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Abstract

The complexity of distributed edge coloring depends heavily on the palette size as a function
of the maximum degree ∆. In this paper we explore the complexity of edge coloring in the
LOCAL model in different palette size regimes. Our results are as follows.

• We simplify the round elimination technique of Brandt et al. [9] and prove that (2∆− 2)-
edge coloring requires Ω(log∆ log n) time w.h.p. and Ω(log∆ n) time deterministically, even
on trees. The simplified technique is based on two ideas: the notion of an irregular running
time (in which network components terminate the algorithm at prescribed, but irregular
times) and some general observations that transform weak lower bounds into stronger ones.

• We give a randomized edge coloring algorithm that can use palette sizes as small as ∆ +
Õ(
√

∆), which is a natural barrier for randomized approaches. The running time of the
algorithm is roughly O(log ∆ ·TLLL), where TLLL is the complexity of a permissive version
of the constructive Lovász local lemma.

• We develop a new distributed Lovász local lemma algorithm for tree-structured dependency
graphs, which leads to a (1 + ε)∆-edge coloring algorithm for trees running in O(log log n)
time. This algorithm arises from two new results: a deterministic O(log n)-time LLL algo-
rithm for tree-structured instances, and a randomized O(log log n)-time graph shattering
method for breaking the dependency graph into independent O(log n)-size LLL instances.

• A natural approach to computing (∆ + 1)-edge colorings (Vizing’s theorem) is to extend
partial colorings by iteratively re-coloring parts of the graph, e.g., via “augmenting paths.”
We prove that this approach may be viable, but in the worst case requires recoloring
subgraphs of diameter Ω(∆ log n). This stands in contrast to distributed algorithms for
Brooks’ theorem [37], which exploit the existence of O(log∆ n)-length augmenting paths.

∗A preliminary version of this paper was presented at 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7–10, 2018. Supported by NSF grants CCF-1514383 and CCF-1637546
and ERC Grant No. 336495 (ACDC).
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1 Introduction

A k-edge coloring of a graph G = (V,E) is a function φ : E → {1, . . . , k} such that edges sharing an
endpoint are colored differently; the parameter k is called the palette size. In this paper, we study
edge coloring problems in the well-known LOCAL model of distributed computation [33, 40]. The
distributed complexity of computing a k-edge coloring depends heavily on the value of k, relative
to the maximum degree ∆, and whether vertices can generate random bits.

The LOCAL Model. In the LOCAL model, the input graph G = (V,E) is identical to the un-
derlying distributed network; vertices are identified with processors and edges with bi-directional
communication links; each v ∈ V initially knows deg(v), a port-numbering of its incident edges,
and global parameters such as n = |V | and ∆ = maxv deg(v); time is divided into synchronized
rounds, and in each round each processor can perform unlimited computation and communicate
an unbounded-length message to each of its neighbors, which is delivered before the next round.
Depending on the problem the vertices may carry additional input labels. The output of a LOCAL
algorithm is typically a labeling of V or E that satisfies some constraints.

For clarity we bifurcate the LOCAL model into RandLOCAL and DetLOCAL depending on
whether random bits are available. In the RandLOCAL model the output labeling is correct w.h.p.
(i.e., 1− 1/poly(n)). In the DetLOCAL model each vertex is assigned a unique O(log n)-bit ID; the
output labeling must always be correct.

1.1 Edge Coloring Algorithms

In this section, we review previous edge coloring algorithms in descending order by palette size; see
Table 1 for a summary.

Edge coloring can be interpreted as a vertex coloring problem on the line graph L(G), in which
edges becomes vertices and two edges are adjacent if they share an endpoint; the line graph has
maximum degree ∆̂ = 2∆−2. Applied to L(G), Linial’s [33] vertex coloring algorithm will compute
an O(∆̂2)-edge coloring in O(log∗ n−log∗ ∆̂+1) time. Using the fastest deterministic (∆̂+1)-vertex
coloring algorithms [38, 22], (2∆−1)-edge coloring is solved in min{2O(

√
logn), Õ(

√
∆) +O(log∗ n)}

time. Barenboim, Elkin, and Maimon [6] gave deterministic algorithms for (2k∆)-edge coloring
(k ≥ 2) in Õ(k∆1/2k) +O(log∗ n) time.

Barenboim, Elkin, Pettie, and Schneider [7] proved that O(log ∆) iterations of the natural
randomized (2∆− 1)-edge coloring algorithm effectively shatters the graph into uncolored compo-
nents of n′ = poly(log n) vertices; then we can employ a deterministic list coloring algorithm to
color these components in 2O(

√
logn′) = 2O(

√
log logn) time [38]. Thus, the total time complexity is

O(log ∆) + 2O(
√

log logn).
Elkin, Pettie, and Su [19] proved that when ∆ > (log n)1+γ (for some constant γ), (2∆ − 1)-

edge coloring can be solved in O(log∗ n) time in RandLOCAL. Very recently Fischer, Ghaffari, and
Kuhn proved that (2∆− 1)-edge coloring can be solved in O(log7 ∆ log n) time in DetLOCAL. To-
gether with [7] and [19], this implies a min{O((log log n)8), O(log7 ∆ log log n)})-time RandLOCAL
algorithm. Using a slightly larger palette of (2 + ε)∆ colors, ε > 1/ log ∆, Ghaffari et al. [26] (im-
proving [28]) gave an O(ε−1 log2 ∆ log log ∆(log log log ∆)1.71 log n)-time DetLOCAL edge coloring
algorithm.

Below the Greedy Threshold. The number “2∆ − 1” arises because it is the smallest palette
size with the property that any partial coloring can be extended to a total coloring, by the trivial
greedy algorithm. Below the greedy threshold 2∆ − 1, iterative coloring algorithms must be more
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careful in how they proceed. In particular, at intermediate stages in the algorithm, edges must keep
their available palettes relatively large compared to the size of their uncolored neighborhood.

Using the Rödl nibble technique, Dubhashi, Grable, and Panconesi [16] gave a RandLOCAL
algorithm for (1 + ε)∆-edge coloring in O(log n) time, provided that ∆ is sufficiently large, e.g.,
even when ε is constant, ∆ > (log n)1+γ . Elkin, Pettie, and Su [19] gave RandLOCAL algorithms
for (1 + ε)∆-edge coloring that are faster when ∆ is large and work for all ∆ via a reduction to
the distributed Lovász local lemma (LLL); see Section 1.3 for a discussion of the distributed LLL.
The (1 + ε)∆-edge coloring problem is solved in O(log∗ n ·

⌈
logn

∆1−o(1)

⌉
) time. The running time of the

Dubhashi-Grable-Panconesi and Elkin-Pettie-Su algorithms depend polynomially on ε−1. In both
algorithms it is clear that ε need not be constant, but it is not self-evident how small it can be made
as a function of ∆.

The
⌈

logn
∆1−o(1)

⌉
-factor in the time complexity is due to the application of the Chung-Pettie-Su

LLL algorithm [12]. If ∆ is sufficiently small, this algorithm can be sped up using faster LLL
algorithms for small degree graphs [20, 25].

Limits to Coloring Strategies. A natural limit for randomized coloring strategies is a (∆ +
O(
√

∆))-size palette. This is the threshold at which we have a constant probability of being able to
color e, given a random feasible coloring of its neighborhood. Edge coloring with this palette size
was achieved in 1987 by Karloff and Shmoys [31] in the context of parallel (PRAM) algorithms, but
has never been achieved in the LOCAL model.

We cannot hope to use fewer than ∆ + 1 colors on general graphs. Vizing [42] proved that ∆ + 1
suffices for any graph, and Holyer [30] proved that it is NP-hard to tell if a graph is ∆-colorable. The
best sequential (∆ + 1)-edge coloring algorithms [1, 23] run in O(min{∆m log n, m

√
n log n}) time

and are not suited for implementation in the LOCAL model. When the palette size is ∆ + o(
√

∆),
a natural way to solve the problem [1, 23] is to begin with any maximal partial coloring, and
then iteratively recolor portions of the graph (e.g., along “augmenting paths”) so that at least one
uncolored edge can be legally colored. This approach was successfully employed by Panconesi and
Srinivasan [37] in their distributed algorithm for Brooks’ theorem, which states that any graph with
∆ ≥ 3 having no (∆ + 1)-cliques is ∆-vertex colorable. They proved that for any partial coloring,
there exists an augmenting path with length O(log∆ n), and that given a (∆ + 1)-vertex coloring,
a ∆-vertex coloring could be computed in O(log2 n log∆ n) additional time.

1.2 Lower Bounds

Linial’s Ω(log∗ n) lower bound for O(1)-coloring the ring [33, 36] implies that f(∆)-edge coloring also
cannot be computed in o(log∗ n) time, for any function f . To the best of our knowledge, none of the
other published lower bounds applies directly to the edge coloring problem. Kuhn, Moscibroda, and
Wattenhofer’s Ω(min{ log ∆

log log ∆ ,
√

logn
log logn}) lower bounds apply to MIS and maximal matching, but

not to any vertex or edge coloring problem. Linial’s Ω(log∆ n) lower bound [33] (see [41, p. 265]) on
o(∆/ ln ∆)-vertex coloring trees does not imply anything for edge coloring trees. The lower bounds
of Brandt et al. [9] (RandLOCAL Ω(log∆ log n)) and Chang, Kopelowitz, and Pettie [10] (DetLOCAL
Ω(log∆ n)) for sinkless orientation and ∆-vertex coloring trees do not naturally generalize to edge
coloring. In fact, Brandt et al.’s lower bound technique requires that the input graph be ∆-regular
and come equipped with a ∆-edge coloring.
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Palette Size Time (Rand) Notes References
f(∆) Ω(log∗ n) R ∆ = O(1) [33, 36]

O(∆2) O(log∗ n− log∗∆ + 1) ? Vertex coloring L(G) [33]

∆1+ε O(log ∆ log n) Vertex coloring L(G) [4]

O(∆ log n) O(log4 n) [14]

t(2∆− 2) (∆/t)O(1) ·O(log n) Vertex coloring L(G) [4]

2k∆ Õ(k∆1/2k) +O(log∗ n) ? k ≥ 2 [6, 28]

O(ε−3 log11 n) [28]
(2 + ε)∆

O(ε−1 log ∆2+o(1) log n) ? ε > 1/ log ∆ [26]

2O(
√

logn) Vertex coloring L(G) [38]

Õ(
√

∆) +O(log∗ n) ? Vertex coloring L(G) [22]

O(log ∆) + 2O(
√

log logn) R Vertex coloring L(G) [7]

2∆− 1 O(log∗ n) R? ∆ > (log n)1+o(1) [19]

2O(
√

log logn) R [19]

O(log7 ∆ log n) ? [21]

O(min{(log log n)8, log7 ∆ log log n}) R? [7]+[19]+[21]

Ω(log∆ log n) R new
2∆− 2

Ω(log∆ n) new

1.6∆ O(log n) R ∆ > log1+o(1) n [39]
O(ε−1 log ε−1 + log n) R ∆ > (log n)1+γ(ε) [16]

(1 + ε)∆
O
(

(ε−2 log ε−1 + log∗∆)
⌈

logn
ε2∆1−o(1)

⌉)
R ∆ > ∆ε [19]

O
(

log ε−1
⌈

logn
ε2∆1−o(1)

⌉
+ log∗ n

)
R? ε∆ > (log n)1+o(1) new

O
(

log ε−1
⌈

logn
ε2∆1−o(1)

⌉
+ (log log n)3+o(1)

)
R? ∆ > ∆ε new

∆ + Õ(
√

∆) O
(

log ∆
⌈

logn
ε2∆1−o(1)

⌉
+ (log log n)3+o(1)

)
R? new

∆ + 1 diameter(G) ? [42]

Table 1: A history of notable edge coloring algorithms and lower bounds, in descending
order by palette size. Some (2∆ − 1)-edge coloring algorithms that follow from vertex
coloring L(G), such as [2, 32, 5, 3], have been omitted for brevity. RandLOCAL algo-
rithms are marked with R; all others work in DetLOCAL. Those algorithms that are the
“best” in any sense are marked with a ?.

3



Criterion Time Rand/Det Notes Reference
O(MIS · log1/ep(d+1) n) Rand also asymmetric criterion [35]

ep(d+ 1) < 1 O(WeakMIS · log1/ep(d+1) n) Rand also asymmetric criterion [12]

O(log d · log1/ep(d+1) n) Rand also asymmetric criterion [24]+[12]

epd2 < 1 O(log1/epd2 n) Rand also asymmetric criterion [12]

poly(d)2d < 1 O(log n/ log log n) Rand [12]

p(ed)λ < 1 O(n1/λ · 2O(
√

logn)) Det Any λ ≥ 1 [20]

p(ed)4λ < 1 O(d2 + (log n)1/λ · 2O(
√

log logn)) Rand Any λ ≥ 8 [20]

p(ed)32 < 1 2O(
√

log logn) Rand Requires d < (log log n)1/5 [20]

p(20000d8)i < 1 exp(i)

(
O

(√
log(i+1) n

))
Rand Requires d < 2

√
log(i+1) n [25]

p(ed)d
2+1 < 1 O(d2 + log∗ n) Det [20]

Lower Bounds (apply to tree-structured instances)
p · f(d) < 1 Ω(log∗ n) Rand Any f [12]

p · f(d) ≤ 1 Ω(loglog(1/p) log n) Rand Any f(d) ≤ 2d [9]

p · f(d) ≤ 1 Ω(logd n) Det Any f(d) ≤ 2d [10]

LLL for Tree-Structured Instances
p(ed)2 < 1 O(log n) Det new
p(ed)λ < 1 O(max{logλ n,

logn
log logn}) Det λ ≥ 2 new

p(ed)λ < 1 O(max{logλ log n, log logn
log log logn}) Rand λ ≥ 2(4r + 8r) new

Table 2: A survey of distributed LLL algorithms (with a symmetric LLL criterion).
MIS = O(min{d+ log∗ n, log d+ 2O(

√
log logn)}) [5, 24] is the complexity of computing a

maximal independent set in a graph with maximum degree d. WeakMIS = O(log d) [24]
is the task of finding an independent set I such that the probability that v is not
in/adjacent to I is 1/poly(d). All lower bounds apply even to tree-structured instances.
We do not optimize the LLL criterion λ ≥ 2(4r + 8r).
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1.3 Distributed Lovász Local Lemma

Lovász Local Lemma. Consider a set of independent random variables V and a set of bad
events E , where each A ∈ E depends on a subset vbl(A) ⊂ V. Define the dependency graph as
GE = (E , {(A,B) | vbl(A) ∩ vbl(B) 6= ∅)}). Symmetric versions of the Lovász local lemma are
stated in terms of d, the maximum degree in GE , and p = maxA∈E Pr[A]. A standard version of
the LLL says that if ep(d+ 1) < 1 then Pr[∩A∈EA] > 0. The constructive LLL problem is to assign
values to all variables in V such that no event in E happens.

Distributed Lovász Local Lemma. In the distributed LLL problem the communications net-
work is identical to GE . Every node A is identified with an event, which is aware of the distribution
on the random variables vbl(A) ⊆ V. The goal is to collectively assign values to all variables in V
such that no event in E happens.

Randomized coloring algorithms in the LOCAL model are often composed of O(1)-round routines
that commit to a partial coloring, whose local probability of failure is small, as a function of ∆.
Using a distributed Lovász local lemma (LLL) algorithm, we can guarantee global success with
probability 1 − 1/poly(n) (using a randomized LLL algorithm) or even 1 (using a deterministic
LLL algorithm). Table 2 summarizes distributed LLL algorithms under different symmetric criteria
p·f(d) < 1, where p is the local probability of failure and d is the maximum degree in the dependency
graph. In distributed coloring algorithms it is typical to see d = poly(∆) and p = exp(−dΩ(1)), i.e.,
any polynomial LLL criterion of the form p(ed)c < 1 where c = O(1) is good enough.

Chang and Pettie [11] conjectured that the RandLOCAL complexity of the LLL under some
polynomial LLL criterion is O(log log n), matching the Brandt et al. [9] lower bound. If this con-
jecture were true, due to the necessity of graph shattering [10, Theorem 3], an optimal randomized
LLL algorithm should be structured as follows. It must combine an O(log n)-time deterministic
LLL algorithm and an O(log log n)-time randomized graph shattering routine to break the depen-
dency graph into poly(log n)-size LLL instances. Fischer and Ghaffari [20] exhibited a deterministic
n1/λ+o(1)-time algorithm for LLL criterion p(ed)λ < 1, and an O(d2 + log∗ n) routine to shatter the
dependency graph into poly(log n)-size components. More recently, Ghaffari, Harris, and Kuhn [25]
developed a generic derandomization method for the LOCAL model that implies randomized LLL

algorithms with time exp(i)(O(

√
log(i+1) n)) for sufficiently small d, where i depends on how loose

the LLL criterion is.

1.4 New Results

We present new upper and lower bounds on the complexity of edge coloring in the regimes between
palette size ∆ and 2∆− 2, i.e., strictly below the “greedy” threshold 2∆− 1.

Round Elimination. Our first result is a lower bound on (2∆−2)-edge coloring using a simplified
version of Brandt et al.’s [9] round elimination technique. Roughly speaking, their idea is to convert
any randomized t-round algorithm with local error probability p into a (t − 1)-round algorithm
with error probability ≈ p1/∆. By iterating the procedure they obtain a 0-round algorithm with
error probability ≈ p∆t . If any 0-round algorithm must have constant probability of failure, then
t = Ω(log∆ log p−1). By setting p = 1/poly(n) we get Ω(log∆ log n) RandLOCAL lower bounds for
some problems, e.g., sinkless orientation. We present a much simplified round elimination technique
that appears to give quantitatively worse bounds, but which can be automatically strengthened to
match those of [9]. Rather than try to shave one round off the running time of every processor,
it is significantly simpler to do it piecemeal, which leads us to the useful concept of an irregular
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time profile. Suppose that the graph is initially k-edge colored, k being at least 2∆− 1 so as not to
trivialize the problem. An algorithm has irregular time profile t = (t1, . . . , tk) if edges with input
color i choose their output color by examining only their ti-neighborhood. In our simplified round-
elimination technique, we show that any algorithm with time profile (t, t, · · · , t︸ ︷︷ ︸

i

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i

) and

error probability p can be transformed into one with time profile (t, t, · · · , t︸ ︷︷ ︸
i−1

, t− 1, · · · , t− 1︸ ︷︷ ︸
k−i+1

) and

error probability O(p1/3), only by changing the algorithm for edges initially colored i. By iterating
this process we arrive at Ω(∆−1 log log p−1) lower bounds, which has a weaker dependence on ∆
than [9]. By following the proofs of Chang, Kopelowitz, and Pettie [10], any randomized lower bound
of this type implies Ω(log∆ n) lower bounds in DetLOCAL [10, Theorem 5], and hence Ω(log∆ log n)
lower bounds in RandLOCAL [10, Theorem 3].

Faster (1 + ε)∆-edge Coloring. The (1 + ε)∆-edge coloring algorithms of [16, 19] are slow (with
a polynomial dependence on ε−1) and have limits on how small ε can be, as a function of ∆. We
prove that the most “natural” randomized algorithm converges exponentially faster with ε−1 and
can achieve palette sizes close to the minimum of ∆ + Õ(

√
∆) allowed by the nibble method. In

particular, for any ε = Ω̃(1/
√

∆), (1 + ε)∆-edge coloring is reducible to O(log ε−1) instances of the
Lovász local lemma with local failure probability exp(−ε2∆1−o(1)), plus one instance of O(∆)-edge
coloring, which can be solved quickly using [7, 19, 26]. When ε2∆ � log n the error is 1/poly(n);
otherwise we can invoke a distributed LLL algorithm [35, 12, 20]. The

⌈
logn

ε2∆1−o(1)

⌉
-factor in Table 1

is due to the O(log1/epd2 n)-time LLL algorithm of [12], with 1/epd2 = exp(ε2∆1−o(1)).

Upper Bounds on Trees. Our lower bound on (2∆− 2)-edge coloring applies even to trees. In
order to adapt our randomized (1 + ε)∆-edge coloring algorithms to trees, we need a special LLL
algorithm for tree structured dependency graphs. Using the framework of Fischer and Ghaffari [20],
we give a deterministic O(max{logλ n, log n/ log log n})-time LLL algorithm for such instances under
criterion p(ed)λ < 1, λ ≥ 2. The algorithm is based on a special network decomposition algorithm for
tree-structured graphs, in which one color class has diameter O(logλ n) while the other color classes
have diameter 0. We also present a new graph shattering routine for tree-structured LLL instances
that runs in time O(logλ log n), improving the O(d2+log∗ n)-time shattering routine of [20] when d is
not too small. (The new graph shattering method can be viewed as an algorithm that computes the
final state of a certain contagion dynamic exponentially faster than simulating the actual contagion.)
By composing these results we obtain a randomized O(max{logλ log n, log log n/ log log log n}) LLL
algorithm for trees, which essentially matches the lower bound of [9] and the conjectured upper
bound for general instances [11, Conjecture 1]. See Table 2.

A Distributed Vizing’s Theorem? Suppose that a distributed (∆+1)-edge coloring algorithm
begins with a partial coloring and iteratively recolors subgraphs, always increasing the subset of
colored edges. If this algorithm works correctly given any partial coloring, we prove that it takes
Ω(∆ log n) time in any LOCAL model, and more generally, (∆ + c)-coloring takes Ω(∆

c log n) time.
This establishes a quantitative difference between the “locality” of Vizing’s theorem and Brooks’
theorem [37].

Organization. In Section 2 we give lower bounds on (2∆−2)-edge coloring. In Section 3 we give
a randomized (1 + ε)∆-edge coloring algorithm, which requires a distributed LLL algorithm when
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ε2∆ is sufficiently small. In Section 4 we give new LLL algorithms for tree-structured dependency
graphs. In Section 5 we present new network decomposition algorithms for trees, which are used
in Section 4. In Section 6 we prove some bounds on the problems of ∆- and (∆ + 1)-edge coloring
trees. In Section 7 we give lower bounds on a class of “recoloring” algorithms for Vizing’s theorem.
We conclude in Section 8. Some details in Section 3 are left to Appendix A.

2 Lower Bound for (2∆− 2)-Edge Coloring

The sinkless orientation problem is to direct the edges such that no vertex has out-degree zero.
Since this problem becomes harder with fewer edges, we let ∆ denote the minimum degree in this
problem, whereas in the edge coloring problem ∆ is still the maximum degree. We first observe
that sinkless orientation on 2-vertex colored bipartite graphs is reducible to (2∆− 2)-edge coloring.

Theorem 1. Suppose Ae.c. is a t-round (2∆−2)-edge coloring algorithm with local failure probability
p. There is a (t + 1)-round sinkless orientation algorithm As.o. for 2-vertex colored graphs with
minimum degree ∆ whose local failure probability is p.

Proof. Ae.c. produces a proper partial (2∆− 2)-edge coloring φ : E → {1, . . . , 2∆− 2,⊥} such that
for all v ∈ V , Pr[∃(u, v) : φ(u, v) = ⊥] ≤ p, i.e., a vertex errs if not all of its edges are colored.
Suppose we are given a bipartite graph G = (V,E) with a 2-coloring V → {0, 1} and minimum
degree ∆. In the first round of As.o., each vertex selects ∆ of its incident edges arbitrarily and
notifies the other endpoint whether it was selected. Let G′ = (V,E′) be the subgraph of edges
selected by both endpoints. The algorithm As.o. runs Ae.c. on G′ for t rounds to get a partial
coloring φ : E′ → {1, . . . , 2∆− 2,⊥}, then orients the edges as follows. Recall that the underlying
graph G is 2-vertex colored. Let e = {u0, u1} ∈ E be an edge with uj colored j ∈ {0, 1}. If both u0

and u1 do not select e, then e is oriented arbitrarily. Otherwise, As.o. orients e as follows.

As.o.({u0, u1}) =


0→ 1

if {u0, u1} ∈ E′ and φ(u0, u1) ∈ {1, 2, . . . ,∆− 1,⊥},
or if only u0 selected {u0, u1}.

0← 1
if {u0, u1} ∈ E′ and φ(u0, u1) ∈ {∆, . . . , 2∆− 2},
or if only u1 selected {u0, u1}.

The only way a vertex v can be a sink is if (i) v has degree exactly ∆ in G′, (ii) v is colored 1,
and (iii) each edge e incident to v has φ(e) ∈ {1, 2, . . . ,∆ − 1,⊥}. Criterion (iii) only occurs with
probability at most p.

Thus, any lower bound for sinkless orientation on 2-vertex colored graphs also applies to (2∆−2)-
edge coloring. Define T∆ to be an infinite ∆-regular tree whose vertices are properly 2-colored by
{0, 1} and whose edges are assigned a proper (2∆ − 1)-coloring uniformly at random. One could
generate such a coloring as follows. Pick an edge and assign it a random color, then iteratively
pick any vertex u with one incident edge colored, choose ∆ − 1 colors at random from the

(
2∆−2
∆−1

)
possibilities, then assign them to u’s remaining uncolored edges uniformly at random. Randomized
algorithms that run on T∆ know the edge coloring and how it was generated. Thus, the probability
of failure depends on the random bits generated by the algorithm, and those used to generate the
edge coloring.

For simplicity we suppose that the edges host processors, and that two edges can communicate
if they are adjacent in the line graph L(T∆). Define N t(e) to be all edges within distance t of e in
the line graph; we also use N t(e) to refer to all information stored in the processors within N t(e);
this includes edge coloring, vertex coloring, and the random bits.
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Recall that an algorithm has irregular time profile t = (t1, . . . , tk) if edges with input color i
decide their output by examining only their ti-neighborhood. By definition, a time-t algorithm has
time profile (t, t, t, . . . , t).

Lemma 1 (Round Elimination Lemma). Suppose As.o. is a sinkless orientation algorithm for T∆

with error probability p and time profile (t, t, . . . , t︸ ︷︷ ︸
i

, t− 1, . . . , t− 1), i.e., edges colored {1, . . . , i} halt

after t rounds and the others after t− 1 rounds. There exists a sinkless orientation algorithm A′s.o.
with error probability 3p1/3 and time profile (t, t, . . . , t︸ ︷︷ ︸

i−1

, t− 1, . . . , t− 1).

Proof. Only edges colored i modify their algorithm; all others behave identically under A′s.o. and
As.o.. Let e0 = {u0, u1} be an edge colored i with uj colored j ∈ {0, 1} and let the remaining edges
incident to u0 and u1 be {e1, . . . , e∆−1} and {e∆, . . . , e2∆−2}, respectively. Consider the following
two events regarding the output of As.o..

E0 : ∀j ∈ [1,∆− 1],As.o.(ej) = 0← 1 I.e., u0 has outdegree 0 in G− {e0}
E1 : ∀j ∈ [∆, 2∆− 2],As.o.(ej) = 0→ 1 I.e., u1 has outdegree 0 in G− {e0}

If both events hold, then either u0 or u1 must be a sink, so

Pr[E0 ∩ E1] ≤ 2p (1)

On edge e0, A′s.o. runs for t− 1 rounds and determines whether the following events occur.

E?0 :
[

Pr[E0 |N t−1(e0)] ≥ p1/3
]
, E?1 :

[
Pr[E1 |N t−1(e0)] ≥ p1/3

]
Notice that if we inspect N t−1(e0), and condition on the information seen in N t−1(e0), the events E0

and E1 become independent, since they now depend on disjoint sets of random variables. Specifically,
E0 depends on

⋃
j∈[1,∆−1]N

t(ej)\N t−1(e0) and E1 depends on
⋃
j∈[∆,2∆−2]N

t(ej)\N t−1(e0). Thus,

Pr[E0 ∩ E1 | N t−1(e0)] = Pr[E0 |N t−1(e0)] · Pr[E1 |N t−1(e0)] (2)

Since E?0 , E?1 are determined by N t−1(e0), (2) implies that Pr[E0 ∩ E1 | E?0 ∩ E?1 ] ≥ p2/3, and with (1)
we deduce that

Pr[E?0 ∩ E?1 ] ≤ 2p1/3 (3)

The algorithm A′s.o. orients e0 as follows.

A′s.o.(e0) =

{
0→ 1 if E?0 holds
0← 1 otherwise

We now calculate the failure probabilities of u0 and u1.

Pr[u0 is a sink] = Pr[E?0 ∩ E0]

≤ Pr[E0 | E?0 ] ≤ p1/3, by definition of E?0
Pr[u1 is a sink] = Pr[E?0 ∩ E1]

≤ Pr[E?0 ∩ E?1 ] + Pr[E1 ∩ E?1 ]

≤ 2p1/3 + p1/3 = 3p1/3, by (3) and the definition of E?1 .

The failure probability of the remaining vertices (those not incident to any edge colored i) is the
same under As.o. and A′s.o..
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Lemma 2. Any sinkless orientation algorithm for T∆ with local error probability p has time com-
plexity Ω(∆−1 log log p−1).

Proof. Let As.o. be a t-round algorithm with error probability p, i.e., it has time profile (t, t, . . . , t).
Applying Lemma 1 t(2∆ − 1) times we get an algorithm A′s.o. with time profile (0, 0, . . . , 0) and
error probability p0 = O(p3−t(2∆−1)

). We now claim that p0 must also be at least 8−∆. Any 0-
round orientation algorithm can be characterized by a real vector (q1, . . . , q2∆−1), where qi is the
probability that an edge colored i is oriented as 0 → 1. Without loss of generality, suppose that
q1, . . . , q∆ ≥ 1/2. Fix any v ∈ V (T∆) labeled 1. The probability that v is a sink is at least the
probability that its edges are initially colored {1, . . . ,∆} and that they are all oriented away from
v, hence p0 ≥

(
2∆−1

∆

)−1 · 2−∆ ≥ 2−3∆. Combining the upper and lower bounds on p0 we have

23∆ ≥ p−1
0 = Ω((p−1)3−t(2∆−1)

)

and taking logs twice we have

log(3∆) ≥ log log p−1 − t(2∆− 1) log 3−O(1)

which implies that t = Ω(∆−1 log log p−1).

Theorem 2. Even on 2-vertex colored trees or 2-vertex colored graphs of girth Ω(log∆ n), sinkless
orientation and (2∆ − 2)-edge coloring require Ω(log∆ log n) time in RandLOCAL and Ω(log∆ n)
time in DetLOCAL.

Proof. Consider any sinkless orientation or (2∆− 2)-edge coloring algorithm with local probability
of failure p. Lemma 2 applies to any vertex v and any radius t such that N t(v) is consistent
with a subgraph of T∆. Thus, on degree-∆ trees or graphs of girth Ω(log∆ n) [15, 8], we get
Ω(min{∆−1 log log p−1, log∆ n}) lower bounds. Following the same proof as [10, Theorem 5], this
implies an Ω(log∆ n) lower bound in DetLOCAL, which, according to [10, Theorem 3], implies an
Ω(log∆ log n) lower bound in RandLOCAL. In other words, the weak RandLOCAL lower bound
Ω(∆−1 log logn) implied by Lemma 2 automatically implies a stronger lower bound.

3 Randomized Edge Coloring Algorithm

Elkin, Pettie, and Su [19] showed that for any constant ε > 0, there is a number ∆ε such that for
∆ > ∆ε, ∆(1 + ε)-edge coloring can be solved in

O(TLLL(n, poly(∆), exp(−ε2∆/poly(log ∆))) + T ∗(n,O(∆)))

rounds in the RandLOCAL model, where

TLLL(n, d, p) is the RandLOCAL complexity for constructive LLL with the parameters d and p on
an n-vertex dependency graph.

T ∗(n,∆′) is the RandLOCAL complexity for 5∆′-edge coloring on an n-vertex graph of maximum
degree ∆′.

It is unclear to what extent the algorithm of [19] (or its predecessor [16]) still works if we allow
ε = o(1). For instance, it is unknown whether (∆+∆0.7)-edge coloring can be solved in RandLOCAL.
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Challenges to Reducing the Number of Colors. The analysis of our algorithm is substantially
more involved than all previous edge coloring algorithms [39, 16, 19]. Here we give a short technical
review of the types of issues faced in distributed edge coloring.

Previous algorithms [19, 16] are based on the Rödl Nibble method. In each round, every un-
colored edge nominates itself to be colored with probability O(ε) and remains idle otherwise; a
self-nominated edge picks a free color from its available palette and permanently colors itself if
the colors selected by adjacent edges do not conflict with it. The goal is to show that natural
quantities (palette size, degree of vertices in the uncolored graph, etc.) are sharply concentrated
around their expectations. The first issue is finding the right concentration bound. Chernoff bounds
are insufficient for several reasons, one of which is the need for independence (or negative depen-
dence [17, 18]) between the events of interest. Azuma’s inequality and variants fall short due to
the weakness of Lipschitz properties (bounded differences).1 The algorithm of Dubhashi, Grable,
and Panconesi [16] used a specialized concentration inequality of Grable [29], whereas our algo-
rithm and that of Elkin, Pettie, and Su [19] use one [17, Thm. (8.5)] that is syntactically closer to
Chernoff/Hoeffding/Azuma-type inequalities. (It is restated as Theorem 13 in Appendix A.)

The purpose of the “self-nomination” step in [16, 19] is to simplify certain aspects of the analysis.
For example, the probability that an edge is successfully colored, conditioned on it nominating itself,
is a very high 1 − O(ε). Because of this, we can afford to toss out any color c from e’s palette if
any nominated edge e′ adjacent to e selects c — regardless of whether e′ successfully colors itself.
This type of subtle change generally makes things simpler. Some events which would ordinarily be
dependent become independent, and some variables (e.g., a vertex’s c-degree) now depend on Θ(∆2)
variables rather than Θ(∆3). The downside of this approach is that Ω(ε−1) steps are necessary to
color a large fraction of the graph, and with each coloring step the quantities we are monitoring
(c-degree, palette size, etc.) deviate further from their expectations. When ε−1 is polynomial in ∆,
the accumulated deviation errors make it impossible to achieve palette sizes as small as ∆+Õ(

√
∆).

Our algorithm is more “natural” than [16, 19]. Roughly speaking, in each step each edge chooses
a color uniformly at random from its available palette and permanently colors itself if there are no
local conflicts. I.e., we dispense with the low probability self-nomination step. Let pi be a lower
bound on the palette size after i such steps, and di, ti be upper bounds on uncolored degree and c-
degree of any vertex, respectively. It is straightforward to show that if everything behaves precisely
according to expectation, the (di) sequence shrinks by a (1 − e−2) factor in each step and both
(pi), (ti) shrink by a (1−e−2)2 factor. In reality these quantities do deviate from their expectations,
and even tiny, (1+o(1))-factor deviations compound themselves and spin out of control. One reason
our analysis is more complex than [16, 19] is that we look at concentration up to lower order terms.
For example, although pi ≈ ti, we bound βi = pi

ti
− 1, which captures accumulated errors beyond

the leading constants.
As in [19], we obtain good concentration in di, pi, ti with probability 1−exp(−ε2∆/ log4+o(1) ∆),

which is 1−1/poly(n) if ∆ and ε are sufficiently large. If not, we must invoke a Lovász Local Lemma
algorithm to make sure each random coloring experiment introduces bounded deviation errors in
di, pi, ti. A constant fraction of the edges are colored in each step. For many parameter regimes the
running time is dominated by O(log ε−1) calls to an LLL algorithm.

In this section, we prove the following theorem, which improves upon the algorithm of [16, 19].

1This can be seen by considering the problem of bounding the c-degree of a vertex v (the number of edges incident
to v with color c in their palettes). This quantity potentially depends on the choices of Ω(∆3) edges within distance
3 of v, and each such choice could affect v’s c-degree by 1 or more. The sum of these Lipschitz constants completely
dwarfs the expected c-degree, which makes Azuma-type inequalities inapplicable.
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Theorem 3. Let ε = ω
(

log2.5 ∆√
∆

)
be a function of ∆. If ∆ > ∆ε is sufficiently large there is a

RandLOCAL algorithm for (1 + ε)∆-edge coloring in time

O (log(1/ε)) · TLLL
(
n,poly(∆), exp(−ε2∆/ log4+o(1) ∆)

)
+ T ∗ (n,O(ε∆)) .

Notice that exp(−ε2∆/ log4+o(1) ∆) = exp(−ω(log ∆)), so we may use a distributed LLL algo-
rithm under any criterion p(ed)λ < 1. There is an inherent tradeoff between the palette size and
the runtime in Theorem 3. Selecting smaller ε allows us to use fewer colors, but it leads to a higher
p = exp(−ε2∆/ log4+o(1) ∆), which may increase the runtime of the LLL algorithm.

Runtime of 5∆′-edge Coloring. It is known that T ∗(n,∆′) is at most O(log ∆′) plus the
DetLOCAL complexity of 3∆′-edge coloring on poly(log n)-size graphs. This is achieved by ap-
plying the (∆̃ + 1)-vertex coloring algorithm of [7] to the line graph, where ∆̃ = 2∆′ − 2 is the
maximum degree of the line graph.

For the special case of ∆′ = log1+Ω(1) n, (2∆′ − 1)-edge coloring can be solved in RandLOCAL
O(log∗ n) rounds [19]. The state-of-the-art DetLOCAL algorithm [26] for (2 + x)∆′-edge coloring
has complexity

O(log2 ∆′ · x−1 · log log ∆′ · log1.71 log log ∆′ · log n)

for any x > 1/ log ∆′. Thus, combining [19, 7, 26] with x = 1, we have

T ∗(n,∆′) = O(log3 log n · log log log n · log1.71 log log log n) = (log log n)3+o(1).

This is achieved as follows. If ∆′ = Ω(log2 n), we run the O(log∗ n)-time RandLOCAL algorithm
of [19]. Otherwise, we run the RandLOCAL graph shattering phase of [7] (using the first 2∆′ colors)
followed by the DetLOCAL algorithm of [26] (using the remaining 3∆′ colors) on each component.

Runtime on Trees. Consider running our algorithm on a tree with palette size (1 + ε)∆, where
ε = Ω

(
log2.5+x ∆√

∆

)
, for some positive constant x. Then the LLL parameters are d = poly(∆) and p =

exp(−ε2∆/ log4+o(1) ∆) in Theorem 3, which satisfy the criterion p(ed)λ < 1 with λ = Ω(logx ∆).
Using our randomized LLL algorithm for trees (Section 4), we have

TLLL

(
n,poly(∆), exp(−ε2∆/ log4+o(1))

)
= O

(
max{ log logn

log log logn , loglog ∆ log n}
)
.

We claim that T ∗(n,∆′) = O(log∗∆′+log∆′ log n) on trees. This is achieved as follows. First, do
a O(log∗∆′)-time randomized procedure to partially color the graph using the first 2∆′ colors so that
the remaining uncolored components have size poly(log n). This can be done using the algorithm
of [19] without invoking any distributed LLL algorithm. Then, apply our deterministic O(log∆′ ñ)-
time algorithm for ∆′-edge coloring trees (Section 6) to each uncolored component separately, using
a set of ∆′ fresh colors.

To sum up, the time complexity of (1 + ε)∆-edge coloring trees is

O
(

log(1/ε) ·max{ log logn
log log logn , loglog ∆ log n}+ log∗∆ + log∆ log n

)
= O

(
log(1/ε) ·max{ log logn

log log logn , loglog ∆ log n}
)
.

This matches our Ω(log∆ log n) lower bound (Section 2) when 1/ε,∆ = O(1).
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3.1 The Algorithm

Our algorithm has two phases. The goal of the first phase is to color a subset of the edges using
the colors from C1

def
= {1, . . . ,∆(1 + ξ)} such that the subgraph induced by the uncolored edges has

degree less than ∆′ = 1
5(ε − ξ)∆ = Θ(ε∆). The first phase consists of O(log(1/ε)) executions of a

distributed Lovász Local Lemma algorithm. The second phase colors the remaining edges using the
colors from C2

def
= {∆(1 + ξ) + 1, . . . ,∆(1 + ε)} using the fastest available coloring algorithm, which

takes T ∗(n,∆′) time.

Algorithm. In what follows we focus on the first phase. We write Gi to denote the graph induced
by the set of uncolored edges at the beginning of the ith iteration. Each edge e in Gi has a palette
Ψi(e) ⊆ C1. We write degi(v) to denote the number of edges incident to v in Gi and degc,i(v) to
denote the number of edges incident to v that have color c in their palettes. For the base case, we
set G1 = G and Ψi(e) = C1 for all edges. In the graph Gi we maintain the following invariant Hi.

Invariant Hi: For each edge e, vertex v, and color c, we have:

degi(v) ≤ di,
degc,i(v) ≤ ti,
|Ψi(e)| ≥ pi.

Parameters. Given two numbers η ≥ 1 and ξ ∈ (0, ε) (which are functions of ∆), we define three
sequences of numbers {di}, {ti}, and {pi} as follows.

Base case (i = 1):
d1

def
= ∆ t1

def
= ∆ p1

def
= ∆(1 + ξ)

Inductive step (i > 1):

di
def
= (1 + δi−1)d�i−1 d�i−1

def
= di−1 ·

(
1− (1− 1/pi−1)2(ti−1−1)

)
ti

def
= (1 + δi−1)t�i−1 t�i−1

def
= ti−1 ·

(
1− ti−1

pi−1
(1− 1/pi−1)2ti−1

)(
1− (1− 1/pi−1)2ti−1

)
pi

def
= (1− δi−1)p�i−1 p�i−1

def
= pi−1 ·

(
1− ti−1

pi−1
(1− 1/pi−1)2ti−1

)2

Drifts (all i):

δi
def
=

βi
η

βi
def
=

pi
ti
− 1 (Notice that β1 = ξ)

The choice of parameters are briefly explained as follows. Consider an ideal situation where
degi−1(v) = di−1, degc,i−1(v) = ti−1, and |Ψi−1(e)| = pi−1 for all c, e, and v. Consider a very
simple experiment called One-Shot-Coloring in which each uncolored edge attempts to color itself
by selecting a color uniformly at random from its available palette. An edge e successfully colors
itself with probability (1 − 1/pi−1)2(ti−1−1), since there are 2(ti−1 − 1) edges competing with e for
c ∈ Ψi−1(e), and each of these 2(ti−1−1) edges selects c with probability 1/pi−1. Thus, by linearity
of expectation, the expected degree of v after One-Shot-Coloring is d�i−1, and the parameter di is
simply d�i−1 with some slack. The parameters {t�i−1, ti, p

�
i−1, pi} carry analogous meanings. The
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term βi represents the second-order error. We need control over {βi} since it influences the growth
of the three sequences {di}, {ti}, and {pi}.

For the base case, it is straightforward to see that we have deg1(v) = ∆, degc,1(v) = ∆, and
|Ψ1(e)| = ∆(1 + ξ), and thus G1 satisfies the invariant H1. For the inductive step, given that Hi
is met in Gi, we use a distributed LLL algorithm (based on One-Shot-Coloring) to color a subset of
edges in Gi so that the next graph Gi+1 induced by the uncolored edges satisfies Hi+1. We repeat
this procedure until the terminating condition di ≤ 1

5(ε − ξ)∆ is met, and then we proceed to the
second phase.

Analysis. Recall that ε = ω( log2.5 ∆√
∆

). We set η to be any function of ∆ that is ω(log ∆) such that

ε ≥ η2.5
√

∆
. We set ξ = ε

6η . The following lemma shows that under certain criteria, the parameters
{di}, {ti}, {pi}, and {βi} are very close to their “ideal” values. The proof is deferred to Section 3.3.

Lemma 3. Consider an index i > 1. Suppose min{di−1, ti−1, pi−1} = ω(log ∆), βi−1 = o(1/ log ∆),
and δi−1 = o(βi−1/ log ∆). Then the following four equations hold.

di = di−1 · (1± o(1/ log ∆))(1− e−2)

ti = ti−1 · (1± o(1/ log ∆))(1− e−2)2

pi = pi−1 · (1± o(1/ log ∆))(1− e−2)2

βi = βi−1 · (1± o(1/ log ∆))/(1− e−2)

Based on Lemma 3, we have the following lemma.

Lemma 4. Let i? = O(log(1/ε)) = O(log ∆) be the largest index such that βi?−1 ≤ 1/η. Then the
following four equations hold for any 1 < i ≤ i?.

di = (1± o(1/ log ∆))i−1∆(1− e−2)i−1 = (1± o(1))∆(1− e−2)i−1

ti = (1± o(1/ log ∆))i−1∆(1− e−2)2(i−1) = (1± o(1))∆(1− e−2)2(i−1)

pi = (1± o(1/ log ∆))i−1∆(1− e−2)2(i−1) = (1± o(1))∆(1− e−2)2(i−1)

βi = (1± o(1/ log ∆))i−1ξ/(1− e−2)i−1 = (1± o(1))ξ/(1− e−2)i−1

Proof. To prove the lemma, it suffices to show that the condition of Lemma 3 is met for all indices
1 < i ≤ i?. We prove this by an induction on i. By the induction hypothesis the four equations
hold at index i− 1. We show that the condition of Lemma 3 is met for the index i, and so the four
equations also hold for index i. Due to 1/η = o(1/ log ∆), we already have βi−1 = o(1/ log ∆) and
δi−1 = o(βi−1/ log ∆). It remains to prove that min{di−1, ti−1, pi−1} = ω(log ∆).

min{di−1,ti−1, pi−1}
≥ (1± o(1))∆(1− e−2)2(i−1) (Induction hypothesis for di−1, ti−1, pi−1)

= (1± o(1))∆(1− e−2)2(i−2)(1− e−2)2

= (1± o(1))∆ ·
(

(1− e−2 ± o(1))ξ

βi−1

)2

(Induction hypothesis for βi−1)

≥ (1− e−2 ± o(1))ξ2η2∆ (βi−1 ≤ 1/η)

= Ω(η5) (ξ = Ω(
η1.5

√
∆

))

= ω(log ∆)
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It remains to show that (i) the number of iterations it takes to reach the terminating condition is
O(log 1/ε), and (ii) in each iteration, in TLLL

(
n,poly(∆), exp(−ε2∆/ log4+o(1) ∆)

)
time, invariant

Hi can be maintained. By Lemma 4, we have:

di? = (1± o(1))∆(1− e−2)i
?−1 (Lemma 4 for di?)

= (1± o(1))∆ · ξ/βi? (Lemma 4 for βi?)
≤ (1± o(1))ξη∆ (βi? > 1/η)

For our choices of η and ξ, we have di? ≈ ξη∆ = ε∆
6 . Thus, the terminating condition di ≤ 1

5(ε−ξ)∆
must be reached before the i?-iteration (since 1

5(ε − ξ)∆ > ε∆
6 ). The number of iterations it takes

to reach the terminating condition is O(log 1/ε) by Lemma 4 for di.
For each 1 < i ≤ i?, we have:

δ2
i ·min{di, ti, pi} = β2

i ti/η
2 (Definition of δi)

= (1± o(1)) ·
(
ξ/(1− e−2)i−1

)2 · (∆(1− e−2)2(i−1)
)
/η2 (Lemma 4 for ti, βi)

= (1± o(1)) ·∆(ξ/η)2

= Ω(ε2∆/η4) (Definition of ξ)
= ω(log ∆). (Definition of ε)

We will later see in Section 3.2 that this implies that any LLL algorithm with parameters d =
poly(∆) and p = exp(−Ω(∆ε2/η4)) suffices to maintain the invariant in each iteration. Notice that
if we select η = log1+o(1) ∆, then p = exp(−ε2∆/ log4+o(1) ∆), as desired.

3.2 Maintenance of the Invariant

In this section we show how to apply a distributed LLL algorithm, with parameters d = poly(∆)
and p = exp(−Ω

(
δ2
i ·min{di, ti, pi}

)
, to achieve the following task: given a graph Gi meeting the

property Hi, color a subset of edges of Gi so that the graph induced by the remaining uncolored
edges satisfies the property Hi+1. We write Ψ(e) = Ψi(e) for notational simplicity. Consider the
following modification to the underlying graph Gi:

• Each edge e discards colors from its palette to achieve uniform palette size pi.

• Each vertex v locally simulates some imaginary subtrees attached to v and obeying Hi to
achieve uniform color degree ti. That is, if a color c appears in the palette of some edge
incident to a vertex v, then c must appear in the palette of exactly ti edges incident to v.

These (imaginary) modifications to the underlying graph are introduced to enforce broadly uniform
progress in every part of the graph. Observe that if Hi applies to the imaginary graph it also applies
to the true graph as well, since we are concerned with lower bounds on palette sizes and upper
bounds on (c-)degrees. Our analysis largely focusses on how the following O(1)-round procedure
affects the imaginary graph.

One-Shot-Coloring.

(1) Each edge e selects a color Color?(e) ∈ Ψ(e) uniformly at random.

(2) An edge e successfully colors itself Color?(e) if no neighboring edge also selects Color?(e).
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We write S(v) to denote the set of real edges incident to v, and we write Nc(v) to denote the
set of real and imaginary edges incident to v that have c in their palettes. Let S�(v) (resp., N�c (v))
be the subset of S(v) (resp., N�c (v)) that are still uncolored after One-Shot-Coloring. Let Ψ�(e) be
the result of removing all colors c from Ψ(e) such that some edge incident to e successfully colors
itself by c.

The following concentration bound implies that Hi+1 holds with high probability in the graph
induced by the real uncolored edges after One-Shot-Coloring, and thus we can apply a distributed
LLL algorithm to obtain Gi+1 that meets the invariant Hi+1. See Appendix A for proof.

Lemma 5. Suppose that Hi holds. The following concentration bounds hold for any δ > 0.

Pr [|S�(v)| > (1 + δ)d�i ] = exp
(
−Ω(δ2di)

)
Pr [|N�c (v)| > (1 + δ)t�i | N�c (v) 6= ∅] = exp

(
−Ω(δ2ti)

)
Pr [|Ψ�(e)| < (1− δ)p�i | e remains uncolored ] = exp

(
−Ω(δ2pi)

)
We write Nk(v) to denote the set of all vertices within distance k of v. It is straightforward

to see that (i) S�(v) depends only on the colors selected by the edges whose endpoints are both
in N2(v), (ii) N�c (v) depends only on the colors selected by the edges whose endpoints are both in
N3(v), and (iii) Ψ�(e) depends only on the colors selected by the edges whose endpoints are both
in N2(u)∪N2(v), where e = {u, v}. Thus, the parameters for the distributed LLL are d = poly(∆)
and p = exp

(
−Ω

(
δ2
i ·min{di, ti, pi}

))
, as desired.

3.3 Proof of Lemma 3

In this section, we prove Lemma 3. We assume min{di−1, ti−1, pi−1} = ω(log ∆), βi−1 = o(1/ log ∆),
and δi−1 = o(βi−1/ log ∆). The two terms (1 − 1/pi−1)2ti−1 and ti−1

pi−1
(1 − 1/pi−1)2ti−1 show up

in the definition of d�i−1, t
�
i−1, and p�i−1. We begin by showing that these two terms are both

e−2(1 + o(1/ log ∆)). We use the fact that ti−1

pi−1
= 1

βi−1+1 in the following calculation.

(1− 1/pi−1)2ti−1 = e−2ti−1/pi−1(1−O(ti−1/p
2
i−1)) (Taylor expansion of ex)

= e−2 · e2(1−ti−1/pi−1)(1−O(ti−1/p
2
i−1))

= e−2 · e2(1−ti−1/pi−1)

(
1−O

(
1

(1 + βi−1)pi−1

))
(Defn. βi−1)

= e−2 · e2(1−ti−1/pi−1)(1− o(1/ log ∆)) (pi−1 = ω(log ∆))

= e−2 · e2βi−1/(βi−1+1)(1− o(1/ log ∆))

= e−2 · (1 +O(2βi−1/(βi−1 + 1)))(1− o(1/ log ∆))

= e−2 · (1 + o(1/ log ∆))(1− o(1/ log ∆))

= e−2(1 + o(1/ log ∆)). (∗)

ti−1

pi−1
(1− 1/pi−1)2ti−1 = e−2 · ti−1

pi−1
· (1 + o(1/ log ∆)) by (*)

= e−2(1 + o(1/ log ∆))/(1 + βi−1)

= e−2(1 + o(1/ log ∆))/(1 + o(1/ log ∆))

= e−2(1± o(1/ log ∆)). (∗∗)
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We are in a position to derive the first three equations in Lemma 3 (i.e., estimates of di, ti, and
pi). Recall that δi−1 = o(1/ log2 ∆) and 1/pi−1 = o(1/ log ∆).

di = di−1 · (1 + δi−1)
(

1− (1− 1/pi−1)2(ti−1−1)
)

= di−1 · (1 + o(1/ log2 ∆))
(
1− e−2(1 + o(1/ log ∆))/(1− 1/pi−1)2

)
By (*)

= di−1 · (1 + o(1/ log2 ∆))
(
1− e−2(1 + o(1/ log ∆))

)
= di−1 · (1± o(1/ log ∆))(1− e−2).

ti = ti−1 · (1 + δi−1)

(
1− ti−1

pi−1
(1− 1/pi−1)2ti−1

)(
1− (1− 1/pi−1)2ti−1

)
= ti−1 · (1 + o(1/ log2 ∆))

(
1− e−2(1± o(1/ log ∆))

)2 By (**)

= ti−1 · (1± o(1/ log ∆))(1− e−2)2.

pi = pi−1 · (1− δi−1)

(
1− ti−1

pi−1
(1− 1/pi−1)2ti−1

)2

= pi−1 · (1− o(1/ log2 ∆))
(
1− e−2(1± o(1/ log ∆))

)2 By (**)

= pi−1 · (1± o(1/ log ∆))(1− e−2)2.

Finally, we derive the last equation in Lemma 3: an estimate of the second-order error βi.

βi =
pi
ti
− 1

=
(1− δi−1)p�i−1

(1 + δi−1)t�i−1

− 1

= (1−O(δi−1)) · pi−1

ti−1
·

1− ti−1

pi−1
(1− 1/pi−1)2ti−1

1− (1− 1/pi−1)2ti−1
− 1 Definition of p�i−1 and t�i−1

= (1−O(δi−1)) ·
pi−1

ti−1
− (1− 1/pi−1)2ti−1

1− (1− 1/pi−1)2ti−1
− 1

=

(
pi−1

ti−1
− 1
)

+O(δi−1)
(
−pi−1

ti−1
+ (1− 1/pi−1)2ti−1

)
1− (1− 1/pi−1)2ti−1

=

(
pi−1

ti−1
− 1
)

+O(δi−1)
(
−pi−1

ti−1
+ (1− 1/pi−1)2ti−1

)
1− e−2(1 + o(1/ log ∆))

by (*)

=
βi−1 −O(δi−1)

(1− e−2)(1− o(1/ log ∆))
−pi−1

ti−1
+ (1− 1/pi−1)2ti−1 = −Θ(1)

=
βi−1(1− o(1/ log2 ∆))

(1− e−2)(1− o(1/ log ∆))
δi−1 = o(1/ log2 ∆)

= βi−1 · (1± o(1/ log ∆))/(1− e−2).
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4 Distributed Lovász Local Lemma on Trees

In this section, we study the distributed LLL on tree-structured dependency graphs, which we define
as follows. Let T be a tree. Each vertex v holds some variables V(v) and is associated with a
bad event E(v) that depends only on variables within distance r/2 of v; that is, vbl(E(v)) =⋃
u∈Nr/2(v) V(u). If S is a subset of the vertices, we use vbl(S) to be short for

⋃
v∈S vbl(E(v)) =⋃

v∈S
⋃
u∈Nr/2(v) V(u).

The dependency graph for the set of bad events E is exactly T r, which is the graph obtained
by adding edges to all pairs of vertices of distance at most r in T . Thus, the maximum degree of
the dependency graph is ∆r, where ∆ is the maximum degree of T . We fix the parameter d = ∆r.
Notice that the tree-structured dependency graphs (with parameter r) arise naturally from any r/2-
time RandLOCAL experiment that is run on a tree T . Throughout this section we assume r/2 ≥ 1
is an integer and that ∆ ≥ 3.

4.1 Deterministic LLL Algorithm

A (λ, γ)-network decomposition is a partition of the vertex set into V1, . . . , Vλ such that each con-
nected component induced by each Vi has diameter at most γ. Fischer and Ghaffari [20] showed that
given a (λ, γ)-decomposition of G2

E , an LLL instance satisfying p(ed)λ < 1 is solvable in O(λ(γ+1))
time. We use a slight generalization of standard network decompositions. A (λ1, γ1, λ2, γ2)-network
decomposition is a partition of the vertices into V1, . . . , Vλ1 , U1, . . . , Uλ2 such that connected com-
ponents induced by Vi have diameter at most γ1 and those induced by Ui have diameter at most
γ2.

Lemma 6 (Fischer and Ghaffari [20]). Suppose that a (λ1, γ1, λ2, γ2)-network decomposition of
G2
E is given. Any LLL instance on GE satisfying p(ed)λ1+λ2 < 1 can be solved in DetLOCAL in

O(λ1(γ1 + 1) + λ2(γ2 + 1)) time.

The proof of Theorem 4 is based on the network decompositions for trees found in Section 5. A
distance-d dominating set of a graph G is a vertex set S such that for each vertex v in the graph
G, there exists u ∈ S such that dist(u, v) ≤ d.

Theorem 4. Any tree-structured LLL satisfying p(ed)λ < 1 with λ ≥ 2 can be solved in DetLOCAL
in O(max{logλ s,

log s
log log s} + log∗ n) time, where s ≤ n is the size of any distance-O(1) dominating

set of the tree T .

Proof. Recall that the dependency graph is T r for some tree T and constant r. In Section 5 we show
that a standard (2, O(log s))-decomposition for (T r)2 = T 2r is computable in O(log s+log∗ n) time,
and if λ = Ω(1) is sufficiently large, a (1, O(logλ s), O(λ2), 0)-decomposition for T 2r is computable
in O(logλ s+ log∗ n) time.

When λ = O(1) is sufficiently small, we apply Lemma 6 with the first network decomposition.
Because the decomposition has two parts, this works with LLL criterion p(ed)2 < 1. When λ is
sufficiently large we compute a (1, O(logλ̂ s), O(λ̂2), 0)-decomposition in O(logλ̂ s + log∗ n) time,

where λ̂ = min{λ,
√

log s
log log s}. We solve the LLL by applying Lemma 6, which takes time O(λ̂2 +

logλ̂ s+ log∗ n) = O(max{logλ s,
log s

log log s}+ log∗ n). Observe that because of the λ̂2 term, we cannot

benefit from LLL instances with λ�
√

log s
log log s .

Note that the time bound for Theorem 4 is in terms of s rather than n. We will apply Theorem 4
after performing a graph shattering step, the output of which creates many disjoint tree-structured
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instances with size poly(∆) log n, but which contain only log n-size distance-O(1) dominating sets.
We want the time bound to be in terms of s = log n and independent of ∆. If we combine
Theorem 4 with the O(d2 + log∗ n) Fischer and Ghaffari’s [20] shattering routine, we obtain a
O(d2 +max{logλ log n, log logn

log log logn})-time RandLOCAL LLL algorithm for criterion p(ed)λ < 1, λ ≥ 4,
which is efficient only when d is small. In Section 4.2 we present a new method for computing a
partial assignment to the variables that effectively shatters a large dependency graph into many
independent subproblems, each satisfying a polynomial LLL criterion w.r.t. the unassigned variables.

4.2 Randomized LLL Algorithm

Consider a tree-structured LLL instance T r with LLL criterion p(ed)λ < 1. In subsequent discussion,
unless otherwise stated, the underlying graph is, by default, assumed to be T . Our shattering routine
will work towards finding a good partial assignment.

Definition 1. A partial assignment φ to the variables in the LLL system is good if it satisfies the
following three properties.

1. If all variables in vbl(E(v)) =
⋃
u∈Nr/2(v) V(u) are assigned, then the bad event E(v) does not

occur under the assignment φ.

2. Let V ′ be the set of all vertices v such that vbl(E(v)) contains some unassigned variables. Each
connected component C induced by V ′ has size at most poly(∆) · O(log n), and C contains a
distance-2r dominating set with size at most O(log n).

3. Conditioned on the partial assignment φ, the probability of any bad event E(v) is at most
p′ =

√
p. (In particular, (3) implies (1) as a special case.)

Due to Definition 1(3), conditioned on a good partial assignment φ, the bad events in each
connected component C induced by V ′ form an LLL system with the LLL criterion p′(ed)λ/2 < 1.
Thus, the good partial assignment φ effectively shatters the tree T into small components, each of
which is an independent LLL system. In Sections 4.3–4.5 we prove the following efficient “shattering
lemma.”

Lemma 7. Suppose we are given a tree-structured LLL instance T r satisfying LLL criterion p(ed)λ <
1, where λ ≥ 2(4r + 8r). There is a RandLOCAL algorithm that computes a good partial assignment
φ in O(logλ log n) time.

By applying Lemma 7 and then Theorem 4 to the LLL instance of each component, we are now
able to efficiently solve tree-structured LLL instances in O(log log n) time or faster, independent of
the maximum degree d of the dependency graph. We have the following theorem.

Theorem 5. Let T r be a tree-structured LLL instance satisfying criterion p(ed)λ < 1 with λ ≥
2(4r + 8r). This LLL can be solved in RandLOCAL in O(max{logλ log n, log logn

log log logn}) time.

The statement of Lemma 7 actually suggests an algorithm to compute a good partial assignment
φ. First, draw a total assignment φ to V according to the distribution of the variables. If any bad
event E(v) occurs under φ, update φ by unsetting all variables in vbl(E(v)). More generally,
whenever Pr[E(v)|φ] exceeds √p, update φ by unsetting all variables in vbl(E(v)). This can be
viewed as a contagion dynamic played out on the dependency graph. Bad events that occur under
the initial total assignment are infected, and infected vertices can cause nearby neighbors to become
infected.

If this contagion process were actually simulated, it would take Ω(log n) parallel steps to reach
a stable state, which is too slow. We will provide a different method to achieve a stable state that
is exponentially faster, by avoiding a direct simulation.
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4.3 Criterion for Infection

Let u be a vertex in the undirected tree T . Then T −{u} consists of deg(u) subtrees T1, . . . , Tdeg(u);
we call Tk the kth subtree of u. Define Cu(k, [i, j]) to be the set of vertices in the kth subtree of
u whose distance to u lies in the interval [i, j]. For example, Cu(k, [1, 1]) only contains the kth
neighbor of u. For any vertex set S, define d̂egS(u) as follows,

d̂egS(u) = |{k : Cu(k, [1, r]) ∩ S 6= ∅}| .

In other words, it is the number of distinct subtrees of u containing at least one S-vertex within
distance r.

Let µ ≥ 4 and λ′ ≥ 1 be two integers such that λ ≥ 2(µr +λ′). The following bad events B(S, v)
and B(v) are defined w.r.t. the following process. First, we fix a total assignment φ to the variables,
then progressively add vertices to the set S. All variables in vbl(S) are considered unset ; for
example, conditioning on “vbl(E(v))\ vbl(S)” means keeping φ’s assignment to vbl(E(v))\ vbl(S)
and resampling vbl(S) according to their distribution.

B(S, v) :
[

Pr [E(v) | vbl(E(v))\ vbl(S)] ≥ (ed)−λ/2
]
,

B(v) :

[ ⋃
S⊂Nr(v), |S|≤µr

B(S, v)

]
.

In other words, B(S, v) is the event that, if we were to resample vbl(S), the probability that E(v)
occurs is at least (ed)−λ/2. The event B(v) occurs if it is possible to find a subset S of cardinality
at most µr such that B(S, v) occurs.

We can now consider the probability that these events occur, over a randomly selected initial
total assignment φ.

Pr
φ

[B(S, v)] ≤
Prφ[E(v)]

Prφ[E(v) | B(S, v)]
≤ (ed)−λ

(ed)−λ/2
= (ed)−λ/2 ≤ (ed)−(µr+λ′).

By a union bound over the |N r(v)|µr ≤ dµr choices of S,

Pr
φ

[B(v)] ≤
∑
S

Pr
φ

[B(S, v)] < (ed)−λ
′
.

Intuitively, B(v) is the event that E(v) is too close to happening. That is, relatively few
variables need to be resampled to give E(v) a likely probability of happening. Lemma 8 shows that
the criterion for infection “d̂egS(v) > µ” is a good proxy for the harder-to-analyze criterion “E(v)
is too close to happening”.

Lemma 8. Fix a total variable assignment φ. Let S be any vertex set such that, for each vertex v,
if B(v) occurs under φ or d̂egS(v) > µ, then v must be in S. Then Pr[E(v) | vbl(E(v)) \ vbl(S)] <
(ed)−λ/2 for each vertex v.

Proof. If v ∈ S, then the probability of seeing E(v) after resampling vbl(S) is, according to the
original LLL criterion, at most p < (ed)−λ. In what follows we assume v 6∈ S.

To prove the lemma, it suffices to show that there exists a vertex set S′ such that (i) S′ ⊂ N r(v),
(ii) |S′| ≤ µr, and (iii) vbl(S′) ∩ vbl(E(v)) = vbl(S) ∩ vbl(E(v)). Notice that (iii) implies that
resampling vbl(S′) is equivalent to resampling vbl(S) from v’s point of view. Since v 6∈ S, by
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assumption, event B(v) does not occur. Since |S′| ≤ µr, event B(S′, v) does not occur. Hence
Pr[E(v) | vbl(E(v)) \ vbl(S′)] < (ed)−λ/2, as desired.

Root the tree at v. We call a vertex u ∈ S “highest” if u is in N r(v) and no ancestor of u is in S.
If H is the set of highest vertices, then vbl(S) ∩ vbl(E(v)) = vbl(H) ∩ vbl(E(v)), so we only need
to bound |H| by µr. Suppose, for the sake of contradiction, that |H| ≥ µr + 1. Define the path
(v = v0, v1, . . . , vr) by selecting vi as the child of vi−1 that maximizes the number of vertices in H
contained in the subtree rooted at vi. We prove by induction that the subtree rooted at vi contains
at least µr−i+ 1 H-vertices. The base case i = 0 holds by assumption. If there are µ+ 1 subtrees of
vi containing H-vertices, then vi would be infected. Thus, by the pigeonhole principle, the number
of H-vertices in the subtree rooted at vi+1 must be at least

⌈
(µr−i + 1)/µ

⌉
= µr−(i+1) + 1. Hence

the subtree rooted at vr contains µ0 + 1 = 2 H-vertices; this is a contradiction since the only vertex
in this subtree eligible to be in H is vr itself.

4.4 Contagion Process

A (q0, r, µ)-contagion process on an n-vertex tree T is played out as follows. Initially, each vertex is
infected with probability q0, and these events are independent for vertices at distance greater than
r. If S is the set of infected vertices at some time and d̂egS(v) > µ, then v becomes infected. In
this section our goal is, given the initially infected vertices, to compute a superset of those vertices
that is stable and small.

Definition 2. Let S0 be the initially infected vertices and S ⊃ S0.

• S is called stable if it causes no more infection.

• S is called small if each connected component induced by
⋃
v∈S N

r(v) contains a distance-2r
dominating set of size at most O(log n).

In Lemma 9, we show that one can efficiently compute a set S that is both stable and small.

Lemma 9. Consider a (q0, r, µ)-contagion process played on an n-vertex tree T with maximum
degree ∆. There is a RandLOCAL algorithm that computes a small stable set S in O(logµ log n)
time, where r is constant, q0 ≤ (ed)−8r, d = ∆r, and µ ≥ 4.

The proof of Lemma 9 is deferred to Section 4.5. Lemma 10 connects the contagion problem to
finding a good partial assignment.

Lemma 10. Suppose there is a τ -round RandLOCAL algorithm for finding a small stable set S for
a ((ed)−λ

′
, r, µ)-contagion process. Then there exists a (τ +O(1))-round RandLOCAL algorithm for

finding a good partial assignment φ to a tree-structured LLL instance with criterion p(ed)λ < 1,
where λ ≥ 2(µr + λ′).

Proof. Let q0 = (ed)−λ
′ . Consider the (q0, r, µ)-contagion process defined by choosing a random

assignment φ′ to the variables in the LLL system and initially infecting all vertices v such that B(v)
occurs. The lower bound on λ implies Pr[B(v)] ≤ q0 = (ed)−λ

′ . Given the small stable set S, we
let φ be the result of unassigning all variables in vbl(S) =

⋃
v∈S vbl(E(v)) =

⋃
v∈S

⋃
u∈Nr/2(v) V(u).

We now verify that φ is a good partial assignment. Since S is stable, for each vertex v, if B(v)

occurs under φ or d̂egS(v) > µ, then v must be in S. By Lemma 8, Pr[E(v) | vbl(E(v))\ vbl(S)] <
(ed)−λ/2 <

√
p for each vertex v, and so Definition 1(1,3) are satisfied. Let V ′ =

⋃
v∈S N

r(v) be
the set of all vertices v such that vbl(E(v)) contains some unassigned variables. Since S is small,
each connected component C induced by V ′ contains a distance-2r dominating set with size at most
O(log n). Since 2r = O(1), the cardinality of C is at most poly(∆) ·O(log n). Hence Definition 1(2)
is also satisfied.
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We are now in a position to prove Lemma 7. Recall that the LLL criterion of in Lemma 7 is
λ ≥ 2(4r + 8r). We pick the largest even integer µ such that λ ≥ 2(µr + 8r), and we set λ′ = 8r.
Notice that µ ≥ 4 and logµ = Θ(log λ). By Lemma 9, a small stable set S for the ((ed)−8r, r, µ)-
contagion process can be computed in O(logµ log n) = O(logλ log n) time. By Lemma 10, this
implies a O(logλ log n)-time RandLOCAL algorithm to finding a good partial assignment φ under
the LLL criterion p(ed)λ < 1.

4.5 Finding a Small Stable Set

We prove Lemma 9 in this section. The algorithm for Lemma 9 simulates a more virulent contagion
process for τ steps using threshold µ/2 rather than µ, then simulates a reverse-contagion for τ steps,
where vertices become uninfected if they were not initially infected and they have nearby infected
vertices in at most µ subtrees. We prove that when τ = Θ(logµ log n), the final infected set S = Lτ
is both stable and small. This process is called Find-Small-Stable-Set. The sets generated by this
process satisfy that U0 ⊆ · · · ⊆ Uτ = L0 ⊇ · · · ⊇ Lτ .

Find-Small-Stable-Set.

(1) U0 ← {u ∈ V | u is initially infected}. That is, u ∈ U0 if B(u) occurs initially.

(2) For 1 ≤ i ≤ τ , do Ui ← Ui−1 ∪ {u ∈ V | d̂egUi−1
(u) > µ/2}.

(3) L0 ← Uτ .

(4) For 1 ≤ i ≤ τ , do Li ← Li−1 \ {u ∈ Li−1 \ U0 | d̂egLi−1
(u) ≤ µ}.

(5) Return Lτ .

We show that S = Lτ is stable in Lemma 15. Let Lτ+1 be the set of all vertices u such that
d̂egLτ (u) > µ. Our goal is to show that if u /∈ Lτ , then d̂egLτ (u) ≤ µ (i.e., u /∈ Lτ+1) with high
probability.

Root T at an arbitrary vertex, and let T ′ refer to the rooted version. Define T ′u to be the subtree
of T ′ rooted at u, and define C ′u(k, [i, j]) as Cu(k, [i, j])∩T ′u. Given a vertex set W , define deg′W (u)
as the number of different k such that C ′u(k, [1, r])∩W 6= ∅. Although the original contagion process
is played on T , it is easier to analyze a similar process played on T ′, where only descendants can
cause a vertex to become infected.

In general, if {X(u)}u∈V is an ensemble of events associated with vertices and W a subset of
vertices, we write X(W ) to denote the event

⋃
u∈W X(u), i.e., there exists u ∈ W such that X(u)

occurs. We write X to denote the set of vertices {u ∈ V | X(u) occurs}. For any two events A and
B, we write A ⇒ B to denote A ⊆ B, i.e., A implies B. With respect to a vertex u, consider the
following three sequences of events.

(Fi(u)) : for each 0 ≤ i ≤ τ , let Fi(u) be (u /∈ Ui) ∧ (u ∈ Li+1).
(Hi(u)) : let H0(u) be (u ∈ U0); for each 0 ≤ i < τ , let Hi+1(u) be H0(u) ∨ (deg′Hi(u) ≥ µ/2).

(F̃i(u)) : let F̃0(u) be Hτ (u); for each 0 ≤ i < τ , let F̃i+1(u) be deg′F̃i(u) ≥ µ/2.

Lemma 11. No vertex can belong to both Uτ \ Lτ and Lτ+1.

Proof. Suppose there were such a vertex u. If u ∈ Lτ+1 then it must have more than µ neighbors
in Lτ , which were also in Lτ−1 ⊆ · · · ⊆ L0 = Uτ . But if u ∈ Uτ then it would also remain in
L0, . . . , Lτ , contradicting the assumption that u ∈ Uτ \ Lτ .
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By Lemma 11, to prove that S = Lτ is stable, it suffices to prove that

Pr[Fτ (u)] = Pr[(u /∈ Lτ ) ∧ (u ∈ Lτ+1)] = 1/poly(n).

Lemma 12 connects the true contagion process on T to an imagined one played on T ′.

Lemma 12. For each vertex u in T , and for each 0 ≤ i ≤ τ , we have Fi(u)⇒ F̃i(u).

Proof. We first show that (u ∈ Ui)⇒ Hi(u), for each 0 ≤ i ≤ τ . The base case (i = 0) follows from
the definition of H0(u). Assume by inductive hypothesis that (u ∈ Ui−1)⇒ Hi−1(u). We have:

(u ∈ Ui \ U0)⇒
(

d̂egUi−1
(u) > µ/2

)
⇒
(

deg′Ui−1
(u) ≥ µ/2

)
⇒
(

deg′Hi−1
(u) ≥ µ/2

)
.

This implies (u ∈ Ui)⇒ Hi(u), since (u ∈ U0)⇒ H0(u)⇒ Hi(u).
Next, we prove by induction that Fi(u)⇒ F̃i(u), for each 0 ≤ i ≤ τ . The base case i = 0 follows

from the above result:

F0(u)⇒ (u ∈ L1)⇒ (u ∈ L0 = Uτ )⇒ Hτ (u)⇒ F̃0(u).

Assume inductively that Fi−1(u)⇒ F̃i−1(u). Let u be any vertex in Li+1 \ Ui, i.e., the event Fi(u)
occurs. Since u /∈ Ui ⊇ U0, the only way Find-Small-Stable-Set could put u ∈ Li+1 \ Ui is if

d̂egLi(u) > µ

and d̂egUi−1
(u) ≤ µ/2,

which implies

d̂egFi−1
(u) = d̂egLi(u)− d̂egUi−1

(u) > µ/2.

and hence

deg′Fi−1
(u) ≥ µ/2.

By inductive hypothesis, we have(
deg′Fi−1

(u) ≥ µ/2
)
⇒
(

deg′F̃i−1
(u) ≥ µ/2

)
⇒ F̃i(u),

which completes the induction.

For brevity, define pi = maxu Pr[F̃i(u)] and qi = maxu Pr[Hi(u)]. We prove two auxiliary
lemmas.

Lemma 13. pτ ≤ (∆2((r2/2)+1)p0)(µ
2

)τ/(r/2)
.

Proof. Suppose that u is a vertex such that F̃i(u) occurs. Then, by definition of F̃i(u), there exist
µ/2 different indices k such that F̃i−1(C ′u(k, [1, r])) occurs. A consequence of this observation is
that

F̃i−1(C ′u(k, [1, r]))⇒ F̃i−2(C ′u(k, [2, 2r]))⇒ F̃i−3(C ′u(k, [3, 3r])) · · · ⇒ F̃i−(r/2)(C
′
u(k, [r/2, r2/2])).

Therefore, if F̃i(u) occurs, there must exist µ/2 indices k such that F̃i−(r/2)(C
′
u(k, [r/2, r2/2]))

occurs. The µ/2 events {F̃i−(r/2)(C
′
u(k, [r/2, r2/2]))} are independent, since F̃i(v) depends only on
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vbl(T ′v) =
⋃
w∈Nr/2(v)∪T ′v V(w). This independence property is one reason why it is easier to analyze

a contagion on T ′ rather than T .
By a union bound over all vertices in C ′u(k, [r/2, r2/2]), we have

Pr[F̃i−(r/2)(C
′
u(k, [r/2, r2/2]))] ≤ ∆r2/2−1pi−(r/2).

Taking a union bound over at most
(

∆
µ/2

)
choices of µ/2 distinct indices k, we infer that

pi ≤ ∆µ/2(∆r2/2−1pi−(r/2))
µ/2 ≤ (∆(r2/2)pi−(r/2))

µ/2

for each r/2 ≤ i ≤ τ . Assume τ is a multiple of r/2, and recall µ/2 ≥ 2. We can bound pτ as
follows.

pτ ≤ p
(µ

2
)τ/(r/2)

0 ·
τ/(r/2)∏
j=1

(
∆(r2/2)

)(µ
2

)j

≤ (∆r2
p0)(µ

2
)τ/(r/2)

.

Lemma 14. p0 = qτ ≤ ∆r/2q0.

Proof. Recall that Hi(u) is (u ∈ H0) ∨ (deg′Hi−1
(u) ≥ µ/2). This implies that

Hi−1(C ′u(k, [1, r]))⇒ H0(C ′u(k, [1, r])) ∨Hi−2(C ′u(k, [2, 2r])).

Repeating this (r/2)− 1 times, Hi−1(C ′u(k, [1, r])) implies that

H0(C ′u(k, [1, r(r/2− 1)]) ∨Hi−(r/2)(C
′
u(k, [r/2, r2/2])).

Since H0(C ′u(k, [1, r(r/2− 1)])⇒ Hi−(r/2)(C
′
u(k, [r/2, r2/2])), we conclude that

Hi−1(C ′u(k, [1, r]))⇒ H0(C ′u(k, [1, r/2− 1]) ∨Hi−(r/2)(C
′
u(k, [r/2, r2/2])).

Thus, if Hi(u) occurs, then either (i) H0(N r/2−1(u)) occurs, or (ii) there exist µ/2 different indices
k such that Hi−(r/2)(C

′
u(k, [r/2, r2/2])) occurs. The events Hi−(r/2)(C

′
u(k, [r/2, r2/2])) for all k are

independent, since Hi(v) depends only on vbl(T ′v) =
⋃
w∈Nr/2(v)∪T ′v V(w).

By a union bound, Pr[Hi−(r/2)(C
′
u(k, [r/2, r2/2]))] ≤ ∆r2/2−1qi−r/2. Suppose that τ is a multiple

of r/2. Taking a union bound over at most
(

∆
µ/2

)
choices of µ/2 distinct indices k, we have

qτ ≤ Pr[H0(N r/2−1(u))] +

(
∆

µ/2

)
·∆r2/2−1qτ−(r/2)

≤ ∆r/2−1q0 + ∆µ/2(∆r2/2−1qτ−(r/2))
µ/2

≤ ∆r/2−1q0 + (∆r2/2qτ−(r/2))
µ/2

≤ ∆r/2−1q0 + q
(µ

2
)τ/(r/2)

0 ·
τ/(r/2)∏
j=1

(
∆r2/2

)(µ
2

)j

≤ ∆r/2−1q0 +
(

∆2(r2/2)q0

)(µ
2

)τ/(r/2)

(µ/2 ≥ 2)

≤ ∆r/2−1q0 +
(

∆2(r2/2)q0

)2
((µ/2)τ/(r/2) ≥ 2)

≤ ∆r/2−1q0 + ∆4(r2/2)−8r2
q0 (q0 ≤ (ed)−8r and d = ∆r)

≤ ∆r/2q0.
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We are now ready to prove that S = Lτ is stable.

Lemma 15. For each vertex u /∈ Lτ , d̂egLτ (u) ≤ µ with high probability, and so Lτ is stable.

Proof. It suffices to show that Pr[Fτ (u)] = 1/poly(n). By Lemma 12, Pr[Fτ (u)] ≤ Pr[F̃τ (u)] = pτ .
We show that pτ = 1/poly(n).

pτ ≤ (∆r2
p0)(µ

2
)τ/(r/2)

(Lemma 13)

≤ (∆r2+r/2q0)(µ
2

)τ/(r/2)
(Lemma 14)

≤ (∆r2+r/2−8r2
)(µ

2
)τ/(r/2)

(q0 ≤ (ed)−8r and d = ∆r)

≤ (∆−27)(µ
2

)τ/(r/2)
(r ≥ 2)

≤ (∆−27)Θ(logn) (τ = Θ(logµ log n) and r = O(1))

≤ 1/poly(n).

In Lemma 17 we prove that Uτ is small, which implies that S = Lτ ⊆ Uτ is also small. We write
T [a,b] to denote the graph defined by the vertex set V (T ) and the edge set {{u, v} | distT (u, v) ∈
[a, b]}. We first prove an auxiliary lemma.

Lemma 16. Fix a c ≥ 1. With probability 1 − n−Ω(c), the graph H = T [r+1,4r] has no connected
subgraph D such that (i) |D| ≥ c log n, and (ii) there is a subset D′ ⊆ D ∩ U0 containing at least
half of the vertices in D, and distT (u, v) > r for distinct u, v ∈ D′.

Proof. The proof is similar to that of [7, Lemma 3.3]. Suppose that such D exists, and consider
a tree T̂ in H spanning D. There are at most 4c logn different rooted unlabeled c log n-node trees;
and each of them can be embedded into H in less that n ·∆4r(c logn−1) ways. Moreover, there are
at most 2c logn ways of selecting a subset D′ ⊆ D. Since |D′| ≥ c log n/2 and distT (u, v) > r for
distinct u, v ∈ D′, the probability that such T̂ exists is at most qc logn/2

0 .
Recall that q0 ≤ (ed)−8r, d = ∆r, r ≥ 2, and ∆ ≥ 3. A union bound over all possibilities of T̂

implies that such D exists with probability at most

p′ = 4c logn · n ·∆4r(c logn−1) · 2c logn · qc logn/2
0

≤ n3c+1∆−4c(r2−r) logne−4cr logn

≤ n(4−4(r2−r) log ∆−4 log e)c

≤ n−14c.

Lemma 17. With high probability, each connected component in the subgraph of T induced by⋃
v∈Uτ N

r(v) contains a distance-2r dominating set of size at most O(log n), and so Uτ is small.

Proof. Let C be any connected component induced by
⋃
v∈Uτ N

r(v) We pick a distance-2r dom-
inating set D of C greedily, preferring vertices in U0 over U1, and U1 over U2, etc. Each time a
vertex v is picked we remove from consideration all vertices in N r(v). Recall that U0 ⊆ · · · ⊆ Uτ .
The set D is obviously a distance-r dominating set of Uτ ∩ C. Since Uτ ∩ C is itself a distance-r
dominating set of C, the set D is a distance-2r dominating set of C.

We write ui to denote the ith vertex added to D, and define Di = {u1, . . . , ui}. Let mi denote
the number of connected components induced by Di in the graph T [r+1,2r] (rather than T ). We
claim that if ui /∈ U0, then mi < mi−1. This implies that at least half of the vertices in D belong
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to U0. Observe that the set D is connected in H = T [r+1,4r] (since D is a distance-2r dominating
set of C), and so by Lemma 16, |D| = O(log n) with high probability.

We prove the above claim in the remainder of the proof. Consider the moment some ui /∈ U0 is
added to D. We will show that the connected component of Di in the graph T [r+1,2r] that contains
ui is formed by merging ui with at least two connected components of Di−1 in the graph T [r+1,2r].

The algorithm Find-Small-Stable-Set added ui to Uj because ui had at least µ/2 ≥ 2 subtrees
containing Uj−1-vertices that are within N r(ui). Let T1 and T2 be any two such subtrees. For each
k = 1, 2, let vk be a Uj−1-vertex contained in both Tk and N r(ui). Then there must be a vertex
wk ∈ N r(vk) such that wk has been already added to D, since otherwise the greedy algorithm
should prefer vk over ui. Observe that w1 and w2 belong to separate connected components of Di−1

in the graph T [r+1,2r], since ui /∈ N r(w1) ∪N r(w2); but w1, w2, and ui are in the same component
of Di in the graph T [r+1,2r], since wk ∈ N r(vk) ⊆ N2r(ui), for both k = 1, 2.

We have proven (Lemmas 15 and 17) that the algorithm Find-Small-Stable-Set computes a set
S = Lτ that is stable and small, in O(logµ log n) time. Lemma 10 shows that any such algorithm
can be used to find a good partial assignment to the variables in any tree-structured LLL instance
with p(ed)λ < 1 and λ ≥ 2(4r + 8r).2 The stability criterion is used to show that the derived LLL
instances satisfy p′(ed)λ/2 < 1 and p′ = √p. The smallness criterion implies that the instances have
size poly(∆) log n and log n-size, distance-O(1) dominating sets. Because logµ = Θ(log λ), the time
to find the good partial assignment is O(logλ log n).

5 Network Decomposition of Trees

Our interest in network decompositions stems from Lemma 6 due to [20], which shows that they
imply non-trivial deterministic LLL algorithms. Most work on network decompositions [38] has
focussed on arbitrary graphs.

Recall that a (λ, γ)-network decomposition is a partition of the vertices into λ parts V1, . . . , Vλ
such that each Vi induces connected components with diameter at most γ. We define a (λ1, γ1, λ2, γ2)-
network decomposition to be a partition of the vertices into λ1 + λ2 parts V1, . . . , Vλ1 , U1, . . . , Uλ2

such that each Vi (resp. Ui) induces connected components with diameter γ1 (resp. γ2).
In this section we give two network decomposition algorithms for T k where T = (V,E) is an

n-vertex tree that contains a distance-d dominating set S of size s. In our application d and k
are constants. We assume all vertices agree on the numbers (d, k, s). We do not need a specific
dominating set S be given as an input.

5.1 A Simple Network Decomposition

We first design a simple decomposition that partitions any tree-structured graph T k into 2 parts.

Theorem 6. Let T be a tree containing a distance-d dominating set of size s. There is a DetLOCAL
algorithm A that computes a (2, O(log s + d/k))-network decomposition of T k in O(k log s + d +
k log∗ n) time, i.e., O(log s+ log∗ n) time when d, k = O(1).

In what follows we prove Theorem 6. We assume the underlying communications network is T
rather than T k. Consider the following two tree operations. They are similar to the ones described

2It is possible to replace 2(4r + 8r) with 2(4r + cr) for some smaller c, but not too small. We do not attempt to
optimize this coefficient.
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in [11], which are inspired by Miller and Reif [34]. The second operation is parameterized by an
integer ` ≥ 2. In our application we set ` = Θ(k).

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices that belong to some path P such that (i) all vertices in P have
degree at most 2, and (ii) the number of vertices in P is at least `.

Let A′ be the algorithm on the tree T defined as follows. (1) Do 3d+ 1 Rake operations; (2) repeat
the following sequence log s times: perform one Compress and `− 1 Rake operations.

Lemma 18. Algorithm A′ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set of T . Root T at an arbitrary vertex and
let size(v) be the number of vertices in the subtree rooted at v that belong to S. For any vertex
v ∈ V , we prove by induction that (i) if size(v) ≤ 1, then v is removed in Step (1) of A′, and (ii) if
1 < size(v) ≤ 2i, then v is removed on or before the ith iteration of Step (2) of A′.

For the case size(v) ≤ 1, the height of the subtree rooted at v is at most 3d, and so the
entire subtree (including v) must be removed after 3d + 1 Rake operations. Consider the case
2i−1 < size(v) ≤ 2i. By the inductive hypothesis, all vertices u with size(u) ≤ 2i−1 have been
removed before the ith iteration of Step (2). With respect to the vertex v, define V ′ to be the set
of all vertices u such that (i) size(u) > 2i−1, and (ii) u is in the subtree rooted at v. The set V ′

induces a path with one endpoint at v, since otherwise size(v) > 2 ·2i−1 = 2i. Let C be a connected
component induced by vertices in V ′ that are not removed yet. If |C| ≥ `, then all vertices in C are
removed after 1 Compress. Otherwise, all vertices in C are removed after `− 1 Rake operations.

To compute a (2, O(log s+d/k))-network decomposition of T k, it suffices to compute a partition
V = V1 ∪ V2 meeting the following two conditions.

(C1) For both labels c ∈ {1, 2}, any two vertices u and v in two distinct connected components
of Vc must have distT (u, v) > k. This guarantees that the set of connected components of Vc
remains unaltered if we change the underlying graph from T to T k.

(C2) For both labels c ∈ {1, 2}, each connected component of Vc has diameter at most O(k log s+d).
This implies the diameter upper bound of O(log s+ d/k) when the underlying graph is T k.

Recall that A′ performs Lr = (3d+ 1) + (`− 1) log s Rake and Lc = log s Compress operations;
let L = Lr + Lc = (3d+ 1) + ` log s. We write Ui to denote the set of all vertices that are removed
during the ith operation. We are now in a position to present the algorithm A. The algorithm A
begins by computing the decomposition V =

⋃L
i=1 Ui using A′. Then, for i = L down to 1, label all

vertices v ∈ Ui by {1, 2} as follows.

Case 1. If the ith operation is Rake, then label Ui as follows. Let v ∈ Ui. For the case that v is
of degree-1 in the subgraph induced by

⋃L
j=i Uj , let u be the unique neighbor of v in

⋃L
j=i Uj . If

u /∈ Ui, then v adopts the same label as u. Otherwise, u ∈ Ui must also be of degree-1 in
⋃L
j=i Uj ,

and we label both u and v the same by any c ∈ {1, 2}. For the case that v is an isolated vertex of⋃L
j=i Uj , we label v by any c ∈ {1, 2}.

26



Case 2. If the ith operation is Compress, then label Ui as follows. Let P be a path that is a
connected component of Ui. The number of vertices in P is at least ` = Θ(k). Compute a labeling
of the vertices in P meeting the following conditions: (i) each connected component induced by
vertices of the same label has size within [k, 7k], (ii) if v is an endpoint of P that is adjacent to a
vertex u ∈

⋃L
j=i+1 Uj , then the label of v is the same as the label of u.

Such a labeling of P can be computed in O(k) time if we are given an independent set I of P
such that each connected component of P \ I has size within [3k, 6k], i.e., I is a (3k + 1, 3k)-ruling
set. Suppose that we already have such a set I. For each v ∈ I, we find an arbitrary subpath Pv ⊆ P
that contains v and has exactly k vertices. All vertices in

⋃
v∈I Pv are labeled 1, and the remaining

vertices in P are labeled 2. At this moment, each connected component induced by vertices of label
1 has size k, and each connected component induced by vertices of label 2 has size within [k, 6k]. If
there is a component C violating Condition (ii) of the previous paragraph, we flip the label of all
vertices in C (i.e., from 1 to 2 or from 2 to 1). If ` ≥ ck for some large enough universal constant
c, then we obtain a labeling satisfying both Condition (i) and Condition (ii).

The computation of the independent set I can be done in O(k log∗ n) time, as we explain below.
Suppose that we have an independent set I ′ of P such that each connected component of P \ I
has size within [α, 2α]. We show that in O(α log∗ n) time we can compute an independent set
I ′′ of P such that each connected component of P \ I has size within [β, 2β], for any prescribed
number β ≤ 2α + 1. Let P̃ be the “imaginary path” formed by contracting all vertices in P \ I. A
maximal independent set Ĩ of P̃ can be computed in O(α log∗ n) time. At this point, each connected
component C of P \ Ĩ has size within [2α+ 1, 4α+ 2]. The component size constraint [β, 2β] can be
met by adding new vertices to Ĩ to subdivide the oversized components. The desired independent
set I can be computed by log k iterated applications of the above procedure, and the runtime is∑log k

i=1 O(2i log∗ n) = O(k log∗ n).

Time Complexity. The total running time of A is O(Lr + kLc) +O(k log∗ n) = O(k log s+ d+
k log∗ n), since the independent set computation of paths removed by Compress operation can be
computed in O(k log∗ n) time in parallel.

Validity of Labeling. We now verify that the labeling resulting from A satisfies the two con-
ditions (C1) and (C2). Consider two distinct connected components C and C ′ induced by V1. In
view of Case 2 of algorithm A, any path P ′ connecting a vertex in C and a vertex in C ′ in T must
contain a subpath P ′′ consisting of k vertices in V2. The same is true if we swap V1 and V2, and so
(C1) holds. Consider a connected component C by V1 or V2. Let i? be the largest index i such that
Ui ∩ C 6= ∅, and let v? be any vertex in C ∩ Ui? . We show that for any vertex u ∈ C, the unique
path P connecting u and v? in T contains O(Lr +kLc) = O(k log s+d) vertices, and so (C2) holds.
Consider any index i ∈ [1, i?]. If the ith operation is Rake, then we have |P ∩ Ui| ≤ 2 (in view of
Case 1). If the ith operation is Compress, then we have |P ∩ Ui| ≤ 7k (in view of Case 2). Thus,
indeed |P | = O(Lr + kLc).

5.2 A Mixed-diameter Network Decomposition

In this section we show how to compute a network decomposition where, for any parameter λ, one
part has diameter roughly logλ s and the remaining graph is properly O(λ2)-colored, i.e., they form
O(λ2) parts with diameter zero.

Theorem 7. Let T be a tree containing a distance-d dominating set of size s. There is a DetLOCAL
algorithm A that computes a (1, O(logλ/k s + (d/k)), O(λ2), 0)-network decomposition of T k in
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O(k logλ/k s+d+k log∗ n) time, where λ = Ω(k) is sufficiently large, i.e., λ ≥ ck for some universal
constant c. When k, d = O(1) the time bound is O(logλ s+ log∗ n).

In what follows we prove Theorem 7. We write Ti to denote the set of vertices that are not
removed during the first i− 1 tree operations. Consider the following two tree operations.

Rake: Remove all leaves and isolated vertices.

Compress: Remove all vertices v such that |N2.5k(v) ∩ Ti| ≤ λ.
We set m = λ

2.5k − 1. Let A∗ be the algorithm on the tree T defined as follows. (1) Do 3d+ 1 Rake
operations; (2) repeat the following sequence logm s times: do one Compress followed by 2.5k Rake
operations.

Lemma 19. Algorithm A∗ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set of T . Root T at an arbitrary vertex, and let
size(v) be the number of vertices in the subtree rooted at v that belong to S. We prove by induction
that (i) if size(v) ≤ 1, then v is removed in Step (1) of A∗, and (ii) if 1 < size(v) ≤ mi, v is removed
within the first i iterations in Step (2) of A∗.

For the case of size(v) ≤ 1, the height of the subtree rooted at v is at most 3d, and so the
entire subtree (including v) must be removed after 3d+ 1 Rake operations. For the case of mi−1 <
size(v) ≤ mi, we assume by induction that all vertices u with size(u) ≤ mi−1 have been removed
within the first i−1 iterations of Step (2). Let v be any vertex with size(v) ∈ (mi−1,mi], and define
V ′ as the set of all vertices u such that (i) size(u) > mi−1, and (ii) u is in the subtree rooted at
v. Notice that all descendants of v other than those in V ′ have been removed within the first i− 1
iterations of Step (2). Therefore, the set V ′ induces a subtree rooted at v having at most m − 1
leaves. For those vertices u ∈ V ′ with distT (u, v) ≥ 2.5k, we have |N2.5k(u)∩Ti| ≤ m(2.5k)+1 ≤ λ,
so they will be removed after one Compress. The rest of the vertices in V ′ will be removed during
the next 2.5k Rake operations.

Now, we present our network decomposition algorithm A. First, we run A∗ on T . Then, for any
vertex v removed by Compress, we mark all vertices in Nk/2(v), i.e.,

M = {u | ∃v removed by Compress, u ∈ Nk/2(v)}

is the set of all marked vertices. We let T̃ be the graph defined as V (T̃ ) =M, and {u, v} ∈ E(T̃ )
if distT (u, v) ≤ k.

The (1, O(k logλ/k s+ d), O(λ2), 0) network decomposition of T k is computed by assigning color
0 to all unmarked vertices, and coloring the remaining vertices in T̃ with {1, . . . , O(λ2)}. We next
show that (i) ∆(T̃ ) ≤ λ, and so the O(λ2)-coloring can be computed using Linial’s algorithm [33]
in O(k log∗ n) time, and (ii) each connected component induced by unmarked vertices (in T k) has
diameter O(logλ/k s+ (d/k)). Thus, A indeed computes a (1, O(logλ/k s+ (d/k)), O(λ2), 0)-network
decomposition of T k in O(k logλ/k s+ d+ k log∗ n) time.

Proof of (i). For any marked vertex v, we claim that |Nk(v)∩M| ≤ λ (in T ), and so ∆(T̃ ) ≤ λ.
Let u be the first vertex marked in Nk(v). The vertex u is added toM due to the removal of a vertex
w ∈ Nk/2(u) in a Compress operation (it is possible that u = w). Suppose that w was removed in
i?th tree operation. Then we have |N2.5k(w)∩Ti? | ≤ λ. We claim that Nk(v)∩M ⊆ Nk(v)∩Ti? ⊆
N2.5k(w) ∩ Ti? , and this implies |Nk(v) ∩M| ≤ λ, and so ∆(T̃ ) ≤ λ. Since the i?th tree operation
is the first iteration such that a vertex in Nk(v) is marked due to the removal of another vertex
during the i?th tree operation, Nk(v)∩Ti? contains all marked vertices within distance-k of v. Since
dist(v, w) ≤ dist(v, u) + dist(u,w) ≤ 1.5k, we have Nk(v) ∩ Ti? ⊆ N2.5k(w) ∩ Ti? .
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Proof of (ii). The diameter of each connected component (in T ) induced by the unmarked vertices
is O(k logλ/k s+ d), since the total number of Rake is O(k logλ s) + 3d+ 1, and all vertices removed
by Compress are marked. We show that the set of connected components induced by the unmarked
vertices remains the same if we change the underlying graph from T to T k. This implies the diameter
upper bound O(logλ/k s+ (d/k)) when the underlying graph is T k.

Consider any pair of unmarked vertices u and v. Notice that u and v must be removed by Rake.
Suppose that u and v are not connected in T after deleting those vertices removed by Compress from
T . Assume the first time they become disconnected in T is iteration i, which is due to the removal
of a vertex w in Compress. Since all vertices in Nk/2(w) are marked, the unique shortest path in T
connecting u and v must has a subpath consisting of at least 2(k/2) + 1 > k marked vertices. Thus,
u and v are also disconnected in T k after deleting all marked vertices.

6 Deterministic Algorithms for Edge Coloring Trees

Let T = (V,E) be a tree with n vertices and N+(v) = N(v)∪ {v} be the inclusive neighborhood of
v. We decompose T using two operations inspired by Miller and Reif [34], the second of which is
parameterized by an integer k ≥ 2.

Rake: Remove all leaves and isolated vertices from T .

Compress: Remove the set {v ∈ V | for every u ∈ N+(v), degT (u) ≤ k} from T .

Theorem 8. Alternately applying Compress and Rake logk n + 1 times removes all vertices from
any n-vertex tree T .

Proof. Root T at an arbitrary vertex and let size(v) be the number of vertices in the subtree rooted
at v. We prove by induction that if size(v) ≤ ki, v will be removed after the first i + 1 rounds of
Compress and Rake. The claim is trivially true when i = 0. Assume the claim is true for i − 1.
Let v be any vertex with size(v) ∈ (ki−1, ki], and define V ′ to be the set of all vertices u such that
(i) size(u) ∈ (ki−1, ki] and (ii) u is in the subtree rooted at v. Notice that each vertex u ∈ V ′ has
degV ′(u) ≤ k, since otherwise size(u) > ki. By the inductive hypothesis, all descendants of v that
are not in V ′ have been removed after i rounds of Compress and Rake. The (i+ 1)th Compress will
remove any remaining vertices in V ′ − {v}. However, the degree of the parent of v is unbounded,
so v may not be removed. If v still remains, the (i+ 1)th Rake will remove it.

Theorem 9. There is an O(log∆ n)-time DetLOCAL algorithm for ∆-edge coloring a tree T with
maximum degree ∆ ≥ 3.

Proof. Let β be the constant such that Linial’s algorithm [33] finds a β∆2-edge coloring in O(log∗ n−
log∗∆ + 1) time. We begin by decomposing T with Compress and Rake steps, using parameter
k = max{2,

⌊
(∆/β)1/3

⌋
}. Define Ti = (Vi, Ei) to be the forest before the ith round of Compress

and Rake, and let V c
i and V r

i be those vertices removed by the ith Compress and Rake, respectively.
We edge color the trees Tlogk n+1, . . . , T1 = T in this order. Given a coloring of Ti+1, we need to

color the remaining uncolored edges in Ti. Let u ∈ Ti+1 be a vertex, and let v1, . . . , vx ∈ V r
i be the

vertices adjacent to u removed by the ith Rake. At this point u is incident to at most ∆−x colored
edges. We assign to {u, v1}, . . . , {u, vx} any distinct available colors from their palettes.

We now turn to the vertices removed by the ith Compress. First, suppose that ∆ is large enough
such that k =

⌊
(∆/β)1/3

⌋
. Let φ be a βk2-edge coloring of the (as yet uncolored) subgraph of Ti

(i.e., the edges that are incident to some vertices in V c
i ). Partition the palette {1, . . . ,∆} into βk2

parts P1, . . . , Pβk2 . Each part has size ∆/(βk2) ≥ k. Each v ∈ V c
i colors each edge {v, u} any
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available color in Pφ({v,u}). Since degTi(u) ≤ k, at most k − 1 of its incident edges may already
be colored, and so there must be at least one available color in Pφ({v,u}) for {v, u} to use. All
calls to Linial’s βk2-edge coloring algorithm can be executed in parallel, so the overall time is
O(logk n+ log∗ n− log∗ k) = O(log∆ n).

When k = 2, the subgraph induced by V c
1 ∪· · ·∪V c

logk n+1 consists of a set of paths. In O(log∗ n)
time, we find an initial 3-edge coloring of these paths. We now color Tlogk n+1, . . . , T1 in this order.
Coloring the edges removed during a Rake is done as before. The set V c

i removed in one Compress
induces some paths, each end-edge of which may be adjacent to one (previously colored) edge in
Ti+1. If the initial color of an end-edge conflicts with the coloring of Ti+1, we recolor it any available
color. When k = 2 this procedure takes O(log∗ n+ logk n) = O(log∆ n) time.

An oriented tree is a rooted tree where each vertex that is not the root knows its parent. We
show that a (∆ + 1)-edge coloring of an oriented tree can be found in O(log∗ n) time, but ∆-edge
coloring takes Ω(log∆ n) time.

Theorem 10. Any oriented tree T can be (∆ + 1)-edge colored in O(log∗ n) time.

Proof. Initially pick color φ0({u,parent(u)}) = i if ID(u) is the ith largest ID among its siblings.
Observe that for any i, φ−1

0 (i) is a subgraph consisting of oriented paths, and that φ−1
0 (∆) is at

most one edge, attached to the root. For each i ∈ {1, . . . ,∆ − 1}, in parallel, recolor φ−1
0 (i) using

the color set {i,∆,∆ + 1} in such a way that the most ancestral edge in each path remains colored
i. The result is a legal (∆ + 1)-edge coloring. This takes O(log∗ n) time [13, 33].

Theorem 11. Any ∆-edge coloring algorithm for oriented trees takes Ω(log∆ n) time in RandLOCAL.

Proof. Let T be an oriented ∆-regular tree with height h = Θ(log∆ n) and A be an edge coloring
algorithm running in h/3 time. The color of {u,parent(u)} is uniquely determined by the colors
of the edges incident to leaf-descendants of u. Let V ′ denote the set of leaf-descendants of u. In
general, Nh/3(u) and

⋃
v∈V ′ N

h/3(v) do not intersect. In this case, u only has a 1/∆ chance of
guessing the correct edge color; if it guesses incorrectly, there must be a violation somewhere in the
subtree rooted at u.

7 Lower Bounds for Augmenting Path-Type Algorithms

In this section, we show that for c ∈ [1, ∆
3 ], any algorithm for (∆ + c)-edge coloring based on

“extending partial colorings by recoloring subgraphs” needs Ω(∆
c log cn

∆ ) rounds.

Theorem 12. Let ∆ be the maximum degree and c ∈ [1, ∆
3 ]. For any n, there exists an n-

vertex graph G = (V,E) and a partial edge coloring φ : E → {1, . . . ,∆ + c,⊥}, with exactly
one uncolored edge e0 (φ(e0) = ⊥) satisfying the following property. For any total edge coloring
φ′ : E → {1, . . . ,∆ + c} of G, φ and φ′ differ on a subgraph of diameter Ω(∆

c log( cn∆ )).

Suppose that G is a partially (∆ + c)-edge colored graph, where an edge e0 in uncolored. A
natural approach to color e0 is to find an “augmenting path” e0e1 · · · e`, and then recolor the path.
That is, for 0 ≤ i ≤ ` − 1, let the new color of ei be the old color of ei+1, and then color the last
edge e` by choosing any available color (if possible). This type of approach has successfully led to
a distributed algorithm for Brooks’ theorem [37].3 However, Theorem 12 implies the existence of a
graph where any augmenting subgraph has diameter Ω(∆

c log cn
∆ ), which is expensive for large ∆.

The remainder of this section is a proof of Theorem 12.
3Specifically, given a (∆ + 1)-vertex coloring, a ∆-coloring can be computed in O(log3 n/ log ∆) time, i.e.,

poly(logn) time, independent of ∆.
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Figure 1: An example of the construction when ∆ = 5, c = 1, k = 3, k′ = 2, and
` ≥ 7. Edges colored by palette S0 = {1, 2, 3} are blue, and edges colored by palette
S1 = {4, 5, 6} are pink. Leftover vertices in layer i − 2 are also depicted (hollow) in
layer i, and joined by a dashed curve. They represent the same vertex, not two different
vertices.

Construction. Without loss of generality, assume that ∆+c is even, and let k = ∆+c
2 . We divide

the color palette {1, . . . ,∆+ c} into two equal-size sets S0 = {1, . . . , k} and S1 = {k+1, . . . ,∆+ c}.
(One may refer to Figure 1 for an example, with ∆ = 5, c = 1. In the figure blue edges are colored
from palette S0 and pink edges from S1.) Let k′ = ∆− k.

The graph G∗(`,∆, c) consists of one uncolored edge e0 = {u0, v0}; all other vertices are arranged
in layers 1, . . . , ` and all other edges connect two vertices in adjacent layers or layers i and i + 3,
for some i. In G∗(`,∆, c), e0 is a bridge and the subgraphs attached to u0 and v0 are structurally
isomorphic, but colored differently. Thus, we focus on the half of G∗ attached to u0.

Base Case. Layer 1 consists of k vertices attached to u0. They are initially colored with distinct
colors from S0.

Inductive Step. The (i + 1)th layer is constructed as follows. We take all the vertices at layer
i and the leftover vertices at layer i − 2 and partition them into groups of size k′; any ungrouped
vertices are called leftovers at level i. (In Figure 1 a leftover vertex in layer i − 2 is drawn twice,
solid in layer i− 2 and hollow when it is promoted to layer i; they are connected by a dashed line.)
The grouping is arbitrary, so long as all vertices promoted from layer i−2 are grouped. Each group
forms the lefthand side of a complete bipartite graph Kk′,k. Layer i + 1 consists of the righthand
side of all the (disjoint) copies of Kk′,k. All the edges in these graphs are properly colored with Sb
where b = i mod 2. (The subgraph attached to v0 is constructed in the same way, except that we
flip the parity: the complete bipartite graphs are colored with Sb, b = (i+ 1) mod 2.)
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Define ni and li as the number of layer-i vertices and layer-i leftover vertices.4 According to the
construction, (ni) and (li) satisfy the following recurrences.

n1 = k

l−1 = l0 = 0

ni+1 = k

⌊
ni + li−2

k′

⌋
for i+ 1 ≥ 2

li = (ni + li−2) mod k′ for i ≥ 1

Clearly ni = Θ((k/k′)i). Since k/k′ = ∆+c
∆−c = 1 + 2c

∆−c = 1 + ε, the total number of vertices in
G∗(`,∆, c) is n = Θ(ε−1n`) = Θ(ε−1(1 + ε)`) and ` = Θ(log1+ε(εn)) = Θ(∆

c log cn
∆ ). In particular,

when c is constant and ∆ < n1−Ω(1), ` = Ω(∆ log n). The diameter of the graph is at least `/3
since, by construction, no edge crosses more than 3 layers.

Let φ be the initial partial edge-coloring of G∗(`,∆, c), with e0 left uncolored, and φ′ be any
total edge-coloring. We claim that φ′ recolors at least one edge in the subgraph induced by layers
` − 5, . . . , `. Suppose otherwise. Fix any vertex v in layer ` − 6. It has exactly k neighbors in a
higher layer, either `− 5 (if v is not a leftover vertex) or `− 3 (if v is a leftover vertex); each such
neighbor u is adjacent to k edges to a higher layer, all of which are colored from the palette S1

(without loss of generality, assume ` is even). That means that all edges connecting v to a higher
layer must be colored from S0. By a reverse induction from `−6 down to 0, it follows that all edges
from u0 to layer 1 must be colored with S0. A symmetric argument on v0’s side shows that all edges
from v0 to layer 1 must be colored with S1, hence e0 cannot be properly colored by φ′.

8 Conclusion

We have proved several new upper and lower bounds on the complexity of edge-coloring problems
on general graphs and trees. Pedagogically, our simplified Ω(log log n) lower bound for sinkless ori-
entation [9] and (2∆−2)-edge coloring is appropriate for a single lecture in a distributed computing
course. Our (∆ + Õ(

√
∆))-edge coloring algorithm is simple, but tricky to analyze, and requires a

general distributed LLL algorithm to be made efficient. Resolving the complexity of the distributed
LLL problem is a major open problem [11, Conjecture 1] but one that is unlikely to be completely
settled any time soon, given its connection to computing general network decompositions [20, 27].

In this paper we studied what seems to be the simplest interesting, non-trivial special case of the
distributed LLL problem: constraining the dependency graph to be tree-structured.5 We obtained
a provably optimal LLL algorithm for tree-structured instances, with complexity O(log log n) (or
faster, depending on the LLL criterion). The algorithm follows the graph shattering framework
of [7]. First, we developed a specialized network decomposition for trees that, with [20], yields
a deterministic LLL algorithm with complexity O(max{logλ n, log n/ log logn}), under LLL crite-
rion p(ed)λ < 1. Second, we developed a new method for shattering the dependency graph into
poly(∆) log n-size components, in just O(logλ log n) time. Interestingly, the shattering routine is not
concerned with the parameters of the LLL per se; it simply finds a stable state in a certain contagion
process played out on the tree. By composing the graph shattering routine and the deterministic
algorithm, we arrive at a final complexity of O(max{logλ log n, log log n/ log log log n}). We believe

4The leftover vertices at layer i− 2 are still considered as layer i vertices, even though they have been promoted
to layer i.

5If T = (V,E) is a tree and k = O(1), T k = (V, {(u, v) | distT (u, v) ≤ k}) is tree-structured.
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that our shattering technique (via stable sets of complex contagions) should be adaptable to the
distributed LLL problem on general dependency graphs.
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A Proof of Lemma 5

In this section we prove the concentration bounds of Lemma 5. For notational simplicity, we ignore
all subscripts i, i.e., p, d, t are the palette size, degree, and c-degree before the ith round of coloring,
all of which satisfy invariant Hi. Recall that we introduce imaginary edges, if necessary, to ensure
that the entire graph has uniform c-degree t and uniform palette size p. S(v) is the set of real edges
incident to v, |S(v)| ≤ d, and Nc(v) the set of real and imaginary edges incident to v with c in
their palettes. The arguments of this section do not differentiate between real and imaginary edges.
From Lemma 3 we use the fact that t = Θ(p), i.e., t and p are interchangeable in those parts of the
proof that are not sensitive to the leading constant.

We make extensive use of Theorem 13 and Lemma 20 to prove Lemma 5. Theorem 13 is from
Dubhashi and Panconesi’s book [17] on the concentration of measure, where it is called the method
of bounded variances. Ignoring the leading constant in the exponent, Theorem 13 is strictly more
powerful than Chernoff-Hoeffding and Azuma-type inequalities, and is best suited in applications
that have the following two features:

• We are interested in deviations of f(Xn) from its expectation (up to ±s) that are significantly
smaller than the number of underlying random variables (n) times the Lipschitz bound satisfied
by the martingale (M). This feature renders Azuma’s inequality too weak to be of any use.6

• The Lipschitz bound is pessimistic: although Di = E[f |Xi]−E[f |Xi−1] can be as large as M ,
its variance (σ2

i ) conditioned on any Xi−1 is substantially smaller.

For example, in the first round of coloring, the c-degree of a vertex v depends on Θ(∆3) random
variables (colors chosen by edges in the 3-neighborhood) but we are interested in deviations from
the expected c-degree that are s = O(∆). Any single edge could have a significant effect on v’s
c-degree (M = Θ(1)), but the variances of these effects are substantially smaller. In particular, the
sum of variances

∑
i σ

2
i will be O(∆).

Theorem 13 ([17, Equation (8.5)]). Let X1, . . . , Xn be an arbitrary set of random variables. Let
f(X1, . . . , Xn) be such that E[f ] is finite. We write Di

def
= E[f |Xi]− E[f |Xi−1]. Suppose that there

exist M and values {σ2
i }1≤i≤n meeting the following conditions.

• For any assignment to the random variables Xi−1, Var[Di|Xi−1] ≤ σ2
i .

• For any assignment to the random variables Xi, |Di| ≤M .

Then Pr[f > E[f ] + s] ≤ exp

(
− s2

2(
∑n
i=1 σ

2
i+Ms/3)

)
.

Lemma 20 follows from straightforward calculation.

Lemma 20. Let X be a random variable such that (i) E[X] = 0, (ii) Pr[X = a] = α and Pr[X =
b] = 1− α, and (iii) |a− b| ≤ k. Then we have the following.

• Var[X] ≤ α(1− α)k2 ≤ αk2.

• |b| ≤ αk.

• |a| ≤ (1− α)k ≤ k.

Throughout this section, we use the following notation. For each edge e and each color c, define
ze,c as the indicator random variable that e successfully colors itself c, thus ze,c = 0 if c /∈ Ψ(e).

6A vector (X1, . . . , Xi) of random variables is written Xi.
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A.1 Concentration of Vertex Degree

Let v• be a vertex. We claim that E[|S�(v•)|] ≤ d�. An edge e successfully colors itself with
probability (1− 1/p)2(t−1), since there are 2(t− 1) edges competing with e for Color?(e), and each
of these 2(t− 1) edges selects Color?(e) with probability 1/p. Thus, by linearity of expectation,

E[|S�(v•)|] = (1− (1− 1/p)2(t−1))|S(v•)| ≤ (1− (1− 1/p)2(t−1))d = d�.

For brevity, we write S def
= S(v•), S� def

= S�(v•), and z
def
= |S| − |S�|. The goal of this section is

to show that Pr[z < E[z] − s] = exp
(
−Ω(s2/|S|)

)
, which implies the desired concentration bound

Pr [|S�(v•)| > (1 + δ)d�] = exp
(
−Ω(δ2d)

)
, by setting s = δd�.

Notations. We write ze
def
=
∑

c∈Ψ(e) ze,c and zc
def
=
∑

e∈S ze,c. In other words, ze is the indicator
random variable that e successfully colors itself; zc is the indicator random variable that some edge
in S successfully colors itself by c. We can express z as z =

∑
e∈S ze or z =

∑
c zc, where the

summation is over all colors c ∈
⋃
e∈S Ψ(e).

Let S′ denote the set of edges such that e′ ∈ S′ if there exists e = {v•, u} ∈ S such that (i)
Ψ(e) ∩Ψ(e′) 6= ∅, and (ii) e′ is incident to e. For each edge e′ ∈ S′ and for each color c ∈ Ψ(e′), we
define R(e′, c) as the subset of S such that e ∈ R(e′, c) if (i) e is incident to e′, and (ii) c ∈ Ψ(e). We
write w(e′, c) = |R(e′, c)| and w(e′) =

∑
c∈Ψ(e′)w(e′, c). Notice that the value w(e′, c) may exceed

2 when e′ /∈ S is an imaginary edge incident to v•. Intuitively, w(e′) measures the influence of
Color?(e′) on z. Notice that

∑
e′∈S′ w(e′) ≤ 2|S|pt.

We consider the sequence of random variables (X1, . . . , X|S|+|S′|), where the initial |S′| variables
are the colors selected by the edges in S′, in arbitrary order, and the remaining |S| variables are the
colors selected by the edges in S, in arbitrary order. We let z = f(X1, . . . , X|S|+|S′|) in Theorem 13.
To prove the desired concentration bound, it suffices to show that we can set M = O(1) and σ2

i to
achieve

∑|S|+|S′|
i=1 σ2

i = O(|S|). In what follows, we analyze the effect of exposing the value of the
random variable Xi, given that all variables in Xi−1 have been fixed.

Exposing an Edge in S′. Consider the case where Xi = Color?(e?) is the color selected by
the edge e? ∈ S′. Recall Di = E[z|Xi] − E[z|Xi−1]. Our goal is to show that Var[Di|Xi−1] =
O(w(e)/(pt)) and |Di| = O(1). Hence we set σ2

i = O(w(e)/(pt)), which implies
∑

1≤i≤|S′| σ
2
i =

O(|S|), as desired.
By linearity of expectation, Di =

∑
c(E[zc|Xi]−E[zc|Xi−1]), where the summation ranges over

all colors c that appear in
⋃
e∈S Ψ(e). We write Di,c = E[zc|Xi]−E[zc|Xi−1], and make the following

observations:

• Di,c 6= 0 only if c ∈ Ψ(e?). For each c ∈ Ψ(e?), Di,c depends only on whether e? selects the
color c, which occurs with probability 1/p. In particular, Di,c < 0 only if e? selects c, and
Di,c > 0 only if e? does not select c. Thus, Cov[Di,c, Di,c′ |Xi−1] ≤ 0 for all color pairs {c, c′}.

• For each e ∈ S, both E[ze,c|Xi] and E[ze,c|Xi−1] are within [0, 1/p], since ze,c = 1 only if
c ∈ Ψ(e) and e selects c, which occurs with probability 1/p. Thus, maxXi Di,c −minXi Di,c ≤
w(e?, c)/p.

By Lemma 20 (with k ≤ w(e?, c)/p and α = 1/p), we have Var[Di,c|Xi−1] ≤ (1/p)(w(e?, c)/p)2. We
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bound the variance Var[Di|Xi−1] as follows.

Var[Di|Xi−1] =
∑
c

Var[Di,c|Xi−1] +
∑
c,c′

Cov[Di,c, Di,c′ |Xi−1]

=
∑
c

O((w(e?, c)/p)2/p) Cov[Di,c, Di,c′ |Xi−1] ≤ 0

=
∑
c

O(w(e?, c)/p2) w(e?, c) < t = Θ(p)

= O(w(e?)/p2)

= O(w(e?)/(pt)).

We bound |Di| as follows. Consider c ∈ Ψ(e?). Recall that we already have the bound |Di,c| ≤
w(e?, c)/p ≤ (t − 1)/p. If c is not selected by e?, which occurs with probability 1 − 1/p, we have
a tighter bound |Di,c| ≤ w(e?, c)/p2 ≤ (t − 1)/p2 by Lemma 20 with k ≤ w(e?, c)/p and α = 1/p.
Therefore,

|Di| ≤
∑
c

|Di,c| ≤ 1 · t− 1

p
+ (p− 1) · t− 1

p2
= O(1).

Exposing an Edge in S. Consider the case where Xi = Color?(e?) is the color selected by the
edge e? ∈ S. Suppose that Xi = c?. Recall Di =

∑
cDi,c. It is straightforward to see that (i)

|Di,c| ≤ 1 if c = c?, (ii) |Di,c| ≤ 1/p if c ∈ Ψ(e?) − {c?}, and (iii) |Di,c| = 0 otherwise. Thus,
|Di| = O(1), and Var[Di|Xi−1] = O(1). We set σ2

i = O(1), and so
∑
|S′|<i≤|S|+|S′| σ

2
i = O(|S|).

A.2 Concentration of Palette Size

Let e• = {u, v} be an edge, and let c• = Color?(e•) be the color selected by e•. We do not
consider c• as a random variable in the analysis (i.e., we expose the color selected by e• first).
Let E be the event that e• does not successfully color itself. Since e• remains uncolored with
at least a constant probability, we are allowed to ignore the condition “e• remains uncolored” in
Lemma 5 in the subsequent calculation. To prove the desired concentration bound regarding palette
size Pr [|Ψ�(e)| < (1− δ)p� | e remains uncolored ] = exp

(
−Ω(δ2p)

)
, it suffices to show that (i)

|E[|Ψ�(e•)|]− p�| = O(1), and (ii) Pr[|Ψ�(e•)| < (1− δ) E[|Ψ�(e•)|]] = exp(−Ω(δ2 E[|Ψ�(e•)|])).

Notations. We write Su (resp., Sv) to denote the set of edges e incident to e• on u (resp., v)
such that Ψ(e)∩Ψ(e•)−{c•} 6= ∅. We write S′ to denote the set of edges such that e′ ∈ S′ if there
exists e ∈ Su ∪ Sv meeting the following conditions: (i) e′ is incident to e, (ii) e′ /∈ Su ∪ Sv ∪ {e•},
and (iii) Ψ(e) ∩ Ψ(e′) ∩ Ψ(e•) − {c•} 6= ∅. Notice that Ψ�(e•) is determined by the colors selected
by the edges in Su ∪ Sv ∪ S′. We have |Su| ≤ (p − 1)(t − 1) < pt, |Sv| ≤ (p − 1)(t − 1) < pt, and
|S′| ≤ 2(p− 1)(t− 1)2 < 2pt2.

Expected Value. In what follows, consider a color c ∈ Ψ(e•)− {c•}.

• Let e ∈ Su ∪ Sv such that c ∈ Ψ(e). We have E[ze,c] = 1
p(1 − 1

p)2t−3. Notice that e• selects
c• 6= c, so there are 2t− 3 (rather than 2t− 2) edges competing with e for the color c.

• Let e′ = {u, x} ∈ Su and e′′ = {v, y} ∈ Sv such that c ∈ Ψ(e′) ∩ Ψ(e′′). We define ze′,e′′,c
def
=

ze′,c · ze′′,c. If x = y, then ze′,e′′,c = 0. Otherwise, x 6= y and E[ze′,e′′,c] = 1
p2 (1− 1

p)4t−6−b(e′,e′′),
where b(e′, e′′) ≤ 3 is the number of edges e such that (i) e 6= e•, and (ii) e is incident to both
e′ and e′′.
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Let zc be the indicator random variable that some edge incident to e• successfully colors itself by
c, that is,

zc
def
=

∑
e : e∈Su∪Sv , c∈Ψ(e)

ze,c −
∑

e′,e′′ : e′∈Su, e′′∈Sv , c∈Ψ(e′)∩Ψ(e′′)

ze′,e′′,c.

The number of edges e ∈ Su ∪ Sv such that c ∈ Ψ(e) is exactly 2t − 2. The number of pairs
(e′ = {u, x} ∈ Su, e′′ = {v, y} ∈ Sv) such that c ∈ Ψ(e′)∩Ψ(e′′) and x 6= y is at least (t−1)2−(t−1)
and at most (t− 1)2. By linearity of expectation (recall t = Θ(p)),

E[zc] =
2t

p
(1− 1/p)2t − t2

p2
(1− 1/p)4t ±O(1/p).

Define z def
=
∑

c∈Ψ(e•)−{c•} zc. Then, we have:

E[|Ψ�(e•)|] = |Ψ(e•)| − E[z] |Ψ�(e•)| = |Ψ(e•)| − z

= p ·
(

1− 2t

p
(1− 1/p)2t +

t2

p2
(1− 1/p)4t ±O(1/p)

)
= p ·

(
1− 2t

p
(1− 1/p)2t +

t2

p2
(1− 1/p)4t

)
±O(1)

= p� ±O(1). Definition of p�

Hence |E[|Ψ�(e•)|]− p�| = O(1).

Concentration Bound. Consider the sequence of random variables (X1, . . . , X|Su|+|Sv |+|S′|),
where the initial |S′| variables are the colors selected by the edges in S′, in arbitrary order,
and the remaining |Su| + |Sv| variables are the colors selected by the edges in Su ∪ Sv, in arbi-
trary order. Let z = f(X1, . . . , X|Su|+|Sv |+|S′|) in Theorem 13. To prove the desired concentra-
tion bound Pr[|Ψ�(e•)| < (1 − δ) E[|Ψ�(e•)|]] = exp(−Ω(δ2 E[|Ψ�(e•)|])), it suffices to show that
Pr[z > E[z] + s] = exp

(
−Ω(s2/p)

)
, by setting s = δ E[|Ψ�(e•)|], and recall that E[|Ψ�(e•)|] =

p� ±O(1) = Θ(p). In view of Theorem 13, we only need to show that we can set M = O(1) and σ2
i

such that
∑|Su|+|Sv |+|S′|

i=1 σ2
i = O(p).

Exposing an Edge in S′. Consider the case where Xi = Color?(e?) is the color selected by the
edge e? ∈ S′. Our goal is to show that |Di| = O(1/t). This implies Var[Di|Xi−1] = O(1/t2), and so
we may set σ2

i = O(1/t2). Since |S′| = O(pt2), we have
∑|S′|

i=1 σ
2
i = O(p).

Let R denote the set of edges in Su ∪ Sv that are incident to e?. Notice that 1 ≤ |R| ≤ 2. We
define:

z(i)
c

def
=

∑
e′ : e′∈R, c∈Ψ(e′)

ze′,c −
∑

e′,e′′ : e′∈Su, e′′∈Sv , c∈Ψ(e′)∩Ψ(e′′), {e,e′′}∩R 6=∅

ze′,e′′,c.

Intuitively, z(i)
c is the result of subtracting all terms from the definition of zc not involving edges

in R. We now argue that E[zc|Xi] − E[zc|Xi−1] = E[z
(i)
c |Xi] − E[z

(i)
c |Xi−1]. This is due to the

two observations: (i) If e /∈ R, then E[ze,c|Xi] = E[ze,c|Xi−1]. (ii) If {e′, e′′} ∩ R = ∅, then
E[ze′,e′′,c|Xi] = E[ze′,e′′,c|Xi−1].

Consider a color c ∈ Ψ(e?) ∩ Ψ(e•) − {c•}. The probability that some edge in R selects c
is at most |R|/p ≤ 2/p. Thus, the conditional expectations E[z

(i)
c |Xi] and E[z

(i)
c |Xi−1] must be
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within [0, 2/p], and so |E[z
(i)
c |Xi]− E[z

(i)
c |Xi−1]| ≤ 2/p. For the case of c 6= Xi, which occurs with

probability 1− 1/p, we have a tighter bound |E[z
(i)
c |Xi]− E[z

(i)
c |Xi−1]| ≤ 2/p2 by Lemma 20 with

k ≤ 2/p and α = 1/p. We bound |Di| as follows.

|Di| ≤
∑

c∈Ψ(e•)−{c•}

|E[zc|Xi]− E[zc|Xi−1]|

=
∑

c∈Ψ(e?)∩Ψ(e•)−{c•}

|E[z(i)
c |Xi]− E[z(i)

c |Xi−1]|

≤ (2/p) + (2/p2)(|Ψ(e?) ∩Ψ(e•)− {c•}| − 1)

= O(1/p) = O(1/t).

Exposing an Edge in Su ∪ Sv. Consider the case where Xi = Color?(e?) is the color selected
by the edge e? ∈ Su ∪ Sv. We define w(e?)

def
= |Ψ(e?) ∩Ψ(e•)− {c•}|. The goal is to show that (i)

|Di| = O(1) and (ii) Var[Di|Xi−1] = O(w(e?)/p). By setting σ2
i = O(w(e?)/p), we achieve

|S′|+|Su|+|Sv |∑
i=|S′|+1

σ2
i =

∑
e∈Su∪Sv

O(w(e)/p) = O(pt/p) = O(t) = O(p).

By the linearity of expectation,Di =
∑

c∈Ψ(e?)∩Ψ(e•)−{c•}Di,c, whereDi,c = E[zc|Xi]−E[zc|Xi−1].
Since both E[zc|Xi] and E[zc|Xi−1] are within [0, 1], we have |Di,c| ≤ 1. We have a tighter bound
|Di,c| ≤ 1/p in the event that Color?(e?) 6= c (by Lemma 20 with k ≤ 1 and α = 1/p). Thus,
|Di| ≤ 1 + (w(e?)− 1)/p = O(1).

In order to prove that Var[Di|Xi−1] = O(w(e?)/p), we need the following two observations.

• Consider a color c ∈ Ψ(e?)∩Ψ(e•)−{c•}. Recall that |Di,c| ≤ 1/p for the case c is not selected
by e?, which occurs with probability 1− 1/p. Thus, E[Di,c ·Di,c|Xi−1] ≤ (1/p) · 1 + (1− 1/p) ·
1/p2 = O(1/p).

• Consider two distinct colors c and c′ in Ψ(e?)∩Ψ(e•)−{c•}. If e? selects c or c′ (which occurs
with probability 2/p), Di,c ·Di,c′ ≤ 1 · (1/p). Otherwise Di,c ·Di,c′ ≤ (1/p) · (1/p). Therefore,
E[Di,c ·Di,c′ |Xi−1] ≤ (2/p) · 1/p+ (1− 2/p) · 1/p2 = O(1/p2).

We now bound Var[Di|Xi−1] as follows.

Var[Di|Xi−1] ≤
∑

c∈Ψ(e?)∩Ψ(e•)−{c•}

∑
c′∈Ψ(e?)∩Ψ(e•)−{c•}

E[Di,c ·Di,c′ |Xi−1]

≤ w(e?) ·O(1/p) + w(e?)(w(e?)− 1) ·O(1/p2)

= O(w(e?)/p).

A.3 Concentration of Color Degree

For the remainder of this section, fix a vertex v• and a color c• in the palette Ψ(e) for some e
incident to v•. For convenience, we write R def

= Nc•(v
•). Define R� as the subset of R such that

e = {v•, u} ∈ R� if (i) e is not successfully colored by a color in Ψ(e) − {c•}, and (ii) no edge
incident to e on u successfully colors itself c•. We write z def

= |R \ R�|. Let E ′ be the event that
N�c•(v

•) 6= ∅. Observe that if E ′ occurs, then no edge incident to v• successfully colors itself c•.
Thus, conditioning on E ′ happening, R \R� equals N�c•(v•).
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Our goal is to show that (i) Pr[z < E[z] − s] = exp(−Ω(s2/t)), and (ii) E[|R�|] = |R| − E[z] =
t�±O(1). Since E ′ occurs with constant probability, the above (i) and (ii) together imply the desired
concentration bound Pr[|N�c•(v•)| > (1+δ)t� | E ′] = exp(−Ω(δ2t)), by setting s = δt�±O(1). Recall
that t� = Θ(t).

Expected Value. With respect to an edge e = {v•, u} ∈ R, we define the following notations
based on parts (i) and (ii) of the definition of R�.

• Define zae as the indicator random variable that some edge incident to e on u successfully
colors itself c•. We have E[zae ] = (t− 1) · 1

p(1− 1
p)2t−2 = t

p(1− 1
p)2t ±O(1/p).

• Define zbe as the indicator random variable that e is successfully colored by a color in Ψ(e)−
{c•}. We have E[zbe] = (p− 1) · 1

p(1− 1
p)2t−2 = (1− 1

p)2t ±O(1/p).

Let za,be
def
= zae · zbe. Notice that zae and zbe are nearly independent but not independent. Let

ze
def
= zae + zbe − z

a,b
e , and so we have z = |R \R�| =

∑
e∈R ze. We calculate E[za,be ] as follows. Let e′

be any edge incident to e such that c• ∈ Ψ(e′), and let c be any color in Ψ(e)− {c•}. With respect
to (e, e′, c), we define the following two sets:

• Sa is the set of all edges e′′ such that (i) e′′ 6= e, e′, (ii) e′′ is incident to e′, and (iii) c• ∈ Ψ(e′′).
Intuitively, Sa is the set of all edges other than e that contend with e′ for the color c•. Notice
that |Sa| = 2t− 3, since Ψ(e) must contain c•.

• Sb is the set of all edges e′′ such that e′′ ∈ Sb if (i) e′′ 6= e, e′, (ii) e′′ is incident to e, and (iii)
c ∈ Ψ(e′′). Intuitively, Sb is the set of all edges other than e′ that contend with e for the color
c. Notice that 2t − 3 ≤ |Sb| ≤ 2t − 2, since Ψ(e′) may or may not contain c. The extent to
which Sa and Sb intersect is unknown.

Fixing the edge e incident to v•, let x(c, e′) denote the probability that (i) e′ successfully colors
itself c• and (ii) e successfully colors itself c. In view of the definition of Sa and Sb, we have:

x(c, e′) =
1

p2

∏
e′′∈Sa\Sb

(1− 1/p)
∏

e′′∈Sb\Sa

(1− 1/p)
∏

e′′∈Sa∩Sb

(1− 2/p)

=
1

p2
(1− 1/p)|Sa\Sb|(1− 1/p)|Sb\Sa|(1− 2/p)|Sa∩Sb|

=
1

p2
(1− 1/p)|Sa\Sb|(1− 1/p)|Sb\Sa|(1− 1/p)2|Sa∩Sb|

(
1−O

(
|Sa ∩ Sb|

p2

))
=

1

p2
(1− 1/p)|Sa|+|Sb|(1−O(1/p)) (Notice that |Sa ∩ Sb| < t = Θ(p).)

=
1

p2
(1− 1/p)4t−O(1)(1−O(1/p))

=
1

p2
(1− 1/p)4t ±O(1/p3).
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We now calculate E[za,be ] and show that E[|R�|] = |R| − E[z] = t� ±O(1).

E[za,be ] =
∑

(c,e′) : e′ incident to e,
c• ∈ Ψ(e′), c ∈ Ψ(e)− {c•}

x(c, e′) (union of disj. events)

= (t− 1)(p− 1) ·
(

1

p2
(1− 1/p)4t ±O(1/p3)

)
=
t

p
(1− 1/p)4t ±O(1/p).

E[|R�|] = |R| − E[z]

= t−
∑
e∈R

(
E[zae ] + E[zbe]− E[za,be ]

)
= t ·

(
1− t

p
(1− 1/p)2t − (1− 1/p)2t +

t

p
(1− 1/p)4t ±O(1/p)

)
= t ·

(
1− t

p
(1− 1/p)2t − (1− 1/p)2t +

t

p
(1− 1/p)4t

)
±O(1)

= t� ±O(1). Definition of t�

Concentration Bound. We have established that |R�| has the correct expectation and now need
to prove that it has sufficiently good concentration around that expectation. The analysis here
becomes more complicated because we have to consider the colors selected in some 3-neighborhood.
The palette size and degree analyses focussed only on 2-neighborhoods.

Based on the definition of zae and zbe, we define the following sets.

• Recall that R = Nc•(v
•). Let R1 be the set of all edges e such that (i) e /∈ R, (ii) c• ∈ Ψ(e),

and (iii) e is incident to some edge in R. Similarly, let R2 be the set of all edges e such that
(i) e /∈ R∪R1, (ii) c• ∈ Ψ(e), and (iii) e is incident to some edge in R1. Notice that the value
zae , for any e ∈ R, is determined by the information about which edges in R ∪R1 ∪R2 select
c•. We write α = |R ∪R1 ∪R2|.

• Let R′ be the set of all edges e′ such that (i) e′ /∈ R and (ii) there exists e ∈ R such that
Ψ(e) ∩ Ψ(e′) − {c•} 6= ∅. Notice that the the value zbe, for any e ∈ R, is determined by the
colors selected by the edges in R ∪R′. We write β = |R ∪R′|.

For each e ∈ R, zae is simply the summation of ze′,c• over all edges e′ ∈ R1 incident to e. For
each e′′ ∈ R2, we write w(e′′) to denote the number of edges in R1 incident to e′′. Intuitively, w(e′′)
measures the influence of Color?(e′′) on

∑
e∈R z

a
e .

We consider the sequence of random variables (X1, . . . , Xα+β), where the initial α random
variables reveal which edges in R ∪R1 ∪R2 select the color c• according to the ordering R2, R1, R,
and the remaining β random variables reveal the colors selected by the edges in R∪R′ according to
the ordering R′, R. We let z = f(X1, . . . , Xα+β) in Theorem 13. To prove the desired concentration
bound Pr[z < E[z]− s] = exp(−Ω(s2/t)), it suffices to show that we can set M = O(1) and σ2

i such
that

∑α+β
i=1 σ2

i = O(t). In what follows, we analyze the effect of exposing the value of Xi, given that
all variables in Xi−1 have been fixed.
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Revealing whether c• is Selected by an Edge in R ∪ R1 ∪ R2. Consider the case where Xi

reveals whether c• is selected by the edge e? ∈ R ∪ R1 ∪ R2. Notice that Xi is binary, and recall
that Di = E[z|Xi]− E[z|Xi−1]. There are at most two distinct outcomes of Di|Xi−1, in which one
occurs with probability 1/p. Thus, by Lemma 20 we have:

Var[Di|Xi−1] ≤
(

max
Xi

Di|Xi−1 −min
Xi

Di|Xi−1

)2

/p = O(max
Xi

|Di|2/p).

Thus, to achieve
∑α

i=1 σ
2
i = O(t) and M = O(1) it suffices to show the following.

• For the case e? ∈ R2, we must prove |Di| = O(w(e?)/p).7 Since w(e?) < t = Θ(p),
Var[Di|Xi−1] = O((w(e?)/p)2/p) = O(w(e?)/p2), so we can set σ2

i = O(w(e?)/p2).

• For the case e? ∈ R∪R1, we must prove |Di| = O(1). Hence we may set σ2
i = Var[Di|Xi−1] =

O(1/p).

Notice that
∑

e?∈R2
w(e?) < t3, |R1| < t2, and |R| = t. Thus,

∑α
i=1 σ

2
i = O(t). With respect to the

edge e? ∈ R ∪R1 ∪R2, we make the following definitions.

Y a def
= {e′ ∈ R1 : e′ = e? or e′ is incident to e?} Da

i
def
=
∑
e′∈Y a

(
E[ze′,c• |Xi] + E[ze′,c• |Xi−1]

)
Y b def

= {e ∈ R : e = e? or e is incident to e?} Db
i

def
=
∑
e∈Y b

|E[zbe|Xi]− E[zbe|Xi−1]|

Intuitively, Y a and Y b are the subsets of R1 and R that are “relevant” to Di in the following sense:

E[ze′′,c• |Xi] = E[ze′′,c• |Xi−1] for all e′′ ∈ R1 \ Y a,

E[zbe′ |Xi] = E[zbe′ |Xi−1] for all e′ ∈ R \ Y b.

Our plan of bounding |Di| is as follows. First we show that |Di| ≤ 4Da
i +Db

i in Claim 1, and then
we bound Da

i and Db
i separately in Claims 2 and 3. The three claims together establish a desired

bound on |Di|.

Claim 1. |Di| ≤ 4Da
i +Db

i .

Proof. We define the following notations.

P1
def
= {(e, e′) : e ∈ R \ Y b, e′ ∈ Y a, e is incident to e′}

P2
def
= {(e, e′) : e ∈ Y b, e′ ∈ R1 \ Y a, e is incident to e′}

P3
def
= {(e, e′) : e ∈ Y b, e′ ∈ Y a, e is incident to e′}

Qj
def
= −

∑
(e,e′)∈Pj

(
E[ze′,c• · zbe|Xi]− E[ze′,c• · zbe|Xi−1]

)
(for each j = 1, 2, 3)

Fj
def
=
∑

e∈R

(
E[zje |Xi]− E[zje |Xi−1]

)
(for each j = a, b)

The definitions of P1, P2, and P3 depend on Y a and Y b, which depend on the edge e?. For instance,
if e? ∈ R, then Y b = R, which implies that P1 = ∅. Recall that the edge e? can be any edge in
R ∪R1 ∪R2, and the proof of this claim applies to all choices of e? ∈ R ∪R1 ∪R2.

7Intuitively, if e? chooses color c•, it prevents w(e?) edges in R1 from successfully coloring themselves c•, but the
prior probability of these edges coloring themselves c• was only O(1/p), hence the total influence on the expectation
of z should be O(w(e?)/p).
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Notice that for any pair (e ∈ R, e′ ∈ R1) such that e is incident to e′ but (e, e′) /∈ P1 ∪ P2 ∪ P3,
we must have E[ze′,c• · zbe|Xi] = E[ze′,c• · zbe|Xi−1] due to the definition of Y a and Y b. We rewrite
the term Di as follows.

Di = E[z|Xi]− E[z|Xi−1]

=
∑
e∈R

(E[ze|Xi]− E[ze|Xi−1])

=
∑
e∈R

((
E[zae |Xi]− E[zae |Xi−1]

)
+
(

E[zbe|Xi]− E[zbe|Xi−1]
)
−
(

E[zae · zbe|Xi]− E[zae · zbe|Xi−1]
))

(Recall that zae is the summation of ze′,c• over all edges e′ ∈ R1 incident to e.)

= Fa + Fb −
∑

(e,e′) : e∈R, e′∈R1, e′ incident to e

(
E[ze′,c• · zbe|Xi]− E[ze′,c• · zbe|Xi−1]

)
(Any pair (e, e′) /∈ P1 ∪ P2 ∪ P3 contributes zero to this summation.)

= Fa + Fb +Q1 +Q2 +Q3.

To prove this claim it suffices to show that (i) |Fa + Q1| ≤ 2Da
i , (ii) |Fb + Q2| ≤ Db

i , and (iii)
|Q3| ≤ 2Da

i . We expand Fa using the fact that zae is the summation of ze′,c• over all edges e′ ∈ R1

incident to e.

|Fa +Q1| ≤

∣∣∣∣∣∣Q1 +
∑

(e,e′) : e∈R, e′∈R1, e′ incident to e

(
E[ze′,c• |Xi]− E[ze′,c• |Xi−1]

)∣∣∣∣∣∣
Since any pair (e, e′) /∈ P1 ∪ P3 contributes 0 in the summation,

≤

∣∣∣∣∣∣Q1 +
∑

(e,e′)∈P1∪P3

(
E[ze′,c• |Xi]− E[ze′,c• |Xi−1]

)∣∣∣∣∣∣
and by definition of Q1,

≤
∑

(e,e′)∈P1

∣∣∣E[ze′,c•(1− zbe)|Xi]− E[ze′,c•(1− zbe)|Xi−1]
∣∣∣

+
∑

(e,e′)∈P3

∣∣E[ze′,c• |Xi]− E[ze′,c• |Xi−1]
∣∣

When e /∈ R \ Y b, E[zbe|Xi−1] = E[zbe|Xi], so

≤
∑

(e,e′)∈P1

(1− E[zbe|Xi−1])
∣∣E[ze′,c• |Xi]− E[ze′,c• |Xi−1]

∣∣
+

∑
(e,e′)∈P3

∣∣E[ze′,c• |Xi]− E[ze′,c• |Xi−1]
∣∣

and since 0 ≤ 1− E[zbe|Xi−1] ≤ 1,

≤
∑

(e,e′)∈P1∪P3

∣∣E[ze′,c• |Xi]− E[ze′,c• |Xi−1]
∣∣
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Finally, any edge e′ ∈ R1 is incident to at most 2 edges in R, so

≤ 2
∑
e′∈Y a

∣∣E[ze′,c• |Xi]− E[ze′,c• |Xi−1]
∣∣

≤ 2Da
i .

For each e ∈ Y b, we write B(e) to denote the set of all edges e′ ∈ R1 \ Y a that are incident to e,
i.e., {e} × B(e) ⊆ P2. Notice that 0 ≤ E[

∑
e′∈B(e) ze′,c• |Xi−1] = E[

∑
e′∈B(e′) ze′,c• |Xi] ≤ 1, since

e = {v•, u} and all edges in B(e) share the vertex u, and so at most one could be successfully
colored c•. By definition, none are incident to e?. We can now bound |Fb +Q2| as follows.

|Fb +Q2| ≤

∣∣∣∣∣∣Q2 +
∑
e∈Y b

E[zbe|Xi]− E[zbe|Xi−1]

∣∣∣∣∣∣
According to the definition of B(e) and Q2,

≤
∑
e∈Y b

∣∣∣∣∣∣E
zbe

1−
∑

e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi

− E

zbe
1−

∑
e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi−1

∣∣∣∣∣∣
For every e′ ∈ R1 \ Y a, we have E

[
ze′,c• |Xi

]
= E

[
ze′,c• |Xi−1

]
, which implies

≤
∑
e∈Y b

1− E

 ∑
e′∈B(e)

ze′,c•

∣∣∣∣∣∣Xi−1

 · ∣∣∣E[zbe|Xi]− E[zbe|Xi−1]
∣∣∣

≤
∑
e∈Y b

∣∣∣E[zbe|Xi]− E[zbe|Xi−1]
∣∣∣

= Db
i .

Our last task is to bound the absolute value of Q3.

|Q3| ≤
∑

(e,e′)∈P3

(
E[ze′,c• · zbe|Xi] + E[ze′,c• · zbe|Xi−1]

)
≤

∑
(e,e′)∈P3

(
E[ze′,c• |Xi] + E[ze′,c• |Xi−1]

)
Since any edge e′ ∈ R1 is incident to at most 2 edges in R,

≤ 2
∑
e′∈Y a

(
E[ze′,c• |Xi] + E[ze′,c• |Xi−1]

)
≤ 2Da

i .

Claim 2. If e? ∈ R2, then Da
i = O(w(e?)/p). If e? ∈ R ∪R1, then Da

i = O(1).

Proof. We first consider the case that e? ∈ R2. In this case |Y a| = w(e?). Recall that Y a ⊆ R1,
and so all e ∈ Y a have not yet decided whether to select c• when Xi is revealed. Therefore, both
E[ze,c• |Xi] and E[ze,c• |Xi−1] are within the range [0, 1/p], and so Da

i = O(w(e?)/p). Next, consider
the case that e? ∈ R ∪ R1. All edges in Y a must share a vertex with e?, and so at most two edges
in Y a can successfully color themselves by c•. Hence

Da
i ≤

∑
e∈Y a

(E[ze,c• |Xi] + E[ze,c• |Xi−1]) ≤ 2 + 2 = 4 = O(1).
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Claim 3. If e? ∈ R1 ∪R2, then Db
i = O(1/p). If e? ∈ R, then Db

i = O(1).

Proof. Recall that zbe =
∑

c∈Ψ(e)−{c•} ze,c for any edge e ∈ Y b, and so

Db
i ≤

∑
e∈Y b

∑
c∈Ψ(e)−{c•}

|E[ze,c|Xi]− E[ze,c|Xi−1]|.

We first show that |E[ze,c|Xi]−E[ze,c|Xi−1]| = O(1/p2) if e? 6= e. We write k1 (resp., k2) to denote
the number of edges incident to e that have decided to select c• (resp., have decided to not select
c•) by the time Xi is revealed.

E[ze,c|Xi−1] =


0 (e has decided to select c•)

1
p−1 · (1− 1/p)2t−1−k1−k2 · (1− 1/(p− 1))k2 (e has decided to not select c•)
1
p · (1− 1/p)2t−1−k1−k2 · (1− 1/(p− 1))k2 (e has not made any decision)

In any case, E[ze,c|Xi−1] = O(1/p). There are two possibilities of E[ze,c|Xi] based on Xi, i.e.,
whether e? selects c•.

E[ze,c|Xi] =

{
E[ze,c|Xi−1]/(1− 1/p) (e? selects c•)
E[ze,c|Xi−1] · (1− 1/(p− 1))/(1− 1/p) (e? does not select c•)

In any case, |E[ze,c|Xi]− E[ze,c|Xi−1]| = O(1/p2). We are now in a position to bound Db
i . For the

case that e? ∈ R1∪R2, we have |Y b| ≤ 2 and e? /∈ Y b, and so Db
i ≤ 2·(p−1)·O(1/p2) = O(1/p). For

the case that e? ∈ R, we have |Y b| = |R| = t and e? ∈ Y b, and so Db
i ≤ 1+(t−1) ·(p−1) ·O(1/p2) =

O(1).

Revealing the Color Selected by an Edge in R∪R′. Next, we analyze the effect of exposing
the value of Xi, where α < i ≤ α+ β, given that all variables in Xi−1 have been fixed.

Observe that zae , for all e ∈ R, are already determined by {Xj : j ∈ [α]}. If zae = 1, then ze = 1
regardless of the value of zbe; if zae = 0, then ze = zbe. For those edges e ∈ R such that ze is not
determined by {Xj : j ∈ [α]}, the random variable ze = zbe behaves the same as ze in the analysis
of concentration of vertex degree, so the analysis in Appendix A.1 can be applied here (think of
S = R and S′ = R′).

In more detail, for each edge e′ ∈ R′, we define w′(e′) as
∑

e∈R, e′ incident to e |Ψ(e′) ∩Ψ(e)− {c•}|.
We have

∑
e′∈R′ w

′(e′) ≤ |R|(p− 1)(t− 1) < pt2. Now consider the color Xi = Color?(e?) selected
by the edge e? ∈ R ∪R′. From the analysis in Appendix A.1, we infer the following.

• If e? ∈ R′, then |Di| = O(1) and Var[Di|Xi−1] = O(w′(e?)/(pt)). Hence we can set σ2
i =

O(w′(e?)/(pt)).

• If e? ∈ R, then |Di| = O(1) and Var[Di|Xi−1] = O(1). Hence we can set σ2
i = O(1).

Thus,
∑α+β

j=α+1 σ
2
i = O(t), as desired.
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