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We experimentally realize a universal set of single-bit and two-bit geometric quantum gates by
adiabatically controlling solid-state spins in a diamond defect. Compared with the nonadiabatic approach,
the adiabatic scheme for geometric quantum computation offers a unique advantage of inherent robustness
to parameter variations, which is explicitly demonstrated in our experiment by showing that the single-bit
gates remain unchanged when the driving field amplitude varies by a factor of 2 or the detuning fluctuates
in a range comparable to the inverse of the gate time. The reported adiabatic control technique and its
convenient implementation offer a paradigm for achieving quantum computation through robust geometric
quantum gates, which is important for quantum information systems with parameter-fluctuation noise such
as those from the inhomogeneous coupling or the spectral diffusion.
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Introduction.—When a quantum system undergoes a
cyclic evolution in a parameter space, a nondegenerate
quantum state picks up not only a dynamical phase but
also a geometric phase [1]. Different from the dynamical
phase that depends on the energy of a state, a geometric
phase is solely related to the geometric structure of the
enclosed path. For degenerate states, the geometric phase is
replaced with a geometric unitary operator [2], termed as the
holonomy in differential geometry. The geometric phase or
the holonomy plays a key role in many physical phenomena
and applications, such as topological effects [3] and the
engineering of artificial gauge fields in cold atoms [4].
An important application of holonomies is to realize

all-geometric quantum computation [5,6], whose basic
requirement is a universal set of geometric quantum gates,
containing a non-Abelian set of single-bit and two-bit
operations. By use of nonadiabatic cyclic evolutions [7],
recent experiments have reported the realization of non-
Abelian single-qubit operations [8–10] and a universal set
of quantum gates [11,12] by nonadiabatic geometric means
in several physical systems. A related but different-concept
geometric gate has also been realized earlier with two
coupled ions using nonadiabatic laser manipulation of the
ions’ motion [13]. In the adiabatic approach to geometric
quantum computation, the gates only depend on the ratio of
parameters and are therefore robust to fluctuation of their
absolute values [5,6,14–18]. This important advantage,
however, is not shared by the nonadiabatic approach
[7–12]. To implement the adiabatic geometric gates,
schemes have been proposed in several physical systems,
including trapped ions [16], superconducting qubits [17],
and quantum dots [18]. In experiments, single-qubit adia-
batic geometric rotation along the z axis has been realized

with an electron spin resonance system [14]. Non-Abelian
single-bit adiabatic geometric gates have been realized
recently with a trapped ion [15], and this realization
requires manipulation of four coupled levels following
the approach in [16] and cannot be easily extended to other
systems due to its level complication. The realization of a
universal set of both single-bit and two-bit entangling gates
all by adiabatic geometric means in a single experiment is
still lacking due to the challenging requirement of exquisite
control of complicated level structure.
Here, we report the realization of both single-bit and

two-bit geometric quantum gates, which together make a
universal gate set, all by adiabatically manipulating solid-
state spins of a diamond defect using a significantly
simplified level structure. We achieve high gate fidelities
and demonstrate explicitly in experiments that all the
single-bit geometric gates are robust against significant
parameter variations in the coupling rate and the frequency
detuning, which are an important source of noise for some
quantum information platforms.
Implementation of geometric quantum gates through

adiabatic evolution.—We consider a paradigmatic
Hamiltonian describing a spin in an external magnetic field

HBðtÞ ¼ BðtÞ · σ; ð1Þ

where σ is a vector of Pauli matrices and BðtÞ ¼ BðtÞnðtÞ
with nðtÞ¼sinθðtÞcosϕðtÞexþsinθðtÞsinϕðtÞeyþcosθðtÞez
varying adiabatically in time. The Hamiltonian has two
instantaneous eigenstates jΨ−ðtÞi¼ sin½θðtÞ=2�e−iϕðtÞj0i−
cos½θðtÞ=2�j1i and jΨþðtÞi ¼ cos½θðtÞ=2�j0i þ sin½θðtÞ=2�
eiϕðtÞj1i with eigenenergies being E�ðtÞ ¼ �BðtÞ. As we

PHYSICAL REVIEW LETTERS 122, 010503 (2019)

0031-9007=19=122(1)=010503(6) 010503-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.010503&domain=pdf&date_stamp=2019-01-09
https://doi.org/10.1103/PhysRevLett.122.010503
https://doi.org/10.1103/PhysRevLett.122.010503
https://doi.org/10.1103/PhysRevLett.122.010503
https://doi.org/10.1103/PhysRevLett.122.010503


vary the parameter B adiabatically and cyclically, a state
initially prepared at the eigenstate jΨ�ð0Þi ends up acquiring
both a dynamical phase and a geometric phase, i.e.,

jΨ�ðτÞi ¼ e∓iðγgþγdÞjΨ�ð0Þi; ð2Þ

where γd ¼
R
τ
0 EþðtÞdt is the dynamical phase and γg ¼

−i
R
τ
0 dthΨþðtÞj∂tjΨþðtÞi is the geometric phase. By varying

the direction n0 ≡ nðt ¼ 0Þ, we can set jΨ�ð0Þi as eigen-
states of noncommuting operators in different cycles, and
hence realize non-Abelian holonomies when composing
these cycles. In our experiment, we are able to remove the
dynamical phase γd by suddenly tuning a control microwave
pulse [19], ending up with a purely geometric unitary
operation

U ¼ e−iγgn0·σ ; ð3Þ

a rotation around the n0 axis. By selecting n0 appropriately,
we can realize a universal set of single-qubit quantum
operations, Zπ=2, Zπ=8, and Xπ=2, corresponding to rotations
with respect to the z and x axes, respectively.
In our experiment, we realize a universal set of all-

geometric quantum gates including single-qubit and
controlled π-rotation (CROT) operations by controlling
solid-state spins in a diamond defect at room temperature.
The electron and nuclear spins around the negatively
charged nitrogen vacancy (NV) center in the diamond
are used to realize a local quantum spin register [20],
which, combined with the photonic coupling between
remote quantum registers [21,22], provides a scalable
system for solid-state quantum information processing
[23,24]. The NV center possesses a spin triplet ground
state with a zero-field splitting D ¼ 2.87 GHz between
ms ¼ 0 and ms ¼ �1 states. Under an magnetic field
Bz ¼ 502 G, which is tuned to be along the NV axis
through the angle-sensitive fluorescence counts [25], the
degeneracy of two states with ms ¼ �1 is lifted. We can
therefore select jms ¼ 0i≡ j0i and jms ¼ −1i≡ j1i states
as the computational basis. The spin state is initialized to
the j0i level by optical pumping and read out by identifying
distinct fluorescence levels of the states after a short
illumination of a green laser pulse [20].
We apply microwave pulses to couple the j0i and j1i

qubit states as shown in Fig. 1; the coupling can be
described by the Hamiltonian

HðtÞ ¼ ΩðtÞ
2

σx −
ΔðtÞ
2

σz; ð4Þ

where ΩðtÞ is the Rabi frequency and ΔðtÞ is the detuning
defined as ΔðtÞ ¼ ωðtÞ − ω0 with ωðtÞ being the frequency
of the microwave pulse and ω0 ¼ D − γeBz (γe ¼
2.8 MHz=G) being the energy difference between the j0i

and j1i levels. Here ℏ is set to 1. Both ΩðtÞ and ΔðtÞ can be
readily tuned through an arbitrary waveform generator.
In our experiment, we realize geometric rotation gates

Xπ=2, Zπ=2, and Zπ=8 through adiabatic manipulation of
ΔðtÞ and ΩðtÞ. The former two gates, when combined,
give the Hadamard gate H and the NOT gate N as H ¼
Xπ=2Zπ=2Xπ=2 and N ¼ X2

π=2, which, together with the π=8
gate A ¼ Zπ=8, make a universal set of single-qubit gates. In
order to perform the Xπ=2 gate, we adiabatically tune jΩðtÞj
andΔðtÞ following the scheme shown in Fig. 1(b); this type
of pulse is known as the BIR-4 pulse in nuclear magnetic
resonance [27]. At t ¼ T=4 and 3T=4, phase shifts Δϕ1 ¼
π þ ϕ=2 and Δϕ2 ¼ −π − ϕ=2 are suddenly imprinted in
the microwave pulse, respectively, with the sign of Δ being
flipped simultaneously. While this sudden tuning flips
the sign of the coupling Hamiltonian, the state remains

(a) (b)

(c)(d)

FIG. 1. Relevant energy levels and microwave shape schemes
for the adiabatic geometric single-qubit gates in a diamond NV
center. (a) The relevant energy level structure of the electron spin
in an NV center under a magnetic field. The two levels encoding a
qubit are coupled by a microwave pulse with the Rabi frequency
Ω and the detuning Δ. (b) The microwave pulse shape used to
achieve a geometric single-qubit rotation operation along the x
axis. ΩðtÞ is in the form of ΩðtÞ=Ωm ¼ 1 − j sinð2πt=TÞjn [26]
withΩm, T, and n being the maximum value of jΩj, the gate time,
and a positive integer, respectively. We take n ¼ 5 for our
experiment. ΔðtÞ consists of piecewise linear functions of time
with the sign being suddenly reversed at t ¼ T=4 and 3T=4 and
Δm is its maximal value. Phase shifts Δϕ1 ¼ π þ ϕ=2 andΔϕ2 ¼
−π − ϕ=2 are inserted into the microwave at t ¼ T=4 and 3T=4,
respectively. (c) The microwave pulse shape used to realize a
rotation operation about the z axis. A phase Δϕ ¼ π þ ϕ=2 is
inserted into the microwave at t ¼ T=2. (d) Evolution of a state
initialized to an instantaneous eigenstate of the Hamiltonian (4) in
the Bloch sphere, showing the geometric phase which equals half
of the enclosed solid angle ϕ. The green and purple arrows denote
the initial eigenstate respectively for scheme shown in (b),(c).
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unchanged. If a state is initialized to an instantaneous
eigenstate, it remains an eigenstate of the new flipped
Hamiltonian but with the opposite energy. So the adiaba-
ticity of the state evolution is maintained. The abrupt
change of the sign of energy enables us to remove the
contribution from the dynamical phase in an entire cycle.
The state finally picks up only a geometric phase γg ¼ ϕ=2
as illustrated in Fig. 1(d). We see from Eq. (3) that a rotation
operator Xϕ is realized under the cyclic evolution. When we
set ϕ ¼ π=2, we make an Xπ=2 operator. For the adiabatic
condition [28] to be satisfied, we vary HðtÞ slowly
to make sure Q≡ f½2ðΔ2ðtÞ þΩ2ðtÞÞ3=2�=½j _ΩðtÞΔðtÞ−
ΩðtÞ _ΔðtÞj�g ≫ 1. In our experiments we have Q > 12
for all the geometric gates.
Analogous to the Xπ=2 gate, we realize the geometric

Zπ=2 and Zπ=8 gates using the pulse shape shown in
Fig. 1(c). At t ¼ T=2, a phase of π þ ϕ=2 is suddenly
introduced into the microwave pulse and the sign of Δ is
flipped, resulting in a rotation operation about the z axis:
Zϕ. The Zπ=2 and Zπ=8 gates are implemented when we take
ϕ ¼ π=2 and π=8, respectively.
Experiments results for non-Abelian single-qubit

geometric gates.—To characterize these geometric gates,
we apply them to distinct initial electron spin states and
measure the final states with quantum state tomography
[29]. We find the state fidelity ð98.2� 0.4Þ%, ð98.9�
0.3Þ%, and ð97.5� 0.5Þ%, respectively, for the Zπ=2, Zπ=8,
and Xπ=2 gates, which are obtained by averaging the results
for six complementary initial states as shown in Fig. 2(b).
The major contribution to the infidelity comes from the
state preparation and detection errors, which can be
separately detected by the randomized benchmarking
method [30]. For the randomized benchmarking, we
concatenate m random dynamical Clifford gates generated
by fI; X�π=2; Xπ; Y�π=2; Yπg, and a specific recovery
Clifford gate, and average the fidelities over 20 different
series of operations. Figure 2(a) shows the fidelity decay
as the number of gates increases. The decay is fitted using
the function F ¼ Apm þ B, where A and B absorb the
preparation and measurement error and p represents the
reference decay rate. We find p ¼ 0.986� 0.002 from
fitting. The intrinsic gate error can be calculated by r ¼
ð1 − pÞðd − 1Þ=d with d ¼ 2n and n being the number
of qubits. The reference Clifford gate fidelity is F ¼
1 − r=1.875 ¼ 0.996ð1Þ. To measure the target gate fidel-
ity, we interleave m target gates following each series of
random gates mentioned above for randomized bench-
marking and examine the fidelity decay when increasing
the number of gates. By fitting the data, we find the decay
rate of the target gate to be pZπ=2

¼ 0.969� 0.004 and
pXπ=2

¼ 0.950� 0.008, respectively, and get the gate error
by rgate ¼ ð1 − pgate=pÞðd − 1Þ=d, giving the target gate
fidelity FZπ=2

¼ 0.991� 0.002, FXπ=2
¼ 0.982� 0.004

[Fig. 2(a)]. The fidelities are mainly limited here by the

dephasing time T�
2 ¼ 2.5 μs for our diamond sample with

1.1%C13 concentration. We expect that the gate fidelity will
be significantly improved with an isotopically purified
diamond sample which has T�

2 in the range of tens of
microseconds [31,32].
Robustness of adiabatic geometric single-qubit gates.—

The adiabatic geometric scheme ensures the robustness of
the realized gates against the variation noise of the micro-
wave amplitude Ωm and the spectral diffusion δ, which can
be caused, for instance, by the randomness in the coupling
rate or the spectral diffusion, an important source of noise
for some solid-state systems. This robustness can be seen
from Eq. (3) that a single-qubit operation is solely deter-
mined by the initial direction n0 and the Berry phase
γg ¼ ϕ=2. For Zϕ, it is irrelevant to variations of Ωm and δ.
For Xϕ, while the initial direction n0 can be slightly
changed by fluctuations of δ, this effect can be strongly
suppressed by taking a large Ωm. In experiments, to
evaluate this robustness for both X and Z gates, we measure
the final state as a function of the imprinted phase ϕ as we
vary the values of Ωm and δ, where the detuning is modeled
by ΔðtÞ þ δ. We plot the results in Fig. 3, demonstrating
that the final state characterized by the normalized photon
luminance remains almost the same as Ωm varies up to

(a)

(b)

FIG. 2. Measured fidelity for the adiabatic geometric singe-
qubit gates. (a) Average fidelity as a function of the number of
gates. Orange circles, green diamonds, and purple triangles
denote the results from a standard randomized benchmarking
(RB) protocol, a interleaved Zπ=2 and a interleaved Xπ=2 gate,
respectively. Each point in the figure is obtained by averaging the
experimental data from 20 measurements. These points are fitted
by F ¼ Apm þ B plotted as solid lines with the corresponding
colors. (b) Fidelity of the final states measured by the quantum
state tomography for Zπ=2, Zπ=8, and Xπ=2 gates acting on six
distinct initial states. For each gate, the parameters of microwave
pulses are T ¼ 1 μs, Ωm ¼ 20 MHz, and Δm ¼ 20 MHz. Note
that the number in the bracket following the fidelity value
represents the error bar (s.d.) in the last decimal place.
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twice or δ fluctuates with δ≳ 1=T. This confirms the
resilience of our implemented gates. We would like to
emphasize that our adiabatic results are in stark contrast to
nonadiabatic ones in previous experiments, where the
amplitude of microwave or optical pulses and their detun-
ing are required to be precisely calibrated and controlled for
achieving high-fidelity gates [8–12,33].
Experiments results for entangling geometric gates.—To

implement the geometric quantum two-qubit CROT gate, we
use a nearby C13 nuclear spin as a control qubit with two
basis vectors denoted by j↑i and j↓i and the NV center
electron spin as a target qubit. The system is initially
polarized to the j0;↑i state through optical pumping
under a 502 G magnetic field along the NV axis [34,35].
To drive the state j0;↓i out of our computational space,
leaving behind the j0;↑i state, we further apply a MW0
pulse to excite the j0;↓i state to the irrelevant ja;↓i level
(jai≡ jms ¼ þ1i is used as an ancillary level) as shown in
Fig. 4(a). Under the control microwave pulse, the effective
Hamiltonian of the two-bit system has the form [11,33]

H2 ¼ H↑ þH↓; ð5Þ

where

Hσ ¼
ΩðtÞ
2

ðj1σih0σjþH:c:Þ−ΔσðtÞ
2

ðj0σih0σj− j1σih1σjÞ;
ð6Þ

with σ ¼ ↑;↓, Δ↓ ¼ Δ↑ − ω1, and ω1 ¼ 13.7 MHz in
our experiment, which is the difference between the
frequency of the resonant MW2 and MW1 as displayed
in Fig. 4(a). We can apply the same microwave pulse as
shown in Fig. 1(b) to achieve an Xπ gate between the j0↑i
and j1↑i levels without creating a geometric phase for a
state in the subspace of j0↓i and j1↓i if Δ↑ < ω1 is always
satisfied. However, this method generates a dynamical
phase for a state in the latter subspace. To remove this
phase, we insert two spin echoes at t ¼ T=4 and 3T=4, as
shown in Fig. 4(b) (see Methods for the realization of a
controlled rotation gate). This exactly achieves a CROT gate:

(a)

(c) (d)

(b)

FIG. 3. Experimental results demonstrating robustness of
adiabatic geometric single-qubit gates with respect to variations
of Ωm (the random coupling) and δ (the spectral diffusion). The
detuning is modeled by ΔðtÞ þ δ. Normalized photon lumi-
nance as a function of the imprinted phase ϕ under three distinct
values of δ and Ωm, respectively, for the rotation operation
along the x axis (a),(b) and the rotation operation along the z
axis (c),(d). The other parameters are Δm ¼ 20 MHz, T ¼ 1 μs,
and Ωm ¼ 20 MHz in (a),(c), while in (b),(d) Δm ¼ 20 MHz,
T ¼ 1 μs, and δ ¼ 0 MHz. Note that for the Z rotation gate, two
half π pulses around the x axis are applied in front and after the
target gate in order to transfer the phase information to the
photon luminance count.

(a)

rf

rf

(c)

(d)

(b)

FIG. 4. Level scheme, pulse sequence, and experimental
results for the geometric two-qubit CROT gate. (a) Energy level
structure of the electron and nuclear spins for the geometric
CROT gate together with microwave and radio-frequency (rf)
coupling configuration. (b) Time sequence for implementing
and detecting the CROT gate. We first use a MW0 π pulse
followed by illumination of a 532 nm green laser pulse for 2 μs
to initialize the system and then apply MW1, MW2, and rf
pulses to create a desired state. The spin echo for implementa-
tion of the geometric CROT gate is realized by simultaneously
applying two π pulses denoted as MW1 and MW2. Other
parameters for the CROT gate are n ¼ 5, T ¼ 2 μs, Δm ¼
7 MHz, and Ωm ¼ 4 MHz. Two-qubit quantum state tomogra-
phy is used to measure the fidelity of the final state. To avoid
the decoherence of the electron spin during the slow RF pulse, a
spin echo of 1 MHz is inserted in the middle of the quantum
state tomography process. (c) Measured fidelity of the final
states after applying the CROT gate to six complementary initial
states. (d) Measured real and imaginary parts of the final state
matrix elements for the geometric CROT gate applied to the
initial state j1iðj↑i þ j↓iÞ compared with the matrix elements
under the ideal gate represented by the hollow caps.
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a rotation about the x axis for an electron spin only when a
nuclear spin is in the j↑i level.
To characterize the CROT gate, we initialize the two-qubit

system to six complementary states and measure the
fidelity of the final states with quantum state tomography
after applying a CROT gate to these states. The results are
listed in Fig. 4(c). For a typical initial product state
j1iðj↑i þ j↓iÞ, the CROT gate generates entanglement,
yielding an entangled final state −ij0↑i þ j1↓i with a
measured fidelity of ð94� 2Þ%, slightly higher than the
fidelity of CNOT gate realized with nonadiabatic geometric
pulses [11]. In Fig. 4(d), we also show the measured state
matrix elements after the geometric CROT gate, demonstrat-
ing good agreement with those under the ideal gate. Our
scheme for the adiabatic geometric gate by itself is also
robust to the parameter variation errors similar to the single-
bit case. However, in our experiment we also need to apply
spin echo pulses to prolong the system coherence time for
the two-bit gate, and these echo pulses are not intrinsically
robust if we do not have a very high amplitude for the
microwave field which is the case here. In the Supplemental
Material [36], we show by numerical simulation that if we
neglect the errors of the ancillary echo pulses, the adiabatic
geometric gate by itself is very robust to the parameter
variation errors.
Summary.—We have realized a non-Abelian set of

single-qubit and two-qubit adiabatic geometric quantum
gates with solid-state spins and demonstrate the unique
robustness of adiabatic gates to parameter variations. Our
technique to implement robust geometric quantum gates
based on convenient level configurations may also find
application in other scalable quantum systems, such as
trapped ions or superconducting qubits.
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