Combinatorial Multi-Armed Bandit with General Reward Functions

Wei Chen
Microsoft Research
weic@microsoft.com

Wei Hu
Princeton University
huwei@cs.princeton.edu

Fu Li

The University of Texas at Austin
fuli.theory.research@gmail.com

Jian Li
Tsinghua University
lapordge@gmail.com

Yu Liu
Tsinghua University
liuyujyyz@gmail.com

Pinyan Lu
Shanghai University of Finance and Economics
lu.pinyan@mail.shufe.edu.cn

Abstract

In this paper, we study the stochastic combinatorial multi-armed bandit (CMAB) framework that allows a general nonlinear reward function, whose expected value may not depend only on the means of the input random variables but possibly on the entire distributions of these variables. Our framework enables a much larger class of reward functions such as the $\max ()$ function and nonlinear utility functions. Existing techniques relying on accurate estimations of the means of random variables, such as the upper confidence bound (UCB) technique, do not work directly on these functions. We propose a new algorithm called stochastically dominant confidence bound (SDCB), which estimates the distributions of underlying random variables and their stochastically dominant confidence bounds. We prove that SDCB can achieve $O(\log T)$ distribution-dependent regret and $\tilde{O}(\sqrt{T})$ distribution-independent regret, where T is the time horizon. We apply our results to the K-MAX problem and expected utility maximization problems. In particular, for K-MAX, we provide the first polynomial-time approximation scheme (PTAS) for its offline problem, and give the first $\tilde{O}(\sqrt{T})$ bound on the $(1-\epsilon)$-approximation regret of its online problem, for any $\epsilon>0$.

1 Introduction

Stochastic multi-armed bandit (MAB) is a classical online learning problem typically specified as a player against m machines or arms. Each arm, when pulled, generates a random reward following an unknown distribution. The task of the player is to select one arm to pull in each round based on the historical rewards she collected, and the goal is to collect cumulative reward over multiple rounds as much as possible. In this paper, unless otherwise specified, we use MAB to refer to stochastic MAB.
MAB problem demonstrates the key tradeoff between exploration and exploitation: whether the player should stick to the choice that performs the best so far, or should try some less explored alternatives that may provide better rewards. The performance measure of an MAB strategy is its cumulative regret, defined as the difference between the cumulative reward obtained by always playing the arm with the largest expected reward and the cumulative reward achieved by the learning strategy. MAB and its variants have been extensively studied in the literature, with classical results
such as tight $\Theta(\log T)$ distribution-dependent and $\Theta(\sqrt{T})$ distribution-independent upper and lower bounds on the regret in T rounds [17, 2, 1].
An important extension to the classical MAB problem is combinatorial multi-armed bandit (CMAB). In CMAB, the player selects not just one arm in each round, but a subset of arms or a combinatorial object in general, referred to as a super arm, which collectively provides a random reward to the player. The reward depends on the outcomes from the selected arms. The player may also observe partial feedbacks from the selected arms to help her in decision making. CMAB has wide applications in online advertising, online recommendation, wireless routing, dynamic channel allocations, etc., because in all these settings the action unit is a combinatorial object (e.g. a set of advertisements, a set of recommended items, a route in a wireless network, and an allocation between channels and users), and the reward depends on unknown stochastic behaviors (e.g. users' click through behaviors, wireless transmission quality, etc.). Therefore CMAB has attracted a lot of attention in online learning research in recent years [11, 8, 20, 13, 7, 14, 16, 15, 21, 9].
Most of these studies focus on linear reward functions, for which the expected reward for playing a super arm is a linear combination of the expected outcomes from the constituent base arms. Even for studies that do generalize to non-linear reward functions, they typically still assume that the expected reward for choosing a super arm is a function of the expected outcomes from the constituent base arms in this super arm [8, 15]. However, many natural reward functions do not satisfy this property. For example, for the function $\max ()$, which takes a group of variables and outputs the maximum one among them, its expectation depends on the full distributions of the input random variables, not just their means. Function $\max ()$ and its variants underly many applications. As an illustrative example, we consider the following scenario in auctions: the auctioneer is repeatedly selling an item to m bidders; in each round the auctioneer selects K bidders to bid (due to capacity constraint, and also a typical practice in online auctions); each of the K bidders independently draws her bid from her private valuation distribution and submits the bid; the auctioneer uses the first-price auction to determine the winner and collects the largest bid as the payment ${ }_{1}^{1}$ The goal of the auctioneer is to gain as high cumulative payments as possible. We refer to this problem as the K-MAX bandit problem, which cannot be effectively solved in the existing CMAB framework.
Beyond the K-MAX problem, there is a large class of expected utility maximization (EUM) problems studied in stochastic optimization literature [24, 18, 19, 4]. The problem can be formulated as maximizing $\mathbb{E}\left[u\left(\sum_{i \in S} X_{i}\right)\right]$ among all feasible sets S, where X_{i} 's are independent random variables and $u(\cdot)$ is a utility function. For example, X_{i} could be the random delay of edge e_{i} in a routing graph, S is a routing path in the graph, and the objective is maximizing the utility obtained from any routing path, and typically the shorter the delay on the path, the larger the utility. The utility function $u(\cdot)$ is typically nonlinear to model risk-averse or risk-prone behaviors of users (e.g. a concave utility function is often used to model risk-averse behaviors). The non-linear utility function makes the objective function much more complicated: in particular, it is no longer a function of the means of the underlying random variables X_{i} 's. Thus, when the distributions of X_{i} 's are unknown, we can turn EUM into an online learning problem where the distributions of X_{i} 's need to be learned over time from online feedbacks, and we want to maximize the cumulative reward in the learning process. Again, this is not covered by the existing CMAB framework since only learning the means of X_{i} 's is not enough.

In this paper, we generalize the existing CMAB framework with semi-bandit feedbacks to handle general reward functions, where the expected reward for playing a super arm may depend more than just the means of the base arms, and the outcome distribution of a base arm can be arbitrary. This generalization is non-trivial, because all prior work on CMAB relies on estimating the expected outcomes from base arms, which can be made accurate using standard tools such as Chernoff bound. In our case, we need an estimation method and an analytical tool to accurately estimate a distribution, not just its mean, which seems not readily available for us. We tackle this problem in two steps. First, for discrete random variables with known finite supports, we turn the problem into estimating the cumulative distribution function (CDF) value at each supported point. We use a stochastically dominant confidence bound (SDCB) to obtain a distribution that stochastically dominates the true distribution with high probability, and hence we also name our algorithm SDCB. We are able to show $O(\log T)$ distribution-dependent and $\tilde{O}(\sqrt{T})$ distribution-independent regret bounds in T rounds.

[^0]Second, we handle general bounded random variables by a discretization technique, and we also show $O(\log T)$ distribution-dependen $\sqrt{2}^{2}$ and $\tilde{O}(\sqrt{T})$ distribution-independent regret bounds. Our regret bounds are tight with respect to the dependency on T (up to a logarithmic factor for distributionindependent bounds). To make our scheme work, we make a few reasonable assumptions, including boundedness, monotonicity and Lipschitz continuity of the reward function, and independence among base arms. We apply SDCB to the K-MAX and EUM problems, and solve them efficiently with concrete regret bounds. Along the way, we also provide the first polynomial time approximation scheme (PTAS) for the offline K-MAX problem, which is formulated as maximizing $\mathbb{E}\left[\max _{i \in S} X_{i}\right]$ subject to a cardinality constraint $|S| \leq K$, where X_{i} 's are independent nonnegative random variables.

To summarize, our contributions include: (a) generalizing the CMAB framework to allow a general reward function whose expectation may depend on the entire distributions of the input random variables; (b) proposing the SDCB algorithm to achieve efficient learning in this framework with near-optimal regret bounds, even for arbitrary outcome distributions; (c) giving the first PTAS for the offline K-MAX problem. Our general framework treats any offline stochastic optimization algorithm as an oracle, and effectively integrates it into the online learning framework.

Related Work. As already mentioned, most relevant to our work are studies on CMAB frameworks. Among them, [11, 14, 16, 9] focus on linear reward functions, while [8, 15] look into non-linear reward functions. In particular, Chen et al. [8] look at general non-linear reward functions and Kveton et al. [15] consider specific non-linear reward functions in a conjunctive or disjunctive form, but both papers require that the expected reward of playing a super arm is determined by the expected outcomes from base arms.

The only work in combinatorial bandits we are aware of that does not require the above assumption on the expected reward is [13], which is based on a general Thompson sampling framework. However, they assume that the joint distribution of base arm outcomes is from a known parametric family and only the parameters are unknown. They also assume the parameter space to be finite. In contrast, our general case is non-parametric, where we allow arbitrary distributions. Although in our known finite support case the distribution can be parametrized by probabilities on all support values, our parameter space is continuous. Moreover, it is unclear how to efficiently compute posteriors in their algorithm, and their regret depends on two complicated problem-dependent coefficients which may be very large for many combinatorial problems. They also provide a result on the K-MAX problem, but they only consider Bernoulli outcomes from base arms, much simpler than our case where general distributions are allowed.

There are extensive studies on the classical MAB problem, for which we refer to a good survey on this area by Bubeck and Cesa-Bianchi [5]. There are also some studies on adversarial combinatorial bandits, e.g. [23, 6]. Although it bears conceptual similarities with stochastic CMAB, the techniques used are different.

Expected utility maximization (EUM) encompasses a large class of stochastic optimization problems and have been well studied in the operation research and computer science community (e.g. [24, 18 [19, 4]). To the best of our knowledge, we are the first to study the online learning version of these problems, and we provide a general solution to systematically address all these problems as long as there is an available offline (approximation) algorithm.

2 Setup and Notation

Problem Formulation. We model a combinatorial multi-armed bandit (CMAB) problem as a tuple (E, \mathcal{F}, D, R), where $E=[m]=\{1,2, \ldots, m\}$ is a set of m (base) arms, $\mathcal{F} \subseteq 2^{E}$ is a set of subsets of E, D is a probability distribution over $[0,1]^{m}$, and R is a reward function defined on $[0,1]^{m} \times \mathcal{F}$. The arms produce stochastic outcomes $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ drawn from distribution D, where the i-th entry X_{i} is the outcome from the i-th arm. Each feasible subset of arms $S \in \mathcal{F}$ is called a super arm. Under a realization of outcomes $x=\left(x_{1}, \ldots, x_{m}\right)$, the player receives a reward $R(x, S)$ when she chooses the super arm S to play. Without loss of generality, we assume the reward value to be nonnegative. Let $K=\max _{S \in \mathcal{F}}|S|$ be the maximum size of any super arm.

[^1]Let $X^{(1)}, X^{(2)}, \ldots$ be an i.i.d. sequence of random vectors drawn from D, where $X^{(t)}=$ $\left(X_{1}^{(t)}, \ldots, X_{m}^{(t)}\right)$ is the outcome vector generated in the t-th round. In the t-th round, the player chooses a super arm $S_{t} \in \mathcal{F}$ to play, and then the outcomes from all arms in $S_{t},\left\{X_{i}^{(t)} \mid i \in S_{t}\right\}$, are revealed to the player. According to the definition of the reward function, the reward value in the t-th round is $R\left(X^{(t)}, S_{t}\right)$. The expected reward for choosing a super arm S in any round is denoted by $r_{D}(S)=\mathbb{E}_{X \sim D}[R(X, S)]$.
We also assume that for a fixed super arm $S \in \mathcal{F}$, the reward $R(x, S)$ only depends on the revealed outcomes $x_{S}=\left(x_{i}\right)_{i \in S}$. Therefore, we can alternatively express $R(x, S)$ as $R_{S}\left(x_{S}\right)$, where R_{S} is a function defined on $[0,1]^{|S|}$.

A learning algorithm \mathcal{A} for the CMAB problem selects which super arm to play in each round based on the revealed outcomes in all previous rounds. Let $S_{t}^{\mathcal{A}}$ be the super arm selected by \mathcal{A} in the t-th round ${ }^{3}$ The goal is to maximize the expected cumulative reward in T rounds, which is $\mathbb{E}\left[\sum_{t=1}^{T} R\left(X^{(t)}, S_{t}^{\mathcal{A}}\right)\right]=\sum_{t=1}^{T} \mathbb{E}\left[r_{D}\left(S_{t}^{\mathcal{A}}\right)\right]$. Note that when the underlying distribution D is known, the optimal algorithm \mathcal{A}^{*} chooses the optimal super $\operatorname{arm} S^{*}=\operatorname{argmax}_{S \in \mathcal{F}}\left\{r_{D}(S)\right\}$ in every round. The quality of an algorithm \mathcal{A} is measured by its regret in T rounds, which is the difference between the expected cumulative reward of the optimal algorithm \mathcal{A}^{*} and that of \mathcal{A} :

$$
\operatorname{Reg}_{D}^{\mathcal{A}}(T)=T \cdot r_{D}\left(S^{*}\right)-\sum_{t=1}^{T} \mathbb{E}\left[r_{D}\left(S_{t}^{\mathcal{A}}\right)\right]
$$

For some CMAB problem instances, the optimal super arm S^{*} may be computationally hard to find even when the distribution D is known, but efficient approximation algorithms may exist, i.e., an α-approximate $(0<\alpha \leq 1)$ solution $S^{\prime} \in \mathcal{F}$ which satisfies $r_{D}\left(S^{\prime}\right) \geq \alpha \cdot \max _{S \in \mathcal{F}}\left\{r_{D}(S)\right\}$ can be efficiently found given D as input. We will provide the exact formulation of our requirement on such an α-approximation computation oracle shortly. In such cases, it is not fair to compare a CMAB algorithm \mathcal{A} with the optimal algorithm \mathcal{A}^{*} which always chooses the optimal super arm S^{*}. Instead, we define the α-approximation regret of an algorithm \mathcal{A} as

$$
\operatorname{Reg}_{D, \alpha}^{\mathcal{A}}(T)=T \cdot \alpha \cdot r_{D}\left(S^{*}\right)-\sum_{t=1}^{T} \mathbb{E}\left[r_{D}\left(S_{t}^{\mathcal{A}}\right)\right]
$$

As mentioned, all previous work on CMAB requires that the expected reward $r_{D}(S)$ of a super arm S depends only on the expectation vector $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$ of outcomes, where $\mu_{i}=\mathbb{E}_{X \sim D}\left[X_{i}\right]$. This is a rather strong restriction that cannot be satisfied by a general nonlinear function R_{S} and a general outcome distribution D. The main motivation of this work is to remove this restriction.

Assumptions. Throughout this paper, we make several assumptions on the outcome distribution D and the reward function R.
Assumption 1 (Independent outcomes from arms). The outcomes from all m arms are mutually independent, i.e., for $X \sim D, X_{1}, X_{2}, \ldots, X_{m}$ are mutually independent. We write D as $D=$ $D_{1} \times D_{2} \times \cdots \times D_{m}$, where D_{i} is the distribution of X_{i}.
Assumption 2 (Bounded reward value). There exists $M>0$ such that for any $x \in[0,1]^{m}$ and any $S \in \mathcal{F}$, we have $0 \leq R(x, S) \leq M$.
Assumption 3 (Monotone reward function). If two vectors $x, x^{\prime} \in[0,1]^{m}$ satisfy $x_{i} \leq x_{i}^{\prime}(\forall i \in[m])$, then for any $S \in \mathcal{F}$, we have $R(x, S) \leq R\left(x^{\prime}, S\right)$.

Assumption 4 (Lipschitz-continuous reward function). There exists $C>0$ such that for any $S \in \mathcal{F}$ and any $x, x^{\prime} \in[0,1]^{m}$,

$$
\left|R(x, S)-R\left(x^{\prime}, S\right)\right| \leq C\left\|x_{S}-x_{S}^{\prime}\right\|_{1}
$$

where $\left\|x_{S}-x_{S}^{\prime}\right\|_{1}=\sum_{i \in S}\left|x_{i}-x_{i}^{\prime}\right|$.

[^2]```
Algorithm 1 SDCB-FSD (SDCB for finitely supported distributions) with parameter \(\lambda>0\)
 // Initialization
 for \(i=1\) to \(m\) do
 // Action in the \(i\)-th round
 Play a super arm \(S_{i}\) that contains arm \(i\), observe the outcome \(X_{i}^{(i)}\) from arm \(i\), and find \(k \in\left[s_{i}\right]\)
 such that \(X_{i}^{(i)}=v_{i, k}\)
 \(\hat{F}_{i, j} \leftarrow 1 \quad \forall k \leq j \leq s_{i}\)
 \(\hat{F}_{i, j} \leftarrow 0 \quad \forall 1 \leq j \leq k-1\)
 \(T_{i} \leftarrow 1\)
 end for
 for \(t=m+1, m+2, \ldots\) do
 // Action in the \(t\)-th round
 for \(i=1,2, \ldots, m\) do
 \(\underline{F}_{i, j} \leftarrow \max \left\{\hat{F}_{i, j}-\sqrt{\frac{3 \ln (\lambda t)}{2 T_{i}}}, 0\right\} \quad \forall 1 \leq j \leq s_{i}-1\)
 \(\underline{F}_{i, s_{i}} \leftarrow 1\)
 end for
 Play the super arm \(S_{t} \leftarrow \operatorname{Oracle}(\underline{F})\), where \(\underline{F}=\left(\underline{F}_{i, j}\right)_{i \in[m], j \in\left[s_{i}\right]}\)
 for all \(i \in S_{t}\) do
 Observe the outcome \(X_{i}^{(t)}\) from arm \(i\), and find \(k \in\left[s_{i}\right]\) such that \(X_{i}^{(t)}=v_{i, k}\)
 \(\hat{F}_{i, j} \leftarrow \frac{T_{i} \cdot \hat{F}_{i, j}+1}{T_{i}+1} \quad \forall k \leq j \leq s_{i}\)
 \(\hat{F}_{i, j} \leftarrow \frac{T_{i} \cdot \hat{F}_{i, j}}{T_{i}+1} \quad \forall 1 \leq j \leq k-1\)
 \(T_{i} \leftarrow T_{i}+1\)
 end for
 end for
```

Computation Oracle for Discrete Distributions with Known Finite Supports. We require that there exists an $\alpha$-approximation computation oracle $(0<\alpha \leq 1)$ for maximizing $r_{D}(S)$, when each $D_{i}(i \in[m])$ has a known finite support. In this case, we suppose the support of $D_{i}$ is $\operatorname{supp}\left(D_{i}\right)=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, s_{i}}\right\}(i \in[m])$. Then $D_{i}$ can be fully described by a set of its cumulative distribution function (CDF) values $F_{i, j}^{D}=\operatorname{Pr}_{X_{i} \sim D_{i}}\left[X_{i} \leq v_{i, j}\right]\left(j \in\left[s_{i}\right]\right)$. We define the CDF vector of $D$ as $F^{D}=\left(F_{i, j}^{D}\right)_{i \in[m], j \in\left[s_{i}\right]}$. The oracle takes the CDF vector $F^{D}$ (which describes $D$ ) as input, and can output a super $\operatorname{arm} S^{\prime} \in \mathcal{F}$ such that $r_{D}\left(S^{\prime}\right) \geq \alpha \cdot \max _{S \in \mathcal{F}}\left\{r_{D}(S)\right\}$.

## 3 Discrete Distributions with Known Finite Supports

In this section, we consider the special case in which each outcome distribution $D_{i}(i \in[m])$ has a known finite support. Let $\operatorname{supp}\left(D_{i}\right)=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, s_{i}}\right\}$, and let $s$ be a finite upper bound on the support size of all $D_{i}$ 's, i.e., $s_{i}=\left|\operatorname{supp}\left(D_{i}\right)\right| \leq s(\forall i \in[m])$. We assume $0 \leq v_{i, 1}<v_{i, 2}<\cdots<$ $v_{i, s_{i}} \leq 1$ for each $i \in[m]$. We do not require Assumption 4 in this section. That assumption will be used for the general distribution case (in Section (4).

### 3.1 Algorithm

We present our algorithm stochastically dominant confidence bound (SDCB) in Algorithm 1 and refer to it as SDCB-FSD (SDCB for finitely supported distributions). The algorithm starts with $m$ initialization rounds in which each arm is played at least once ${ }^{4}$ (lines 2-8). Throughout the algorithm, we maintain the empirical probability of $\left\{X_{i} \leq v_{i, j}\right\}$ (for each $i \in[m], j \in\left[s_{i}\right]$ ) based on the observed outcomes from arm $i$ so far, which we denote as $\hat{F}_{i, j}$. We also store, in a variable $T_{i}$, the number of times the outcomes from arm $i$ are observed so far. In the $t$-th round $(t>m)$, the algorithm consists of three steps. First, it calculates a lower confidence bound $\underline{F}_{i, j}$ on each CDF value $F_{i, j}^{D}$ (lines 11-14). We ensure $0 \leq \underline{F}_{i, 1} \leq \underline{F}_{i, 2} \leq \cdots \leq \underline{F}_{i, s_{i}}=1(\forall i \in[m])$, so $\underline{F}=\left(\underline{F}_{i, j}\right)_{i \in[m], j \in\left[s_{i}\right]}$ is a valid

[^3]CDF vector of some distribution $\underline{D}=\underline{D}_{1} \times \cdots \times \underline{D}_{m}$. We remark that while $\underline{F}_{i, j}$ is a numerical lower confidence bound on the CDF value $F_{i, j}^{D}$, at the distribution level, $\underline{D}_{i}$ serves as a "stochastically dominant (upper) confidence bound" on $D_{i}$. The second step is to call the $\alpha$-approximation oracle with the CDF vector $\underline{F}$ as input (line 15), and thus the super arm $S_{t}$ output by the oracle satisfies $r_{\underline{D}}\left(S_{t}\right) \geq \alpha \cdot \max _{S \in \mathcal{F}}\left\{r_{\underline{D}}(S)\right\}$. Finally, the algorithm chooses the super arm $S_{t}$ to play, observes the outcomes from all arms in $S_{t}$, and updates $\hat{F}_{i, j}$ 's and $T_{i}$ 's accordingly (lines 16-21).

The idea behind our algorithm is the optimism in the face of uncertainty principle, which is the key principle of UCB-type algorithms. Our algorithm ensures that with high probability each $\underline{D}_{i}$ has first-order stochastic dominance over $D_{i}$. Then from the monotonicity property of $R(x, S)$ (Assumption 3) we know that $r_{\underline{D}}(S) \geq r_{D}(S)$ holds for all $S \in \mathcal{F}$ with high probability. Therefore $\underline{D}$ provides an "optimistic" estimation on the expected reward from each super arm.
Note that we use a parameter $\lambda$ to control the confidence radius (line 12) which controls the degree of exploration. In this section we can just set $\lambda$ to be a constant (e.g. $\lambda=1$ ). For the general distribution case in Section 4 it will be chosen more carefully to work with discretization.

### 3.2 Regret Bounds

We prove $O(\log T)$ distribution-dependent and $O(\sqrt{T \ln T})$ distribution-independent upper bounds on the regret of SDCB-FSD (Algorithm 1) with any constant parameter $\lambda>0$.
We call a super arm $S$ bad if $r_{D}(S)<\alpha \cdot r_{D}\left(S^{*}\right)$. For each super arm $S$, we define

$$
\Delta_{S}=\max \left\{\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}(S), 0\right\}
$$

Let $\mathcal{F}_{\mathrm{B}}=\left\{S \in \mathcal{F} \mid \Delta_{S}>0\right\}$, which is the set of all bad super arms. Let $E_{\mathrm{B}} \subseteq[m]$ be the set of arms that are contained in at least one bad super arm. For each $i \in E_{\mathrm{B}}$, we define

$$
\Delta_{i, \min }=\min \left\{\Delta_{S} \mid S \in \mathcal{F}_{\mathrm{B}}, i \in S\right\}
$$

Recall that $M$ is the upper bound on the reward value (Assumption 2] and $K=\max _{S \in \mathcal{F}}|S|$.
Theorem 1. Suppose the outcome distribution $D_{i}$ of each arm $i \in[m]$ has a known finite support of size at most s. Then a distribution-dependent upper bound on the $\alpha$-approximation regret of SDCB-FSD in $T$ rounds is

$$
M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{2136}{\Delta_{i, \min }} \ln (\lambda T)+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m
$$

and a distribution-independent upper bound is

$$
93 M \sqrt{m K T \ln (\lambda T)}+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m
$$

The proof of Theorem 1 is given in Appendix A.1. The main idea is to reduce our analysis to the one in [16] which deals with the summation reward function $R(x, S)=\sum_{i \in S} x_{i}$. We are able to generalize to any reward function that satisfies Assumptions 2 and 3

Applying Our Algorithm to the Previous CMAB Framework. Although our focus is on general reward functions, we note that when $\operatorname{SDCB}-\mathrm{FSD}$ (with $\lambda=1$ ) is applied to the previous CMAB framework where the expected reward depends only on the means of the random variables, it can achieve almost the same regret bounds as the previous combinatorial upper confidence bound (CUCB) algorithm in e.g., [8, 16], in the finite support case.
Let $\mu_{i}=\mathbb{E}_{X \sim D}\left[X_{i}\right]$ be arm $i$ 's mean outcome. In each round CUCB calculates (for each arm $i$ ) an upper confidence bound $\bar{\mu}_{i}$ on $\mu_{i}$, with the essential property that $\mu_{i} \leq \bar{\mu}_{i} \leq \mu_{i}+\Lambda_{i}$ holds with high probability, for some $\Lambda_{i}>0$. In SDCB-FSD, we use $\underline{D}_{i}$ as a stochastically dominant confidence bound of $D_{i}$. We show that $\mu_{i} \leq \mathbb{E}_{Y_{i} \sim D_{i}}\left[Y_{i}\right] \leq \mu_{i}+\Lambda_{i}$ holds with high probability, with the same interval length $\Lambda_{i}$ as in CUCB. (The proof is given in Appendix A.2) Hence, the analysis in [8, 16] can be applied to SDCB-FSD, resulting in the same regret bounds for the term containing $T$ (the constant term will have an extra factor of $s$ due to a union bound for all support values). We further remark that in this case we do not need the four assumptions in Section 2 (in particular the independence assumption on $X_{i}$ 's): the summation reward case just works as in [16] and the nonlinear reward case relies on the properties of monotonicity and bounded smoothness used in [8].

```
Algorithm 2 SDCB-GDT (SDCB for general distributions with known time horizon) with parameter
\(\eta \geq 0\)
Input: \(T\)
 \(s \leftarrow T^{1+\eta}\)
 Invoke SDCB-FSD (Algorithm 11) with \(\operatorname{supp}\left(\tilde{D}_{i}\right)=\left\{\frac{1}{s}, \frac{2}{s}, \ldots, 1\right\}(\forall i \in[m])\) and \(\lambda=s^{1 / 3}\) for
 \(T\) rounds, with the following change: whenever observing an outcome \(x\) (from any arm), find
 \(j \in[s]\) such that \(x \in I_{j}\), and regard this outcome \(x\) as \(\frac{j}{s}\)
```

```
Algorithm 3 SDCB-GD (SDCB for general distributions, without knowing the time horizon) with
parameter \(\eta \geq 0\)
 \(q \leftarrow\left\lceil\log _{2} m\right\rceil\)
 In rounds \(1,2, \ldots, 2^{q}\), invoke SDCB-GDT (Algorithm 2) with input \(T=2^{q}\) and parameter \(\eta\)
 for \(k=q, q+1, q+2, \ldots\) do
 In rounds \(2^{k}+1,2^{k}+2, \ldots, 2^{k+1}\), invoke SDCB-GDT with input \(T=2^{k}\) and parameter \(\eta\)
 end for
```


## 4 General Distributions

In this section, we consider the general case where each outcome distribution $D_{i}$ is an arbitrary distribution over $[0,1]$. We propose two algorithms based on the combination of a discretization step and SDCB-FSD (Algorithm 1), one of which knows the time horizon $T$ in advance and the other does not. We will make use of the Lipschitz condition given as Assumption 4 which was not used in the last section.

### 4.1 Algorithms

We first describe the algorithm when the time horizon $T$ is known, which we call SDCB-GDT (SDCB for general distributions with known time horizon). We perform a discretization on the distribution $D=D_{1} \times \cdots \times D_{m}$ to obtain a discrete distribution $\tilde{D}=\tilde{D}_{1} \times \cdots \times \tilde{D}_{m}$ such that (i) for $\tilde{X} \sim \tilde{D}$, $\tilde{X}_{1}, \ldots, \tilde{X}_{m}$ are also mutually independent, and (ii) every $\tilde{D}_{i}$ is supported on a set of equally-spaced values $\left\{\frac{1}{s}, \frac{2}{s}, \ldots, 1\right\}$, where $s$ is a positive integer to be determined. Specifically, we partition $[0,1]$ into $s$ intervals: $I_{1}=\left[0, \frac{1}{s}\right], I_{2}=\left(\frac{1}{s}, \frac{2}{s}\right], \ldots, I_{s-1}=\left(\frac{s-2}{s}, \frac{s-1}{s}\right], I_{s}=\left(\frac{s-1}{s}, 1\right]$, and define $\tilde{D}_{i}$ as

$$
\operatorname{Pr}_{\tilde{X}_{i} \sim \tilde{D}_{i}}\left[\tilde{X}_{i}=j / s\right]=\operatorname{Pr}_{X_{i} \sim D_{i}}\left[X_{i} \in I_{j}\right], \quad j \in[s] .
$$

Since each $\tilde{D}_{i}$ has a known finite support, SDCB-FSD (Algorithm1) can be applied to the discretized CMAB problem $([m], \mathcal{F}, \tilde{D}, R)$. For the original CMAB problem $([m], \mathcal{F}, D, R)$, our algorithm "pretends" that the outcomes are drawn from $\tilde{D}$ instead of $D$, by replacing any outcome $x \in I_{j}$ by $\frac{j}{s}$ $(\forall j \in[s])$, and then applies SDCB-FSD to the problem $([m], \mathcal{F}, \tilde{D}, R)$. We summarize our algorithm in Algorithm 2
In Algorithm 2 the discretization parameter $s$ depends on the time horizon $T$, which is why it has to know $T$ in advance. Algorithm 3 uses the doubling trick to avoid the dependency on $T$. We refer to this algorithm as SDCB-GD (SDCB for general distributions).

### 4.2 Regret Bounds

We now present the regret bounds of SDCB-GDT and SDCB-GD. The full proofs are given in Appendix $B$ Recall that $C$ is the coefficient in the Lipschitz condition in Assumption 4

Theorem 2. Suppose the time horizon $T$ is known in advance. Then a distribution-independent upper bound on the $\alpha$-approximation regret of SDCB-GDT (with parameter $\eta \geq 0$ ) in $T$ rounds is

$$
54 M \sqrt{(4+\eta) m K T \ln T}+5 \alpha M m+\frac{2 C K}{T^{\eta}} .
$$

Moreover, if we have $T \geq \frac{(2+\delta) C K}{\Delta_{i, \min }}$ for all $i \in E_{\mathrm{B}}(\delta>0)$, then a distribution-dependent upper bound on the $\alpha$-approximation regret of SDCB-GDT (with parameter $\eta \geq 0$ ) in $T$ rounds is

$$
M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{712(4+\eta)(1+2 / \delta)}{\Delta_{i, \min }} \ln T+5 \alpha M m+\frac{4 C K}{T^{\eta}} .
$$

Proof Sketch. The regret consists of two parts: (i) the regret for the discretized CMAB problem $([m], \mathcal{F}, \tilde{D}, R)$, and (ii) the error due to discretization. The first part is analyzed in the discrete distribution case in Section 3. For the second part, a key step is to show that for any $S \in \mathcal{F}$, we have $\left|r_{D}(S)-r_{\tilde{D}}(S)\right| \leq C K / s$ (see Appendix B.1).

Theorem 3. For any time horizon $T \geq 2$, the $\alpha$-approximation regret of $S D C B-G D$ (with parameter $\eta>0$ ) in $T$ rounds is at most

$$
185 M \sqrt{(4+\eta) m K T \ln T}+11 \alpha M m \ln T+\frac{2 C K}{2^{\eta}-1} .
$$

## 5 Applications

We describe the $K$-MAX problem and the class of expected utility maximization problems as applications of our general CMAB framework.

The $K$-MAX Problem. In this problem, the player is allowed to select at most $K$ arms from the set of $m$ arms in each round, and the reward is the maximum one among the outcomes from the selected arms. In other words, the set of feasible super arms is $\mathcal{F}=\{S \subseteq[m]| | S \mid \leq K\}$, and the reward function is $R(x, S)=\max _{i \in S} x_{i}$. It is easy to verify that this reward function satisfies Assumptions 2, 3 and 4 with $M=C=1$.

Now we consider the corresponding offline problem of selecting at most $K$ arms from $m$ arms, with the largest expected reward. It can be implied by a result in [12] that finding the exact optimal solution is NP-hard, so we resort to approximation algorithms. We can show, using submodularity, that the simple greedy algorithm can achieve a $(1-1 / e)$-approximation. Furthermore, we give the first PTAS for this problem. Our PTAS can be generalized to constraints other than the cardinality constraint $|S| \leq K$, including $s$ - $t$ simple paths, matchings, knapsacks, etc. The algorithms and corresponding proofs are given in Appendix C.
Theorem 4. There exists a PTAS for the offline K-MAX problem. In other words, for any constant $\epsilon>0$, there is a polynomial-time $(1-\epsilon)$ factor approximation algorithm for the $K$-MAX problem.

We can apply our SDCB algorithm to the $K$-MAX bandit problem and obtain $O(\log T)$ distributiondependent and $\tilde{O}(\sqrt{T})$ distribution-independent regret bounds according to Theorems 1, 2 and 3
Streeter and Golovin [23] study an online submodular maximization problem in the oblivious adversary model. In particular, their result can cover the stochastic $K$-MAX bandit problem as a special case, and an $O(K \sqrt{m T \log m})$ upper bound on the $(1-1 / e)$-regret can be shown. While the techniques in [23] can only give a bound on the $(1-1 / e)$-approximation regret for $K$-MAX, we can obtain the first $\tilde{O}(\sqrt{T})$ bound on the $(1-\epsilon)$-approximation regret for any constant $\epsilon>0$, using our PTAS as the offline oracle. Even when we use the simple greedy algorithm as the oracle, our experiments show that SDCB performs significantly better than the algorithm in [23] (see Appendix D).

Expected Utility Maximization. Our framework can also be applied to reward functions of the form $R(x, S)=u\left(\sum_{i \in S} x_{i}\right)$, where $u(\cdot)$ is an increasing utility function. The corresponding offline problem is to maximize the expected utility $\mathbb{E}\left[u\left(\sum_{i \in S} x_{i}\right)\right]$ subject to a feasibility constraint $S \in \mathcal{F}$. Note that if $u$ is nonlinear, the expected utility may not be a function of the means of the arms in $S$. Following the celebrated von Neumann-Morgenstern expected utility theorem, nonlinear utility functions have been extensively used to capture risk-averse or risk-prone behaviors in economics (see e.g., [10]), while linear utility functions correspond to risk-neutrality.

Li and Deshpande [18] obtain a PTAS for the expected utility maximization (EUM) problem for several classes of utility functions (including for example increasing concave functions which typically
indicate risk-averseness), and a large class of feasibility constraints (including cardinality constraint, $s$ - $t$ simple paths, matchings, and knapsacks). Similar results for other utility functions and feasibility constraints can be found in [24, 19, 4]. In the online problem, we can apply our SDCB algorithm, using their PTAS as the offline oracle. Again, we can obtain the first tight regret bounds on the $(1-\epsilon)$-approximation regret for any $\epsilon>0$, for the class of online EUM problems.

## References

[1] Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In COLT, pages 217-226, 2009.
[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235-256, 2002.
[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48-77, 2002.
[4] Anand Bhalgat and Sanjeev Khanna. A utility equivalence theorem for concave functions. In Integer Programming and Combinatorial Optimization, pages 126-137. Springer, 2014.
[5] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2012.
[6] Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System Sciences, 78(5):1404-1422, 2012.
[7] Shouyuan Chen, Tian Lin, Irwin King, Michael R. Lyu, and Wei Chen. Combinatorial pure exploration of multi-armed bandits. In NIPS, 2014.
[8] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. Journal of Machine Learning Research, 17(50):1-33, 2016.
[9] Richard Combes, M. Sadegh Talebi, Alexandre Proutiere, and Marc Lelarge. Combinatorial bandits revisited. In NIPS, 2015.
[10] P. C. Fishburn. The foundations of expected utility. Dordrecht: Reidel, 1982.
[11] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Transactions on Networking, 20(5):1466-1478, 2012.
[12] Ashish Goel, Sudipto Guha, and Kamesh Munagala. How to probe for an extreme value. ACM Transactions on Algorithms (TALG), 7(1):12:1-12:20, 2010.
[13] Aditya Gopalan, Shie Mannor, and Yishay mansour. Thompson sampling for complex online problems. In ICML, pages 100-108, 2014.
[14] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid bandits: Fast combinatorial optimization with learning. In UAI, pages 420-429, 2014.
[15] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. Combinatorial cascading bandits. In NIPS, 2015.
[16] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári. Tight regret bounds for stochastic combinatorial semi-bandits. In AISTATS, pages 535-543, 2015.
[17] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4-22, 1985.
[18] Jian Li and Amol Deshpande. Maximizing expected utility for stochastic combinatorial optimization problems. In FOCS, pages 797-806, 2011.
[19] Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation. In STOC, pages 971-980, 2013.
[20] Tian Lin, Bruno Abrahao, Robert Kleinberg, John Lui, and Wei Chen. Combinatorial partial monitoring game with linear feedback and its applications. In ICML, pages 901-909, 2014.
[21] Tian Lin, Jian Li, and Wei Chen. Stochastic online greedy learning with semi-bandit feedbacks. In NIPS, 2015.
[22] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for maximizing submodular set functions - I. Mathematical Programming, 14(1):265-294, 1978.
[23] Matthew Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. In NIPS, 2008.
[24] Jiajin Yu and Shabbir Ahmed. Maximizing expected utility over a knapsack constraint. Operations Research Letters, 44(2):180-185, 2016.

## Appendix

## A Missing Proofs form Section 3

## A. 1 Proof of Theorem 1

We present the proof of Theorem 1 in 3 steps. In Section A.1.1 we introduce the $L_{1}$ distance between two distributions and present a property of it. In SectionA.1.2, we present and prove some key technical lemmas. Then we complete the proof of Theorem 1in Section A.1.3.

## A.1.1 The $L_{1}$ Distance between Two Probability Distributions

For simplicity, we only consider distributions with finite supports - this will be enough for our purpose in this section.

Let $P$ be a probability distribution. For any $x$, let $P(x)=\operatorname{Pr}_{X \sim P}[X=x]$. We write $P=P_{1} \times P_{2} \times$ $\cdots \times P_{n}$ if the (multivariate) random variable $X \sim P$ can be written as $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, where $X_{1}, \ldots, X_{n}$ are mutually independent and $X_{i} \sim P_{i}(\forall i \in[n])$.
For two distributions $P$ and $Q$, their $L_{1}$ distance is defined as

$$
L_{1}(P, Q)=\sum_{x}|P(x)-Q(x)|
$$

where the summation is taken over $x \in \operatorname{supp}(P) \cup \operatorname{supp}(Q)$.
The $L_{1}$ distance has the following property. It is a folklore result and we provide a proof for completeness.
Lemma 1. Let $P=P_{1} \times P_{2} \times \cdots \times P_{n}$ and $Q=Q_{1} \times Q_{2} \times \cdots \times Q_{n}$ be two probability distributions. Then we have

$$
\begin{equation*}
L_{1}(P, Q) \leq \sum_{i=1}^{n} L_{1}\left(P_{i}, Q_{i}\right) \tag{1}
\end{equation*}
$$

Proof. We prove (1) by induction on $n$.
When $n=2$, we have

$$
\begin{aligned}
L_{1}(P, Q) & =\sum_{x} \sum_{y}|P(x, y)-Q(x, y)| \\
& =\sum_{x} \sum_{y}\left|P_{1}(x) P_{2}(y)-Q_{1}(x) Q_{2}(y)\right| \\
& \leq \sum_{x} \sum_{y}\left(\left|P_{1}(x) P_{2}(y)-P_{1}(x) Q_{2}(y)\right|+\left|P_{1}(x) Q_{2}(y)-Q_{1}(x) Q_{2}(y)\right|\right) \\
& =\sum_{x} P_{1}(x) \sum_{y}\left|P_{2}(y)-Q_{2}(y)\right|+\sum_{y} Q_{2}(y) \sum_{x}\left|P_{1}(x)-Q_{1}(x)\right| \\
& =1 \cdot L_{1}\left(P_{2}, Q_{2}\right)+1 \cdot L_{1}\left(P_{1}, Q_{1}\right)
\end{aligned}
$$

$$
=\sum_{i=1}^{2} L_{1}\left(P_{i}, Q_{i}\right)
$$

Here the summation is taken over $x \in \operatorname{supp}\left(P_{1}\right) \cup \operatorname{supp}\left(Q_{1}\right)$ and $y \in \operatorname{supp}\left(P_{2}\right) \cup \operatorname{supp}\left(Q_{2}\right)$.
Suppose (1) is proved for $n=k-1(k \geq 3)$. When $n=k$, using the results for $n=k-1$ and $n=2$, we get

$$
\begin{aligned}
L_{1}(P, Q) & \leq \sum_{i=1}^{k-2} L_{1}\left(P_{i}, Q_{i}\right)+L_{1}\left(P_{k-1} \times P_{k}, Q_{k-1} \times Q_{k}\right) \\
& \leq \sum_{i=1}^{k-2} L_{1}\left(P_{i}, Q_{i}\right)+L_{1}\left(P_{k-1}, Q_{k-1}\right)+L_{1}\left(P_{k}, Q_{k}\right) \\
& =\sum_{i=1}^{k} L_{1}\left(P_{i}, Q_{i}\right)
\end{aligned}
$$

This completes the proof.

## A.1.2 Technical Lemmas

Recall that we have $\operatorname{supp}\left(D_{i}\right)=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, s_{i}}\right\}\left(0 \leq v_{i, 1}<\cdots<v_{i, s_{i}} \leq 1\right)$ and $s_{i}=$ $\left|\operatorname{supp}\left(D_{i}\right)\right| \leq s(\forall i \in[m])$. Let

$$
\Sigma=\left\{P=P_{1} \times P_{2} \times \cdots \times P_{m} \mid \operatorname{supp}\left(P_{i}\right) \subseteq\left\{v_{i, 1}, \ldots, v_{i, s_{i}}\right\}, i=1,2, \ldots, m\right\}
$$

which is the set of all possible outcome distributions. Recall that for any distribution $P \in \Sigma$, we define its CDF vector as $F^{P}=\left(F_{i, j}^{P}\right)_{i \in[m], j \in\left[s_{i}\right]}$, where $F_{i, j}^{P}=\operatorname{Pr}_{X_{i} \sim P_{i}}\left[X_{i} \leq v_{i, j}\right]$.
The following lemma describes some properties of the expected reward $r_{P}(S)=\mathbb{E}_{X \sim P}[R(X, S)]$.
Lemma 2. Let $P=P_{1} \times \cdots \times P_{m}$ and $P^{\prime}=P_{1}^{\prime} \times \cdots \times P_{m}^{\prime}$ be two probability distributions in $\Sigma$.
(i) If for any $i \in[m], j \in\left[s_{i}\right]$ we have $F_{i, j}^{P^{\prime}} \leq F_{i, j}^{P}$, then for any super arm $S \in \mathcal{F}$, we have

$$
r_{P^{\prime}}(S) \geq r_{P}(S)
$$

(ii) Iffor any $i \in[m], j \in\left[s_{i}\right]$ we have $F_{i, j}^{P}-F_{i, j}^{P^{\prime}} \leq \Lambda_{i}\left(\Lambda_{i}>0\right)$, then for any super arm $S \in \mathcal{F}$, we have

$$
r_{P^{\prime}}(S)-r_{P}(S) \leq 2 M \sum_{i \in S} \Lambda_{i}
$$

Proof. It is easy to see why (i) is true. If we have $F_{i, j}^{P^{\prime}} \leq F_{i, j}^{P}$ for all $i, j$, then for all $i$, $P_{i}^{\prime}$ has first-order stochastic dominance over $P_{i}$. When we change the probability from $P$ into $P^{\prime}$, for each $i \in[m]$ we are moving some probability mass from smaller values to larger values. Recall that the reward function $R(x, S)$ has a monotonicity property (Assumption 3): if $x$ and $x^{\prime}$ are two vectors in $[0,1]^{m}$ such that $x_{i} \leq x_{i}^{\prime}$ for all $i \in[m]$, then $R(x, S) \leq R\left(x^{\prime}, S\right)$ for all $S \in \mathcal{F}$. Therefore we have $r_{P}(S) \leq r_{P^{\prime}}(S)$ for all $S \in \mathcal{F}$.

Now we prove (ii). Without loss of generality, we assume $S=\{1,2, \ldots, n\}(n \leq m)$. Let $P^{\prime \prime}=P_{1}^{\prime \prime} \times \cdots \times P_{m}^{\prime \prime} \in \Sigma$ be a distribution whose CDF vector is the following:

$$
F_{i, j}^{P^{\prime \prime}}=\left\{\begin{array}{ll}
\max \left\{F_{i, j}^{P}-\Lambda_{i}, 0\right\} & 1 \leq j \leq s_{i}-1,  \tag{2}\\
1 & j=s_{i}
\end{array}(i \in[m])\right.
$$

It is easy to see that $0 \leq F_{i, 1}^{P^{\prime \prime}} \leq \cdots \leq F_{i, s_{i}}^{P^{\prime \prime}}=1$ for all $i \in[m]$ and that $F_{i, j}^{P^{\prime \prime}} \leq F_{i, j}^{P^{\prime}}$ for all $i \in[m], j \in\left[s_{i}\right]$. Then from the result in (i) we have

$$
\begin{equation*}
r_{P^{\prime}}(S) \leq r_{P^{\prime \prime}}(S) \tag{3}
\end{equation*}
$$

Let $P_{S}=P_{1} \times P_{2} \times \cdots \times P_{n}$, and define $P_{S}^{\prime}$ and $P_{S}^{\prime \prime}$ similarly. Recall that the reward function $R(x, S)$ can be written as $R_{S}\left(x_{S}\right)=R_{S}\left(x_{1}, \ldots, x_{n}\right)$. Then we have

$$
\begin{aligned}
& r_{P^{\prime \prime}}(S)-r_{P}(S) \\
= & \sum_{x_{1}, \ldots, x_{n}} R_{S}\left(x_{1}, \ldots, x_{n}\right) P_{S}^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)-\sum_{x_{1}, \ldots, x_{n}} R_{S}\left(x_{1}, \ldots, x_{n}\right) P_{S}\left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{x_{1}, \ldots, x_{n}} R_{S}\left(x_{1}, \ldots, x_{n}\right) \cdot\left(P_{S}^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)-P_{S}\left(x_{1}, \ldots, x_{n}\right)\right) \\
\leq & \sum_{x_{1}, \ldots, x_{n}} M \cdot\left|P_{S}^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)-P_{S}\left(x_{1}, \ldots, x_{n}\right)\right| \\
= & M \cdot L_{1}\left(P_{S}^{\prime \prime}, P_{S}\right)
\end{aligned}
$$

where the summation is taken over $x_{i} \in\left\{v_{i, 1}, \ldots, v_{i, s_{i}}\right\}(\forall i \in S)$. Then using Lemma 1 we obtain

$$
\begin{equation*}
r_{P^{\prime \prime}}(S)-r_{P}(S) \leq M \cdot \sum_{i \in S} L_{1}\left(P_{i}^{\prime \prime}, P_{i}\right) \tag{4}
\end{equation*}
$$

Now we give an upper bound on $L_{1}\left(P_{i}^{\prime \prime}, P_{i}\right)$. Let $F_{i, 0}^{P}=F_{i, 0}^{P^{\prime \prime}}=0$. Then we have

$$
\begin{align*}
L_{1}\left(P_{i}^{\prime \prime}, P_{i}\right) & =\sum_{j=1}^{s_{i}}\left|P_{i}^{\prime \prime}\left(v_{i, j}\right)-P_{i}\left(v_{i, j}\right)\right| \\
& =\sum_{j=1}^{s_{i}}\left|\left(F_{i, j}^{P^{\prime \prime}}-F_{i, j-1}^{P^{\prime \prime}}\right)-\left(F_{i, j}^{P}-F_{i, j-1}^{P}\right)\right|  \tag{5}\\
& =\sum_{j=1}^{s_{i}}\left|\left(F_{i, j}^{P}-F_{i, j}^{P^{\prime \prime}}\right)-\left(F_{i, j-1}^{P}-F_{i, j-1}^{P^{\prime \prime}}\right)\right| .
\end{align*}
$$

Note that for all $1 \leq j<s_{i}$, we have $F_{i, j}^{P}-F_{i, j}^{P^{\prime \prime}} \geq F_{i, j-1}^{P}-F_{i, j-1}^{P^{\prime \prime}}$. To see this, consider two cases:

- If $F_{i, j}^{P}<\Lambda_{i}$, then we have $F_{i, j-1}^{P} \leq F_{i, j}^{P}<\Lambda_{i}$. By definition (2) we have $F_{i, j}^{P^{\prime \prime}}=F_{i, j-1}^{P^{\prime \prime}}=$ 0 . Thus $F_{i, j}^{P}-F_{i, j}^{P^{\prime \prime}}=F_{i, j}^{P} \geq F_{i, j-1}^{P}=F_{i, j-1}^{P}-F_{i, j-1}^{P^{\prime \prime}}$.
- If $F_{i, j}^{P} \geq \Lambda_{i}$, then by definition (2) we have $F_{i, j}^{P}-F_{i, j}^{P^{\prime \prime}}=\Lambda_{i} \geq F_{i, j-1}^{P}-F_{i, j-1}^{P^{\prime \prime}}$.

Then (5) becomes

$$
\begin{align*}
L_{1}\left(P_{i}^{\prime \prime}, P_{i}\right) & =\sum_{j=1}^{s_{i}-1}\left(\left(F_{i, j}^{P}-F_{i, j}^{P^{\prime \prime}}\right)-\left(F_{i, j-1}^{P}-F_{i, j-1}^{P^{\prime \prime}}\right)\right)+\left|(1-1)-\left(F_{i, s_{i}-1}^{P}-F_{i, s_{i}-1}^{P^{\prime \prime}}\right)\right| \\
& =F_{i, s_{i}-1}^{P}-F_{i, s_{i}-1}^{P^{\prime \prime}}+\left|F_{i, s_{i}-1}^{P}-F_{i, s_{i}-1}^{P^{\prime \prime}}\right|  \tag{6}\\
& =2\left(F_{i, s_{i}-1}^{P}-F_{i, s_{i}-1}^{P^{\prime \prime}}\right) \\
& \leq 2 \Lambda_{i}
\end{align*}
$$

where the last inequality is due to (2).
We complete the proof of the lemma by combining (3), (4) and (6):

$$
r_{P^{\prime}}(S)-r_{P}(S) \leq r_{P^{\prime \prime}}(S)-r_{P}(S) \leq M \cdot \sum_{i \in S} L_{1}\left(P_{i}^{\prime \prime}, P_{i}\right) \leq 2 M \sum_{i \in S} \Lambda_{i}
$$

The following lemma parallels Lemma 1 in [16]. We will use some additional notation:

- For $t \geq m+1$ and $i \in[m]$, let $T_{i, t}$ be the value of counter $T_{i}$ right after the $t$-th round of SDCB-FSD. In other words, $T_{i, t}$ is the number of observed outcomes from arm $i$ in the first $t$ rounds.
- Let $S_{t}$ be the super arm selected by SDCB-FSD in the $t$-th round.

Lemma 3. Define an event in each round $t(m+1 \leq t \leq T)$ :

$$
\begin{equation*}
\mathcal{H}_{t}=\left\{0<\Delta_{S_{t}} \leq 4 M \cdot \sum_{i \in S_{t}} \sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}}\right\} \tag{7}
\end{equation*}
$$

Then the $\alpha$-approximation regret of SDCB-FSD in $T$ rounds is at most

$$
\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}}\right]+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m .
$$

Here we use $\mathbb{1}\{\cdot\}$ to denote the indicator function, i.e., $\mathbb{1}\{\mathcal{H}\}=1$ if an event $\mathcal{H}$ happens, and 0 if it does not happen.

Proof. For simplicity, we let $F=F^{D}$ be the CDF vector of $D$.
Let $\hat{F}_{i, j, l}$ be the value of the empirical probability $\hat{F}_{i, j}$ in SDCB-FSD after $l$ observations of arm $i$, and for $m+1 \leq t \leq T$, let

$$
\mathcal{E}_{t}=\left\{\text { there exists } i \in[m], j \in\left[s_{i}\right] \text { such that }\left|\hat{F}_{i, j, T_{i, t-1}}-F_{i, j}\right| \geq \sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}}\right\}
$$

be the event that there exists an empirical probability $\hat{F}_{i, j}$ which is an "inaccurate" estimate of the true CDF value $F_{i, j}$ at the beginning of the $t$-th round. Note that we always have $\hat{F}_{i, s_{i}, l}=F_{i, s_{i}}=1$ for all $i \in[m], l \geq 1$.

Recall that we have $S^{*}=\operatorname{argmax}_{S \in \mathcal{F}}\left\{r_{D}(S)\right\}$ and $\Delta_{S}=\max \left\{\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}(S), 0\right\}(S \in \mathcal{F})$. We bound the $\alpha$-approximation regret of SDCB-FSD as

$$
\begin{align*}
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) & =\sum_{t=1}^{T} \mathbb{E}\left[\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}\left(S_{t}\right)\right] \leq \sum_{t=1}^{T} \mathbb{E}\left[\Delta_{S_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{m} \Delta_{S_{t}}\right]+\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{E}_{t}\right\} \Delta_{S_{t}}\right]+\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\neg \mathcal{E}_{t}\right\} \Delta_{S_{t}}\right], \tag{8}
\end{align*}
$$

where $\neg \mathcal{E}_{t}$ is the complement of event $\mathcal{E}_{t}$.
We separately bound each term in (8).
(a) the first term

The first term in (8) can be trivially bounded as

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=1}^{m} \Delta_{S_{t}}\right] \leq \sum_{t=1}^{m} \alpha \cdot r_{D}\left(S^{*}\right) \leq m \cdot \alpha M \tag{9}
\end{equation*}
$$

(b) the second term

By Chernoff-Hoeffding bound, for any $i \in[m], j \in\left[s_{i}-1\right], l \geq 1, t \geq m+1$ we have

$$
\operatorname{Pr}\left[\left|\hat{F}_{i, j, l}-F_{i, j}\right| \geq \sqrt{\frac{3 \ln (\lambda t)}{2 l}}\right] \leq 2 e^{-2 l \cdot \frac{3 \ln (\lambda t)}{2 l}}=2 e^{-3 \ln (\lambda t)}=2(\lambda t)^{-3}
$$

Therefore

$$
\begin{aligned}
\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{E}_{t}\right\}\right] & \leq \sum_{t=m+1}^{T} \sum_{i=1}^{m} \sum_{j=1}^{s_{i}-1} \sum_{l=1}^{t-1} \operatorname{Pr}\left[\left|\hat{F}_{i, j, l}-F_{i, j}\right| \geq \sqrt{\frac{3 \ln (\lambda t)}{2 l}}\right] \\
& \leq \sum_{t=m+1}^{T} \sum_{i=1}^{m} \sum_{j=1}^{s_{i}-1} \sum_{l=1}^{t-1} 2(\lambda t)^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \leq 2 \lambda^{-3} m(s-1) \sum_{t=m+1}^{T} t^{-2} \\
& \leq \frac{\pi^{2}}{3} \lambda^{-3} m(s-1)
\end{aligned}
$$

and then the second term in (8) can be bounded as

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{E}_{t}\right\} \Delta_{S_{t}}\right] \leq \frac{\pi^{2}}{3} \lambda^{-3} m(s-1) \cdot\left(\alpha \cdot r_{D}\left(S^{*}\right)\right) \leq \frac{\pi^{2}}{3} \lambda^{-3} m(s-1) \cdot \alpha M \tag{10}
\end{equation*}
$$

(c) the third term

We fix $t>m$ and first assume $\neg \mathcal{E}_{t}$ happens. Let $c_{i}=\sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}}$ for each $i \in[m]$. Since $\neg \mathcal{E}_{t}$ happens, we have

$$
\begin{equation*}
\left|\hat{F}_{i, j, T_{i, t-1}}-F_{i, j}\right|<c_{i} \quad \forall i \in[m], j \in\left[s_{i}\right] \tag{11}
\end{equation*}
$$

Let $\underline{F}=\left(\underline{F}_{i, j}\right)_{i \in[m], j \in\left[s_{i}\right]}$ be the input to the oracle in round $t$, which is the CDF vector of a distribution $\underline{D} \in \Sigma$. By definition, we have

$$
\underline{F}_{i, j}=\left\{\begin{array}{ll}
\max \left\{\hat{F}_{i, j, T_{i, t-1}}-c_{i}, 0\right\} & 1 \leq j \leq s_{i}-1,  \tag{12}\\
1 & j=s_{i}
\end{array}(i \in[m])\right.
$$

From (11) and 12] we know that $\underline{F}_{i, j} \leq F_{i, j} \leq \underline{F}_{i, j}+2 c_{i}$ for all $i \in[m], j \in\left[s_{i}\right]$. Thus, from Lemma2(i) we have

$$
\begin{equation*}
r_{D}(S) \leq r_{\underline{D}}(S) \quad \forall S \in \mathcal{F} \tag{13}
\end{equation*}
$$

and from Lemma 2 (ii) we have

$$
\begin{equation*}
r_{\underline{D}}(S) \leq r_{D}(S)+2 M \sum_{i \in S} 2 c_{i} \quad \forall S \in \mathcal{F} \tag{14}
\end{equation*}
$$

Also, from the fact that the algorithm chooses $S_{t}$ in the $t$-th round, we have

$$
\begin{equation*}
r_{\underline{D}}\left(S_{t}\right) \geq \alpha \cdot \max _{S \in \mathcal{F}}\left\{r_{\underline{D}}(S)\right\} \geq \alpha \cdot r_{\underline{D}}\left(S^{*}\right) \tag{15}
\end{equation*}
$$

From (13), (14) and (15) we have

$$
\alpha \cdot r_{D}\left(S^{*}\right) \leq \alpha \cdot r_{\underline{D}}\left(S^{*}\right) \leq r_{\underline{D}}\left(S_{t}\right) \leq r_{D}\left(S_{t}\right)+2 M \sum_{i \in S_{t}} 2 c_{i}
$$

which implies

$$
\Delta_{S_{t}} \leq 4 M \sum_{i \in S_{t}} c_{i}
$$

Therefore, when $\neg \mathcal{E}_{t}$ happens, we always have $\Delta_{S_{t}} \leq 4 M \sum_{i \in S_{t}} c_{i}$. In other words,

$$
\neg \mathcal{E}_{t} \Longrightarrow\left\{\Delta_{S_{t}} \leq 4 M \sum_{i \in S_{t}} \sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}}\right\}
$$

This implies

$$
\left\{\neg \mathcal{E}_{t}, \Delta_{S_{t}}>0\right\} \Longrightarrow\left\{0<\Delta_{S_{t}} \leq 4 M \sum_{i \in S_{t}} \sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}}\right\}=\mathcal{H}_{t}
$$

Hence, the third term in (8) can be bounded as

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\neg \mathcal{E}_{t}\right\} \Delta_{S_{t}}\right]=\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\neg \mathcal{E}_{t}, \Delta_{S_{t}}>0\right\} \Delta_{S_{t}}\right] \leq \mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}}\right] \tag{16}
\end{equation*}
$$

Finally, by combining (8), (9), (10) and (16) we have

$$
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) \leq \mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}}\right]+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m
$$

completing the proof of the lemma.

## A.1.3 Finishing the Proof of Theorem 1

Lemma 3 is very similar to Lemma 1 in [16]. We now apply the counting argument in [16] to finish the proof of Theorem 1 .
From Lemma 3 we know that it remains to bound $\mathbb{E}\left[\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}}\right]$, where $\mathcal{H}_{t}$ is defined in (7).
Define two decreasing sequences of positive constants

$$
\begin{aligned}
1=\beta_{0}>\beta_{1}>\beta_{2}>\ldots \\
\alpha_{1}>\alpha_{2}>\ldots
\end{aligned}
$$

such that $\lim _{k \rightarrow \infty} \alpha_{k}=\lim _{k \rightarrow \infty} \beta_{k}=0$. We choose $\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$ as in Theorem 4 of [16], which satisfy

$$
\begin{equation*}
\sqrt{6} \sum_{k=1}^{\infty} \frac{\beta_{k-1}-\beta_{k}}{\sqrt{\alpha_{k}}} \leq 1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\alpha_{k}}{\beta_{k}}<267 \tag{18}
\end{equation*}
$$

For $t \in\{m+1, \ldots, T\}$ and $k \in \mathbb{Z}_{+}$, let

$$
m_{k, t}= \begin{cases}\alpha_{k}\left(\frac{2 M K}{\Delta_{S_{t}}}\right)^{2} \ln (\lambda T) & \Delta_{S_{t}}>0 \\ +\infty & \Delta_{S_{t}}=0\end{cases}
$$

and

$$
A_{k, t}=\left\{i \in S_{t} \mid T_{i, t-1} \leq m_{k, t}\right\}
$$

Then we define an event

$$
\mathcal{G}_{k, t}=\left\{\left|A_{k, t}\right| \geq \beta_{k} K\right\}
$$

which means "in the $t$-th round, at least $\beta_{k} K$ arms in $S_{t}$ had been observed at most $m_{k, t}$ times."
Lemma 4. In the $t$-th round $(m+1 \leq t \leq T)$, if event $\mathcal{H}_{t}$ happens, then there exists $k \in \mathbb{Z}_{+}$such that event $\mathcal{G}_{k, t}$ happens.

Proof. Assume that $\mathcal{H}_{t}$ happens and that none of $\mathcal{G}_{1, t}, \mathcal{G}_{2, t}, \ldots$ happens. Then $\left|A_{k, t}\right|<\beta_{k} K$ for all $k \in \mathbb{Z}_{+}$.
Let $A_{0, t}=S_{t}$ and $\bar{A}_{k, t}=S_{t} \backslash A_{k, t}$ for $k \in \mathbb{Z}_{+} \cup\{0\}$. It is easy to see $\bar{A}_{k-1, t} \subseteq \bar{A}_{k, t}$ for all $k \in \mathbb{Z}_{+}$. Note that $\lim _{k \rightarrow \infty} m_{k, t}=0$. Thus there exists $N \in \mathbb{Z}_{+}$such that $\bar{A}_{k, t}=S_{t}$ for all $k \geq N$, and then we have $S_{t}=\bigcup_{k=1}^{\infty}\left(\bar{A}_{k, t} \backslash \bar{A}_{k-1, t}\right)$. Finally, note that for all $i \in \bar{A}_{k, t}$, we have $T_{i, t-1}>m_{k, t}$. Therefore

$$
\begin{aligned}
\sum_{i \in S_{t}} \frac{1}{\sqrt{T_{i, t-1}}} & =\sum_{k=1}^{\infty} \sum_{i \in \bar{A}_{k, t} \backslash \bar{A}_{k-1, t}} \frac{1}{\sqrt{T_{i, t-1}}} \leq \sum_{k=1}^{\infty} \sum_{i \in \bar{A}_{k, t} \backslash \bar{A}_{k-1, t}} \frac{1}{\sqrt{m_{k, t}}} \\
& =\sum_{k=1}^{\infty} \frac{\left|\bar{A}_{k, t} \backslash \bar{A}_{k-1, t}\right|}{\sqrt{m_{k, t}}}=\sum_{k=1}^{\infty} \frac{\left|A_{k-1, t} \backslash A_{k, t}\right|}{\sqrt{m_{k, t}}}=\sum_{k=1}^{\infty} \frac{\left|A_{k-1, t}\right|-\left|A_{k, t}\right|}{\sqrt{m_{k, t}}} \\
& =\frac{\left|S_{t}\right|}{\sqrt{m_{1, t}}}+\sum_{k=1}^{\infty}\left|A_{k, t}\right|\left(\frac{1}{\sqrt{m_{k+1, t}}}-\frac{1}{\sqrt{m_{k, t}}}\right) \\
& <\frac{K}{\sqrt{m_{1, t}}}+\sum_{k=1}^{\infty} \beta_{k} K\left(\frac{1}{\sqrt{m_{k+1, t}}}-\frac{1}{\sqrt{m_{k, t}}}\right) \\
& =\sum_{k=1}^{\infty} \frac{\left(\beta_{k-1}-\beta_{k}\right) K}{\sqrt{m_{k, t}}}
\end{aligned}
$$

Note that we assume $\mathcal{H}_{t}$ happens. Then we have

$$
\begin{aligned}
\Delta_{S_{t}} & \leq 4 M \cdot \sum_{i \in S_{t}} \sqrt{\frac{3 \ln (\lambda t)}{2 T_{i, t-1}}} \leq 2 M \sqrt{6 \ln (\lambda T)} \cdot \sum_{i \in S_{t}} \frac{1}{\sqrt{T_{i, t-1}}} \\
& <2 M \sqrt{6 \ln (\lambda T)} \cdot \sum_{k=1}^{\infty} \frac{\left(\beta_{k-1}-\beta_{k}\right) K}{\sqrt{m_{k, t}}}=\sqrt{6} \sum_{k=1}^{\infty} \frac{\beta_{k-1}-\beta_{k}}{\sqrt{\alpha_{k}}} \cdot \Delta_{S_{t}} \leq \Delta_{S_{t}},
\end{aligned}
$$

where the last inequality is due to 17 l. We reach a contradiction here. The proof of the lemma is completed.

By Lemma 4 we have

$$
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \leq \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{G}_{k, t}, \Delta_{S_{t}}>0\right\} \Delta_{S_{t}}
$$

For $i \in[m], k \in \mathbb{Z}_{+}, t \in\{m+1, \ldots, T\}$, define an event

$$
\mathcal{G}_{i, k, t}=\mathcal{G}_{k, t} \wedge\left\{i \in S_{t}, T_{i, t-1} \leq m_{k, t}\right\}
$$

Then by the definitions of $\mathcal{G}_{k, t}$ and $\mathcal{G}_{i, k, t}$ we have

$$
\mathbb{1}\left\{\mathcal{G}_{k, t}, \Delta_{S_{t}}>0\right\} \leq \frac{1}{\beta_{k} K} \sum_{i \in E_{\mathrm{B}}} \mathbb{1}\left\{\mathcal{G}_{i, k, t}, \Delta_{S_{t}}>0\right\}
$$

Therefore

$$
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \leq \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{G}_{i, k, t}, \Delta_{S_{t}}>0\right\} \frac{\Delta_{S_{t}}}{\beta_{k} K}
$$

For each arm $i \in E_{\mathrm{B}}$, suppose $i$ is contained in $N_{i}$ bad super arms $S_{i, 1}^{\mathrm{B}}, S_{i, 2}^{\mathrm{B}}, \ldots, S_{i, N_{i}}^{\mathrm{B}}$. Let $\Delta_{i, l}=\Delta_{S_{i, l}^{\mathrm{B}}}\left(l \in\left[N_{i}\right]\right)$. Without loss of generality, we assume $\Delta_{i, 1} \geq \Delta_{i, 2} \geq \ldots \geq \Delta_{i, N_{i}}$. Note that $\Delta_{i, N_{i}}=\Delta_{i, \min }$. For convenience, we also define $\Delta_{i, 0}=+\infty$, i.e., $\alpha_{k}\left(\frac{2 M K}{\Delta_{i, 0}}\right)^{2}=0$. Then we have

$$
\begin{aligned}
& \sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \\
\leq & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \mathbb{1}_{l}\left\{\mathcal{G}_{i, k, t}, S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{S_{t}}}{\beta_{k} K} \\
\leq & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \mathbb{1}\left\{T_{i, t-1} \leq m_{k, t}, S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{i, l}}{\beta_{k} K} \\
= & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \mathbb{1}\left\{T_{i, t-1} \leq \alpha_{k}\left(\frac{2 M K}{\Delta_{i, l}}\right)^{2} \ln (\lambda T), S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{i, l}}{\beta_{k} K} \\
= & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \sum_{l=1}^{l} \mathbb{1}\left\{\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j-1}}\right)^{2} \ln (\lambda T)<T_{i, t-1} \leq \alpha_{k}\left(\frac{2 M K}{\Delta_{i, j}}\right)^{2} \ln (\lambda T), S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{i, l}}{\beta_{k} K} \\
\leq & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \sum_{j=1}^{l} \mathbb{1}\left\{\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j-1}}\right)^{2} \ln (\lambda T)<T_{i, t-1} \leq \alpha_{k}\left(\frac{2 M K}{\Delta_{i, j}}\right)^{2} \ln (\lambda T), S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{i, j}}{\beta_{k} K} \\
\leq & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{l=1}^{N_{i}} \sum_{j=1}^{N_{i}} \mathbb{1}\left\{\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j-1}}\right)^{2} \ln (\lambda T)<T_{i, t-1} \leq \alpha_{k}\left(\frac{2 M K}{\Delta_{i, j}}\right)^{2} \ln (\lambda T), S_{t}=S_{i, l}^{\mathrm{B}}\right\} \frac{\Delta_{i, j}}{\beta_{k} K} \\
\leq & \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{t=m+1}^{T} \sum_{j=1}^{N_{i}} \mathbb{1}\left\{\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j-1}}\right)^{2} \ln (\lambda T)<T_{i, t-1} \leq \alpha_{k}\left(\frac{2 M K}{\Delta_{i, j}}\right)^{2} \ln (\lambda T)\right\} \frac{\Delta_{i, j}}{\beta_{k} K}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i \in E_{\mathrm{B}}} \sum_{k=1}^{\infty} \sum_{j=1}^{N_{i}}\left(\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j}}\right)^{2} \ln (\lambda T)-\alpha_{k}\left(\frac{2 M K}{\Delta_{i, j-1}}\right)^{2} \ln (\lambda T)\right) \frac{\Delta_{i, j}}{\beta_{k} K} \\
& =4 M^{2} K\left(\sum_{k=1}^{\infty} \frac{\alpha_{k}}{\beta_{k}}\right) \ln (\lambda T) \cdot \sum_{i \in E_{\mathrm{B}}} \sum_{j=1}^{N_{i}}\left(\frac{1}{\Delta_{i, j}^{2}}-\frac{1}{\Delta_{i, j-1}^{2}}\right) \Delta_{i, j} \\
& \leq 1068 M^{2} K \ln (\lambda T) \cdot \sum_{i \in E_{\mathrm{B}}} \sum_{j=1}^{N_{i}}\left(\frac{1}{\Delta_{i, j}^{2}}-\frac{1}{\Delta_{i, j-1}^{2}}\right) \Delta_{i, j}
\end{aligned}
$$

where the last inequality is due to 18 .
[jian: it may be useful to explain the second to last inequality. ]
Finally, for each $i \in E_{\mathrm{B}}$ we have

$$
\begin{aligned}
\sum_{j=1}^{N_{i}}\left(\frac{1}{\Delta_{i, j}^{2}}-\frac{1}{\Delta_{i, j-1}^{2}}\right) \Delta_{i, j} & =\frac{1}{\Delta_{i, N_{i}}}+\sum_{j=1}^{N_{i}-1} \frac{1}{\Delta_{i, j}^{2}}\left(\Delta_{i, j}-\Delta_{i, j+1}\right) \\
& \leq \frac{1}{\Delta_{i, N_{i}}}+\int_{\Delta_{i, N_{i}}}^{\Delta_{i, 1}} \frac{1}{x^{2}} \mathrm{~d} x \\
& =\frac{2}{\Delta_{i, N_{i}}}-\frac{1}{\Delta_{i, 1}} \\
& <\frac{2}{\Delta_{i, \min }}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \leq 1068 M^{2} K \ln (\lambda T) \cdot \sum_{i \in E_{\mathrm{B}}} \frac{2}{\Delta_{i, \min }}=M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{2136}{\Delta_{i, \min }} \ln (\lambda T) \tag{19}
\end{equation*}
$$

Combining (19) with Lemma 3 the distribution-dependent regret bound in Theorem 1 is proved.
To prove the distribution-independent bound, we decompose $\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}}$ into two parts:

$$
\begin{align*}
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} & =\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}, \Delta_{S_{t}} \leq \epsilon\right\} \Delta_{S_{t}}+\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}, \Delta_{S_{t}}>\epsilon\right\} \Delta_{S_{t}}  \tag{20}\\
& \leq \epsilon T+\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}, \Delta_{S_{t}}>\epsilon\right\} \Delta_{S_{t}}
\end{align*}
$$

where $\epsilon>0$ is a constant to be determined. The second term can be bounded in the same way as in the proof of the distribution-dependent regret bound, except that we only consider the case $\Delta_{S_{t}}>\epsilon$. Thus we can replace (19) by

$$
\begin{equation*}
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}, \Delta_{S_{t}}>\epsilon\right\} \Delta_{S_{t}} \leq M^{2} K \sum_{i: \Delta_{i, \min }>\epsilon} \frac{2136}{\Delta_{i, \min }} \ln (\lambda T) \leq M^{2} K m \frac{2136}{\epsilon} \ln (\lambda T) \tag{21}
\end{equation*}
$$

It follows that

$$
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \leq \epsilon T+M^{2} K m \frac{2136}{\epsilon} \ln (\lambda T)
$$

Finally, let $\epsilon=\sqrt{\frac{2136 M^{2} K m \ln (\lambda T)}{T}}$, and then we have

$$
\sum_{t=m+1}^{T} \mathbb{1}\left\{\mathcal{H}_{t}\right\} \Delta_{S_{t}} \leq 2 \sqrt{2136 M^{2} K m T \ln (\lambda T)}<93 M \sqrt{m K T \ln (\lambda T)}
$$

Combining this with Lemma 3, we conclude the proof of the distribution-independent regret bound in Theorem 1

```
Algorithm 4 CUCB [8, 16]
 For each arm \(i\), maintain: (i) \(\hat{\mu}_{i}\), the average of all observed outcomes from arm \(i\) so far, and (ii)
 \(T_{i}\), the number of observed outcomes from arm \(i\) so far.
 // Initialization
 for \(i=1\) to \(m\) do
 // Action in the \(i\)-th round
 Play a super arm \(S_{i}\) that contains arm \(i\), and update \(\hat{\mu}_{i}\) and \(T_{i}\).
 end for
 for \(t=m+1, m+2, \ldots\) do
 // Action in the \(t\)-th round
 \(\bar{\mu}_{i} \leftarrow \min \left\{\hat{\mu}_{i}+\sqrt{\frac{3 \ln t}{2 T_{i}}}, 1\right\} \quad \forall i \in[m]\)
 Play the super arm \(S_{t} \leftarrow \operatorname{Oracle}(\bar{\mu})\), where \(\bar{\mu}=\left(\bar{\mu}_{1}, \ldots, \bar{\mu}_{m}\right)\).
 Update \(\hat{\mu}_{i}\) and \(T_{i}\) for all \(i \in S_{t}\).
 end for
```


## A. 2 Analysis of Our Algorithm in the Previous CMAB Framework

We now give an analysis of SDCB-FSD (with $\lambda=1$ ) in the previous CMAB framework, following our discussion in Section 3 We consider the case in which the expected reward only depends on the means of the random variables. Namely, $r_{D}(S)$ only depends on $\mu_{i}$ 's $(i \in S)$, where $\mu_{i}$ is arm $i$ 's mean outcome. In this case, we can rewrite $r_{D}(S)$ as $r_{\mu}(S)$, where $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$ is the vector of means. Note that the offline computation oracle only needs a mean vector as input.
We no longer need the four assumptions given in Section 2 In particular, we do not require independence among outcome distributions of all arms (Assumption 1). Although we cannot write $D$ as $D=D_{1} \times \cdots \times D_{m}$, we still let $D_{i}$ be the outcome distribution of arm $i$. In this case, $D_{i}$ is the marginal distribution of $D$ in the $i$-th component.
We summarize the CUCB algorithm [8, 16] in Algorithm4. It maintains the empirical mean $\hat{\mu}_{i}$ of the outcomes from each arm $i$, and stores the number of observed outcomes from arm $i$ in a variable $T_{i}$. In each round, it calculates an upper confidence bound (UCB) $\bar{\mu}_{i}$ of $\mu_{i}$, Then it uses the UCB vector $\bar{\mu}$ as the input to the oracle, and plays the super arm output by the oracle. In the $t$-th round $(t>m)$, each UCB $\bar{\mu}_{i}$ has the key property that

$$
\begin{equation*}
\mu_{i} \leq \bar{\mu}_{i} \leq \mu_{i}+2 \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}} \tag{22}
\end{equation*}
$$

holds with high probability. (Recall that $T_{i, t-1}$ is the value of $T_{i}$ after $t-1$ rounds.) To see this, note that we have $\left|\mu_{i}-\hat{\mu}_{i}\right| \leq \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}}$ with high probability (by Chernoff bound), and then (22) follows from the definition of $\bar{\mu}_{i}$ in line 9 of Algorithm 4 .
We prove that the same property as (22) also holds for SDCB-FSD. Consider a fixed $t>m$, and let $\underline{F}=\left(\underline{F}_{i, j}\right)$ be the CDF vector used as the input to the oracle in the $t$-th round of SDCB-FSD. Let $\underline{D}_{i}$ be the distribution corresponding to the CDF values $\left(\underline{F}_{i, j}\right)_{j \in\left[s_{i}\right]}$, i.e., $\underline{D}_{i}$ takes values from $\left\{v_{i, 1}, \ldots, v_{i, s_{i}}\right\}$ and $\operatorname{Pr}_{Y_{i} \sim \underline{D}_{i}}\left[Y_{i} \leq v_{i, j}\right]=\underline{F}_{i, j}$ for all $j \in\left[s_{i}\right]$. Let $\nu_{i}=\mathbb{E}_{Y_{i} \sim \underline{D_{i}}}\left[Y_{i}\right]$. We can think that SDCB-FSD uses the mean vector $\nu=\left(\nu_{1}, \ldots, \nu_{m}\right)$ as the input to the oracle used by CUCB. We now show that for each $i$, we have

$$
\begin{equation*}
\mu_{i} \leq \nu_{i} \leq \mu_{i}+2 \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}} \tag{23}
\end{equation*}
$$

with high probability.
To show (23), we first prove the following lemma.
Lemma 5. Let $P$ and $P^{\prime}$ be two distributions taking values from the set $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}$ where $0 \leq v_{1}<v_{2}<\cdots<v_{s} \leq 1$. Consider two random variables $Y \sim P$ and $Y^{\prime} \sim P^{\prime}$. Let $F_{j}=\operatorname{Pr}\left[Y \leq v_{j}\right]$ and $F_{j}^{\prime}=\operatorname{Pr}\left[Y^{\prime} \leq v_{j}\right]$, for each $j \in[s]$.
(i) If for all $j \in[s]$ we have $F_{j}^{\prime} \leq F_{j}$, then we have $\mathbb{E}[Y] \leq \mathbb{E}\left[Y^{\prime}\right]$.
(ii) If for all $j \in[s]$ we have $F_{j}-F_{j}^{\prime} \leq \Lambda(\Lambda>0)$, then we have $\mathbb{E}\left[Y^{\prime}\right] \leq \mathbb{E}[Y]+\Lambda$.

Proof. Let $F_{0}=0$. We have

$$
\begin{aligned}
\mathbb{E}[Y] & =\sum_{j=1}^{s} v_{j} \cdot \operatorname{Pr}\left[Y=v_{j}\right]=\sum_{j=1}^{s} v_{j}\left(F_{j}-F_{j-1}\right)=\sum_{j=1}^{s-1} F_{j}\left(v_{j}-v_{j+1}\right)+v_{s} F_{s} \\
& =\sum_{j=1}^{s-1} F_{j}\left(v_{j}-v_{j+1}\right)+v_{s} .
\end{aligned}
$$

Similarly, we have

$$
\mathbb{E}\left[Y^{\prime}\right]=\sum_{j=1}^{s-1} F_{j}^{\prime}\left(v_{j}-v_{j+1}\right)+v_{s}
$$

Therefore, we have

$$
\begin{equation*}
\mathbb{E}\left[Y^{\prime}\right]-\mathbb{E}[Y]=\sum_{j=1}^{s-1}\left(F_{j}-F_{j}^{\prime}\right)\left(v_{j+1}-v_{j}\right) \tag{24}
\end{equation*}
$$

(i) If $F_{j}^{\prime} \leq F_{j}$ for all $j \in[s]$, then form (24) we have $\mathbb{E}\left[Y^{\prime}\right]-\mathbb{E}[Y] \geq \sum_{j=1}^{s-1} 0 \cdot\left(v_{j+1}-v_{j}\right)=0$.
(ii) If $F_{j}-F_{j}^{\prime} \leq \Lambda$ for all $j \in[s]$, then form (24) we have $\mathbb{E}\left[Y^{\prime}\right]-\mathbb{E}[Y] \leq \sum_{j=1}^{s-1} \Lambda\left(v_{j+1}-v_{j}\right)=$ $\Lambda\left(v_{s}-v_{1}\right) \leq \Lambda$.

Now we prove 23. Note that $\underline{F}_{i, j}$ used by SDCB-FSD is a lower confidence bound on the CDF value $F_{i, j}=\operatorname{Pr}_{X_{i} \sim D_{i}}\left[X_{i} \leq v_{i, j}\right]$ of the true outcome distribution $D_{i}$. Specifically, we have

$$
\begin{equation*}
F_{i, j}-2 \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}} \leq \underline{F}_{i, j} \leq F_{i, j} \tag{25}
\end{equation*}
$$

with high probability for all $i \in[m], j \in\left[s_{i}\right]$. Suppose (25) holds for all $i, j$, then for any $i$, the two distributions $D_{i}$ and $\underline{D}_{i}$ satisfy the two conditions in Lemma 5. with $\Lambda=2 \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}}$; then from Lemma 5 we know that $\mu_{i} \leq \nu_{i} \leq \mu_{i}+2 \sqrt{\frac{3 \ln t}{2 T_{i, t-1}}}$. Hence we have shown that (23) holds with high probability.
The fact that (23) holds with high probability means that the mean of $\underline{D}_{i}$ is also a UCB of $\mu_{i}$ with the same confidence interval length as in CUCB. With this property, the analysis in [8, 16] can also be applied to SDCB-FSD, resulting in essentially the same regret bounds. The only difference is that the failure probability bound of (23) in SDCB-FSD is larger than the failure probability bound of (22) in CUCB by a factor of $s$, due to a union bound for all $s_{i}$ support values; thus the constant term (i.e., the term not containing $T$ ) in the regret bounds of SDCB has an extra term of $s$. The term containing $T$ in the regret bounds of CUCB and SDCB-FSD will be exactly the same.

## B Missing Proofs from Section 4

## B. 1 Analysis of the Discretization Error

The following lemma gives an upper bound on the error due to discretization.
Lemma 6. For any $S \in \mathcal{F}$, we have

$$
\left|r_{D}(S)-r_{\tilde{D}}(S)\right| \leq \frac{C K}{s}
$$

To prove Lemma 6, we show a slightly more general lemma which gives an upper bound on the discretization error of the expectation of a Lipschitz continuous function.

Lemma 7. Let $g(x)$ be a Lipschitz continuous function on $[0,1]^{n}$ such that for any $x, x^{\prime} \in[0,1]^{n}$, we have $\left|g(x)-g\left(x^{\prime}\right)\right| \leq C\left\|x-x^{\prime}\right\|_{1}$, where $\left\|x-x^{\prime}\right\|_{1}=\sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right|$ Let $P=P_{\tilde{P}_{1}} \times \cdots \times P_{n}$ be a probability distribution over $[0,1]^{n}$. Define another distribution $\tilde{P}=\tilde{P}_{1} \times \cdots \times \tilde{P}_{n}$ over $[0,1]^{n}$ as follows: each $\tilde{P}_{i}(i \in[n])$ takes values in $\left\{\frac{1}{s}, \frac{2}{s}, \ldots, 1\right\}$, and

$$
\operatorname{Pr}_{\tilde{X}_{i} \sim \tilde{P}_{i}}\left[\tilde{X}_{i}=j / s\right]=\operatorname{Pr}_{X_{i} \sim P_{i}}\left[X_{i} \in I_{j}\right], \quad j \in[s],
$$

where $I_{1}=\left[0, \frac{1}{s}\right], I_{2}=\left(\frac{1}{s}, \frac{2}{s}\right], \ldots, I_{s-1}=\left(\frac{s-2}{s}, \frac{s-1}{s}\right], I_{s}=\left(\frac{s-1}{s}, 1\right]$. Then

$$
\begin{equation*}
\left|\mathbb{E}_{X \sim P}[g(X)]-\mathbb{E}_{\tilde{X} \sim \tilde{P}}[g(\tilde{X})]\right| \leq \frac{C \cdot n}{s} \tag{26}
\end{equation*}
$$

Proof. Throughout the proof, we consider $X=\left(X_{1}, \ldots, X_{n}\right) \sim P$ and $\tilde{X}=\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right) \sim \tilde{P}$ $(\forall i \in[n])$.
Let $v_{j}=\frac{j}{s}(j=0,1, \ldots, s)$ and

$$
p_{i, j}=\operatorname{Pr}\left[\tilde{X}_{i}=v_{j}\right]=\operatorname{Pr}\left[X_{i} \in I_{j}\right] \quad i \in[n], j \in[s]
$$

We prove 26 by induction on $n$.
(1) When $n=1$, we have

$$
\begin{equation*}
\mathbb{E}\left[g\left(X_{1}\right)\right]=\sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot \mathbb{E}\left[g\left(X_{1}\right) \mid X_{1} \in I_{j}\right] \tag{27}
\end{equation*}
$$

Since $g$ is continuous, for each $j \in[s]$ such that $p_{1, j}>0$, there exists $\xi_{j} \in\left[v_{j-1}, v_{j}\right]$ such that

$$
\mathbb{E}\left[g\left(X_{1}\right) \mid X_{1} \in I_{j}\right]=g\left(\xi_{j}\right)
$$

From the Lipschitz continuity of $g$ we have

$$
\left|g\left(v_{j}\right)-g\left(\xi_{j}\right)\right| \leq C\left|v_{j}-\xi_{j}\right| \leq C\left|v_{j}-v_{j-1}\right|=\frac{C}{s}
$$

Hence

$$
\begin{aligned}
\left|\mathbb{E}\left[g\left(X_{1}\right)\right]-\mathbb{E}\left[g\left(\tilde{X}_{1}\right)\right]\right| & =\left|\sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot \mathbb{E}\left[g\left(X_{1}\right) \mid X_{1} \in I_{j}\right]-\sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot g\left(v_{j}\right)\right| \\
& =\left|\sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot g\left(\xi_{j}\right)-\sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot g\left(v_{j}\right)\right| \\
& \leq \sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot\left|g\left(\xi_{j}\right)-g\left(v_{j}\right)\right| \\
& \leq \sum_{j \in[s], p_{1, j}>0} p_{1, j} \cdot \frac{C}{s} \\
& =\frac{C}{s} .
\end{aligned}
$$

This proves (26) for $n=1$.
(ii) Suppose (26) is correct for $n=1,2, \ldots, k-1$. Now we prove it for $n=k(k \geq 2)$.

We define two functions on $[0,1]^{k-1}$ :

$$
h\left(x_{1}, \ldots, x_{k-1}\right)=\mathbb{E}_{X_{k}}\left[g\left(x_{1}, \ldots, x_{k-1}, X_{k}\right)\right]
$$

and

$$
\tilde{h}\left(x_{1}, \ldots, x_{k-1}\right)=\mathbb{E}_{\tilde{X}_{k}}\left[g\left(x_{1}, \ldots, x_{k-1}, \tilde{X}_{k}\right)\right]
$$

For any fixed $x_{1}, \ldots, x_{k-1} \in[0,1]$, the function $g\left(x_{1}, \ldots, x_{k-1}, x\right)$ on $x \in[0,1]$ is Lipschitz continuous. Therefore from the result for $n=1$ we have

$$
\left|h\left(x_{1}, \ldots, x_{k-1}\right)-\tilde{h}\left(x_{1}, \ldots, x_{k-1}\right)\right| \leq \frac{C}{s} \quad \forall x_{1}, \ldots, x_{k-1} \in[0,1] .
$$

Then we have

$$
\begin{align*}
& |\mathbb{E}[g(X)]-\mathbb{E}[g(\tilde{X})]| \\
= & \left|\mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[\mathbb{E}\left[g(X) \mid X_{1}, \ldots, X_{k-1}\right]\right]-\mathbb{E}[g(\tilde{X})]\right| \\
= & \left|\mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[h\left(X_{1}, \ldots, X_{k-1}\right)\right]-\mathbb{E}[g(\tilde{X})]\right| \\
\leq & \left|\mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[h\left(X_{1}, \ldots, X_{k-1}\right)\right]-\mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[\tilde{h}\left(X_{1}, \ldots, X_{k-1}\right)\right]\right| \\
& +\left|\mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[\tilde{h}\left(X_{1}, \ldots, X_{k-1}\right)\right]-\mathbb{E}[g(\tilde{X})]\right| \\
\leq & \mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[\left|h\left(X_{1}, \ldots, X_{k-1}\right)-\tilde{h}\left(X_{1}, \ldots, X_{k-1}\right)\right|\right] \\
& +\left|\mathbb{E}_{X_{1}, \ldots, X_{k-1}, \tilde{X}_{k}}\left[g\left(X_{1}, \ldots, X_{k-1}, \tilde{X}_{k}\right)\right]-\mathbb{E}[g(\tilde{X})]\right| \\
\leq & \mathbb{E}_{X_{1}, \ldots, X_{k-1}}\left[\frac{C}{s}\right]+\left|\mathbb{E}_{\tilde{X}_{k}}\left[\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k-1}, \tilde{X}_{k}\right) \mid \tilde{X}_{k}\right]-\mathbb{E}\left[g\left(\tilde{X}_{1}, \ldots, \tilde{X}_{k-1}, \tilde{X}_{k}\right) \mid \tilde{X}_{k}\right]\right]\right| \\
\leq & \frac{C}{s}+\mathbb{E}_{\tilde{X}_{k}}\left[\left|\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k-1}, \tilde{X}_{k}\right) \mid \tilde{X}_{k}\right]-\mathbb{E}\left[g\left(\tilde{X}_{1}, \ldots, \tilde{X}_{k-1}, \tilde{X}_{k}\right) \mid \tilde{X}_{k}\right]\right|\right] \\
= & \frac{C}{s}+\sum_{j \in[s], p_{k, j}>0} p_{k, j} \cdot\left|\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k-1}, v_{j}\right)\right]-\mathbb{E}\left[g\left(\tilde{X}_{1}, \ldots, \tilde{X}_{k-1}, v_{j}\right)\right]\right| . \tag{28}
\end{align*}
$$

For any $j \in[s]$, the function $g\left(x_{1}, \ldots, x_{k-1}, v_{j}\right)$ on $\left(x_{1}, \ldots, x_{k-1}\right) \in[0,1]^{k-1}$ is Lipschitz continuous. Then from the induction hypothesis at $n=k-1$, we have

$$
\begin{equation*}
\left|\mathbb{E}\left[g\left(X_{1}, \ldots, X_{k-1}, v_{j}\right)\right]-\mathbb{E}\left[g\left(\tilde{X}_{1}, \ldots, \tilde{X}_{k-1}, v_{j}\right)\right]\right| \leq \frac{C(k-1)}{s} \quad \forall j \in[s] \tag{29}
\end{equation*}
$$

From (28) and 29 we have

$$
\begin{aligned}
|\mathbb{E}[g(X)]-\mathbb{E}[g(\tilde{X})]| & \leq \frac{C}{s}+\sum_{j \in[s], p_{k, j}>0} p_{k, j} \cdot \frac{C(k-1)}{s} \\
& =\frac{C}{s}+\frac{C(k-1)}{s} \\
& =\frac{C k}{s}
\end{aligned}
$$

This concludes the proof for $n=k$.
Now we prove Lemma 6
Proof of Lemma 6 We have

$$
r_{D}(S)=\mathbb{E}_{X \sim D}[R(X, S)]=\mathbb{E}_{X \sim D}\left[R_{S}\left(X_{S}\right)\right]=\mathbb{E}_{X_{S} \sim D_{S}}\left[R_{S}\left(X_{S}\right)\right]
$$

where $X_{S}=\left(X_{i}\right)_{i \in S}$ and $D_{S}=\left(D_{i}\right)_{i \in S}$. Similarly, we have

$$
r_{\tilde{D}}(S)=\mathbb{E}_{\tilde{X}_{S} \sim \tilde{D}_{S}}\left[R_{S}\left(\tilde{X}_{S}\right)\right]
$$

According to Assumption 4 , the function $R_{S}$ defined on $[0,1]^{|S|}$ is Lipschitz continuous. Then from Lemma 7 we have

$$
\left|r_{D}(S)-r_{\tilde{D}}(S)\right|=\left|\mathbb{E}_{X_{S} \sim D_{S}}\left[R_{S}\left(X_{S}\right)\right]-\mathbb{E}_{\tilde{X}_{S} \sim \tilde{D}_{S}}\left[R_{S}\left(\tilde{X}_{S}\right)\right]\right| \leq \frac{C \cdot|S|}{s} \leq \frac{C \cdot K}{s}
$$

This completes the proof.

## B. 2 Proof of Theorem 2

Let $S^{*}=\operatorname{argmax}_{S \in \mathcal{F}}\left\{r_{D}(S)\right\}$ and $\tilde{S}^{*}=\operatorname{argmax}_{S \in \mathcal{F}}\left\{r_{\tilde{D}}(S)\right\}$ be the optimal super arms in problems $([m], \mathcal{F}, D, R)$ and $([m], \mathcal{F}, \tilde{D}, R)$, respectively. Suppose SDCB-GDT (Algorithm 2) selects super arm $S_{t}$ in the $t$-th round $(1 \leq t \leq T)$. Then its $\alpha$-approximation regret is bounded as

$$
\begin{aligned}
& \operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{GDT}}(T) \\
= & T \cdot \alpha \cdot r_{D}\left(S^{*}\right)-\sum_{t=1}^{T} \mathbb{E}\left[r_{D}\left(S_{t}\right)\right] \\
= & T \cdot \alpha\left(r_{D}\left(S^{*}\right)-r_{\tilde{D}}\left(\tilde{S}^{*}\right)\right)+\sum_{t=1}^{T} \mathbb{E}\left[r_{\tilde{D}}\left(S_{t}\right)-r_{D}\left(S_{t}\right)\right]+\left(T \cdot \alpha \cdot r_{\tilde{D}}\left(\tilde{S}^{*}\right)-\sum_{t=1}^{T} \mathbb{E}\left[r_{\tilde{D}}\left(S_{t}\right)\right]\right) \\
\leq & T \cdot \alpha\left(r_{D}\left(S^{*}\right)-r_{\tilde{D}}\left(S^{*}\right)\right)+\sum_{t=1}^{T} \mathbb{E}\left[r_{\tilde{D}}\left(S_{t}\right)-r_{D}\left(S_{t}\right)\right]+\operatorname{Reg}_{\tilde{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) .
\end{aligned}
$$

where the inequality is due to $r_{\tilde{D}}\left(\tilde{S}^{*}\right) \geq r_{\tilde{D}}\left(S^{*}\right)$.
Then from Lemma6 we have

$$
\begin{align*}
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{GDT}}(T) & \leq T \cdot \alpha \cdot \frac{C K}{s}+T \cdot \frac{C K}{s}+\operatorname{Reg}_{\tilde{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T)  \tag{30}\\
& \leq \operatorname{Reg}_{\tilde{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T)+2 C K T s^{-1}
\end{align*}
$$

## B.2.1 Distribution-Independent Bound

Proof of the distribution-independent bound in Theorem 2 Plugging the distribution-independent bound in Theorem 1 into 30, we have

$$
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-G D T}(T) \leq 93 M \sqrt{m K T \ln (\lambda T)}+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m+2 C K T s^{-1}
$$

Recall that we have $s=T^{1+\eta}$ and $\lambda=s^{1 / 3}=T^{(1+\eta) / 3}$ in Algorithm 2 Therefore

$$
\begin{aligned}
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{GDT}}(T) & \leq 93 M \sqrt{m K T \ln T^{(4+\eta) / 3}}+\left(\frac{\pi^{2}}{3} s^{-1}(s-1)+1\right) \alpha M m+\frac{2 C K}{T^{\eta}} \\
& <93 M \sqrt{\frac{4+\eta}{3} m K T \ln T}+\left(\frac{\pi^{2}}{3}+1\right) \alpha M m+\frac{2 C K}{T^{\eta}} \\
& <54 M \sqrt{(4+\eta) m K T \ln T}+5 \alpha M m+\frac{2 C K}{T^{\eta}}
\end{aligned}
$$

## B.2.2 Distribution-Dependent Bound

Recall the following definitions given in Section 3 .

- $\Delta_{S}=\max \left\{\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}(S), 0\right\}(S \in \mathcal{F})$;
- $\mathcal{F}_{\mathrm{B}}=\left\{S \in \mathcal{F} \mid \Delta_{S}>0\right\}$ is the set of all bad super arms;
- $E_{\mathrm{B}}=\left\{i \in[m] \mid\right.$ there exists $S \in \mathcal{F}_{\mathrm{B}}$ such that $\left.i \in S\right\}$ is the set of arms contained in at least one bad super arm;
- $\Delta_{i, \min }=\min \left\{\Delta_{S} \mid S \in \mathcal{F}_{\mathrm{B}}, i \in S\right\}\left(i \in E_{\mathrm{B}}\right)$.

We now define these terms similarly with respect to distribution $\tilde{D}$ :

- $\tilde{\Delta}_{S}=\max \left\{\alpha \cdot r_{\tilde{D}}\left(\tilde{S}^{*}\right)-r_{\tilde{D}}(S), 0\right\}(S \in \mathcal{F})$;
- $\tilde{\mathcal{F}}_{\mathrm{B}}=\left\{S \in \mathcal{F} \mid \tilde{\Delta}_{S}>0\right\}$;
- $\tilde{E}_{\mathrm{B}}=\left\{i \in[m] \mid\right.$ there exists $S \in \tilde{\mathcal{F}}_{\mathrm{B}}$ such that $\left.i \in S\right\}$;
- $\tilde{\Delta}_{i, \text { min }}=\min \left\{\tilde{\Delta}_{S} \mid S \in \tilde{\mathcal{F}}_{\mathrm{B}}, i \in S\right\}\left(i \in \tilde{E}_{\mathrm{B}}\right)$.

According to (30), we need an upper bound on $\operatorname{Reg}_{\bar{D}, \alpha}^{\text {SDCB-FSD }}(T)$. Here we do not apply the distributiondependent bound in Theorem 1 directly. Instead, we use the results in (20) and (21), which give us (combined with Lemma 3)

$$
\begin{equation*}
\operatorname{Reg}_{\bar{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) \leq \epsilon T+M^{2} K \sum_{i: \tilde{\Delta}_{i, \text { min }}>\epsilon} \frac{2136}{\tilde{\Delta}_{i, \min }} \ln (\lambda T)+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m \tag{31}
\end{equation*}
$$

for any $\epsilon>0$.
The next step is to show that $\tilde{\Delta}_{i, \text { min }}$ and $\Delta_{i, \text { min }}$ are close to each other when $\tilde{\Delta}_{i, \text { min }}$ is not too small. We have the following lemma.
Lemma 8. If $i \in \tilde{E}_{\mathrm{B}}$ satisfies $\tilde{\Delta}_{i, \min }>\frac{2 C K}{s}$, then we have $i \in E_{\mathrm{B}}$ and $\Delta_{i, \min } \leq \tilde{\Delta}_{i, \min }+\frac{2 C K}{s}$.
Proof. Suppose $\tilde{\Delta}_{i, \min }=\tilde{\Delta}_{S^{\dagger}}$, where $S^{\dagger} \in \mathcal{F}, i \in S$.
By definitions of $S^{*}$ and $\tilde{S}^{*}$ and Lemma 6 we have

$$
r_{D}\left(S^{*}\right) \geq r_{D}\left(\tilde{S}^{*}\right) \geq r_{\tilde{D}}\left(\tilde{S}^{*}\right)-\frac{C K}{s}
$$

and

$$
r_{\tilde{D}}\left(\tilde{S}^{*}\right) \geq r_{\tilde{D}}\left(S^{*}\right) \geq r_{D}\left(S^{*}\right)-\frac{C K}{s} .
$$

Hence we have $\left|r_{D}\left(S^{*}\right)-r_{\tilde{D}}\left(\tilde{S}^{*}\right)\right| \leq \frac{C K}{s}$. From Lemma6 we also have $\left|r_{D}\left(S^{\dagger}\right)-r_{\tilde{D}}\left(S^{\dagger}\right)\right| \leq \frac{C K}{s}$. Therefore

$$
\begin{aligned}
\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}\left(S^{\dagger}\right) & \geq \alpha \cdot\left(r_{\tilde{D}}\left(\tilde{S}^{*}\right)-\frac{C K}{s}\right)-\left(r_{\tilde{D}}\left(S^{\dagger}\right)+\frac{C K}{s}\right) \\
& =\tilde{\Delta}_{S^{\dagger}}-(1+\alpha) \frac{C K}{s}>\frac{2 C K}{s}-(1+\alpha) \frac{C K}{s} \geq 0 .
\end{aligned}
$$

This means $\Delta_{S^{\dagger}}=\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}\left(S^{\dagger}\right)>0$, i.e., $S^{\dagger} \in \mathcal{F}_{\mathrm{B}}$. Since $i \in S^{\dagger}$, we know $i \in E_{\mathrm{B}}$.
On the other hand, we have

$$
\begin{aligned}
\Delta_{i, \min } \leq \Delta_{S^{\dagger}} & =\alpha \cdot r_{D}\left(S^{*}\right)-r_{D}\left(S^{\dagger}\right) \\
& \leq \alpha \cdot\left(r_{\tilde{D}}\left(\tilde{S}^{*}\right)+\frac{C K}{s}\right)-\left(r_{\tilde{D}}\left(S^{\dagger}\right)-\frac{C K}{s}\right) \\
& =\tilde{\Delta}_{S^{\dagger}}+(1+\alpha) \frac{C K}{s} \\
& \leq \tilde{\Delta}_{i, \min }+\frac{2 C K}{s} .
\end{aligned}
$$

The proof of the lemma is completed.
Proof of the distribution-dependent bound in Theorem (2) Choosing $\epsilon=\frac{2 C K}{s}$ in (31), we have

$$
\begin{equation*}
\operatorname{Reg}_{\tilde{D}, \alpha}^{\mathrm{sDCB}-\mathrm{FSD}}(T) \leq \frac{2 C K T}{s}+M^{2} K \sum_{i: \tilde{\Delta}_{i, \text { min }}>\frac{2 C K}{s}} \frac{2136}{\tilde{\Delta}_{i, \text { min }}} \ln (\lambda T)+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m . \tag{32}
\end{equation*}
$$

For $\tilde{\Delta}_{i, \text { min }}>\frac{2 C K}{s}$, from Lemma 8 we have $i \in E_{\mathrm{B}}$ and $\tilde{\Delta}_{i, \text { min }} \geq \Delta_{i, \text { min }}-\frac{2 C K}{s}$. Note that we have $s=T \geq \frac{(2+\delta) C K}{\Delta_{i \text { min }}}$, which means $\Delta_{i, \text { min }}-\frac{2 C K}{s} \geq \frac{\delta}{2+\delta} \Delta_{i, \text { min }}$, so we have $\tilde{\Delta}_{i, \text { min }} \geq \frac{\delta}{2+\delta} \Delta_{i, \text { min }}>0$. Then from (32) we have

$$
\operatorname{Reg}_{\bar{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) \leq \frac{2 C K T}{s}+M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{2136}{\frac{\delta}{2+\delta} \Delta_{i, \min }} \ln (\lambda T)+\left(\frac{\pi^{2}}{3} \lambda^{-3}(s-1)+1\right) \alpha M m .
$$

Plugging in $s=T^{1+\eta}$ and $\lambda=s^{1 / 3}=T^{(1+\eta) / 3}$, we obtain

$$
\begin{align*}
\operatorname{Reg}_{\tilde{D}, \alpha}^{\mathrm{SDCB}-\mathrm{FSD}}(T) & \leq \frac{2 C K}{T^{\eta}}+M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{2136(1+2 / \delta)}{\Delta_{i, \min }} \ln T^{(4+\eta) / 3}+\left(\frac{\pi^{2}}{3} s^{-1}(s-1)+1\right) \alpha M m \\
& <M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{712(4+\eta)(1+2 / \delta)}{\Delta_{i, \min }} \ln T+5 \alpha M m+\frac{2 C K}{T^{\eta}} \tag{33}
\end{align*}
$$

Finally, combining (30) and (33) we have

$$
\operatorname{Reg}_{D, \alpha}^{\mathrm{SDCB}-\mathrm{GDT}}(T) \leq M^{2} K \sum_{i \in E_{\mathrm{B}}} \frac{712(4+\eta)(1+2 / \delta)}{\Delta_{i, \min }} \ln T+5 \alpha M m+\frac{4 C K}{T^{\eta}},
$$

completing the proof.

## B. 3 Proof of Theorem 3

Proof of Theorem 3 Let $n=\left\lceil\log _{2} T\right\rceil$. If $n \leq q=\left\lceil\log _{2} m\right\rceil$, then $T \leq 2 m$ and the regret in $T$ rounds is at most $2 m \cdot \alpha M$. The regret bound holds trivially.
Now we assume $n \geq q+1$. Using Theorem 2, we have

$$
\begin{aligned}
& \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GD }}(T) \\
\leq & \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GD }}\left(2^{n}\right) \\
= & \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GDT }}\left(2^{q}\right)+\sum_{k=q}^{n-1} \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GDT }}\left(2^{k}\right) \\
\leq & \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GDT }}(2 m)+\sum_{k=q}^{n-1} \operatorname{Reg}_{D, \alpha}^{\text {SDCB-GDT }}\left(2^{k}\right) \\
\leq & 2 m \cdot \alpha M+\sum_{k=q}^{n-1}\left(54 M \sqrt{(4+\eta) m K \cdot 2^{k} \ln 2^{k}}+5 \alpha M m+\frac{2 C K}{2^{\eta k}}\right) \\
\leq & 2 \alpha M m+54 M \sqrt{(4+\eta) m K \ln 2^{n-1}} \cdot \sum_{k=1}^{n-1} \sqrt{2^{k}}+(n-1) \cdot 5 \alpha M m+2 C K \sum_{k=1}^{n-1} \frac{1}{2^{\eta k}} \\
\leq & 54 M \sqrt{(4+\eta) m K \ln 2^{n-1}} \cdot \frac{\sqrt{2^{n}}}{\sqrt{2}-1}+7(n-1) \cdot \alpha M m+\frac{2 C K}{2^{\eta}-1} \\
\leq & 54 M \sqrt{(4+\eta) m K \ln T} \cdot \frac{\sqrt{2 T}}{\sqrt{2}-1}+7 \log _{2} T \cdot \alpha M m+\frac{2 C K}{2^{\eta}-1} \\
\leq & 185 M \sqrt{(4+\eta) m K T \ln T}+11 \alpha M m \ln T+\frac{2 C K}{2^{\eta}-1} .
\end{aligned}
$$

Note that we have used $2^{n-1}<T$.

## C The Offline $K$-MAX Problem

In this section, we consider the offline $K$-MAX problem. Recall that we have $m$ independent random variables $\left\{X_{i}\right\}_{i \in[m]} . X_{i}$ follows the discrete distribution $D_{i}$ with support $\left\{v_{i, 1}, \ldots, v_{i, s_{i}}\right\} \subset[0,1]$, and $D=D_{1} \times \cdots \times D_{m}$ is the joint distribution of $X=\left(X_{1}, \ldots, X_{m}\right)$. Let $p_{i, j}=\operatorname{Pr}\left[X_{i}=v_{i, j}\right]$. Define $r_{D}(S)=\mathbb{E}_{X \sim D}\left[\max _{i \in S} X_{i}\right]$ and OPT $=\max _{S:|S|=K} r_{D}(S)$. Our goal is to find (in polynomial time) a subset $S \subseteq[m]$ of cardinality $K$ such that $r_{D}(S) \geq \alpha$. OPT (for certain constant $\alpha$ ).
First, we show that $r_{D}(S)$ can be calculated in polynomial time given any $S \subseteq[m]$. Let $S=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$. Note that for $X \sim D, \max _{i \in S} X_{i}$ can only take values in the set

```
Algorithm 5 Greedy-K-MAX
 \(S \leftarrow \emptyset\)
 for \(i=1\) to \(K\) do
 \(k \leftarrow \operatorname{argmax}_{j \in[m] \backslash S} r_{D}(S \cup\{j\})\)
 \(S \leftarrow S \cup\{k\}\)
 end for
Output: \(S\)
```

$V(S)=\bigcup_{i \in S} \operatorname{supp}\left(D_{i}\right)$. For any $v \in V(S)$, we have

$$
\begin{align*}
& \operatorname{Pr}_{X \sim D}\left[\max _{i \in S} X_{i}=v\right] \\
= & \operatorname{Pr}_{X \sim D}\left[X_{i_{1}}=v, X_{i_{2}} \leq v, \ldots, X_{i_{n}} \leq v\right] \\
& +\operatorname{Pr}_{X \sim D}\left[X_{i_{1}}<v, X_{i_{2}}=v, X_{i_{3}} \leq v, \ldots, X_{i_{n}} \leq v\right]  \tag{34}\\
& +\cdots \\
& +\operatorname{Pr}_{X \sim D}\left[X_{i_{1}}<v, \ldots, X_{i_{n-1}}<v, X_{i_{n}}=v\right] .
\end{align*}
$$

Since $X_{i_{1}}, \ldots, X_{i_{n}}$ are mutually independent, each probability appearing in (34) can be calculated in polynomial time. Hence for any $v \in V(S), \operatorname{Pr}_{X \sim D}\left[\max _{i \in S} X_{i}=v\right]$ can be calculated in polynomial time using (34). Then $r_{D}(S)$ can be calculated by

$$
r_{D}(S)=\sum_{v \in V(S)} v \cdot \operatorname{Pr}_{X \sim D}\left[\max _{i \in S} X_{i}=v\right]
$$

in polynomial time.

## C. 1 ( $1-1 / e$ )-Approximation

We now show that a simple greedy algorithm (Algorithm 5 ) can find a $(1-1 / e)$-approximate solution.
Lemma 9. Algorithm 5 can output a subset $S$ such that $r_{D}(S) \geq(1-1 / e) \cdot$ OPT.
Proof. For any $x \in[0,1]^{m}$, let $f_{x}(S)=\max _{i \in S} x_{i}$ be a set function defined on $2^{[m]}$. (Define $f_{x}(\emptyset)=0$.) We can verify that $f_{x}(S)$ is monotone and submodular:

- Monotonicity. For any $A \subseteq B \subseteq[m]$, we have $f_{x}(A)=\max _{i \in A} x_{i} \leq \max _{i \in B} x_{i}=$ $f_{x}(B)$.
- Submodularity. For any $A \subseteq B \subseteq[m]$ and any $k \in[m] \backslash B$, there are three cases (note that $\max _{i \in A} x_{i} \leq \max _{i \in B} x_{i}$ ):
(i) If $x_{k} \leq \max _{i \in A} x_{i}$, then $f_{x}(A \cup\{k\})-f_{x}(A)=0=f_{x}(B \cup\{k\})-f_{x}(B)$.
(ii) If $\max _{i \in A} x_{i}<x_{k} \leq \max _{i \in B} x_{i}$, then $f_{x}(A \cup\{k\})-f_{x}(A)=x_{k}-\max _{i \in A} x_{i}>$ $0=f_{x}(B \cup\{k\})-f_{x}(B)$.
(iii) If $x_{k}>\max _{i \in B} x_{i}$, then $f_{x}(A \cup\{k\})-f_{x}(A)=x_{k}-\max _{i \in A} x_{i} \geq x_{k}-$ $\max _{i \in B} x_{i}=f_{x}(B \cup\{k\})-f_{x}(B)$.
Therefore, we always have $f_{x}(A \cup\{k\})-f_{x}(A) \geq f_{x}(B \cup\{i\})-f_{x}(B)$. The function $f_{x}(S)$ is submodular.

For any $S \subseteq[m]$ we have

$$
r_{D}(S)=\sum_{j_{1}=1}^{s_{1}} \sum_{j_{2}=1}^{s_{2}} \cdots \sum_{j_{m}=1}^{s_{m}} f_{\left(v_{1, j_{1}}, \ldots, v_{\left.m, j_{m}\right)}\right)}(S) \prod_{i=1}^{m} p_{i, j_{i}} .
$$

Since each set function $f_{\left(v_{1, j_{1}}, \ldots, v_{\left.m, j_{m}\right)}\right)}(S)$ is monotone and submodular, $r_{D}(S)$ is a convex combination of monotone submodular functions on $2^{[m]}$. Therefore, $r_{D}(S)$ is also a monotone submodular
function. According to the classical result on submodular maximization [22], the greedy algorithm can find a $(1-1 / e)$-approximate solution to $\max _{S \subseteq[m],|S| \leq K}\left\{r_{D}(S)\right\}$.

## C. 2 PTAS

Now we provide a PTAS for the $K$-MAX problem. In other words, we give an algorithm which, given any fixed constant $0<\varepsilon<1 / 2$, can find a solution $S$ of cardinality $|K|$ such that $r_{D}(S) \geq$ $(1-\varepsilon) \cdot$ OPT in polynomial time.
We first provide an overview of our approach, and then spell out the details later.

1. (Discretization) We first transform each $X_{i}$ to another discrete distribution $\tilde{X}_{i}$, such that all $\tilde{X}_{i}$ 's are supported on a set of size $O\left(1 / \varepsilon^{2}\right)$.
2. (Computing signatures) For each $X_{i}$, we can compute from $\tilde{X}_{i}$ a signature $\operatorname{Sig}\left(X_{i}\right)$ which is a vector of size $O\left(1 / \varepsilon^{2}\right)$. For a set $S$, we define its signature $\operatorname{Sig}(S)$ to be $\sum_{i \in S} \operatorname{Sig}\left(X_{i}\right)$. We show that if two sets $S_{1}$ and $S_{2}$ have the same signature, their objective values are close (Lemma 12).
3. (Enumerating signatures) We enumerate all possible signatures (there are polynomial number of them) and try to find the one which is the signature of a set of size $K$, and the objective value is maximized.

## C.2.1 Discretization

We first describe the discretization step. We say that a random variable $X$ follows the Bernoulli distribution $B(v, q)$ if $X$ takes value $v$ with probability $q$ and value 0 with probability $1-q$. For any discrete distribution, we can rewrite it as the maximum of a set of Bernoulli distributions.
Definition 1. Let $X$ be a discrete random variable with support $\left\{v_{1}, v_{2}, \ldots, v_{s}\right\}\left(v_{1}<v_{2}<\cdots<\right.$ $\left.v_{s}\right)$ and $\operatorname{Pr}\left[X=v_{j}\right]=p_{j}$. We define a set of independent Bernoulli random variables $\left\{Z_{j}\right\}_{j \in[s]}$ as

$$
Z_{j} \sim B\left(v_{j}, \frac{p_{j}}{\sum_{j^{\prime} \leq j} p_{j^{\prime}}}\right)
$$

We call $\left\{Z_{j}\right\}$ the Bernoulli decomposition of $X_{i}$.
Lemma 10. For a discrete distribution $X$ and its Bernoulli decomposition $\left\{Z_{j}\right\}, \max _{j}\left\{Z_{j}\right\}$ has the same distribution with $X$.

Proof. We can easily see the following:

$$
\begin{aligned}
\operatorname{Pr}\left[\max _{j}\left\{Z_{j}\right\}=v_{i}\right] & =\operatorname{Pr}\left[Z_{i}=v_{i}\right] \prod_{i^{\prime}>i} \operatorname{Pr}\left[Z_{i^{\prime}}=0\right] \\
& =\frac{p_{i}}{\sum_{i^{\prime} \leq i} p_{i^{\prime}}} \prod_{h>i}\left(1-\frac{p_{h}}{\sum_{h^{\prime} \leq h} p_{h^{\prime}}}\right) \\
& =\frac{p_{i}}{\sum_{i^{\prime} \leq i} p_{i^{\prime}}} \prod_{h>i} \frac{\sum_{h^{\prime} \leq h-1} p_{h^{\prime}}}{\sum_{h^{\prime} \leq h} p_{h^{\prime}}}=p_{i} .
\end{aligned}
$$

Hence, $\operatorname{Pr}\left[\max _{j}\left\{Z_{j}\right\}=v_{i}\right]=\operatorname{Pr}\left[X=v_{i}\right]$ for all $i \in[s]$.
Now, we describe how to construct the discretization $\tilde{X}_{i}$ of $X_{i}$ for all $i \in[m]$. The pseudocode can be found in Algorithm 6 . We first run Greedy-K-MAX to obtain a solution $S_{G}$. Let W $=r_{D}\left(S_{G}\right)$. By Lemma 9 , we know that $\mathrm{W} \geq(1-1 / e) \mathrm{OPT}$. Then we compute the Bernoulli decomposition $\left\{Z_{i, j}\right\}_{j}$ of $X_{i}$. For each $Z_{i, j}$, we create another Bernoulli variable $\tilde{Z}_{i, j}$ as follows: Recall that $v_{i, j}$ is the nonzero possible value of $Z_{i j}$. We distinguish two cases. Case 1 : If $v_{i, j}>\mathrm{W} / \varepsilon$, then we let $\tilde{Z}_{i, j} \sim B\left(\frac{\mathrm{~W}}{\varepsilon}, \mathbb{E}\left[Z_{i, j}\right] \frac{\varepsilon}{\mathrm{W}}\right)$. It is easy to see that $\mathbb{E}\left[\tilde{Z}_{i j}\right]=\mathbb{E}\left[Z_{i j}\right]$. Case 2 : If $v_{i, j} \leq \mathrm{W} / \varepsilon$, then we let $\tilde{Z}_{i, j}=\left\lfloor\frac{Z_{i, j}}{\varepsilon W}\right\rfloor \varepsilon \mathrm{W}$. We note that more than one $\tilde{Z}_{i j}$ 's may have the same support, and all $\tilde{Z}_{i j}$ 's are supported on $\mathrm{DS}=\{0, \varepsilon \mathrm{~W}, 2 \varepsilon \mathrm{~W}, \ldots, \mathrm{~W} / \varepsilon\}$. Finally, we let $\tilde{X}_{i}=\max _{j}\left\{\tilde{Z}_{i j}\right\}$, which is the

```
Algorithm 6 Discretization
 We first run Greedy-K-MAX to obtain a solution \(S_{G}\) and let \(\mathrm{W}=r_{D}\left(S_{G}\right)\).
 for \(i=1\) to \(m\) do
 Compute the Bernoulli decomposition \(\left\{Z_{i, j}\right\}_{j}\) of \(X_{i}\).
 for all \(Z_{i, j}\) do
 Create another Bernoulli variable \(\tilde{Z}_{i, j}\) as follows:
 if \(v_{i, j}>\mathrm{W} / \varepsilon\) then
 Let \(\tilde{Z}_{i, j} \sim B\left(\frac{\mathrm{~W}}{\varepsilon}, \mathbb{E}\left[Z_{i, j}\right] \frac{\varepsilon}{\mathrm{W}}\right) ;(\) Case 1\()\)
 else
 Let \(\tilde{Z}_{i, j}=\left\lfloor\frac{Z_{i, j}}{\varepsilon W}\right\rfloor \varepsilon \mathrm{W}\); (Case 2)
 end if
 end for
 Let \(\tilde{X}_{i}=\max _{j}\left\{\tilde{Z}_{i j}\right\}\);
 end for
```

discretization of $X_{i}$. Since $\tilde{X}_{i}$ is the maximum of a set of Bernoulli distributions, it is also a discrete distribution supported on DS . We can easily compute $\operatorname{Pr}\left[\tilde{X}_{i}=v\right]$ for any $v \in \mathrm{DS}$.
Now, we show that the discretization only incurs a small loss in the objective value. The key is to show that we do not lose much in the transformation from $Z_{i, j}$ 's to $\tilde{Z}_{i, j}$ 's. We prove a slightly more general lemma as follows.
Lemma 11. Consider any set of Bernoulli variables $\left\{Z_{i} \sim B\left(a_{i}, p_{i}\right)\right\}_{1 \leq i \leq n}$. Assume that $\mathbb{E}\left[\max _{i \in[n]} Z_{i}\right]<c \mathrm{~W}$, where $c$ is a constant such $c \varepsilon<1 / 2$. For each $Z_{i}$, we create a Bernoulli variable $\tilde{Z}_{i}$ in the same way as Algorithm 6. Then the following holds:

$$
\mathbb{E}\left[\max Z_{i}\right] \geq \mathbb{E}\left[\max \tilde{Z}_{i}\right] \geq \mathbb{E}\left[\max Z_{i}\right]-(2 c+1) \varepsilon \mathrm{W}
$$

Proof. Assume $a_{1}$ is the largest among all $a_{i}$ 's.
If $a_{1}<\mathrm{W} / \varepsilon$, all $\tilde{Z}_{i}$ are created in Case 2. In this case, it is obvious to have that

$$
\mathbb{E}\left[\max Z_{i}\right] \geq \mathbb{E}\left[\max \tilde{Z}_{i}\right] \geq \mathbb{E}\left[\max Z_{i}\right]-\varepsilon \mathrm{W}
$$

If $a_{1} \geq \mathrm{W} / \varepsilon$, the proof is slightly more complicated. Let $L=\left\{i \mid a_{i} \geq \mathrm{W} / \varepsilon\right\}$. We prove by induction on $n$ (i.e., the number of the variables) the following more general claim:

$$
\begin{equation*}
\mathbb{E}\left[\max Z_{i}\right] \geq \mathbb{E}\left[\max \tilde{Z}_{i}\right] \geq \mathbb{E}\left[\max Z_{i}\right]-\varepsilon \mathrm{W}-c \sum_{i \in L} \varepsilon a_{i} p_{i} \tag{35}
\end{equation*}
$$

Consider the base case $n=1$. The lemma holds immediately in Case 1 as $\mathbb{E}\left[Z_{1}\right]=\mathbb{E}\left[\tilde{Z}_{1}\right]$.
Assuming the lemma is true for $n=k$, we show it also holds for $n=k+1$. Recall we have $\tilde{Z}_{1} \sim B\left(\frac{\mathrm{~W}}{\varepsilon}, \varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right)$. Thus

$$
\begin{aligned}
\mathbb{E}\left[\max _{i \geq 1} Z_{i}\right]-\mathbb{E}\left[\max _{i \geq 1} \tilde{Z}_{i}\right] & =a_{1} p_{1}+\left(1-p_{1}\right) \mathbb{E}\left[\max _{i \geq 2} Z_{i}\right]-a_{1} p_{1}-\left(1-\varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right) \mathbb{E}\left[\max _{i \geq 2} \tilde{Z}_{i}\right] \\
& \geq\left(1-p_{1}\right) \mathbb{E}\left[\max _{i \geq 2} \tilde{Z}_{i}\right]-\left(1-\varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right) \mathbb{E}\left[\max _{i \geq 2} \tilde{Z}_{i}\right] \\
& =\left(\varepsilon a_{1} p_{1} / \mathrm{W}-p_{1}\right) \mathbb{E}\left[\max _{i \geq 2} \tilde{Z}_{i}\right] \geq 0,
\end{aligned}
$$

where the first inequality follows from the induction hypothesis and the last from $a_{1} \geq \mathrm{W} / \varepsilon$. The other direction can be seen as follows:

$$
\begin{aligned}
\mathbb{E}\left[\max _{i \geq 1} \tilde{Z}_{i}\right]-\mathbb{E}\left[\max _{i \geq 1} Z_{i}\right] & =a_{1} p_{1}+\left(1-\varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right) \mathbb{E}\left[\max _{i \geq 2} \tilde{Z}_{i}\right]-\left(a_{1} p_{1}+\left(1-p_{1}\right) \mathbb{E}\left[\max _{i \geq 2} Z_{i}\right]\right) \\
& \geq\left(1-\varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right) \mathbb{E}\left[\max _{i \geq 2} Z_{i}\right]-\left(1-p_{1}\right) \mathbb{E}\left[\max _{i \geq 2} Z_{i}\right]-\varepsilon \mathrm{W}-c \sum_{i \in L \backslash\{1\}} \varepsilon a_{i} p_{i} \\
& \geq\left(-\varepsilon \mathbb{E}\left[Z_{1}\right] / \mathrm{W}\right) \mathbb{E}\left[\max _{i \geq 2} Z_{i}\right]-\varepsilon \mathrm{W}-c \sum_{i \in L \backslash\{1\}} \varepsilon a_{i} p_{i}
\end{aligned}
$$

$$
\geq-\varepsilon \mathrm{W}-c \sum_{i \in L} \varepsilon a_{i} p_{i}
$$

where the last inequality holds since $\mathbb{E}\left[\max _{i \geq 2} Z_{i}\right] \leq c \mathrm{~W}$. This finishes the proof of 35 .
Now, we show that $\sum_{i \in L} a_{i} p_{i} \leq 2 \mathrm{~W}$. This can be seen as follows. First, we can see from Markov inequality that

$$
\operatorname{Pr}\left[\max Z_{i}>\mathrm{W} / \varepsilon\right] \leq c \varepsilon
$$

Equivalently, we have $\prod_{i \in L}\left(1-p_{i}\right) \geq 1-c \varepsilon$. Then, we can see that

$$
\mathrm{W} \geq \sum_{i \in L} a_{i} \prod_{j<i}\left(1-p_{j}\right) p_{i} \geq(1-c \varepsilon) \sum_{i \in L} a_{i} p_{i} \geq \frac{1}{2} \sum_{i \in L} a_{i} p_{i}
$$

Plugging this into (35), we prove the lemma.
Corollary 1. For any set $S \subseteq[m]$, suppose $\mathbb{E}\left[\max _{i \in S} X_{i}\right]<c \mathrm{~W}$, where $c$ is a constant such that $c \varepsilon<1 / 2$. Then the following holds:

$$
\mathbb{E}\left[\max _{i \in S} X_{i}\right] \geq \mathbb{E}\left[\max _{i \in S} \tilde{X}_{i}\right] \geq \mathbb{E}\left[\max _{i \in S} X_{i}\right]-(2 c+1) \varepsilon \mathrm{W} .
$$

## C.2.2 Signatures

For each $X_{i}$, we have created its discretization $\tilde{X}_{i}=\max _{j}\left\{\tilde{Z}_{i j}\right\}$. Since $\tilde{X}_{i}$ is a discrete distribution, we can define its Bernoulli decomposition $\left\{Y_{i j}\right\}_{j \in[h]}$ where $h=|\mathrm{DS}|$. Suppose $Y_{i j} \sim B\left(j \varepsilon \mathrm{~W}, q_{i j}\right)$. Now, we define the signature of $X_{i}$ to be the vector $\operatorname{Sig}\left(X_{i}\right)=\left(\operatorname{Sig}\left(X_{i}\right)_{1}, \ldots, \operatorname{Sig}\left(X_{i}\right)_{h}\right)$ where

$$
\operatorname{Sig}\left(X_{i}\right)_{j}=\min \left(\left\lfloor\frac{-\ln \left(1-q_{i j}\right)}{\varepsilon^{4} / m}\right\rfloor,\left\lfloor\frac{\ln \left(1 / \varepsilon^{4}\right)}{\varepsilon^{4} / m}\right\rfloor\right) \cdot \frac{\varepsilon^{4}}{m} \quad j \in[h]
$$

For any set $S$, define its signature to be

$$
\operatorname{Sig}(S)=\sum_{i \in S} \operatorname{Sig}\left(X_{i}\right)
$$

Define the set SG of signature vectors to be all nonnegative $h$-dimensional vectors, where each coordinate is an integer multiple of $\varepsilon^{4} / m$ and at most $m \ln \left(1 / \varepsilon^{4}\right)$. Clearly, the size of SG is $O\left(\left(m \varepsilon^{-4} \log \left(h / \varepsilon^{2}\right)\right)^{h-1}\right)=\tilde{O}\left(m^{O\left(1 / \varepsilon^{2}\right)}\right)$, which is polynomial for any fixed constant $\varepsilon>0$ (recall $h=|\mathrm{DS}|=O\left(1 / \varepsilon^{2}\right)$ ).
Now, we prove the following crucial lemma.
Lemma 12. Consider two sets $S_{1}$ and $S_{2}$. If $\operatorname{Sig}\left(S_{1}\right)=\operatorname{Sig}\left(S_{2}\right)$, the following holds:

$$
\left|\mathbb{E}\left[\max _{i \in S_{1}} \tilde{X}_{i}\right]-\mathbb{E}\left[\max _{i \in S_{2}} \tilde{X}_{i}\right]\right| \leq O(\varepsilon) \mathrm{W}
$$

Proof. Suppose $\left\{Y_{i j}\right\}_{j \in[h]}$ is the Bernoulli decomposition of $\tilde{X}_{i}$. For any set $S$, we define $Y_{k}(S)=$ $\max _{i \in S} Y_{i k}$ (it is the max of a set of Bernoulli distributions). It is not hard to see that $Y_{k}(S)$ has a Bernoulli distribution $B\left(k \varepsilon \mathrm{~W}, p_{k}(S)\right)$ with $p_{k}(S)=1-\prod_{i \in S}\left(1-q_{i k}\right)$. $\operatorname{As} \operatorname{Sig}\left(S_{1}\right)=\operatorname{Sig}\left(S_{2}\right)$, we have that

$$
\begin{aligned}
\left|p_{k}\left(S_{1}\right)-p_{k}\left(S_{2}\right)\right| & =\left|\prod_{i \in S_{1}}\left(1-q_{i k}\right)-\prod_{i \in S_{2}}\left(1-q_{i k}\right)\right| \\
& =\left|\exp \left(\sum_{i \in S_{1}} \ln \left(1-q_{i k}\right)\right)-\exp \left(\sum_{i \in S_{2}} \ln \left(1-q_{i k}\right)\right)\right| \\
& \leq 2 \varepsilon^{4} \quad \forall k \in[h]
\end{aligned}
$$

Noticing $\max _{i \in S} \tilde{X}_{i}=\max _{k} Y_{k}(S)$, we have that

$$
\left|\mathbb{E}\left[\max _{i \in S_{1}} \tilde{X}_{i}\right]-\mathbb{E}\left[\max _{i \in S_{2}} \tilde{X}_{i}\right]\right|=\left|\mathbb{E}\left[\max _{k} Y_{k}\left(S_{1}\right)\right]-\mathbb{E}\left[\max _{k} Y_{k}\left(S_{2}\right)\right]\right|
$$

```
Algorithm 7 PTAS-K-MAX
 \(U \leftarrow \emptyset\)
 for all signature vector \(\mathrm{sg} \in \mathrm{SG}\) do
 Find a set \(S\) such that \(|S|=K\) and \(\operatorname{Sig}(S)=\mathrm{sg}\);
 if \(r_{D}(S)>r_{D}(U)\) then
 \(U \leftarrow S\).
 end if
 end for
Output: \(U\)
```

$$
\begin{aligned}
& \leq \frac{\mathrm{W}}{\varepsilon}\left(\sum_{k}\left|p_{k}\left(S_{1}\right)-p_{k}\left(S_{2}\right)\right|\right) \\
& \leq 4 h \varepsilon^{3} \mathrm{~W}=O(\varepsilon) \mathrm{W}
\end{aligned}
$$

where the first inequality follows from Lemma 1

For any signature vector sg , we associate to it a set of random variables $\left\{B_{k} \sim B(k \varepsilon \mathrm{~W}, 1-\right.$ $\left.\left.e^{-\mathrm{sg}_{k}}\right)\right\}_{k=1}^{h}{ }_{[ }^{5}$ Define the value of sg to be $\operatorname{Val}(\mathrm{sg})=\mathbb{E}\left[\max _{k \in[h]} B_{k}\right]$.
Corollary 2. For any feasible set $S$ with $\operatorname{Sig}(S)=\mathrm{sg},\left|\mathbb{E}\left[\max _{i \in S} \tilde{X}_{i}\right]-\operatorname{Val}(\mathrm{sg})\right| \leq O(\varepsilon) \mathrm{W}$. Moreover, combining with Corollary 1$]$ we have that $\left|\mathbb{E}\left[\max _{i \in S} X_{i}\right]-\mathrm{Val}(\mathrm{sg})\right| \leq O(\varepsilon) \mathrm{W}$.

## C.2.3 Enumerating Signatures

Our algorithm enumerates all signature vectors sg in SG. For each sg, we check if we can find a set $S$ of size $K$ such that $\operatorname{Sig}(S)=\mathrm{sg}$. This can be done by a standard dynamic program in $\tilde{O}\left(m^{O\left(1 / \varepsilon^{2}\right)}\right)$ time as follows: We use Boolean variable $R[i][j]\left[\mathrm{sg}^{\prime}\right]$ to represent whether signature vector $\mathrm{sg}^{\prime} \in \mathrm{SG}$ can be dominated by $i$ variables in set $\left\{X_{1}, \ldots, X_{j}\right\}$. The dynamic programming recursion is

$$
R[i][j]\left[\mathrm{sg}^{\prime}\right]=R[i][j-1]\left[\mathrm{sg}^{\prime}\right] \wedge R[i-1][j-1]\left[\mathrm{sg}^{\prime}-\operatorname{Sig}\left(X_{j}\right)\right] .
$$

If the answer is yes (i.e., we can find such $S$ ), we say $s g$ is a feasible signature vector and $S$ is a candidate set. Finally, we pick the candidate set with maximum $r_{D}(S)$ and output the set. The pseudocode can be found in Algorithm 7
Now, we are ready to prove Theorem 4 by showing Algorithm 7 is a PTAS for the $K$-MAX problem.
Proof of Theorem 4 Suppose $S^{*}$ is the optimal solution and $\mathrm{sg}^{*}$ is the signature of $S^{*}$. By Corollary 2 , we have that $\left|\mathrm{OPT}-\operatorname{Val}\left(\mathrm{sg}^{*}\right)\right| \leq O(\varepsilon) \mathrm{W}$.

When Algorithm 7 is enumerating $\mathrm{sg}^{*}$, it can find a set $S$ such that $\operatorname{Sig}(S)=\mathrm{sg}^{*}$ (there exists at least one such set since $S^{*}$ is one). Therefore, we can see that

$$
\left|\mathbb{E}\left[\max _{i \in S} X_{i}\right]-\mathbb{E}\left[\max _{i \in S^{*}} X_{i}\right]\right| \leq\left|\operatorname{Val}\left(\mathrm{sg}^{*}\right)-\max _{i \in S} X_{i}\right|+\left|\operatorname{Val}\left(\mathrm{sg}^{*}\right)-\mathbb{E}\left[\max _{i \in S^{*}} X_{i}\right]\right| \leq O(\varepsilon) \mathrm{W}
$$

Let $U$ be the output of Algorithm 7 . Since $\mathrm{W} \geq(1-1 / e)$ OPT, we have $r_{D}(U) \geq r_{D}(S)=$ $\mathbb{E}\left[\max _{i \in S} X_{i}\right] \geq(1-O(\varepsilon))$ OPT.

The running time of the algorithm is polynomial for a fixed constant $\varepsilon>0$, since the number of signature vectors is polynomial and the dynamic program in each iteration also runs in polynomial time. Hence, we have a PTAS for the $K$-MAX problem.

Remark. In fact, Theorem 4 can be significantly generalized in the following way: instead of the cardinality constraint $|S| \leq \widehat{K}$, we can have more general combinatorial constraint on the feasible set $S$. As long as we can execute line 3 in Algorithm 7 in polynomial time, the analysis wound be the same. Using the same trick as in [18], we can extend the dynamic program to a more general

[^4]```
Algorithm 8 Online Submodular Maximization [23]
    Let \(\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{K}\) be \(K\) instances of Exp3.
    for \(t=1,2, \ldots\) do
        // Action in the \(t\)-th round
        for \(i=1\) to \(K\) do
            Use \(\mathcal{A}_{i}\) to select an arm \(a_{t, i} \in[m]\).
        end for
        Play the super arm \(S_{t} \leftarrow \bigcup_{i=1}^{K}\left\{a_{t, i}\right\}\).
        for \(i=1\) to \(K\) do
            Feed back \(f_{t}\left(\bigcup_{j=1}^{i}\left\{a_{t, j}\right\}\right)-f_{t}\left(\bigcup_{j=1}^{i-1}\left\{a_{t, j}\right\}\right)\) as the payoff \(\mathcal{A}_{i}\) receives for choosing \(a_{t, i}\).
        end for
    end for
```

class of combinatorial constraints where there is a pseudo-polynomial time for the exact version ${ }^{6}$ of the deterministic version of the corresponding problem. The class of constraints includes s - t simple paths, knapsacks, spanning trees, matchings, etc.

D Empirical Comparison between SDCB and Online Submodular Maximization on the K-MAX Problem

We perform experiments to compare the SDCB algorithm with the online submodular maximization algorithm in [23], on the K-MAX problem.

Online Submodular Maximization. We briefly describe the online submodular maximization problem considered in [23] and the algorithm therein. At the beginning, an oblivious adversary sets a sequence of submodular functions $f_{1}, f_{2}, \ldots, f_{T}$ on $2^{[m]}$, where f_{t} will be used to determine the reward in the t-th round. In the t-th round, if the player selects a feasible super arm S_{t}, she will receive a reward $f_{t}\left(S_{t}\right)$. This model covers the K-MAX problem as an instance: suppose $X^{(t)}=\left(X_{1}^{(t)}, \ldots, X_{m}^{(t)}\right) \sim D$ is the outcome vector sampled in the t-th round, then the function $f_{t}(S)=\max _{i \in S} X_{i}^{(t)}$ is submodular and will determine the reward in the t-th round. We summarize the algorithm in Algorithm 8, It uses K copies of the Exp3 algorithm (see [3] for an introduction). For the K-MAX problem, Algorithm 8 achieves an $O(K \sqrt{m T \log m})$ upper bound on the $(1-1 / e)$ approximation regret.

Setup. We set $m=9$ and $K=3$, i.e., there are 9 arms in total and it is allowed to select at most 3 arms in each round. We compare the performance of SDCB and the online submodular maximization algorithm on four different distributions. Here we use the greedy algorithm Greedy-K-MAX (Algorithm 5) as the offline oracle in SDCB.
Let $X_{i} \sim D_{i}(i \in[m])$. We consider the following distributions. For all of them, the optimal super arm is $S^{*}=\{1,2,3\}$.

- Distribution 1: All D_{i} 's have the same support $\{0,0.2,0.4,0.6,0.8,1\}$.

For $i \in\{1,2,3\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.1$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.5$.
For $i \in\{4,5,6, \ldots, 9\}, \operatorname{Pr}\left[X_{i}=0\right]=0.5$ and $\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=\right.$ $0.6]=\operatorname{Pr}\left[X_{i}=0.8\right]=\operatorname{Pr}\left[X_{i}=1\right]=0.1$.

- Distribution 2: All D_{i} 's have the same support $\{0,0.2,0.4,0.6,0.8,1\}$.

For $i \in\{1,2,3\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.1$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.5$.
For $i \in\{4,5,6, \ldots, 9\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.12$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.4$.

[^5]- Distribution 3: All D_{i} 's have the same support $\{0,0.2,0.4,0.6,0.8,1\}$.

For $i \in\{1,2,3\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.1$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.5$.
For $i \in\{4,5,6\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.12$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.4$.
For $i \in\{7,8,9\}, \operatorname{Pr}\left[X_{i}=0\right]=\operatorname{Pr}\left[X_{i}=0.2\right]=\operatorname{Pr}\left[X_{i}=0.4\right]=\operatorname{Pr}\left[X_{i}=0.6\right]=$ $\operatorname{Pr}\left[X_{i}=0.8\right]=0.16$ and $\operatorname{Pr}\left[X_{i}=1\right]=0.2$.

- Distribution 4: All D_{i} 's are continuous distributions on $[0,1]$. For $i \in\{1,2,3\}, D_{i}$ is the uniform distribution on $[0,1]$.
For $i \in\{4,5,6, \ldots, 9\}$, the probability density function (PDF) of X_{i} is

$$
f(x)= \begin{cases}1.2 & x \in[0,0.5] \\ 0.8 & x \in(0.5,1]\end{cases}
$$

These distributions represent several different scenarios. Distribution 1 is relatively "easy" because the suboptimal arms 4-9's distribution is far away from arms 1-3's distribution, whereas distribution 2 is "hard" since the distribution of arms 4-9 are close to the distribution of arms 1-3. In distribution 3, the distribution of arms 4-6 is close to the distribution of arms 1-3's, while arms 7-9's distribution is further. Distribution 4 is an example of continuous distribution for which we need to perform discretization.

We use SDCB-FSD for distributions 1-3, and SDCB-GDT for distribution 4. Figure 1 shows the regret of SDCB and the online submodular maximization algorithm in 10,000 rounds. We plot the 1-approximation regret instead of the $(1-1 / e)$-approximation regret, since the greedy oracle usually performs much better than its $(1-1 / e)$-approximation guarantee. We can see from Figure 1 that SDCB achieves much lower regret in all the examples.

Figure 1: Regret of SDCB and Algorithm 8 on the K-MAX problem, for distributions 1-4. The regret is averaged over 20 independent runs.

[^0]: ${ }^{1}$ We understand that the first-price auction is not truthful, but this example is only for illustrative purpose for the $\max ()$ function.

[^1]: ${ }^{2}$ The $O(\log T)$ distribution-dependent regret bound for general random variables only holds for sufficiently large T.

[^2]: ${ }^{3}$ Note that $S_{t}^{\mathcal{A}}$ may be random due to the random outcomes in previous rounds and the possible randomness used by \mathcal{A}.

[^3]: ${ }^{4}$ Without loss of generality, we assume that each arm $i \in[m]$ is contained in at least one super arm.

[^4]: ${ }^{5}$ It is not hard to see the signature of $\max _{k \in[h]} B_{k}$ is exactly sg.

[^5]: ${ }^{6}$ In the exact version of a problem, we ask for a feasible set S such that total weight of S is exactly a given target value B. For example, in the exact spanning tree problem where each edge has an integer weight, we would like to find a spanning tree of weight exactly B.

