
Parallel Computing 78 (2018) 47–53

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Student cluster competition 2017, team Tsinghua University:

Reproducing vectorization of the tersoff multi-body potential

on the Intel Skylake and NVIDIA Volta architectures

Ka Cheong Jason Lau, Yuxuan Li, Lei Xie, Qian Xie, Beichen Li, Yu Chen,
Guanyu Feng, Jiping Yu, Xinjian Yu, Miao Wang, Wentao Han, Jidong Zhai ∗

Department of Computer Science and Technology, Tsinghua University, Beijing, China

a r t i c l e i n f o

Article history:

Received 9 March 2018

Revised 2 July 2018

Accepted 17 July 2018

Available online 19 July 2018

Keywords:

Reproducibility

Vectorization

Molecular dynamics simulation

Tersoff potential

Student cluster competition

a b s t r a c t

A paper of SC ’16 entitled “The Vectorization of the Tersoff Multi-Body Potential: An Exercise in

Performance Portability ” Höhnerbach et al. (2016) [1] implemented reduced precision calcu-

lation and cross-platform vectorization for Tersoff potential, which the authors claimed as

accurate, efficient, scalable and portable. In this report, we focus on recently released com-

puting architectures, Intel Skylake and NVIDIA Volta, to present our results and compare

them with the Tersoff paper. With new input provided by Porter et al. (1997) [2], we run

the given testcases on our cluster and obtain results that not consistent with the perfor-

mance improvements and scalability claimed in the original publication. Deeper analysis

demonstrate that it is the communication bottleneck caused by special characteristics of

the new input data that limit the reproducibility.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

LAMMPS is a parallel molecular dynamics simulator written in C ++ [3] , supporting not only MPI-based parallelization,

but also OpenMP, USER-INTEL, KOKKOS [4] and GPUs [5] modes. With the improvement of computational power, people

expect to make simulations more accurate on higher performance platforms. Therefore, though costly, multi-body potential,

in contrast to pair potential, has higher popularity and better multi-body potential computation optimization. However, the

complexity of multi-body potential kernel limits the range of available architectures with native vectorization porting [1] .

Höhnerbach, Ismail and Bientinesi attempt to overcome these challenges by implementing a general kernel approach in

their SC ’16 paper, The Vectorization of the Tersoff Multi-Body Potential: An Exercise in Performance Portability [1] , which we will

refer to as “the Tersoff paper”. In this paper, a mechanism named general building blocks is designed, which is consistent

in different architectures.

By identifying general building blocks, abstracting corresponding vectorization back-end, applying methods in different

modes including USER-INTEL [6] and KOKKOS package [4] , and reducing precision on well-examined calculations, authors

claim that performance could be gained and scaled well without accuracy reduction in the Tersoff paper. More specifically,

three claims are made:
∗ Corresponding author.

E-mail addresses: my@ucla.edu (K.C.J. Lau), zhaijidong@tsinghua.edu.cn (J. Zhai).

https://doi.org/10.1016/j.parco.2018.07.002

0167-8191/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2018.07.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2018.07.002&domain=pdf
mailto:my@ucla.edu
mailto:zhaijidong@tsinghua.edu.cn
https://doi.org/10.1016/j.parco.2018.07.002

48 K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53

Table 1

Environment specification.

Nodes Dell EMC PowerEdge R740 × 4

CPU per node Intel Xeon Platinum 8176 × 2

GPU per node NVIDIA Tesla V100 × 2

Memory per node DDR4 2666 MT/s 16GB × 12

Storage Intel SSD DC P3700 1.8 TB × 2

Network Mellanox EDR InfiniBand

Operating System CentOS Release 7.4.1708

Kernel Linux kernel 3.10.0

Table 2

Compilers and environment.

Compilers Intel C ++ Compilers 2018 CUDA 9.0

MPI Intel MPI Library 2018

Math Kernel Library Intel MKL 2018

Accuracy Maintenance due to the limited interaction with one given atom, round-off error might not accumulate since

only interactions contribute to the force.

Performance Gain speedup by applying the vectorization method can reach 2 × to 3 × on most CPUs, and between 3 ×
and 5 × on accelerators.

Strong Scaling the optimization scales to multi-node circumstances automatically without degrading due to the overhead,

e.g. communication in the real world.

We attempt to reproduce the three claims above in this report.

2. Reproduction environment

Our cluster that is used to reproduce the result of the Tersoff paper is set up as listed in Table 1 .

Intel Xeon Platinum 8176 is of 28 cores per socket and AVX-512 ISA including conflict detection extension. With it, we can

validate or challenge the claim that higher performance can be achieved with longer vectors, 512 bits, and can also test if

the conflict detection instructions can improve the serialized updating as the authors expected in the “future”.

NVIDIA Tesla V100 GPUs provide powerful computation ability. The warp of CUDA works similarly as 32 × 64 = 2048 bits

SIMD, which is wide enough to evaluate the effectiveness of vectorization.

With hexa channel provided by Xeon 8176, 126GB/s memory bandwidth can be achieved per socket. Hyper-threading is

enabled to overlap memory access and computation. With the Tesla V100, applications can run with an exceptional memory

bandwidth – 900GB/s. Therefore, the impact of memory bottleneck is slightly ruled out so as to focus on computational

optimization.

Equipped with this recent high-performance hardware, we are able to demonstrate that the original claim “the optimiza-

tion will be ‘future proof’ ” is tenable and validate the portability of Tersoff paper’s results with SIMD architectures that it

focused on.

3. Compilation and run

To better reproduce the results described, we choose to clone from the Tersoff Git repository, 1 attached as an artifact in

the Tersoff paper’s appendix, since the code in official LAMMPS repository is kept updating and might be mixed with other

optimization.

The compilers and running environment is listed as below (Table 2):

By using icc 2018 and CUDA 9.0 , we can verify the portability on the compiler side. But we have to do minor modifications

on intel_simd.h to the warp SIMD data types by construction based on LAMMPS official version 11Aug17, and to change

some deprecated options in Makefile.intel_cpu after confirming these would not change the underlying behavior. Also, the

corresponding GPU arch settings are changed to be “sm_70” to support the Tesla V100.

Using the provided workflow in the Tersoff paper, we can use the scripts build.sh and bench- ∗.sh to compile and run the

reference CPU version, different CPU versions of the optimized binary with configuration macros, optimized and original

KOKKOS versions and reference GPU versions using corresponding packages and parameters.
1 github.com/HPAC/lammps-tersoff-vector.

K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53 49

Fig. 1. Relative � total energy between the single / mixed and double precision solvers for a system of 32 0 0 0 atoms for 10 6 timesteps on 16 processes .

Fig. 2. Relative � total energy between the single and double precision solvers for a system of 32 0 0 0 atoms for 10 6 timesteps on 220 processes .

4. Reproduction work

Four pieces of work are done to fully reproduce the Tersoff paper’s result: Accuracy Study validates the reduced precision

implementations; Single-Threaded Execution gives the purest representation of the speedup obtained by the optimizations;

Single Node Execution shows the results on an entire node; while Strong Scalability scales to a cluster with multiple nodes,

which is a real-world scenario.

We evaluate the accuracy using the same in.tersoff-acc , and obtain the results of single-threaded execution with the same

in.tersoff used in the Tersoff paper. For single and multiple nodes executions, besides the original in.tersoff_bench [1] file, a

new input from the paper: Empirical bond-order potential description of thermodynamic properties of crystalline silicon [2] by

Porter et al. is also used.

4.1. Accuracy study

In the Tersoff paper, they create versions that compute Tersoff potential in single and mixed precision. The energy mea-

surement in a long-running simulation is used to validate these reduced precision implementations. Here we repeat the

procedure to test relative difference, including single to double and mixed to double, in order to validate that the accuracy

can be maintained under our hardware and software setup.

As Fig. 1 illustrates, in a running of 16 MPI processes, exactly the same numbers of processes the Tersoff paper used, the

� total energy of both single and mixed reside within 0.004% of the double reference, slightly exceed the original results

50 K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53

Fig. 3. Relative � total energy between 220 processes and 16 processes double precision solvers for a system of 32 0 0 0 atoms for 10 6 timesteps.

Fig. 4. Performance across different CPU architectures; single-thread run on in.tersoff. 32 0 0 0 atoms.

of 0.002% as shown in Fig. 3 of the Tersoff paper, but still in a reasonable range. This can be justified because different

architectures and environments can result in different random states.

Several extra runs reveal that with MPI process count increasing, the relative difference gets worse. With 32 processes,

the difference doubles. Fig. 2 shows that the deviation of single exceeds 0.01% with 220 processes. But by comparing to

the relative difference accumulated between the results of 220 processes and 16 processes using the same double precision

solver, we believe that the error caused by reducing precision can be neglected.

Therefore, a change from double to single or mixed would neither cause a significant nor accumulate error. We success-

fully reproduce the accuracy experiment.

4.2. Execution performance

In the Tersoff paper, Fig. 4 shows single-threaded performance for all different execution modes: Ref, 2 Opt-D, Opt-S and

Opt-M

3 ; 5 shows realistic single node performances for Ref and Opt-M; 6 presents single GPU results for two different GPUs:

K20x and K40. Architectures including ARM, Kepler, Westmere, Sandy Bridge, Haswell, and Broadwell are tested, which give

substance to portability.

To provide more data points as evidence, we choose Skylake (SL) with AVX-512 that support to run this experiment. The

cloud component provided by CycleCloud gives us a chance to have tests on another architecture, Haswell (HW), during the

competition, as a replication of existing results in the Tersoff paper.

4.2.1. Single-threaded execution

Since the single-threaded execution can eliminate the effect of parallelism from multiple threads or nodes, it shows

purely the essential speedup using vectorization optimization.

Note that the scale of the used test data is tiny, therefore sensitive to interference, we try to disable all unused daemon

on the system, and set a negative 4 nice value to the running application. With 100 data points, we can display more accurate

performance metrics.

As shown in Fig. 4 , both Skylake and Haswell perform expected speedup comparing Ref with Opt- ∗, e.g. a factor of 4.8

between Opt-S and Ref on Haswell as described in the Tersoff paper, and 5.9 on Skylake.
2 As stated by Höhnerbach in an email reply, LAMMPS run without USER-INTEL package. OMP package is necessary on hyperthreading environment.
3 Run with USER-INTEL package, in the default_vector flavor, set mode parameter with double (D), single (S), or mixed (M).
4 High priority.

K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53 51

Fig. 5. Performance on Skylake (SL) Intel Xeon Platinum 8176 × 2; single-node multi-process run on in.tersoff_bench and in.porter .

Fig. 6. Hotspots measured with Allinea MAP.

Fig. 7. Performance on NVIDIA Tesla V100; single-card run on in.tersoff_bench .

4.2.2. Single node execution

Single node execution mixes the vectorization and multi-thread speedup, introducing communication overhead and

bandwidth problems. Due to the space limitations, we only present the results of Skylake in Fig. 5 with 4.4 × speedup

on in.tersoff_bench , and 0.74 × on in.porter here. Besides, more experiments showing similar results can also be obtained on

Haswell, the CPU architecture on the cloud.

Part of the performance reduction of Porter’s input [2] could be attributed to the nature of its calculation. Porter’s work

is to calculate the thermodynamic properties of crystalline silicon, while silicon is in a state of solid, therefore the atoms

are located densely. For a process, after computing the Newton force, f i and f j need to be updated in halo calculation, which

might be handled by another process, so communication is required. Since the atoms in the model are dense, a process may

have a lot of halo atoms sent to an adjacent MPI process, contributing to the high cost of communication.

With the Allinea MAP profiling tools provided by SCC, we can see in Fig. 6 that most of the time is consumed in MPI

communication, while the Tersoff kernel used less than 1% of the total execution time, which proves that the communication

cost caused by the property of the input accounts for the slowdown.

In conclusion, we can completely reproduce the expected performance increase on the exact same input provided in

the Tersoff paper. But with the new input in.porter from Porter’s paper [2] , performance dramatically drops, due to the

characteristic of the given task that requires lots of communication.

4.2.3. GPU execution

Additionally, we perform experiments on NVIDIA Tesla V100 to test the portability of the Tersoff paper claimed, as Fig. 7

shown. 6.1 × speedup is achieved, greater than the 5 × in the paper, which might be attributed to the improved bandwidth.

52 K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53

Fig. 8. Strong scalability with in.tersoff_bench and in.porter as input.

4.3. Strong scalability

As we all know, we care more about the performance at scale rather than single thread or single node execution because

they rarely appear in realistic simulations. In this section, we measure the optimization effect on our cluster to validate its

scalability.

With in.tersoff_bench as the input file, the performance on our cluster has a nearly linear improvement as expected while

nodes are increased, see Fig. 8 . But we cannot reproduce the result when we use in.porter as input. This is due to the same

communication issue described in Section 4.2.2 .

5. Utilizing AVX512-CD

AVX512-CD (Conflict Detection) is a new feature of AVX512 instruction set, which enables us to compute histogram in

parallel. It is mentioned that the new feature can be utilized to optimize the Newton force f accumulation by constructing

non-conflict set using conflict detection instruction _mm512_conflict and broadcasting instruction

_mm512_broadcast repeatedly and then updating array f by using the non-conflict set mask. But this idea is not imple-

mented in the Tersoff paper.

Followed by Tersoff paper’s idea, we have developed three versions with single, double and mixed precision respectively.

Unfortunately, no matter which version we use, we got a lower performance (overall 7% reduction) by applying AVX512-CD

to both f i and f j update because i index is easy to conflict. Besides, there is still overall 1% performance reduction even only

AVX512-CD on f j update are used. Through more analysis, we find that conflict detection introduces more overhead than

benefits because only one addition can be vectorized.

The result shows that AVX512-CD is not suitable for the Tersoff potential computation. To make full use of the new

feature, more compute-intensive patterns are necessary.

6. Conclusion

Through our effort to reproduce the Tersoff paper’s result, we demonstrate that by using the input provided in the Tersoff

paper, we can smoothly reproduce the accuracy analysis, the performance improvements and the strong scalability not only

on the already tested platforms like Haswell architecture by using the cloud components provided by SCC, but also on our

cluster equipped with the most advanced architectures, like Intel Skylake and NVIDIA Volta which was not available when

the Tersoff paper released. This proves the portability of the methods proposed in the Tersoff paper.

However, we find that the performance improvements and scalability cannot be reproduced with the tasks provided

in Porter’s paper. After close scrutiny, it is found that the special characteristic of the task where atoms are dense causes

intense communication. Therefore the communication becomes a bottleneck, causing the impossibility to have expected

overall speedup with the method specified in the Tersoff paper.

Acknowledgment

We thank all reviewers for their insightful comments. This work is partially supported by the National Key R&D Program

of China (Grant No. 2016YFB0200100), National Natural Science Foundation of China (Grant No. 61722208 , 61472201).

References

[1] M. Höhnerbach , A.E. Ismail , P. Bientinesi , The vectorization of the tersoff multi-body potential: an exercise in performance portability, in: Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis, in: SC ’16, IEEE Press, Piscataway, NJ, USA, 2016,
pp. 7:1–7:13 .

[2] L.J. Porter , S. Yip , M. Yamaguchi , H. Kaburaki , M. Tang , Empirical bond-order potential description of thermodynamic properties of crystalline silicon, J.
Appl. Phys. 81 (1) (1997) 96–106 .

http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0002

K.C.J. Lau et al. / Parallel Computing 78 (2018) 47–53 53

[3] S. Plimpton , Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1–19 .
[4] H.C. Edwards , C.R. Trott , D. Sunderland , Kokkos: enabling manycore performance portability through polymorphic memory access patterns, J. Parallel

Distrib. Comput. 74 (12) (2014) 3202–3216 .
[5] W.M. Brown , P. Wang , S.J. Plimpton , A.N. Tharrington , Implementing molecular dynamics on hybrid high performance computers–short range forces,

Comput. Phys. Commun. 182 (4) (2011) 898–911 .
[6] W.M. Brown , J.-M.Y. Carrillo , N. Gavhane , F.M. Thakkar , S.J. Plimpton , Optimizing legacy molecular dynamics software with directive-based offload,

Comput. Phys. Commun. 195 (2015) 95–101 .

http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30066-8/sbref0006

	Student cluster competition 2017, team Tsinghua University: Reproducing vectorization of the tersoff multi-body potential on the Intel Skylake and NVIDIA Volta architectures
	1 Introduction
	2 Reproduction environment
	3 Compilation and run
	4 Reproduction work
	4.1 Accuracy study
	4.2 Execution performance
	4.2.1 Single-threaded execution
	4.2.2 Single node execution
	4.2.3 GPU execution

	4.3 Strong scalability

	5 Utilizing AVX512-CD
	6 Conclusion
	 Acknowledgment
	 References

