(x) − gt−1,k(x)|}; (c) is due to the fact that |gt,k(x) − gt−1,k(x)| ≤ ∥g t (x) − g t−1(x)∥2 and λk(T ) ≤ ∥λ(T )∥. It
completes the proof. □
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.7. Proof of Lemma 6

roof. Combining Lemma 4 with Lemma 5, we have
T∑

t=1

gt,k(xt ) ≤
∥λ(T )∥

γT
+ Vg ≤

2
γT

√
F (T − 1) +

1
γT

√
2α1R2 +

γT−1

γT
∥gT−1(xT )∥ +

G
γT

√
T − 1

δ

+
2
γT

√2R
T−1∑
t=1

αt∥x∗

t+1 − x∗
t ∥ +

2
γT

√F
T−1∑
t=1

γ 2
t−1∥g t−1(xt ) − g t (xt )∥ + Vg .

(A.16)

It completes the proof. □

Appendix B. Proofs for Section 4.2

Note that both {αt} and {γt} are constant sequences in Algorithm 2, thus here we omit the subscript t . In the following,
we give the complete proof of all lemmas in Section 4.2.

B.1. Proof of Lemma 8

Proof. We conduct a similar derivation process as the proof of Lemma 1, note that ∇ft (xt )T (x − xt ) + [λ(t) +

γ g t (xt )]T (γ g t (x)) + α∥x − xt∥2 is a 2α-strong convex function with respect to x and xt+1 minimizes this expression over
χ , we have

∇ft (xt )T (xt+1 − xt ) + [λ(t) + γ g t (xt )]
T (γ g t (xt+1)) + α∥xt+1 − xt∥2

≤ ∇ft (xt )T (x∗

t − xt ) + [λ(t) + γ g t (xt )]
T (γ g t (x

∗

t )) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2

(a)
≤ ∇ft (xt )T (x∗

t − xt ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2,

(B.1)

where (a) follows from the fact that g t (x∗
t ) ≤ 0 and Lemma 8. Next we add ft (xt ) on both sides of (B.1) and use the

convexity of ft , then we obtain

ft (xt ) + ∇ft (xt )T (xt+1 − xt ) + [λ(t) + γ g t (xt )]
T (γ g t (xt+1)) + α∥xt+1 − xt∥2

≤ ft (xt ) + ∇ft (xt )T (x∗

t − xt ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2

≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2.

(B.2)

Rearranging terms in (B.2), we have

ft (xt ) + [λ(t)]T (γ g t (xt+1))

≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2
− α∥xt+1 − xt∥2

− γ 2
[g t (xt )]

Tg t (xt+1) − ∇ft (xt )T (xt+1 − xt )
(a)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2
− α∥xt+1 − xt∥2

− γ 2
[g t (xt )]

Tg t (xt+1) + ∥∇ft (xt )∥∥xt+1 − xt∥
(b)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2
− α∥xt+1 − xt∥2

− γ 2
[g t (xt )]

Tg t (xt+1)

+
1
2δ

∥∇ft (xt )∥2
+

δ

2
∥xt+1 − xt∥2

(c)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t ∥
2
− α∥xt+1 − xt∥2

− γ 2
[g t (xt )]

Tg t (xt+1)

+
1
2δ

G2
+

δ

2
∥xt+1 − xt∥2.

(B.3)

where (a) holds by the Cauchy–Schwarz inequality; (b) comes from the AM–GM inequality; (c) holds due to Assumption 1.
Recall that we have the following inequality stated before

∥x∗

t − xt∥2
− ∥xt+1 − x∗

t ∥
2

≤ ∥x∗

t − xt∥2
− ∥xt+1 − x∗

t+1∥
2
+ 4R∥x∗

t+1 − x∗

t ∥. (B.4)

Furthermore, we have

−[g t (xt )]
Tg t (xt+1) = −

1
2
∥g t (xt )∥

2
−

1
2
∥g t (xt+1)∥2

+
1
2
∥g t (xt ) − g t (xt+1)∥2

(a)
≤ −

1
∥g (xt )∥2

−
1
∥g (xt+1)∥2

+
1
β2

∥xt+1 − xt∥2,

(B.5)
2 t 2 t 2
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here (a) holds by the Lipschitz continuity of g t (Assumption 1). Substituting (B.4) and (B.5) into (B.3) we obtain

ft (xt ) + [λ(t)]T (γ g t (xt+1))

≤ ft (x∗

t ) + αt [∥x∗

t − xt∥2
− ∥xt+1 − x∗

t+1∥
2
+ 4R∥x∗

t+1 − x∗

t ∥] + (
1
2
β2γ 2

+
δ

2
− α)∥xt+1 − xt∥2

+
1
2δ

G2
−

1
2
γ 2

∥g t (xt )∥
2
−

1
2
γ 2

∥g t (xt+1)∥2

(a)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t+1∥
2
+ 4Rα∥x∗

t+1 − x∗

t ∥ +
1
2δ

G2
−

1
2
γ 2

∥g t (xt )∥
2
−

1
2
γ 2

∥g t (xt+1)∥2,

(B.6)

here (a) holds since α ≥
1
2β

2γ 2
+

1
2δ. Based on Lemma 7, adding Lyapunov drift term on both sides of (B.6) and

earranging terms yields

ft (xt ) + ∆(t)

≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t+1∥
2
+ 4Rα∥x∗

t+1 − x∗

t ∥ +
1
2δ

G2
+

1
2
γ 2

∥g t+1(xt+1)∥2

−
1
2
γ 2

∥g t (xt+1)∥2
+

1
2
γ 2

∥g t+1(xt+1)∥2
−

1
2
γ 2

∥g t (xt )∥
2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

(a)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t+1∥
2
+ 4Rα∥x∗

t+1 − x∗

t ∥ +
1
2δ

G2

+ γ 2F∥g t+1(xt+1) − g t (xt+1)∥ +
1
2
γ 2

∥g t+1(xt+1)∥2
−

1
2
γ 2

∥g t (xt )∥
2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

(b)
≤ ft (x∗

t ) + α∥x∗

t − xt∥2
− α∥xt+1 − x∗

t+1∥
2
+ 4Rα∥x∗

t+1 − x∗

t ∥
2
+

1
2δ

G2

+ γ 2F∥g t+1(xt+1) − g t (xt+1)∥ +
1
2
γ 2

∥g t+1(xt+1)∥2
−

1
2
γ 2

∥g t (xt )∥
2
+ γ ∥λ(t)∥∥g t+1(xt+1) − g t (xt+1)∥,

(B.7)

here (a) is due to ∥g t−1(xt ) − g t (xt )∥ ≤ 2F ; (b) holds by the Cauchy–Schwarz inequality. It completes the proof. □

.2. Proof of Lemma 9

roof. According to Lemma 8, taking a telescoping sum over t = 1, . . . , T , we obtain
T∑

t=1

ft (xt ) +

T∑
t=1

∆(t) ≤

T∑
t=1

ft (x∗

t ) + α∥x∗

1 − x1∥2
+ 4R

T∑
t=1

α∥x∗

t+1 − x∗

t ∥

+
TG2

2δ
+ γ 2FVg +

1
2
γ 2

∥gT+1(xT+1)∥2
−

1
2
γ 2

∥g1(x1)∥
2
+ γ

T∑
t=1

∥λ(t)∥∥g t+1(xt+1) − g t (xt+1)∥

≤

T∑
t=1

ft (x∗

t ) + α∥x∗

1 − x1∥2
+ 4RαVx +

TG2

2δ
+ γ 2FVg + γ max

t
∥λ(t)∥Vg .

(B.8)

ere we define gT+1 = gT , rearranging terms of the above inequality yields
T∑

t=1

ft (xt ) ≤

T∑
t=1

ft (x∗

t ) + α∥x∗

1 − x1∥2
+ 4RαVx +

TG2

2δ
+ γ 2FVg +

1
2
∥λ(1)∥2

−
1
2
∥λ(T + 1)∥2

+ γ max
t

∥λ(t)∥Vg

≤

T∑
t=1

ft (x∗

t ) + α∥x∗

1 − x1∥2
+ 4RαVx +

TG2

2δ
+ γ 2FVg +

1
2
∥λ(1)∥2

+ γ max
t

∥λ(t)∥Vg .

(B.9)

his completes the proof. □

.3. Proof of Lemma 10

roof. Recall that Lemma 7 implies that γ g t,k(xt ) ≤ λk(t) − λk(t − 1), ∀k. Telescoping it over t yields

T∑
t=1

γ g t,k(xt ) ≤ λk(T ) − λk(0), ∀k ∈ {1, 2, . . . , K }.

⇒

T∑
t=1

gt,k(xt ) ≤
λk(T )

γ
≤

∥λ(T )∥
γ

, ∀k ∈ {1, 2, . . . , K }.

(B.10)

t completes the proof. □
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.4. Proof of Lemma 11

roof. According to the strong convexity of ∇ft (xt )T (x− xt )+[λ(t)+ γ g t (xt )]T (γ g t (x))+α∥x− xt∥2 with respect to x and
ecalling that xt+1 minimizes this expression over χ , we have

∇ft (xt )T (xt+1 − xt ) + [λ(t) + γ g t (xt )]
T (γ g t (xt+1)) + α∥xt+1 − xt∥2

≤ ∇ft (xt )T (x̂ − xt ) + [λ(t) + γ g t (xt )]
T (γ g t (x̂)) + α∥x̂ − xt∥2

− α∥xt+1 − x̂∥2

(a)
≤ ∇ft (xt )T (x̂ − xt ) − γ ϵ

K∑
k=1

[λk(t) + γ gt,k(xt )] + α∥x̂ − xt∥2
− α∥xt+1 − x̂∥2

(b)
= ∇ft (xt )T (x̂ − xt ) − γ ϵ∥λ(t) + γ g t (xt )∥1 + α∥x̂ − xt∥2

− α∥xt+1 − x̂∥2

(c)
≤ ∇ft (xt )T (x̂ − xt ) − γ ϵ∥λ(t) + γ g t (xt )∥ + α∥x̂ − xt∥2

− α∥xt+1 − x̂∥2

(d)
≤ ∇ft (xt )T (x̂ − xt ) − γ ϵ[∥λ(t)∥ − ∥γ g t (xt )∥] + α∥x̂ − xt∥2

− α∥xt+1 − x̂∥2,

(B.11)

where (a) is due to the Slater condition (Assumption 2); (b) holds since λk(t) + γ gt,k(xt ) ≥ 0, ∀k; (c) holds due to the
fact that ∥x∥1 ≥ ∥x∥ for any vector x ∈ χ ; (d) holds by the triangle inequality ∥u − v∥ ≥ ∥u∥ − ∥v∥, ∀u, v ∈ χ . Based on
Lemma 7, we add Lyapunov drift term ∆(t) on both sides and rearranging terms yields

∆(t) ≤ ∇ft (xt )T (x̂ − xt ) − ∇ft (xt )T (xt+1 − xt ) − γ 2g t (xt )
Tg t (xt+1) − γ ϵ[∥λ(t)∥ − ∥γ g t (xt )∥]

+ α∥x̂ − xt∥2
− α∥xt+1 − x̂∥2

− α∥xt+1 − xt∥2
+ γ 2

∥g t+1(xt+1)∥2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

≤ ∇ft (xt )T (x̂ − xt+1) − γ ϵ∥λ(t)∥ + γ 2ϵ∥g t (xt )∥ + γ 2
∥g t+1(xt+1)∥2

− γ 2g t (xt )
Tg t (xt+1)

+ α∥x̂ − xt∥2
− α∥xt+1 − x̂∥2

− α∥xt+1 − xt∥2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

≤ ∇ft (xt )T (x̂ − xt+1) − γ ϵ∥λ(t)∥ + γ 2ϵ∥g t (xt )∥ + γ 2
∥g t+1(xt+1)∥2

− γ 2g t (xt )
Tg t (xt+1)

+ α∥x̂ − xt∥2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

(a)
≤ ∇ft (xt )T (x̂ − xt+1) − γ ϵ∥λ(t)∥ + γ 2ϵF + γ 2F 2

− γ 2g t (xt )
Tg t (xt+1)

+ α∥x̂ − xt∥2
+ γ [λ(t)]T (g t+1(xt+1) − g t (xt+1))

(b)
≤ ∥∇ft (xt )∥∥x̂ − xt+1∥ − γ ϵ∥λ(t)∥ + γ 2ϵF + γ 2F 2

+ γ 2
∥g t−1(xt )∥∥g t (xt+1)∥

+ α∥x̂ − xt∥2
+ γ ∥λ(t)∥∥gt+1(xt+1) − gt (xt+1)∥

(B.12)

(c)
≤ −γ ϵ∥λ(t)∥ + GR + γ 2ϵF + γ 2F 2

+ γ 2F 2
+ αR2

+ γ ∥λ(t)∥∥g t+1(xt+1) − g t (xt+1)∥

= −γ (ϵ − ∥g t+1(xt+1) − g t (xt+1)∥)∥λ(t)∥ + GR + γ 2ϵF + 2γ 2F 2
+ αR2

≤ −γ (ϵ − max
t

max
x∈χ

{∥g t+1(x) − g t (x)∥})∥λ(t)∥ + GR + γ 2ϵF + 2γ 2F 2
+ αR2,

(B.13)

where (a) holds by Assumption 1; (b) is due to the Cauchy–Schwarz inequality; (c) follows from Assumption 1; the
last inequality holds since ϵ > V̄g = maxt maxx∈χ {∥g t+1(x) − g t (x)∥} (Assumption 3). Here we define ϵ̂ = ϵ −

maxt maxx∈χ {∥g t+1(x) − g t (x)∥}. Next we perform a reduction to absurdity process to prove this Lemma. Recall that
λk(1) = 0 for all k ∈ {1, 2, . . . , K } implies that ∥λ(1)∥ = 0 ≤ γ F +

GR+2γ 2F2+αR2+γ 2ϵF
γ ϵ̂

. Assume that there exists a

≥ 2 such that ∥λ(τ )∥ > γ F +
GR+2γ 2F2+αR2+γ 2ϵF

γ ϵ̂
and ∥λ(t)∥ ≤ γ F +

GR+2γ 2F2+αR2+γ 2ϵF
γ ϵ̂

for all t < τ , then we consider
wo cases about the value of ∥λ(τ − 1)∥.

Case 1: If ∥λ(τ − 1)∥ >
GR+2γ 2F2+αR2+γ 2ϵF

γ ϵ̂
, then we can derive ∆(τ − 1) < 0. According to (B.12), we have

∥λ(τ )∥ < ∥λ(τ − 1)∥ ≤
GR + 2γ 2F 2

+ αR2
+ γ 2ϵF

γ ϵ̂

< γ F +
GR + 2γ 2F 2

+ αR2
+ γ 2ϵF

γ ϵ̂
,

(B.14)

hich contradicts the definition of τ .
Case 2: If ∥λ(τ − 1)∥ ≤

GR+2γ 2F2+αR2+γ 2ϵF
γ ϵ̂

, then according to Lemma 7 we have

∥λ(τ )∥ ≤ ∥λ(τ − 1)∥ + γ ∥g t−1(xt )∥ ≤ γ F +
GR + 2γ 2F 2

+ αR2
+ γ 2ϵF

γ ϵ̂
, (B.15)

which also contradicts the definition of τ . Hence ∥λ(t)∥ ≤ γ F +
GR+2γ 2F2+αR2+γ 2ϵF

γ ϵ̂
holds for all t > 1. It completes the

roof. □
22



Q. Liu, W. Wu, L. Huang et al. Performance Evaluation 152 (2021) 102240

R
eferences

[1] H. Yu, M. Neely, X. Wei, Online convex optimization with stochastic constraints, in: Advances in Neural Information Processing Systems, 2017,
pp. 1428–1438.

[2] E. Hazan, Introduction to online convex optimization, 2019, arXiv preprint arXiv:1909.05207.
[3] T. Chen, Q. Ling, G.B. Giannakis, An online convex optimization approach to proactive network resource allocation, IEEE Trans. Signal Process.

65 (24) (2017) 6350–6364.
[4] H. Yu, M.J. Neely, A low complexity algorithm with O(

√
T ) regret and O(1) constraint violations for online convex optimization with long term

constraints, J. Mach. Learn. Res. 21 (1) (2020) 1–24.
[5] S. Qiu, X. Wei, Beyond O(

√
T ) regret for constrained online optimization: Gradual variations and mirror prox, 2020, arXiv preprint arXiv:

2006.12455.
[6] Y. Zhang, M.H. Hajiesmaili, S. Cai, M. Chen, Q. Zhu, Peak-aware online economic dispatching for microgrids, IEEE Trans. Smart Grid 9 (1) (2016)

323–335.
[7] Z. Liu, I. Liu, S. Low, A. Wierman, Pricing data center demand response, ACM SIGMETRICS Perform. Eval. Rev. 42 (1) (2014) 111–123.
[8] X. Cao, K.R. Liu, Online convex optimization with time-varying constraints and bandit feedback, IEEE Trans. Automat. Control 64 (7) (2018)

2665–2680.
[9] T. Chen, G.B. Giannakis, Bandit convex optimization for scalable and dynamic IoT management, IEEE Internet of Things J. 6 (1) (2019).

[10] X. Yi, X. Li, T. Yang, L. Xie, T. Chai, K.H. Johansson, Distributed bandit online convex optimization with time-varying coupled inequality
constraints, IEEE Trans. Automat. Control (2020).

[11] T. Chen, Q. Ling, Y. Shen, G.B. Giannakis, Heterogeneous online learning for ‘‘Thing-Adaptive’’ fog computing in IoT, IEEE Internet Things J. 5
(6) (2018) 4328–4341.

[12] M. Mahdavi, R. Jin, T. Yang, Trading regret for efficiency: online convex optimization with long term constraints, J. Mach. Learn. Res. 13 (1)
(2012) 2503–2528.

[13] R. Jenatton, J. Huang, C. Archambeau, Adaptive algorithms for online convex optimization with long-term constraints, in: International Conference
on Machine Learning, 2016, pp. 402–411.

[14] J. Yuan, A. Lamperski, Online convex optimization for cumulative constraints, in: Advances in Neural Information Processing Systems, 2018,
pp. 6137–6146.

[15] P. Zhao, Y.-J. Zhang, L. Zhang, Z.-H. Zhou, Dynamic regret of convex and smooth functions, Adv. Neural Inf. Process. Syst. 33 (2020).
[16] L. Zhang, Online Learning in Changing Environments.
[17] L. Zhang, S. Lu, Z.-H. Zhou, Adaptive online learning in dynamic environments, in: Advances in Neural Information Processing Systems, 2018,

pp. 1323–1333.
[18] P. Sharma, P. Khanduri, L. Shen, D.J. Bucci Jr., P.K. Varshney, On distributed online convex optimization with sublinear dynamic regret and fit,

2020, arXiv preprint arXiv:2001.03166.
[19] L. Huang, M.J. Neely, Utility optimal scheduling in processing networks, Perform. Eval. 68 (11) (2011) 1002–1021.
[20] L. Huang, S. Moeller, M.J. Neely, B. Krishnamachari, LIFO-backpressure achieves near-optimal utility-delay tradeoff, IEEE/ACM Trans. Netw. 21

(3) (2012) 831–844.
[21] L. Huang, X. Liu, X. Hao, The power of online learning in stochastic network optimization, in: The 2014 ACM International Conference on

Measurement and Modeling of Computer Systems, 2014, pp. 153–165.
[22] H. Xu, Y. Liu, W.C. Lau, J. Guo, A. Liu, Efficient online resource allocation in heterogeneous clusters with machine variability, in: IEEE INFOCOM

2019-IEEE Conference on Computer Communications, IEEE, 2019, pp. 478–486.
[23] M. Amiri, Towards Enhancing QoE for Software Defined Networks Based Cloud Gaming Services (Ph.D. thesis), Université d’Ottawa/University

of Ottawa, 2019.
[24] Y. Zhao, S. Qiu, J. Liu, Proximal online gradient is optimum for dynamic regret, 2018, arXiv preprint arXiv:1810.03594.
[25] P. Arce, L. Salinas, Online ridge regression method using sliding windows, in: 2012 31st International Conference of the Chilean Computer

Science Society, IEEE, 2012, pp. 87–90.
[26] J. Haworth, J. Shawe-Taylor, T. Cheng, J. Wang, Local online kernel ridge regression for forecasting of urban travel times, Transp. Res. C 46

(2014) 151–178.
[27] T. Chen, A.G. Marques, G.B. Giannakis, DGLB: Distributed stochastic geographical load balancing over cloud networks, IEEE Trans. Parallel Distrib.

Syst. 28 (7) (2016) 1866–1880.
[28] S. Im, M. Naghshnejad, M. Singhal, Scheduling jobs with non-uniform demands on multiple servers without interruption, in: IEEE INFOCOM

2016-the 35th Annual IEEE International Conference on Computer Communications, IEEE, 2016, pp. 1–9.
[29] S. Im, J. Kulkarni, B. Moseley, K. Munagala, A competitive flow time algorithm for heterogeneous clusters under polytope con-

straints, in: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[30] Y. Liu, H. Xu, W.C. Lau, Online job scheduling with resource packing on a cluster of heterogeneous servers, in: IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, IEEE, 2019, pp. 1441–1449.

[31] S. Im, J. Kulkarni, B. Moseley, Temporal fairness of round robin: Competitive analysis for lk-norms of flow time, in: Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Architectures, 2015, pp. 155–160.

[32] H. Fang, N.J. Harvey, V.S. Portella, M.P. Friedlander, Online mirror descent and dual averaging: keeping pace in the dynamic case, 2020, arXiv
preprint arXiv:2006.02585.
23

http://refhub.elsevier.com/S0166-5316(21)00057-2/sb1
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb1
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb1
http://arxiv.org/abs/1909.05207
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb3
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb3
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb3
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb4
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb4
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb4
http://arxiv.org/abs/2006.12455
http://arxiv.org/abs/2006.12455
http://arxiv.org/abs/2006.12455
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb6
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb6
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb6
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb7
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb8
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb8
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb8
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb9
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb10
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb10
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb10
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb11
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb11
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb11
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb12
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb12
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb12
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb14
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb14
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb14
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb15
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb17
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb17
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb17
http://arxiv.org/abs/2001.03166
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb19
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb20
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb20
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb20
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb22
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb22
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb22
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb23
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb23
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb23
http://arxiv.org/abs/1810.03594
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb25
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb25
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb25
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb26
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb26
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb26
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb27
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb27
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb27
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb28
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb28
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb28
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb29
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb29
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb29
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb29
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb29
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb30
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb30
http://refhub.elsevier.com/S0166-5316(21)00057-2/sb30
http://arxiv.org/abs/2006.02585


Q. Liu, W. Wu, L. Huang et al. Performance Evaluation 152 (2021) 102240
Qingsing Liu received the B.Eng. degree in electronic engineering from Tsinghua University, China, in 2019. Now he is
currently pursuing the Ph.D. degree with the Institute for Interdisciplinary Information Sciences (IIIS) of Tsinghua University.
His research interests include online learning, and networked and computer systems modeling and optimization. He has
published several papers in ICCCN, Infocom, Performance.

Wenfei Wu is an assistant professor at Peking University. Dr. Wu got his Ph.D. from the University of Wisconsin-Madison
in 2015, and his research interest is in networked systems. Dr. Wu has published 36 papers, and some of them are in
top conferences, including NSDI, INFOCOM, SIGKDD, etc. His Ph.D. work virtual network diagnosis was awarded the best
student paper in SoCC’13. His work on 5G transport layer design was also awarded the best paper runner-up in IPCCC’19.
And his work on programmable switch accelerated machine learning systems got the best paper award in NSDI’21.

Longbo Huang is an associate professor at the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua
University, Beijing, China. He has been a visiting scholar at the LIDS lab at MIT and at the EECS department at UC Berkeley,
and a visiting professor at the Chinese University of Hong Kong, Bell-labs France, and Microsoft Research Asia (MSRA).
He was a visiting scientist at the Simons Institute for the Theory of Computing at UC Berkeley in Fall 2016. He received
the outstanding teaching award from Tsinghua university in 2014 and the ACM SIGMETRICS Rising Star Research Award
in 2018. His research interests are in the areas of stochastic modeling and analysis, reinforcement learning and control,
optimization and machine learning, and big data analytics.

Zhixuan Fang is a tenure-track assistant professor at the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua
University, Beijing, China. He mainly focuses on the design and analysis of multi-agent systems and networked systems.
He received his Ph.D. degree in computer science from Tsinghua University, China, in 2018, and his B.S. degree in physics
from Peking University, China, in 2013.
24


	Simultaneously achieving sublinear regret and constraint violations for online convex optimization with time-varying constraints
	Introduction
	Prior work
	Contributions

	Problem setup
	Formulation
	Assumptions

	Algorithm
	Results
	Main results
	Slater condition
	Unknown time horizon T

	Numerical experiments
	Applications
	Online network resource allocation
	Online job scheduling

	Conclusion and future work
	Declaration of competing interest
	Appendix A. Proofs for Section 4.1
	Preliminary lemmas
	Proof of TeXFolio:lem1
	Proof of TeXFolio:lem2
	Proof of TeXFolio:lem3
	Proof of TeXFolio:lem4
	Proof of TeXFolio:lem5
	Proof of TeXFolio:lem6

	Appendix B. Proofs for Section 4.2
	Proof of TeXFolio:lem8
	Proof of TeXFolio:lem9
	Proof of TeXFolio:lem10
	Proof of TeXFolio:lem11

	References


