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The design of rational cryptographic protocols is a recently created research area at the
intersection of cryptography and game theory. In this paper, we propose a new m-out-of-
n rational secret sharing scheme requiring neither the involvement of the dealer (except
during the initial share distribution) nor a trusted mediator. Our protocol leads to a Nash
equilibrium surviving the iterated deletion of weakly dominated strategies for m ≥ 4.
Our construction is information theoretically secure and it is immune against backward
induction attacks. Contrary to Kol and Naor who used a specific cryptographic primitive
in their TCC’08 paper (namely, meaningful/meaningless encryption), the immunity of
our scheme is based on the use of bivariate polynomials and one-time pads. To the best of
our knowledge, it is the first time that such polynomials have been used for rational secret
sharing. Our scheme is efficient and does not require any physical assumptions such as
envelopes or ballot boxes. As most of existing rational protocols, our construction requires
simultaneous broadcast channels. However, our proposed scheme does not require any
computational assumption and it provides information theoretical security.
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1. Introduction

1.1. Preliminary

In 1979, Shamir [1] and Blakley [2] independently introduced the concept of se-

cret sharing scheme (SSS) in order to facilitate the distributed storage of private

data in an unreliable environment. Since then, secret sharing has become a major

building block for cryptographic primitives in particular in the area of multiparty

computation (MPC) [3]. The goal of a (perfect) SSS is to distribute a secret value

s amongst a finite set of participants P = {P1, . . . , Pn} in such a way that only

specific subsets of P can reconstruct s while the others have no information about

this secret element whatsoever.

Traditional cryptographic models assume that some parties are honest (i.e. they

faithfully follow a given protocol) while others are malicious participants against

whom the honest players must be protected. However, in many real-world applica-

tions, a participant will choose to be dishonest if deviating from the protocol will

provide him with some advantage. Game theory can be used to model such a sit-

uation where players are self-interested (i.e. rational). In this representation, each

participant Pi has a utility function Ui which will dictate his strategy during the

execution of the protocol. Under this new model, the important question is to design

meaningful protocols. Indeed, using natural assumptions regarding the utilities of

the players, a classical threshold SSS completely fails: each player is better off with-

holding his share no matter what the other players do and, as a result, the secret

s will never be reconstructed. For similar reasons, generic MPC solutions [4, 5] are

not applicable since participants are sorted into ”good” and ”bad” members from

the beginning of the protocol.

Halpern and Teague introduced the first general approach for threshold rational

secret sharing in 2004 [6]. Their paper was followed by several subsequent results

[7, 8, 9]. The basic constructions presented in those papers have the disadvantage

of requiring the permanent involvement of the dealer even after the initial share

distribution. To overcome this drawback, [7, 8, 9] replace the dealer by several iter-

ations of MPC protocols. Unfortunately, as pointed out by Fuchsbauer et al. [10],

those MPC functionalities are complex and it is unclear whether this approach is

computationally efficient.

Another noticeable point of the constructions mentioned above is the fact that

a digital signature is used at the beginning of these rational protocols to ensure the

correctness of the shares to be distributed by the dealer. Since no rational protocols

can have a commonly-known bound on its running time (see [6] for details), Kol and

Naor pointed out that the signature scheme could be broken after an exponential

number of rounds [11]. Using a backward induction argument, they deduced that

the participants would better keep silent at every round and thus the secret would

never be reconstructed from the shares.

A different approach to tackle the problem of designing a rational SSS was taken

by Lepinski et al. [12], Izmalkov et al. [13] and Micali and abhi shelat [14]. They
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obtained rational MPC protocols secure against coalitions of adversaries. However,

the hardware needed for these operations (secure envelopes and ballot boxes) is very

restrictive and implementing such approaches is likely to be complicated.

1.2. Our results

As in the literature previously quoted, we design a protocol for rational threshold

secret sharing. Our construction removes all of the drawbacks mentioned above. We

neither assume an online dealer or any trusted parties (the mediator for example),

nor do we rely on secure MPC to redistribute the shares of the secret. Instead,

we borrow the idea from proactive SSS [15] to renew the shares by the interaction

between players. Unlike constructions quoted above, the secret s is masked using

a one-time pad. This provides information theoretical security and makes our con-

struction immune to backward induction mentioned previously. Our scheme is based

on symmetric polynomials. Even if this technique has already been used before for

MPC protocols [16], to the best of our knowledge, it is the first time that they ap-

pear in rational cryptography. Our protocol is efficient in terms of interactions (as

the dealer will not be needed), share size and computation and it guarantees that

all players learn the secret at a Nash equilibrium whose strategy survives the iter-

ated elimination of weakly dominated strategies. As in most of the prior work, we

need a simultaneous broadcast channel and secure privacy channels. The protocol

presented in this paper requires the threshold value m to be at least 4.

2. Game Theoretic Background

In this section, we present the game theoretic concepts our cryptographic construc-

tion relies on. As said in Sect.1.2, we assume the existence of simultaneous channels

for each participant as well as the presence of private channels between any pair of

players. We are to design a rational SSS with the expectation that, when rationally

played, it opens the secret to all the players.

Definition 1 ([17]) An n-player game Γ = ({A1, . . . , An}, {U1, . . . , Un}), pre-

sented in normal/standard form, is determined by specifying, for each player Pi, a

set of possible actions Ai and a utility function Ui : A1 × · · · ×An → R. Any tuple

of actions a := (a1, . . . , an) ∈ A1 × . . .×An is called an outcome.

The utility function of each player expresses his preferred choices over outcomes.

Definition 2 ([17]) A player Pi prefers (resp. weakly prefers) outcome a to a′ if

and only if: Ui(a) > Ui(a
′) (resp. Ui(a) ≥ Ui(a

′)).

The game Γ is played by having each party Pi choose an action ai ∈ Ai and having

all parties play their actions simultaneously. The payoff to Pi is the value given by

his utility function: Ui(a1, . . . , an). The goal of each participant to the game is to

maximize his utility function.



August 25, 2011 17:12 WSPC/INSTRUCTION FILE S0129054111008775

1398 C. Tartary, H. Wang & Y. Zhang

In order to obtain stable strategies (i.e. equilibria), some randomization in the

choice of strategies is needed.

• Each player Pi chooses his action ai ∈ Ai using a distribution σi.

• We are interested in expected utilities for each player.

Definition 3 ([17]) Let Γ = ({A1, . . . , An}, {U1, . . . , Un}) be a game in normal

form. Consider a tuple of strategy vectors σ = (σ1, . . . , σn). σi is a best response

of Pi to σ−i if it maximizes Ui(σi, σ−i) where σ−i represents the (n − 1)-tuple of

strategies played by the remaining players.

Definition 4 ([17]) Let Γ = ({A1, . . . , An}, {U1, . . . , Un}) be a game in normal

form and let σi be a distribution over Ai. A tuple σ = (σ1, . . . , σn) is a mixed-

strategy Nash equilibrium if for all i and every distribution σ′
i over Ai, we have:

Ui(σ
′
i, σ−i) ≤ Ui(σ).

Intuitively, Definition 4 means that Pi has no incentive to deviate from σi as long

as the remaining participants follow σ−i (for all i ∈ {1, . . . , n}). A Nash equilibrium

formalizes a notion of rationality which is strictly internal: each player only cares

about his own payoff.

Theorem 5 (Nash [18]) Any game with a finite set of players and a finite set of

strategies has a Nash equilibrium of mixed-strategies.

Definition 6 ([19]) Given Γ = ({A1, . . . , An}, {U1, . . . , Un}), we say that action

ai ∈ Ai is weakly dominated with respect to A−i(= ×
j 6=i

Aj) if there exists a random-

ized strategy σi ∈ ∆(Ai) such that:

(1) ∀a−i ∈ A−i ui(σi, a−i) ≥ ui(ai, a−i),

(2) ∃a−i ∈ A−i : ui(σi, a−i) > ui(ai, a−i).

where ∆(Ai) represents the set of strategies of player Pi.

The notion of Nash equilibrium is fundamental in game theory. In any Nash equi-

librium, no player assigns positive probability to any strictly dominated action.

Thus, any Nash equilibrium involving such a strategy will not occur in practice. As

a consequence, for our cryptographic setting, we can purge those strategies out.

Definition 7 ([19]) Given Γ = ({A1, . . . , An}, {U1, . . . , Un}) and Â ⊂ A, let

DOMi(Â) denote the set of strategies in Âi that are weakly dominated with respect

to Â−i. Set:

A∞
i :=

⋂

k≥1

Ak
i where ∀k ≥ 1 Ak

i := Ak−1
i \DOMi(A

k−1).

A Nash equilibrium σ = (σ1, . . . , σn) of Γ survives iterated deletion of weakly dom-

inated strategies if σi ∈ ∆(A∞
i ) for all i ∈ {1, . . . , n}.
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3. Our Protocol for m-out-of-n Rational Secret Sharing Secure

against a Single Deviation

In order for the reader to get an easier understanding of our protocol, we first give

a general view of our secret reconstruction phase in Sect. 3.1. The full description

of our scheme is in Sect. 3.2.

3.1. Overview of the reconstruction phase

Our scheme relies on the masking of the secret s. Such an approach already appeared

in [10]. However, Fuchsbauer et al. used a verifiable random function (VRF) which

is a cryptographic primitive, the existence of which is based on some computational

assumption.

In order to provide information theoretical security, the dealer will first use a

one-time pad r over the secret s. He will also mask r in a similar way with another

random element r′ and he will publish r + r′ to a register accessible to all players.

In order to recover s, the players will need to obtain both r and r′. That is why

the second task of the dealer is to distribute r and r′ amongst the n players using

two independent instances of Shamir’s scheme [1] with threshold m. Note that the

public value r + r′ will be used by the participants to check the consistency of the

two reconstructions. The third task of the dealer consists of sharing s + r using a

bivariate polynomial having degree m− 2 in each of its two unknowns.

Assume that m∗(≥ m) players want to participate in the secret reconstruction

process. We first consider the case where m is even. A similar construction holds

when m is odd (see Sect. 3.5). Note that this differentiation ”m is even/odd” has

no influence on the dealer’s job when initially sharing s.

The reconstruction phase proceeds in three stages. During the first two stages,

the goal of the m∗ players is to recover the pad r (using r′ and r + r′). The third

stage is a sequence of ”invalid” and ”valid” iterations which is a frequently used

technique for rational SSS. During each of these iterations, the broadcast shares

correspond to s+ r. Those iterations have the following properties:

• “invalid” iteration: no information about s is revealed since the number of

shares related to s+ r hold by each participant is less than the threshold value

m− 1. At the end of such an iteration, shares are renewed.

• “valid” iteration: every player recovers s on the assumption that every partici-

pant follows the protocol (which will be demonstrated to be the case since they

are rational).

The key in this process is the fact that nobody knows in advance whether the next

iteration will be ”valid”.

During any iteration of the third stage, each of the m∗ participating players Pij

chooses a bit bij such that bij = 1 with probability α depending on the utilities

of the n participants. Then, all m∗ players commonly run a simple MPC protocol

to compute the parity value p := bi1 ⊕ bi2 ⊕ · · · ⊕ bim∗
. Our MPC protocol is an

extension of what was done in [6] in the case of three players.
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If p = 0 then the m∗ players are asked to repeat the previous iteration. Other-

wise, each Pij broadcasts his share to the m∗ − 1 other members if bij = 1.

In the case the protocol did not abort before this point, we have two possibilities:

(1) Pij has at most m− 2 shares (for some j): the players run a check phase to

catch potential cheaters. If the shares are correct, then the m∗ players renew

their shares of s using a technique from proactive SSS [15] and they start over

by choosing a new random bit.

(2) All players have at least m− 1 shares: the set of m∗ players attempt to recon-

struct s + r using polynomial interpolation or error correcting techniques (see

Sect. 3.2 for details). Once they obtain s+ r, they can deduce s since they got

r by the end of the second stage.

3.2. Construction

Our computations will be done in the finite field Fq for which ω is a primitive

element. As mentioned earlier, we denote P := {P1, . . . , Pn} the set of participants

and the secret value to be distributed is s ∈ Fq. As said in the previous section, we

consider that the threshold value m is even.

During the secret reconstruction phase, we assume the existence of a simulta-

neous broadcast channel for all participating players and the presence of private

channels between any pair of these players. All these channels are authenticated.

For each i ∈ {1, . . . , n}, denote ui (respectively, u
+
i ) the minimal (respectively,

maximal) payoff of Pi when he retrieves the secret and denote u−
i his maximal

payoff when Pi does not recover s. As usually assumed in the rational cryptographic

context, we consider: u+
i > ui > u−

i for all i ∈ {1, . . . , n}.

Without loss of generality, we also assume that for each player Pi (i ∈ {1, . . . , n}),

we have:

1

q
u+
i +

(
1−

1

q

)
u−
i < ui (1)

Assuming that Inequality (1) holds for all n players is not proper to our scheme.

Indeed, this relation corresponds to the fact that it is more valuable for Pi to par-

ticipate in the secret reconstruction process than aborting the protocol and tossing

a coin to decide the value of the secret s since this selfish strategy is successful with

probability 1
q
. As said in [10] about Fuchsbauer et al.’s value Urandom, if Inequal-

ity (1) does not hold, then Pi has no incentive in cooperating at all and this player

is better out of the group of participants.

3.2.1. Initial share phase

This is the only phase where the dealer is active. His goal is to distribute s over P .

(1) The dealer chooses a two independent random values r and r′ uniformly dis-

tributed over Fq. The dealer publishes the value r + r′ in a public register.
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(2) The dealer shares r into (r1, . . . , rn) and r′ into (r′1, . . . , r
′
n) using two inde-

pendent instances of Shamir’s m-out-of-n SSS. He distributes through a secure

channel the pair (ri, r
′
i) to Pi for all i ∈ {1, . . . , n}.

(3) Denote v := s + r. The dealer constructs symmetric bivariate polynomial

f(x, y) =
m−2∑
i=0

m−2∑
j=0

aij x
i yj where a00 = v. For each i, the dealer sends the

univariate polynomial hi(x) := f(x, ωi) to Pi through a secure channel.

Remark 8. Due to the symmetry of f , we have hj(ω
i) = hi(ω

j) for any pair (i, j).

This property is fundamental in our work.

Remark 9. During the initial share phase, the dealer uses a symmetric polynomial

f to distribute the shares of v. We would like to emphasize why the degree of f in

each of these two variable is m − 2. Since those shares are not authenticated by

any cryptographic primitive, in order to verify the consistency of the data sent by

a given Pi we require all remaining m∗ − 1(≥ m− 1) participants to run the check

phase.

3.2.2. Check phase

The goal of this phase is to check the consistency of the share λ broadcast by Pi.

This task is done by the players participating in the secret reconstruction process

– except Pi.

(1) Each participating player Pj (j 6= i) broadcasts his check value hj(ω
i).

(2) Each of these players checks, using polynomial interpolation, whether the secret

λ broadcast by Pi in Stage 3 of the secret reconstruction phase is consistent

with those hj(ω
i)’s (i.e. they check if λ = hi(0)).

3.2.3. Share renewal phase

As the check phase, share renewal is done by the players participating in the secret

reconstruction process. We assume that there are m∗(≥ m) such players. For ease

of description, we can assume without loss of generality that those players are

P1, P2, . . . , Pm∗ .

In this phase, each participating Pi plays a similar role to the dealer’s (initial

share phase) to renew his share for v.
(1) Each Pi selects a random symmetric polynomial δi(x, y) of degree m − 3. He

sends δi,j(x) := δi(x, ω
j) to Pj over a private channel (for all j ∈ {1, . . . ,m∗} \

{i}).

(2) After receiving δi,j(x), Pj computes and sends the value δi,j(ω
k) to Pk, for

k ∈ {1, . . . ,m∗} \ {j}, over a private channel.

(3) Pk checks whether δi,j(ω
k) = δi,k(ω

j), for j = 1, . . . ,m∗.

(4) If one of these equalities is not satisfied for some pair (i, j), then Pk aborts the

whole protocol. Otherwise, each Pj updates his share as: hj(x)← hj(x) + (x+
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ωj)
m∗∑
i=1

δi,j(x).

Remark 10. After the renewal phase, we have the following relation for the new

shares: hj(ω
k) = hk(ω

j) for any 1 ≤ j, k ≤ m∗.

3.2.4. Secret reconstruction phase

We assume thatm∗(≥ m) players participate in the secret reconstruction. As before,

we can assume that they are P1, P2, . . . , Pm∗ . Our reconstruction protocol contains

three stages for each of these m∗ players. The first stage is dedicated to the recovery

of the random value r used by the dealer as a pad over the secret s.

Stage 1

(1) Each Pi broadcasts his pair (ri, r
′
i). If some player Pj obtains less than m∗ pairs

(including his own), then Pj aborts the whole protocol.

(2) Each Pi constructs two sets of shares. The first one Si,r consists of all the first

components of those m∗ pairs (i.e. the ri’s) and the second set Si,r′ contains

all the second components of the pairs (i.e. the r′i’s). Player Pi checks if each of

these sets can be interpolated by a polynomial of degree at most m− 1. If this

checking process is unsuccessful for some Pj ’s, then Pj stops the protocol.

(3) For each i ∈ {1, . . . , n}, we denote Ri (respectively R′
i) the constant term of

the polynomial reconstructed by Pi corresponding to the set Si,r (respectively

Si,r′). Each Pi checks whether the sum Ri + R
′
i is equal to the public value

r + r′.

• If the verification is unsuccessful for some Pj , then he aborts the protocol.

• Otherwise, all participants proceed to Stage 2.

The remaining two stages are used to recover v. Note that the threshold now is

m− 1 rather than m since the symmetric bivariate polynomial f has degree m− 2

in each of its variables.

Stage 2

(1) Each Pi chooses a bit bi with Pr(bi = 1) = α as well as a uniformly distributed

random bit b′i.

(2) Denote di := bi ⊕ b′i. Let i+ denote i + 1 except that (m∗)+ is 1. Similarly

i− denotes i − 1 except that 1− is m∗. Each Pi sends b′i to player Pi+ and di

to player Pi− using private channels. If some Pj does not send data to both

neighbors Pj− and Pj+ , then the protocol aborts.

(3) Each Pi computes and broadcasts b′
i−
⊕ di+ . If some Pj does not receive the

bits as prescribed, then the protocol aborts. Otherwise, denote ∆1,i, . . . ,∆m∗,i

the m∗ elements collected by Pi during this broadcast including his own. Each

Pi computes pi =
m∗

⊕
j=1

∆j,i.
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(4) If pj = 0 for some Pj , then the whole protocol goes back to the first step of

Stage 2. Otherwise, all participants proceed to Stage 3.

Remark 11. When the m∗ players reach Stage 3, then we have: ∀i ∈

{1, . . . ,m∗}, pi = 1. Requiring that all the pi’s be equal to 1 means that each par-

ticipant is holding an odd number of shares since m is even. This is due to the fact

that m− 1 (odd number) is the minimum number of shares that a participant needs

to uniquely determine a polynomial of degree m− 2.

Stage 3

(1) Each Pi broadcasts his share hi(0) if bi = 1. Denote ki the number of shares

that Pi received during the previous broadcast (including his own if bi = 1).

(2) If ki < m− 1 for at least m∗ − 1 players Pi, then:

(a) If ki is even for at least m∗ − 1 players Pi, then the protocol stops.

(b) Otherwise, all m∗ active players participate in the check phase. If some Pj

does not broadcast hj(ω
i) as required, then the protocol aborts. Otherwise,

all players go to the renewal phase and then they proceed to the beginning

of Stage 2.

(3) If ki ∈ {m − 1,m} for at least m∗ − 1 players Pi, then each of these players

Pi interpolates the shares into a polynomial fi(0, y). If the degree of fi(0, y) is

m−1 then Pi aborts the protocol. Otherwise, he outputs fi(0, y)+Ri where Ri

was computed at the third step of Stage 1. After this computation, the protocol

ends.

(4) If ki ≥ m+1 for at least m∗−1 players Pi, then each of these players Pi chooses

any (m + 1)-subset hi,1, . . . , hi,m+1 of his ki values. Each Pi forms a (m + 1)-

vector (hi,1 · · ·hi,m+1) which is decoded using a [m + 1,m − 2, 3] generalized

Reed-Solomon (GRS) decoder. Finally, each Pi extracts the secret value s using

the previous corrected codeword and Ri and the protocol ends.

Remark 12. Our choice of ki at step 1 of Stage 3 is to insure that all participants

following the protocol’s instructions will obtain the same value ki = k. This value k

represents the number of elements which were broadcast.

Remark 13. The goal of the check phase played at step 2 of Stage 3 is to punish

a single deviating player since, in such a case, the protocol would abort and no one

would learn s. Since we use a simultaneous broadcast channel to send data (step 1 of

Stage 3), no players know whether the next iteration will correspond to step 2 or step

3/4 – called ”invalid-valid” in Sect. 3.1 – before data transmission. Furthermore,

step 2.b does not reveal anything about v since the check phase run to check the

consistency of at most m− 2 values.

Remark 14. Since that m 6= q − 1 (in fact, we have q ≥ n), we cannot use Reed-

Solomon codes [20] but we have to work with their generalized form [21].
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Remark 15. The use of a GRS decoder at step 4 of Stage 3 is due to the fact that

(h1(0), . . . , hn(0)) can be interpreted as a sharing of s+ r using Shamir’s technique

with threshold parameter m− 1 and the well-known relation between Shamir’s SSS

and GRS codes [20]. Note that we cannot use the Lagrange interpolation technique

since we need to ensure correct secret reconstruction in the presence of (at most)

one deviating player (see proof of Theorem 17 (Stage 3)).

Remark 16. Our protocol requires m ≥ 3. Indeed, consider m∗ = m = 2 and two

participating players P1 and P2. If P1 always remains silent at step 1 of Stage 3

(even if b1 = 1) then P2 is forced to permanently run step 2.b. Since P2 follows the

protocol faithfully, at some iteration, his share is to be broadcast to P1 (who will still

be silent). Thus, P1 will recover s and P2 will not. To prevent a player to choose

such a strategy, we need m− 1 > 1. That is m ≥ 3.

3.3. Security of our rational SSS

We introduce the following notations:

• The secret reconstruction protocol is denoted Π(α).

• As said at the beginning of Sect. 3.2, for each i ∈ {1, . . . , n}, denote ui (respec-

tively, u+
i ) the minimal (respectively, maximal) payoff of Pi when he retrieves

the secret and denote u−
i his maximal payoff when Pi does not recover s. As

usually assumed in the rational context, we consider: u+
i > ui > u−

i for all

i ∈ {1, . . . , n}.

The following theorem shows the consistency of our scheme in a rational environ-

ment. Its proof can be found in Appendix A.

Theorem 17. Assume m ≥ 4. There exists an α∗ such that for any α ≤ α∗,

Π(α) induces a Nash equilibrium surviving iterated deletion of weakly dominated

strategies.

Remark 18. We do not say that our prescribed strategy does not lead to a Nash

equilibrium surviving iterated deletion of weakly dominated strategies when m = 3

(see Remark 16 for the case m = 2). Our demonstration simply does not handle

this case for which our work is still open.

Explicitly computing the largest possible value for α∗ is not trivial. Fortunately, we

can obtain an explicit bound more easily. We define the values β := max
i=1,...,n

u+
i − ui

ui − u−
i

and α̃ :=
[
( m∗

m−3 − 1)
√
β + 1

]−1

. The proof of the following result can be found in

Appendix B.

Theorem 19. Assume m ≥ 4. For any α ≤ α̃, Π(α) induces a Nash equilibrium

surviving iterated deletion of weakly dominated strategies.
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3.4. Round complexity

We use the same notations as in the previous section.

Upper Bound. The following result is based on the fact:

Pr(s is recovered) ≥

m∗∑

λ = m− 1
λ odd

αm∗

(
m∗

λ

)
≥ m∗ αm∗

This is easy to demonstrate and, due to space limitations, we skipped those details.

Theorem 20. Assume m ≥ 4. Let α∗ be as in Theorem 17. For any α ≤ α∗, the

expected round complexity of Π(α) is:

1

⌈m∗

2
⌉∑

j=m
2

α2j−1(1 − α)m
∗−(2j−1)

(
m∗

2j − 1

)

which is O(α
−m∗

m∗
).

Lower Bound. We now show a lower bound on the round complexity of our pro-

tocol. The demonstration of the following theorem relies on the fact:

Pr(s is recovered) = (1− α)

m∗−1∑

λ = m− 2
λ odd

αλ (1− α)
m∗−1−λ

(
m∗ − 1

λ

)

+

α

m∗−1∑

λ = m − 2
λ even

αλ (1 − α)
m∗−1−λ

(
m∗ − 1

λ

)

and on the Chernoff’s bound on the tail of the binomial distribution [22]. Since

space is limited, we did not include the details here.

Theorem 21. Assume m ≥ 4. For any α ≤ min(α∗, m−2
m∗−1 ), the expected round

complexity of Π(α) is:

Ω

((
m− 2

m∗ − 1
α−1

)m−2
eα(m

∗−1)−m+2

1− α

)

3.5. Remark on the case m is odd

Since the beginning of Sect. 3, we only considered the case when m was even. When

the threshold m is odd, we can essentially use the same protocol with the exception

of step 4 in Stage 2 and step 2.a in Stage 3 which become:
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Stage 2 (update)
4. If pj = 1 for some Pj , then the whole protocol goes back to the first step of

Stage 2. Otherwise, all participants proceed to Stage 3.

Stage 3 (update)

2.a. If ki is odd for at least m∗ − 1 players Pi, then the protocol stops.

It holds similar security and efficiency theorems to those presented in the past two

sections. The only analytical difference lies in the fact that we now have p = 0.

3.6. Discussion

Equilibrium. Our solution concept is based on equilibria surviving iterated dele-

tions of weakly dominated strategies. The study of this type of equilibrium was

introduced by Halpern and Teague [6] and has received a lot of attention [7, 9, 23].

We are aware that the notion of iterated deletion exhibits several problems [24]

and that several new concepts have been proposed (mainly using computational

versions of Nash equilibria [10, 11]). The purpose of this paper is not to advocate

in favor of a specific type of equilibrium. Its primary goal is to present a new con-

struction combining the advantages of several schemes for a model widely studied

in the literature.

Communication Channels. Our rational protocol requires the presence of si-

multaneous broadcast channels which is a commonly-used model for rational SSS.

In [11], Kol and Naor managed to remove the need of simultaneity for the broad-

cast channels. However, this is at the expense of increasing the round complexity

by a multiplicative m and the removal is based on permutations to relocate the

meaningful encryption key. Thus, this process is related to use of their meaning-

ful/meaningless encryption primitive. In [10], Fuchsbauer et al. only used point-to-

point channels. However, authentication needs to use the VRF.

Share Consistency. We use an error-correcting code to check the consistency of

the shares. Another possibility would have been to use information theoretically se-

cure MACs as in [24]. The issue is that these MACs encounter a small authentication

error probability while our coding-based approach does not.

Computation Efficiency. Several rational protocols (such as [6]) require the

dealer to participate in every round of the secret reconstruction phase. This is

a bottleneck for the efficiency of those constructions. Like [10, 11], our scheme does

not require the presence of an online dealer. Furthermore, our share renewal process

does not rely on either complex MPC protocols (contrary to [7, 8, 9]) or complicated

hardware such as envelopes and ballot boxes (contrary to [13, 14]). In terms of round

complexity, our protocol exhibits an expected value O(α
−m∗

m∗
) where the number was

5α−3 for 3-out-of-3 secret sharing [6]. In addition, in [6], the protocol security is

computational (while it is information theoretic for our protocol) and the dealer

interacts with the payers at every round.
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Backward Induction. In [11], Kol and Naor emphasized that techniques from

[6, 9, 7] were susceptible to backward induction attacks resulting in all players re-

maining silent from the beginning of the secret reconstruction process. This at-

tack requires an exponential number of rounds to succeed. Such large running time

only occurs with negligible probability. Nonetheless, our scheme is immune against

this threat since we only use information theoretical tools (one-time pads) to au-

thenticate data. In particular, our immunity does not require the existence of any

additional cryptographic primitive contrary to [11] where meaningful/meaningless

encryption schemes were used.

4. Conclusion

In this paper, we presented a new protocol for rational threshold secret sharing

based on symmetric polynomials. To the best of our knowledge, it is the first time

that such polynomials have been used for rational secret sharing. Our protocol re-

quires simultaneous broadcast channels and m ≥ 4. This construction does not

require the presence of the dealer during the share reconstruction phase and it pro-

vides information theoretical security. It is immune against the backward induction

attack and it leads to a Nash equilibrium surviving the iterated deletion of weakly

dominated strategies.

On the negative side, our scheme is only secure against single strategy deviations.

One line to follow for our future research is to extend this scheme to handle the case

of coalition of enemies (c-resilience for c ≥ 2). Using bivariate polynomials of degree

m− 2 c is a possible approach as they would also the GRS code to correct up to c

errors. It is no hard to see that the information theoretical security provided by the

one-time pads still holds (for any coalition of size at most m−1
2 ). Furthermore, the

check phase would still be consistent as every player Pj (testing the validity of λ

sent by Pi) would get m∗− c ≥ m− 2 c+1 correct broadcast elements at the end of

step 1. The tricky point with this approach is to perform the probabilistic analysis

of a group of c cheaters. Indeed, the probabilistic formulas exposed in Appendix A

cannot be simplified as easily since we have to handle a set of c bits which may

not have been chosen by the cheaters as stated in the algorithm. In the case c = 1,

we obtained simple conditional probabilities since represented the bit of the players

following the protocol’s instructions. This is no longer the case for coalitions of size

c ≥ 2 as some cheaters may choose their bit as they feel best for themselves.

As said in Sect. 3.6, our solution concept is based on equilibria surviving iterated

deletions of weakly dominated strategies and several others approaches in designing

rational protocols have recently been proposed. Since the cryptographic community

is still in search of a proper framework for rational protocols, it would be interesting

to study the benefits of our approach in different equilibrium contexts.
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Appendix A. Proof of Theorem 17

We first show that the recommended protocol is a Nash equilibrium for Π(α).

Without loss of generality, we can assume that the active players are P1, . . . , Pm∗ .

If one of the m∗ players does not broadcast anything during step 1 of Stage 1, then

the protocol would terminate without nobody recovering s. This would result in

a lower payoff for everybody including the deviating player. Thus, any rational

player is to broadcast a value during that step. Suppose that some Pi broadcasts a

fake couple (r̂i, r̂
′
i) while the others follow the prescribed strategy. In order for the

protocol not to abort, this forgery must lead to a couple of values (R̂, R̂′) such that:

R̂ + R̂′ = r + r′ (random element uniformly distributed over Fq). In other words,

the deviation of Pi is successful if (r̂i, r̂
′
i) corresponds to one of the q − 1 couples

(R̂, R̂′) consistent with r + r′ and with r̂i 6= ri.

Remark 1. We stress that the values R̂ and R̂′ are common to all m∗ − 1 honest

players.

Since we use simultaneous broadcast channels, deviating Pi must input (r̂i, r̂
′
i) (with

r̂i 6= ri) before receiving any information about the shares of the honest players.

As a consequence, the result of the polynomial reconstructions appears uniformly
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distributed to Pi. Thus, the value R̂ + R̂′ appears uniformly distributed over Fq.

Therefore, the expected payoff of Pi by performing this deviation is:

1

q
u+
i +

(
1−

1

q

)
u−
i

Thus, Pi does not deviate if:

1

q
u+
i +

(
1−

1

q

)
u−
i < ui

which is Inequality (1) stated at the beginning of Sect. 3.2. As a consequence, any

rational player is to follow all instructions in Stage 1.

Assume that player Pi wants to cheat during Stage 2. In order for the protocol

not to be terminated abruptly, Pi is to send data to Pi+ and Pi− at step 1 and to

all other (m∗− 1) players at step 3. A necessary condition for a successful cheating

is to have:

p1 = p2 = · · · = pi− = pi+ = · · · = pm∗ = 1

Denote d̃i, b̃
′
i and

˜di+ ⊕ b′
i−

the values sent by the deviating Pi during Stage 2.

Let j be any value in {1, . . . ,m∗}\{i}. We first study pj. Following the protocol’s

instructions, Pj computes the bit pj as:

pj = (b′i−− ⊕ d̃i)︸ ︷︷ ︸
from P

i−

⊕ ( ˜di+ ⊕ b′
i−
)

︸ ︷︷ ︸
from Pi

⊕ (b̃′i ⊕ di++)︸ ︷︷ ︸
from P

i+

⊕ [
m∗

⊕
k = 1

k 6= i−, i, i+

(b′k− ⊕ dk+)]

︸ ︷︷ ︸
from remaining players including Pj

= (b′i+ ⊕ di−)⊕ (d̃i ⊕ b̃′i)⊕ ( ˜di+ ⊕ b′
i−
)⊕ [

m∗

⊕
k = 1

k 6= i−, i, i+

bk]

We notice that the value of pj does not depend on the index j. Therefore, we rename

this common value as p. It can be simplified as follows:

p = (di+ ⊕ b′i−)︸ ︷︷ ︸
known to Pi

⊕ (d̃i ⊕ b̃′i)⊕ ( ˜di+ ⊕ b′
i−
)

︸ ︷︷ ︸
chosen by Pi

⊕[
m∗

⊕
k = 1
k 6= i

bk] (A.1)

Denote wi the Hamming weight of the vector (b1, . . . , bi− , bi+ , . . . , bm∗). We have

two cases to consider:

(1) d̃i, b̃
′
i and

˜di+ ⊕ b′
i−

are such that: p = 1⊕ [
m∗

⊕
k = 1
k 6= i

bk].

(2) d̃i, b̃
′
i and

˜di+ ⊕ b′
i−

are such that: p =
m∗

⊕
k = 1
k 6= i

bk.

Case 1. Since p = 1, wi is even. If the number of honest participating players to send

their shares at step 1 of Stage 3 is either at most m− 4 or at least m, then Pi does
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not gain anything by deviating. Pi only benefits from not following the protocol’s

instructions when there are exactly m− 2 honest participating players. Then, Pi’s

expected payoff is u+
i .

Case 2. Since p = 1, wi is odd. If the number of honest participating players to

send their shares at step 1 of Stage 3 is either at most m − 3 or at least m + 1,

then Pi does not gain anything by deviating. Pi only benefits from not following the

protocol’s instructions when there are exactly m − 1 honest participating players.

Then, Pi’s expected payoff is u+
i .

Reaching this point in our reasoning, we need to reflect upon Pi’s strategy. We

showed that he only has incentive to deviate in two specific subcases of Case 2

(assuming that p = 1): wi = m − 2 and wi = m − 1. However, if Pi follows the

instructions at Stage 2, then each of the remaining (m∗ − 1) players would get:

p =
m∗

⊕
k=1

bk (A.2)

So, Pi would obtain the same benefit in cheating at step 1 of Stage 3 as in the

subcases above where the role of (di+ ⊕ b′
i−
)⊕ (d̃i⊕ b̃′i)⊕ ( ˜di+ ⊕ b′

i−
) from Eq. (A.1)

would be played by bi in Eq. (A.2). Therefore, Pi has no incentive in sending different

values than those prescribed by the protocol during Stage 2.

We now focus on potential deviations of Pi during Stage 3. There are three

possibilities for Pi to cheat at step 1 of Stage 3 (where p = 1):

(1) Pi broadcasts some value despite bi = 0.

(2) Pi does not broadcast anything despite bi = 1.

(3) Pi broadcasts a fake share when bi = 1.

Case 1. The protocol will terminate during this iteration of Stage 3 since the value

kj will be even for j 6= i (step 2.b cannot be accessed). In this situation, Pi is better

sending a fake share value. Since p = 1, wi is odd. We are in the same situation as

in Case 2 of Stage 2 where Pi sends a fake share.

As said above, if wi ≤ m− 3 then no players learn s and Pi’s expected payoff is

u−
i .

If wi ≥ m+ 1 then everybody recovers s:

• Pi interpolates m − 2 of the wi shares he got from the other players (he runs

step 3).

• Each Pj (j 6= i) is to execute step 4. Since there is at most one incorrect value

amongst the (m+1) elements he chooses, this potential error is to be corrected

by the GRS decoder and Pj recovers s.

In this situation, the expected payoff of the cheating Pi is ui.

If wi = m−1 then only Pi will recover s as the remaining players will reconstruct

an incorrect polynomial at step 3. With large probability, its constant term will be

different from s + r. In such a situation, Pi gets at most u+
i . We need to compute
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the following three probabilities:

Pr(wi ≥ m+ 1|{p = 1} ∩ {bi = 0})

Pr(wi = m− 1|{p = 1} ∩ {bi = 0})

Pr(wi ≤ m− 3|{p = 1} ∩ {bi = 0})

Let λ be any element of {0, . . . ,m∗ − 1}.

Pr(wi = λ|{p = 1} ∩ {bi = 0}) =
Pr({wi = λ} ∩ {

m∗

⊕
k=1

bk = 1} ∩ {bi = 0})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 0})

=
Pr({wi = λ} ∩ {wi is odd})

Pr(wi is odd)

=

{
0 if λ is even

Pr(wi=λ)
Pr(wi is odd) if λ is odd

We can now compute the probabilistic values we need using the fact that m is even.

Pr(wi ≥ m− 1|{p = 1} ∩ {bi = 0}) =

m∗−1
∑

λ = m + 1
λ odd

Pr(wi = λ)

Pr(wi is odd)

Pr(wi ≤ m− 3|{p = 1} ∩ {bi = 0}) =

m−3
∑

λ = 0
λ odd

Pr(wi = λ)

Pr(wi is odd)

Based on this analysis, Pi is not to cheat if:

u
+
i Pr(wi = m− 1) + ui

m∗−1
∑

λ = m+ 1
λodd

Pr(wi = λ) + u
−
i

m−3
∑

λ = 0
λ odd

Pr(wi = λ) ≤ ui Pr(wi is odd)

The previous inequality is equivalent to:

u+
i αm−1 (1− α)m

∗−m

(
m∗ − 1

m− 1

)
+ u−

i

m−3∑

λ = 0
λ odd

αλ (1− α)m
∗−(λ+1)

(
m∗ − 1

λ

)

≤ ui

m−1∑

λ = 0
λ odd

αλ (1− α)
m∗−(λ+1)

(
m∗ − 1

λ

)

Since m is even, the sum on the right hand side ends when λ = m− 3. We get:
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(u+i − ui)α
m−1(1− α)m

∗−m

(

m∗ − 1

m− 1

)

≤ (ui − u
−
i )

m−3
∑

λ = 0
λ odd

α
λ(1− α)m

∗−(λ+1)

(

m∗ − 1

λ

)

We divide both sides of the previous inequality by αm−1 (1− α)
m∗−m

(ui − u−
i ) . Defining A := 1−α

α
, we obtain:

u+
i − ui

ui − u−
i

(
m∗ − 1

m− 1

)
≤

m−3∑

λ = 0
λ odd

(
m∗ − 1

λ

)
Am−(λ+1) (A.3)

The right hand side of Inequality(A.3) is a polynomial of degree m− 2 in A with a

positive leading coefficient as soon as m− 3 ≥ 1 (i.e. m ≥ 4). Since A −−−−→
α→0+

+∞,

we deduce that there exists a value αi,1 such that for all α ≤ αi,1, Inequality(A.3)

does hold. In such a situation, Pi does not cheat as indicated in Case 1.

Case 2. As in Case 1, the protocol will terminate during this iteration of Stage

3. In this case, both m and wi are even. We are in the same situation as in Case 1

of Stage 2 where Pi remains silent.

If wi ≤ m− 4 then no players learn s and Pi’s expected payoff is u−
i . If wi ≥ m

then everybody runs step 3 and recovers s since all the shares are genuine. The

expected payoff of the cheating Pi is ui. When wi ≤ m − 2, Pi will be the only

player to recover s since all other participants will run step 2.a. In this situation,

Pi gets at most u+
i . We are interested in the following three probabilities:

Pr(wi ≥ m|{p = 1} ∩ {bi = 1})

Pr(wi = m− 2|{p = 1} ∩ {bi = 1})

Pr(wi ≤ m− 4|{p = 1} ∩ {bi = 1})

Let λ be any element of {0, . . . ,m∗}.

Pr(wi = λ|{p = 1} ∩ {bi = 1}) =
Pr({wi = λ} ∩ {

m∗

⊕
k=1

bk = 1} ∩ {bi = 1})

Pr({
m∗

⊕
k=1

bk = 1} ∩ {bi = 1})

=
Pr({wi = λ} ∩ {wi is even})

Pr(wi is even)

=

{
0 if λ is odd
Pr({wi=λ})

Pr(wi is even) if λ is even

We can now compute the probabilistic values we need.
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Pr(wi ≥ m|{p = 1} ∩ {bi = 1}) =

m∗−1∑

λ = m
λ even

Pr(wi = λ)

Pr(wi is even)

Pr(wi ≤ m− 4|{p = 1} ∩ {bi = 1}) =

m−4∑

λ = 0
λ even

Pr(wi = λ)

Pr(wi is even)

Based on this analysis, Pi is not to cheat if:

u+
i Pr(wi = m− 2) + ui

m∗−1∑

λ = m
λ even

Pr(wi = λ) + u−
i

m−4∑

λ = 0
λ even

Pr(wi = λ)

≤

ui Pr(wi is even)

The previous inequality is equivalent to:

u+
i αm−2 (1− α)

m∗−(m−1)

(
m∗ − 1

m− 2

)
+ u−

i

m−4∑

λ = 0
λ even

αλ (1− α)
m∗−(λ+1)

(
m∗ − 1

λ

)

≤

ui

m−1∑

λ = 0
λ even

αλ (1− α)
m∗−(λ+1)

(
m∗ − 1

λ

)

Since m is even, the sum on the right hand side ends when λ = m− 2. We get:

(u+
i

− ui)α
m−2 (1 − α)m

∗
−(m−1)

(m∗ − 1

m− 2

)

≤ (ui − u−

i
)

m−4
∑

λ = 0
λ even

αλ (1− α)m
∗
−(λ+1)

(m∗ − 1

λ

)

We divide both sides of the previous inequality by αm−2 (1− α)
m∗−(m−1)

(ui − u−
i ) . Defining A := 1−α

α
, we obtain:

u+
i − ui

ui − u−
i

(
m∗ − 1

m− 2

)
≤

m−4∑

λ = 0
λ even

(
m∗ − 1

λ

)
Am−(λ+2) (A.4)

The right hand side of Inequality (A.4) is a polynomial of degree m− 2 in A with a

positive leading coefficient. Since A −−−−→
α→0+

+∞, we deduce that there exists a value

αi,2 such that for all α ≤ αi,2, Inequality (A.4) does not hold. In such a situation,

Pi does not cheat as indicated in Case 2.
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Case 3. The current case corresponds to Case 1 of Stage 2 where Pi sends a

fake share. We are essentially in the same situation as in Case 2. Given m is even,

we have: wi ≥ m (everybody recovers s) or wi ≤ m − 4 (nobody recovers s) or

wi = m−2. In the latter subcase, Pi will recover s while the other players will get a

wrong value with large probability. The expected payoff of Pi is at most u+
i in that

specific subcase. As a consequence, if Inequality (A.4) holds (i.e. we set αi,3 := αi,2)

then Pi does not cheat as indicated in Case 3.

At this point of our proof, we showed that for any α ≤ α∗
i := min(αi,1, αi,2),

player Pi will follow the protocol’s instructions until step 1 of Stage 3 included.

Since steps 2.a, 3 and 4 of Stage 3 are run independently by each player, the only

remaining way for Pi to deviate would occur when step 2.b is executed. In the

check phase, each single deviation will cause the protocol to stop without anybody

learning the secret while, in the renewal phase, a single deviation either may cause

every player to recover a wrong secret or may cause the protocol to stop with nobody

learning s. Hence, in both cases, no single rational player Pi has any incentive to

deviate during step 2.b.

As a consequence, for any α ≤ α∗ := min(α∗
1, . . . , α

∗
n), the mechanism Π(α) is

a Nash equilibrium. Using the same argument as the proof in Theorem 3.2 from

[6], we could demonstrate that Π(α) survives iterated deletion of weakly-dominated

strategies.

Appendix B. Proof of Theorem 19

Our goal is to show that this choice of α̃ implies that, for any α ≤ α̃, both In-

equality (A.3) and Inequality (A.4) hold. Indeed, when this occurs, the proof of

Theorem 17 exposed in Appendix A indicates that the protocol Π(α) induces a

Nash equilibrium surviving iterated deletion of weakly dominated strategies.

Assume that α ≤ α̃. This inequality implies:

β

(
m∗ −m+ 3

m− 3

)2

≤ A2 (B.1)

This inequality leads to:

β
(m∗ −m+ 2) (m∗ −m+ 1)

(m− 2) (m− 1)
≤ A2

Therefore, we get: β
(
m∗−1
m−1

)
≤
(
m∗−1
m−3

)
A2 and we deduce:

u+
i − ui

ui − u−
i

(
m∗ − 1

m− 1

)
≤

m−3∑

λ = 0
λ odd

(
m∗ − 1

λ

)
Am−(λ+1)

which means that Inequality (A.3) is verified.

Let’s start from Inequality (B.1) again. It also implies:

β
(m∗ −m+ 3) (m∗ −m+ 2)

(m− 2) (m− 3)
≤ A2
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Therefore, we get: β
(
m∗−1
m−2

)
≤
(
m∗−1
m−4

)
A2 and we deduce:

u+
i − ui

ui − u−
i

(
m∗ − 1

m− 2

)
≤

m−4∑

λ = 0
λ even

(
m∗ − 1

λ

)
Am−(λ+2)

which means that Inequality (A.4) is verified which ends our demonstration since

this result is valid for every player Pi (i ∈ {1, . . . , n}).


	Introduction
	Preliminary
	Our results

	Game Theoretic Background
	Our Protocol for m-out-of-n Rational Secret Sharing Secure against a Single Deviation
	Overview of the reconstruction phase
	Construction
	Initial share phase
	Check phase
	Share renewal phase
	Secret reconstruction phase

	Security of our rational SSS
	Round complexity
	Remark on the case m is odd
	Discussion

	Conclusion
	Proof of Theorem 17
	Proof of Theorem 19

