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Capacity Analysis of Linear Operator
Channels Over Finite Fields
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Abstract— Motivated by communication through a network
employing linear network coding, capacities of linear operator
channels (LOCs) with arbitrarily distributed transfer matrices
over finite fields are studied. Both the Shannon capacity C and
the subspace coding capacity CSS are analyzed. By establishing
and comparing lower bounds on C and upper bounds on
CSS, various necessary conditions and sufficient conditions such
that C = CSS are obtained. A new class of LOCs such that
C = CSS is identified, which includes LOCs with uniform-given-
rank transfer matrices as special cases. It is also demonstrated
that CSS is strictly less than C for a broad class of LOCs.
In general, an optimal subspace coding scheme is difficult
to find because it requires to solve the maximization of a
nonconcave function. However, for an LOC with a unique
subspace degradation, CSS can be obtained by solving a convex
optimization problem over rank distribution. Classes of LOCs
with a unique subspace degradation are characterized. Since
LOCs with uniform-given-rank transfer matrices have unique
subspace degradations, some existing results on LOCs with
uniform-given-rank transfer matrices are explained from a more
general way.

Index Terms— Linear operator channel, network coding,
subspace coding.

I. INTRODUCTION

F IX a finite field F with q elements. A linear operator
channel (LOC), also called a multiplicative matrix chan-

nel, with input random variable X ∈ F
T ×M and output random

variable Y ∈ F
T×N is given by

Y = X H, (1)
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where H ∈ F
M×N is called a transfer matrix. We assume that

X and H are independent, and the transfer matrices in different
channel uses are independent and follow the same distribution.
For both the transmitter and receiver, the distribution of H is
given a priori, but the instances of H are unknown.

A LOC is used to model communication through a network
employing linear network coding [1], [2]. Consider a network
coding scenario where the source node encodes its message
into batches (also called generations, classes or chunks),
each of which contains M packets of T symbols [3], [4].
Intermediate network nodes generate new packets by taking
linear combinations of the packages among the same batch.
There may be packet loss and network topological dynamics
during the transmission. The finally received N packets of a
batch are all linear combinations of the original packets of
the batch. Such a network transmission can be modeled by
a LOC.

Coding problems for LOCs have been studied for various
scenarios. If T is much larger than M , parts of X can be used
to transmit an identity matrix so that the receiver can recover
the instances of H . Such a scheme, called channel training,
has been widely used for random linear network coding [5]
and is asymptotically optimal when T goes to infinity. The
maximum achievable rate of channel training (by multiple uses
of the channel) can be achieved using random linear codes [6],
and a channel training scheme with low encoding/decoding
complexity has been proposed [7], [8] by generalizing fountain
codes. However, if T is not much larger than M , the overhead
used to explicitly recover the instances of H is dominating,
and hence different coding schemes must be studied.

We call the vector space spanned by the column vectors of a
matrix X the column space of the matrix, denoted by 〈X〉. For
a LOC, with probability one 〈Y 〉 is a subspace of 〈X〉. Koetter
and Kschischang [9] defined a channel with subspaces as input
and output to capture this property, and discussed subspace
codes for one use of this subspace channel. They defined the
minimum distance of a subspace code in terms of a subspace
distance between codewords, and used the minimum distance
to characterize the error (or erasure) correction capability of
the subspace code. Thereafter, subspace coding has generated
a lot of research interests (see [10]–[12]) and the study of
subspace coding has also been extended from one use to
multiple uses of the channel [13], [14].

In this paper, we are interested in the achievable rates
of coding schemes when the error probability goes to zero
asymptotically. Most existing works on subspace coding try
to design large codebooks with large minimum distances.
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Fig. 1. In this network, s is the source node, t is the destination node, and
a is the intermediate node that does not demand the file.

However, subspace codes designed under the minimum dis-
tance criteria may not have a good performance for multiple
uses of a LOC [6].

Towards better understanding of the coding problems and
identifying new directions to study coding for LOCs, an
information theoretic study of LOCs becomes necessary.
Existing works have studied several classes of distributions
of H . When M = N , Silva et al. [15] studied the case
that H is uniformly chosen from all full rank M × M
matrices. Siavoshani et al. [16] studied the case that H
contains uniformly i.i.d. components. Nóbrega et al. [17], [18]
studied LOCs with uniform-given-rank transfer matrices,
which include the transfer matrices studied in [15] and [16] as
special cases. For all the above special distributions of H , it is
shown that I (X; Y ) = I (〈X〉; 〈Y 〉) for any input X , which in
turn implies that using subspaces for encoding and decoding
indeed achieves the Shannon capacity of these special LOCs;
in addition, the Shannon capacity of these LOCs can be found
by maximizing over input rank distribution.

However, many typical scenarios in linear network coding
cannot be covered by those special cases studied in the existing
literature. Even though the transfer matrix is full rank with
high probability for random linear network coding when both
the field size and the maximum flow from the source node to
the destination node are sufficiently large [5], such a transfer
matrix may not have the uniform distribution studied in [15].
The transfer matrix studied in [16] can be formed by using
random linear network coding in the intermediate node in
Fig. 1, where node a caches M packets transmitted by node s
before encoding, and transmits N independent random linear
combinations of these M packets. But if we take the packet
loss during the transmission on both links into consideration,
the transfer matrix will not have independent components since
a packet loss will force a row/column to be zero. Moreover,
encoding after collecting M packets introduces delay, so it
is more practical to apply random linear network coding in a
causal way: the intermediate node keeps transmitting the linear
combinations of the packets it has received [3], [19], which
results in a transfer matrix of the form (take M = 4 as an
example) ⎡

⎢⎢⎣
h1,1 h1,2 h1,3 h1,4 h1,5 · · ·

0 h2,2 h2,3 h2,4 h2,5 · · ·
0 0 0 h3,4 h3,5 · · ·
0 0 0 0 h4,5 · · ·

⎤
⎥⎥⎦,

where i) all nonzero rows are above any rows of all zeros,
ii) the leading coefficient (the first nonzero component from
the left) of a nonzero row is not to the left of the leading
coefficient of the row above it, iii) all nonzero components
are i.i.d. over a finite field. But such a transfer matrix is even
not uniform-given-rank. Furthermore, subspace coding is not
capacity achieving in general. For example, when H is an
M × M identity matrix and T = 1, the Shannon capacity is
M log q bits per use and the subspace coding capacity is 1 bit.

In this paper, we are motivated to study LOCs with arbitrar-
ily distributed transfer matrices. We analyze both the Shannon
capacity and subspace coding capacity of LOCs, and we try to
answer the following questions: How to achieve or approach
the Shannon capacity of a LOC? What is the performance of
subspace coding and when is subsapce coding optimal? How
to design subspace coding for general LOCs? Our results are
for general values of T , M , N and q .

We first discuss some symmetry properties of LOCs,
which lead to the discovery that there exists a uniform-
given-row-space input distribution achieving the Shannon
capacity C of a LOC (Theorem 1). We then derive an
upper bound and a lower bound on the Shannon capacity C ,
where the lower bound is tight for row-space-symmetric LOCs
(Theorem 2) and is in general at least as good as the lower
bound derived using uniform-given-rank transfer matrices
in [17] and [18].

We then turn our attention to the subspace coding capacity
CSS of a LOC. Note that a LOC has matrices as input and
output, while subspace coding uses subspaces for encoding
and decoding. A general way to study subspace coding for
a LOC is to look at a subspace degradation of the LOC,
which is induced by a transition probability from subspaces to
matrices. The subspace degradations induced by a LOC are not
unique in general, and finding an optimal subspace degradation
involves maximizing a non-concave function, which is in
general difficult to solve. We study subspace coding with
uniform-given-row-space input distributions to obtain a lower
bound on the subspace coding capacity (Theorem 3), where
the lower bound is further shown to be tight for LOCs with
a unique subspace degradation. Optimal uniform-given-row-
space input distributions for subspace coding are characterized
(Lemma 8 and Theorem 4), and the maximum achievable rate
of constant-rank uniform-given-row-space input distribution is
given explicitly. For a LOC with a unique subspace degrada-
tion, the subspace coding capacity can be obtained by solving
a convex optimization over the input rank distribution (Theo-
rem 5), which generalizes the similar result obtained for LOCs
with uniform-given-rank transfer matrices in [17] and [18].
For row-space symmetric LOCs, an upper bound on CSS is
also obtained (Lemma 12).

To compare CSS with C , we characterize, for both LOCs
with a unique subspace degradation and row-space-symmetric
LOCs, necessary conditions and sufficient conditions for
CSS = C (Theorem 6 and 7). Subspace coding is not
Shannon capacity achieving for both classes of LOCs if
certain Markov conditions are not satisfied. On the other hand,
subspace coding is capacity achieving for degraded LOCs,
which has I (X; Y ) = I (〈X〉; 〈Y 〉) for all input distributions.
A degraded LOC has a unique subspace degradation and is
also row-space symmetric (Theorem 8). The LOCs studied in
[15]–[18] are all degraded. We further characterize a new class
of degraded LOCs, called rank-symmetric LOCs, and show
that a LOC with a uniform-given-rank transfer matrix is always
rank symmetric, but not vice versa when T < M (Theorem 9).

The relationship among the classes of LOCs characterized in
this paper is demonstrated in Fig. 2. Note that when T ≥ M ,
a row-space-symmetric LOC always has a unique subspace
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Fig. 2. The Venn diagram about LOCs. � is the set of all LOCs. In additional
to all LOCs, we study four subsets of LOCs: a is the set of row-space-
symmetric LOCs; b is the set of LOCs with a unique subspace degradation;
c is the set of degraded LOCs; and d is the set of rank-symmetric LOCs.
Note that a ⊂ b when T ≥ M, and d includes the LOCs studied in [15]–[18].

degradation, but when T < M , a row-space-symmetric LOC
may not have a unique subspace degradation.

The rest of this paper is organized as follows. After intro-
ducing some notations and mathematical results in Section II,
we discuss symmetry properties of LOCs and bounds on C
in Section III. Subspace coding for LOCs is studied in
Section IV. The comparison between C and CSS is made
in Section IV. Finally, conclusion remarks are drawn in
Section VI.

II. PRELIMINARIES

Readers can skip this section and come back later when
these definitions/results are referred to.

A. Counting in Projective Space

Let F be the finite field with q elements. Regard the vectors
in F

t as column vectors. For a matrix X, let rk(X) be the
rank of X, let X� be the transpose of X, and let 〈X〉 be the
subspace spanned by the columns of X. We call 〈X〉 and 〈X�〉
the column space and the row space of X, respectively.

For a matrix B and a set of matrices A, we define

B + A � {B + D : D ∈ A},
and

BA � {BD : D ∈ A}. (2)

The multiplication AB can be similarly defined.
The projective space Pj(Ft ) is the collection of all subspaces

of F
t . If V is a subspace of U , we write V ≤ U . Define

Pj(m, F
t ) � {V : V ≤ F

t , dim(V ) ≤ m}.
This paper involves some counting results in projective spaces,
some of which have been discussed in previous works (see [9],
[12], and [20]–[23] and the reference therein). A self-contained
discussion can be found in [24].

Let Fr(Fm×r ) be the set of full rank matrices in F
m×r .

Define

χm
r �

{
(qm − 1)(qm − q) · · · (qm − qr−1) 0 < r ≤ m
1 r = 0

(3)

For r ≤ m, it is well-known that | Fr(Fm×r )| = χm
r . Define

ζ m
r � χm

r q−mr. (4)

Since the number of m × r matrices is qmr , ζ m
r is equal to

the probability that a randomly chosen m × r matrix is full
rank.

The Grassmannian Gr(r, F
t ) is the set of all r -dimensional

subspaces of F
t . Thus Pj(m, F

t ) = ⋃
r≤m Gr(r, F

t ). The
Gaussian binomial [20]

[
m
r

]
� χm

r

χr
r

is the number of r -dimensional subspaces of F
m , i.e.,

| Gr(r, F
m)| = [

m
r
]
. Let

χm,n
r � χm

r χn
r

χr
r

,

which is the number of m × n matrices with rank r [21].
So we have ∑

r

χm,n
r = qmn. (5)

The following counting result is a special case of
[12, Lemma 2].

Lemma 1: Let V be an s-dimensional subspace of F
t . For

any integer r with s ≤ r ≤ t ,

|{U ∈ Gr(r, F
t ) : V ≤ U}| =

[
t − s
r − s

]
=

[
t
r

]
χr

s

χ t
s
.

B. Probability Distribution Over Matrices and Subspaces

For a discrete random variable X , we use pX to denote its
probability mass function (PMF). For two random variables
X and Y defined on discrete alphabets X and Y , respectively,
we write a transition probability (matrix) from X to Y as
PY |X (Y|X), X ∈ X and Y ∈ Y . We say a transition matrix
is deterministic if all its entries are either zero or one. When
it is clear from the context, we may omit the subscript of
pX and PY |X to simplify the notations. Let H(X) be the
entropy1 of X and I (X; Y ) be the mutual information between
X and Y . We take logarithms to the base 2.

For the sake of reference and comparison, we define three
classes of conditionally uniform distributions that will be used
in the paper.

Definition 1 (Uniform-Given-Row-Space Distribution
(α-Type Distribution)): A PMF p over F

m×n is uniform-
given-row-space if p(X) = p(X′) whenever 〈X�〉 = 〈X′�〉.
In other words, a random matrix X ∈ F

m×n is uniform given
row space if

pX (X) = p〈X�〉(〈X�〉)
χm

rk(X)

.

Definition 2 (Uniform-Given-Rank Distribution): A PMF
p over F

m×n is uniform-given-rank if p(X) = p(X′)
whenever rk(X) = rk(X′). In other words, a random matrix
X ∈ F

m×n is uniform-given-rank if

pX (X) = prk(X)(rk(X))

χm,n
rk(X)

.

1The calligraphic H is used to denote entropy to make a distinction to the
notion of the transfer matrix H .
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Fig. 3. Random variables and Markov chains related to LOC(H, T ). All
the random variables in a directed path form a Markov chain. For example,
rk(X) → 〈X〉 → X → Y → 〈Y 〉 → rk(Y ) forms a Markov chain.

Definition 3 (Uniform-Given-Dimension Distribution):
A PMF p over Pj(FT ) is uniform-given-dimension if
p(V ) = p(V ′) whenever dim(V ) = dim(V ′).

A uniform-given-rank distribution is also uniform-given-
row-space. If X has a uniform-given-row-space distribution,
〈X〉 has a uniform-given-dimension distribution. Further define
two classes of transition matrices with certain symmetry
properties as follows.

Definition 4 (Row-Space-Symmetric Transition Matrix):
A transition matrix P(·|·) : F

t×m → F
t×n is said to be row-

space-symmetric if

P(Y|X) = P(Y′|X′)

whenever 〈Y〉 ≤ 〈X〉, 〈Y′〉 ≤ 〈X′〉, 〈X�〉 = 〈X′�〉 and
〈Y�〉 = 〈Y′�〉. In other words, the transition probability
P(Y|X), 〈Y〉 ≤ 〈X〉, is determined by the row spaces of the
input and output matrices.

Definition 5 (Rank-Symmetric Transition Matrix): A tran-
sition matrix P(·|·) : F

t×m → F
t×n is said to be rank-

symmetric if

P(Y|X) = P(Y′|X′)

whenever 〈Y〉 ≤ 〈X〉, 〈Y′〉 ≤ 〈X′〉, rk(X) = rk(X′) and
rk(Y) = rk(Y′). In other words, the transition probability
P(Y|X), 〈Y〉 ≤ 〈X〉, is determined by the ranks of the input
and output matrices.

III. CAPACITY OF LINEAR OPERATOR CHANNELS

A LOC defined in (1), denoted by LOC(H, T ), is a discrete
memoryless channel (DMC). The dimensions of the transfer
matrices discussed in this paper are M × N unless otherwise
specified. Under the assumption that H and X are independent,
the transition probability PY |X (Y|X) is given by

PY |X (Y|X) = Pr{XH = Y}.
The (Shannon) capacity of LOC(H, T ) is

C = C(H, T ) = max
pX

I(X; Y ).

The input X , the output Y , their row/column spaces and their
ranks form Markov chains shown in Fig. 3.

In this section, we first introduce the essential technique
of this paper—some symmetry properties of LOCs. We then
investigate the input distributions that achieve the Shannon
capacity, and give upper and lower bounds on the Shannon
capacity.

A. Symmetry Properties

The following lemma demonstrates an intrinsic symmetry
property of LOCs. A matrix is said to have full column (row)
rank if its rank is equal to its number of columns (rows).

Lemma 2: For LOC(H, T ), if X = BD and Y = BE
where B has full column rank, then

PY |X (Y|X) = Pr{XH = Y} = Pr{DH = E}.
Proof: The lemma follows from PY |X (Y|X) = Pr{BDH =

BE} = Pr{DH = E}, where the last equality follows because
B has full column rank.

Recall that a DMC is defined to be symmetric [25] if the set
of outputs can be partitioned into subsets in such a way that
for each subset the matrix of transition probabilities (using
inputs as rows and outputs of the subset as columns) has the
property that each row is a permutation of each other row and
each column (if more than one) is a permutation of each other
column. The transition matrix of a LOC satisfies properties
similar to these of a symmetric channel, but in general, a LOC
is not a symmetric channel.

Lemma 3: The transition matrix of LOC(H, T ) satisfies the
following properties:

1) For X1, X2 ∈ F
T ×M with 〈X�

1 〉 = 〈X�
2 〉 and V ≤ F

N ,
the vector (PY |X (Y|X1) : Y ∈ F

T ×N , 〈Y�〉 = V )
is a permutation of the vector (PY |X (Y|X2) : Y ∈
F

T ×N , 〈Y�〉 = V );
2) For Y1, Y2 ∈ F

T ×N with 〈Y�
1 〉 = 〈Y�

2 〉 and U ≤ F
M ,

the vector (PY |X (Y1|X) : X ∈ F
T ×M , 〈X�〉 = U)

is a permutation of the vector (PY |X (Y2|X) : X ∈
F

T ×M , 〈X�〉 = U).
Proof: Let φ(V ) = {Y ∈ F

T ×N , 〈Y�〉 = V }. To prove 1),
we show that there exists a bijection f : φ(V ) → φ(V ) such
that Pr{X1 H = Y} = Pr{X2 H = f (Y)}. Since 〈X�

1 〉 = 〈X�
2 〉,

there exists a full rank matrix T such that X2 = TX1. Define
f : φ(V ) → φ(V ) as f (Y) = TY. Since T is a full rank
square matrix, f is a bijection. The claim in 1) is verified by
Pr{X2 H = f (Y)} = Pr{X2 H = TY} = Pr{T−1X2 H = Y} =
Pr{X1 H = Y}, where the second equality follows from
Lemma 2.

The proof of 2) is similar and hence omitted.
For the input matrices with different row spaces, the rows

of the transition matrix are usually not a permutation of each
other. The following result implied by Lemma 3 will be used
in this paper.

Lemma 4: For a LOC, if 〈X�〉 = 〈X′�〉, then

P〈Y �〉|X (V |X) = P〈Y �〉|X (V |X′)

and

Prk(Y)|X(s|X) = Prk(Y)|X(s|X′).
Proof: Since

P〈Y �〉|X (V |X) =
∑

Y:〈Y�〉=V

PY |X (Y|X),

the first equality follows from 1) in Lemma 3. The second
equality follows from the first one.
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B. Uniform-Given-Row-Space Input Distributions

The intrinsic symmetry property of LOCs implies that
the capacity-achieving input distributions should have certain
symmetry property, which is characterized in the following
theorem. Recall the definition of uniform-given-row-space
distribution in Definition 1.

Theorem 1: There exists a uniform-given-row-space input
distribution that maximizes I(X; Y ) for any LOC.

Proof: Let p be an optimal input distribution for
LOC(H, T ). For � ∈ Fr(FT ×T ), define p� as p�(X) =
p(�X). First p� is a PMF because 0 ≤ p�(X) = p(�X) ≤ 1
and

∑
X∈FT×M p�(X) = 1.

We show that p� also achieves the capacity of the LOC.
For the simplicity of the notations, we write p′ = p�. Let
pY and p′

Y be the PMF of Y when the input distributions are
p and p′, respectively. We have

p′
Y (Y) =

∑

X∈FT×M

p′(X)PY |X (Y|X)

=
∑

X∈FT×M

p(�X)PY |X (�Y|�X) (6)

=
∑

X′∈FT ×M

p(X′)PY |X (�Y|X′) (7)

= pY (�Y),

where (6) follows from Lemma 2 and p′(X) = p(�X), and
(7) follows by letting X′ = �X and noting �F

T ×M = F
T ×M .

Therefore,

I(X; Y )|p′

=
∑

X∈FT ×M

p′(X)
∑

Y∈FT×N

P(Y|X) log
P(Y|X)

p′
Y (Y)

=
∑

X∈FT ×M

p(�X)
∑

Y∈FT×N

P(�Y|�X) log
P(�Y|�X)

p(�Y)

=
∑

X′∈FT×M

p(X′)
∑

Y′∈FT ×N

P(Y′|X′) log
P(Y′|X′)

p(Y′)
= I(X; Y )|p,

where the second equality follows from p′
Y (Y) = pY (�Y)

and P(Y|X) = P(�Y|�X) (see Lemma 2).
Define p∗ as

p∗(X) = 1

| Fr(FT ×T )|
∑

�∈Fr(FT×T )

p�(X).

Since mutual information is a concave function of the input
distribution [25],

I(X; Y )|p∗ ≥ 1

| Fr(FT ×T )|
∑

�∈Fr(FT×T )

I(X; Y )|p�

= C(H, T ).

Thus, p∗ is also an optimal input distribution for the channel.
The proof is completed by noting that p∗ is uniform-given-
row-space.

Theorem 1 reveals that uniform-given-row-space input dis-
tributions can match the intrinsic symmetry of LOCs. We will

show more applications of uniform-given-row-space input
distributions in this paper.

In the remaining part of this subsection, we discuss how the
calculation of the transition matrix and the channel capacity
can be simplified by the symmetry properties and uniform-
given-row-space input distributions. To compute the channel
capacity of LOC(H, T ), the first step is to compute the
matrix of transition probabilities using the distribution of H .
A straightforward computation of the transition matrix from
the distribution of H requires the calculation of qT (M+N)

components of the transition matrix. But using the symmetry
properties, this number can be reduced to

min{T ,M}∑
k=0

[
M
k

]
qkN <

{
cq M N M ≤ min{T, N}
c′q L(M+N−L) otherwise,

where L = min{T, (M + N)/2}, c and c′ are constants (ref.
Appendix A).

The input distribution of a LOC has qT M probability
masses. To find an optimal input distribution, a straightforward
approach needs to determine qT M −1 out of them. Theorem 1
enable us to focus on uniform-given-row-space input distribu-
tions, which is determined by a PMF over Pj(min{M, T }, F

M ).
Thus the number of probability masses to determine can be
reduced to

min{M,T }∑
k=0

[
M
k

]
<

{
�1q M2/4 for T ≥ M/2
�2qT (M−T ) otherwise,

where �1 and �2 are constants (ref. Appendix A). Note that
those computations are still complicated for relatively large
M and T .

C. Upper and Lower Bounds on C

We derive bounds on I(X; Y ) with the addition of two
terms: one corresponds to the intrinsic symmetry and another
one is the achievable rate of the channel given by P〈Y �〉|〈X�〉.
Note that in Lemma 3, the symmetry property only holds for
input (output) matrices sharing the same row space. Roughly,
the transition matrix P〈Y �〉|〈X�〉 captures some property of a
LOC that is opposite to the intrinsic symmetry.

The transition matrix P〈Y �〉|〈X�〉 is solely determined by pH .
By Lemma 4, P〈Y �〉|〈X�〉(V |U) = P〈Y �〉|X (V |X) for any X
with 〈X�〉 = U . Let

J(rk(X); rk(Y )) �
∑
s,r

prk(X) rk(Y )(r, s) log
χT

s

χr
s

. (8)

Note that J(rk(X); rk(Y )) is always nonnegative (see the
definition of χr

s in (3)), and prk(X) rk(Y )(r, s) can be solely
derived from p〈X�〉 and P〈Y �〉|〈X�〉 as

prk(X) rk(Y )(r, s) =
∑

U∈Gr(r,FM )

Prk(Y )|〈X�〉(s|U)p〈X�〉(U),

where Prk(Y )|〈X�〉(s|U) = ∑
V :dim(V )=s P〈Y �〉|〈X�〉(V |U).

Theorem 2: Consider LOC(H, T ) with input X and out-
put Y . For a uniform-given-row-space input distribution,

I(X; Y ) ≥ J(rk(X); rk(Y )) + I(〈X�〉; 〈Y �〉) (9)
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and

I(X; Y ) ≤ J(rk(X); rk(Y )) + I(〈X�〉; 〈Y �〉)
+

∑
s,r

prk(X) rk(Y )(r, s) log χr
s , (10)

where the equality in (9) holds when the LOC has a row-
space-symmetric transition matrix.

Proof: Fix a uniform-given-row-space input distribution
pX . Let Y ∗ be a random matrix over F

T ×N with transition
probability

PY ∗|X (Y|X) =
⎧⎨
⎩

P〈Y �〉|〈X�〉(〈Y�〉|〈X�〉)
χ

rk(X)
rk(Y)

〈Y〉 ≤ 〈X〉,
0 otherwise.

Note that PY ∗|X is row-space symmetric.
The proofs of the following claims are given in Appendix B.
Claim 1: For a uniform-given-row-space input distribution

pX , I(X; Y ) ≥ I(X; Y ∗), with equality when PY ∗|X = PY |X .
We can show Claim 1 using the property that for fixed

pX , mutual information I (X; Y ) is a convex function of the
transition probabilities. We can further show the following
claim by directly applying the definition of PY ∗|X .

Claim 2: For a uniform-given-row-space input distribution
pX ,

H(Y ∗|X) =
∑
s≤r

prk(X) rk(Y )(r, s) log χr
s + H(〈Y �〉|〈X�〉)

(11)

and
H(Y ∗) =

∑
s

prk(Y )(s) log χT
s + H(〈Y �〉). (12)

By Claim 2,

I (X; Y ∗) = H(Y ∗) − H(Y ∗|X)

=
∑
s≤r

prk(X) rk(Y )(r, s) log
χT

s

χr
s

+ I (〈X�〉; 〈Y �〉),

which, together with Claim 1, proves (9).
To prove (10), we have

H(Y ) =
∑

s

∑

V ∈Gr(s,FN )

∑

Y:〈Y�〉=V

pY (Y) log
1

pY (Y)

≤
∑

s

∑

V ∈Gr(s,FN )

p〈Y �〉(V ) log
χT

s

p〈Y �〉(V )
(13)

= H(Y ∗), (14)

where (13) is derived by the log-sum inequality (see [26]) and
(14) is obtained by (12). Then,

I (X; Y ) − I (X; Y ∗)
= H(Y ) − H(Y |X) − H(Y ∗) + H(Y ∗|X)

≤ H(Y ∗|X) − H(Y |X)

≤
∑
s≤r

prk(X) rk(Y )(r, s) log χr
s ,

where the last inequality follows from (11) and H(Y |X) ≥
H(〈Y �〉|X) = H(〈Y �〉|〈X�〉) since p〈Y �〉|X (V |X) depends
on X only through 〈X�〉 (see Lemma 4).

The lower bound in the above theorem can be achieved
by a coding scheme employing a superposition structure,
which includes a cloud code and a set of satellite codes,
each of which corresponds to a cloud center. The rate
I (〈X�〉; 〈Y �〉) can be achieved by the cloud code, while the
rate J(rk(X); rk(Y )) can be achieved by the satellite codes.
Readers are referred to [27] for detailed discussion of this
coding scheme.

Our lower bound is at least as good as the lower bound
obtained in [17] and [18], where a transfer matrix is converted
to a uniform-given-rank transfer matrix. We will compare these
two bounds at the end of Section V-C.

In the following sections, we will see that the quantity
J(rk(X); rk(Y )) is also related to the coding rate of subspace
coding. In the definition of J(rk(X); rk(Y )), the inverse of the

term χT
s

χr
s

has the following meaning. Let V be an s-dimensional

subspaces of F
T , which can be regarded as the column space

of the output matrix. The number of r -dimensional subspaces
of F

T is
[

T
r

]
; and by Lemma 1, the number of r -dimensional

subspaces of F
T that include V , which are the possible column

spaces of the input matrix, is
[

T
r

] χr
s

χT
s

. Thus, the fraction of the

number of r -dimensional subspaces of F
T that include V as

a subspace is exactly χr
s

χT
s

.
Let us look at another property of the quantity

J(rk(X); rk(Y )). Let

ε(T, q) �
∑

s

prk(H)(s) log
ζ T

s

ζ M
s

,

where ζ m
r is defined in (4).

Lemma 5: If T ≥ M and prk(X)(M) = 1,

J(rk(X); rk(Y )) = (T − M) E[rk(H )] log q + ε(T, q),

where 0 ≤ ε(T, q) < 1.8 for all T and q.
Proof: When T ≥ M and prk(X)(M) = 1,

J(rk(X); rk(Y )) =
∑

s

prk(H)(s) log q(T−M)s ζ T
s

ζ M
s

(15)

= (T − M) E[rk(H )] log q + ε(T, q),

where (15) follows that rk(H ) = rk(Y ) since X has full
column rank.

The lower bound on ε(T, q) holds due to T ≥ M , and the
upper bound on ε(T, q) is obtained by bounding ζ m

r using a
constant given in [22].

The above lemma tells us that when T > M ,
J(rk(X); rk(Y )) is larger than (T − M) E[rk(H )] log q , which
is the maximum achievable rate of channel training [6]. (Recall
that in channel training, M rows of X are used to recover the
transfer matrix in the receiver.) We know that subspace coding
can in general do better than channel training [9]. The lower
bound in Theorem 2 implies that the rate gain is at least

max
pX :uniform-given-row-space,prk(X)(M)=1

ε(T, q).

(Note that I(〈X�〉; 〈Y �〉) = 0 when prk(X)(M) = 1 since
〈X�〉 = F

M is deterministic when rk(X) = M .)
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Example 1: Consider LOC(H, 1), for which channel train-
ing is not useful. We have

J(rk(X); rk(Y ))

=
∑

r∈{0,1}

∑
s∈{0,1}:s≤r

prk(X) rk(Y )(r, s) log
χ1

s

χr
s

= prk(X) rk(Y )(0, 0) log
χ1

0

χ0
0

+ prk(X) rk(Y )(1, 0) log
χ1

0

χ1
0

+prk(X) rk(Y )(1, 1) log
χ1

1

χ1
1

= 0.

The lower bound in Theorem 2 for LOC(H, 1) becomes
I(〈X�〉; 〈Y �〉), and the gap between the upper bound and
the lower bound is prk(X) rk(Y )(1, 1) log(q − 1). Note that
I(〈X�〉; 〈Y �〉) can be large. For example, when H is the
M × M identity matrix, I(〈X�〉; 〈Y �〉) = log | Gr(1, F

M )| =
log q M −1

q−1 ≥ (M − 1) log q . ♦

D. Properties of Row-Space-Symmetric LOCs

We call a LOC row-space-symmetric if its transition matrix
is row-space-symmetric. The lower bound in Theorem 2 is
tight for row-space-symmetric LOCs. We introduce some
properties of such LOCs to be used in other sections.

By definition, a LOC is row-space symmetric if and only if
for any X and Y with 〈Y〉 ≤ 〈X〉,

PY |X (Y|X) = 1

χ
rk(X)
rk(Y)

P〈Y �〉|〈X�〉(〈Y�〉|〈X�〉),

where χ
rk(X)
rk(Y) is the number of Y1 such that 〈Y1〉 ≤ 〈X〉 and

〈Y�
1 〉 = 〈Y�〉, and P〈Y �〉|〈X�〉(〈Y�〉|〈X�〉) is only determined

by pH .
Lemma 6: When T ≥ M, LOC(H, T ) being row-space-

symmetric implies that H is uniform-given-row-space.
Proof: Let X and X′ be two full-rank input matrices

with 〈X�〉 = 〈X′�〉. Let H and H′ be two transfer matrices
with 〈H�〉 = 〈H′�〉. Since T ≥ M , we have 〈(XH)�〉 =
〈H�〉 and 〈(XH′)�〉 = 〈H′�〉. Hence 〈(XH)�〉 = 〈(XH′)�〉.
By the definition of row-space-symmetric LOCs, we have
pY |X (XH|X) = pY |X (X′H′|X′), which implies pH (H) =
pH (H′).

When T < M , it is not necessary that the transfer matrix
of a row-space-symmetric LOC satisfies the above constraint.

Example 2: We denote a LOC with T = 1 over the
binary field F2 as LOC2(H, 1), where H ∈ F

M×N
2 is the

transfer matrix. The input and the output of LOC2(H, 1) are
in the same set F

1×M
2 . Since the mapping from X to 〈X T 〉

in this special case is a bijection, we have PY |X (Y|X) =
P〈Y �〉|〈X�〉(〈Y�〉|〈X�〉) for any X, Y ∈ F

1×M
2 with 〈Y〉 ≤ 〈X〉.

Hence, LOC2(H, 1) is row-space-symmetric for any distribu-
tion of H .

IV. SUBSPACE CODING CAPACITY OF LOCS

One of the intrinsic properties of LOCs is that 〈Y 〉 ≤ 〈X〉.
If we restrict to the column spaces of the input and output of
a LOC, it is possible that simpler encoding/decoding schemes
can be developed. This approach, called subspace coding,

was first adopted by Koetter and Kschischang [9] for random
linear network coding. In this section, we characterize the
asymptotic performance of subspace coding with multiple uses
of the channel when the error probability goes to zero.

We discuss how to characterize the maximum achievable
rate of subspace coding (also known as the subspace coding
capacity) and provide lower bounds on the subspace coding
capacity. We also introduce an important class of LOCs, for
which the optimal subspace coding scheme is relatively easier
to find.

A. Optimal Subspace Degradations

A LOC is a matrix channel, so it must be converted
to a subspace channel to use subspace coding. An n-block
subspace code is a subset of (Pj(min{T, M}, F

T ))n . To apply
a subspace code to a LOC, the subspaces in a codeword need
to be converted to matrices. For U ∈ Pj(min{T, M}, F

T ), this
conversion can be done by a transition probability PX |〈X〉(·|U).
The decoding of a subspace code also uses only the column
spaces spanned by the received matrices. Given a transition
matrix PX |〈X〉, we have a new channel with input 〈X〉 and
output 〈Y 〉.

Definition 6: For LOC(H, T ) with a given a transition
probability PX |〈X〉, we have a new channel law given by

P〈Y 〉|〈X〉(V |U) =
∑

X

P〈Y 〉|X (V |X)PX |〈X〉(X|U). (16)

This channel takes subspaces as input and output and is called
a subspace degradation of LOC(H, T ) with respect to PX |〈X〉.

The capacity of the subspace degradation of LOC(H, t)
w.r.t. PX |〈X〉 is maxp〈X〉 I(〈Y 〉; 〈X〉). Therefore, the subspace
coding capacity of LOC(H, T ) is

CSS = CSS(H, T ) � max
PX |〈X〉

max
p〈X〉

I(〈X〉; 〈Y 〉)
= max

pX
I(〈X〉; 〈Y 〉). (17)

To verify (17), we see that for given PX |〈X〉 and p〈X〉, the
PMF of X is given by pX (X) = p〈X〉(〈X〉)PX |〈X〉(X|〈X〉).
On the other hand, fix a distribution pX . The distribution
p〈X〉 can be derived, and the distribution PX |〈X〉(·|U) can be
derived for any U with p〈X〉(U) �= 0. If p〈X〉(U) = 0, the
distribution PX |〈X〉(·|U) does not appear in the maximization
of I(〈X〉; 〈Y 〉).

When PX |〈X〉 is fixed, P〈Y 〉|〈X〉(V |U) is also fixed (see (16)),
and hence I(〈X〉; 〈Y 〉) is a concave function of p〈X〉. On the
other hand, when p〈X〉 is fixed, P〈Y 〉|〈X〉(V |U) is a linear func-
tion of PX |〈X〉 (see (16)) and I(〈X〉; 〈Y 〉) is a convex function
of P〈Y 〉|〈X〉(V |U), and hence I(〈X〉; 〈Y 〉) is a convex function
of PX |〈X〉. (We can similarly argue that I(〈X〉; 〈Y 〉) is not
concave in pX in general.) Hence, finding an optimal subspace
coding scheme involves maximizing a non-concave function,
which is in general a difficult problem due to computational
complexity.

Recall that a transition matrix is deterministic if all its
entries are either zero or one. We can simplify the problem of
finding an optimal subspace degradation by considering only
deterministic transition matrices.
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Lemma 7: There exists an optimal subspace degradation
w.r.t. a deterministic transition matrix PX |〈X〉.

Proof: Consider a procedure as follows. Fix p〈X〉 and
P0

X |〈X〉 that achieve CSS(H, T ). If P0
X |〈X〉 is determinis-

tic, the procedure stops. Otherwise, there must exist U ∈
Gr(min{T, M}, F

T ) such that P0
X |〈X〉(X|U) < 1 for all input X

with 〈X〉 = U .
For each X with 〈X〉 = U , define PX

X |〈X〉 as PX
X |〈X〉(·|U ′) =

P0
X |〈X〉(·|U ′) for U ′ �= U and PX

X |〈X〉(X|U) = 1. We can write

P0
X |〈X〉(·|·) = 1

χ M
dim(U )

∑
X:〈X〉=U

P0
X |〈X〉(X|U)PX

X |〈X〉(·|·).

Since I(〈X〉; 〈Y 〉) is a convex function of PX |〈X〉, there exists
X0 with 〈X0〉 = U such that

I(〈X〉; 〈Y 〉)∣∣
P

X0
X |〈X〉

≥ I(〈X〉; 〈Y 〉)∣∣P0
X |〈X〉

.

Hence the subspace degradation associated with PX0
X |〈X〉 is also

optimal. We then repeat the above procedure with PX0
X |〈X〉 in

place of P0
X |〈X〉.

The above procedure must stop in finite steps since
Gr(min{T, M}, F

T ) has finite elements. P0
X |〈X〉 in the final step

is deterministic.
Lemma 7 enables us to focus on a finite set of deterministic

transition matrices PX |〈X〉 to find the optimal subspace degra-
dation. For small T , it is possible to numerically evaluate all
the deterministic transition matrices PX |〈X〉.

Example 3: We use LOC(H, 1) as an example to show how
to evaluate the subspace coding capacity. The input and output
of a subspace degradation can be two subspaces 〈0〉 � {0}
and 〈1〉 � {0, 1}. By Lemma 7, we only need to consider
subspace degradations with PX |〈X〉(X|〈1〉) = 1 for certain
X ∈ F

1×M \ {0}, where

P〈Y 〉|〈X〉(〈0〉|〈1〉) = PY |X (0|X).

Since P〈Y 〉|〈X〉(〈1〉|〈0〉) = 0, the subspace degradations
of LOC(H, 1) are Z-channels with the crossover probability
given by P〈Y 〉|〈X〉(〈0〉|〈1〉). We know that the capacity of
Z-channel is a decreasing function of the crossover probability.
So the best subspace degradation is the one with the smallest
P〈Y 〉|〈X〉(〈0〉|〈1〉). Therefore, the best subspace degradation can
be found by evaluating PY |X (0|X) for X ∈ F

1×M \ {0}. Since
different X spanning the same row space only need to be
calculated once, we need to consider | Gr(1, F

M )| = q M −1
q−1

inputs.
Since the input/output of a subspace degradation is

binary, the maximum achievable rate of subspace coding for
LOC(H, 1) is at most 1 bit per use, which is much smaller
than the lower bound characterized in Example 1.

B. Lower Bound on Subspace Coding Capacity

Since it is difficult to find an optimal subspace degradation
in general, we consider in this section the achievable rate of
subspace coding for uniform-given-row-space input distribu-
tions to get a lower bound on the subspace coding capacity.
We will show (in the next subsection) that the lower bound to

be obtained is exactly the subspace coding capacity for certain
important special cases.

Theorem 3: For a LOC with uniform-given-row-space input
distributions,

I(〈X〉; 〈Y 〉) = J(rk(X); rk(Y )) + I(rk(X); rk(Y )), (18)

where J(rk(X); rk(Y )) is defined in (8); and hence

CSS ≥ max
p〈X�〉

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))].
Proof: Fix a uniform-given-row-space input pX . For

U ∈ Gr(m, F
t ), let

A(m, U) = {X ∈ F
t×m : 〈X〉 = U}.

The set A(m, U) has several properties that will be used in
the proof. For a full-column-rank matrix B with 〈B〉 = U , we
have

A(m, U) = {BD : D ∈ Fr(Fdim(U )×m)} = B Fr(Fdim(U )×m).

Thus, |A(m, U)| = | Fr(Fdim(U )×m)| = χm
dim(U ). For � ∈

Fr(Ft×t ), 〈�B〉 = �U . So A(m,�U) = �B Fr(Fr×M ) =
�A(m, U).

Fix any V , V ′, U, U ′ ∈ Pj(FT ) satisfying V ≤ U , V ′ ≤ U ′,
dim(U) = dim(U ′) = r and dim(V ) = dim(V ′) = s. We
show that there exists a full rank T × T matrix such that
�V = V ′ and �U = U ′. Find a basis {bi : i = 1, . . . , s}
of V , extend the basis of V to a basis {bi : i = 1, . . . , r} of U ,
and further extend the basis of U to a basis {bi : i = 1, . . . , T }
of F

T . Similarly, find a basis {b′
i : i = 1, . . . , T } of F

T such
that {b′

i : i = 1, . . . , r} is a basis of U and {b′
i : i = 1, . . . , s}

is a basis of V . Consider the linear equation system

�bi = b′
i , i = 1, . . . , T .

The unique solution of the above system satisfies �V = V ′
and �U = U ′. Using the above notations, we have

p〈X〉〈Y 〉(U, V )

=
∑

X∈A(M,U )

pX (X)
∑

Y∈A(N,V )

PY |X (Y|X)

=
∑

X∈A(M,U )

pX (�X)
∑

Y∈A(N,V )

PY |X (�Y|�X) (19)

=
∑

X∈A(M,�U )

pX (X)
∑

Y∈A(N,�V )

PY |X (Y|X)

= p〈X〉〈Y 〉(�U,�V )

= p〈X〉〈Y 〉(U ′, V ′),

where in (19) pX (X) = pX (�X) follows that pX is uniform-
given-row-space, and PY |X (�Y|�X) = PY |X (Y|X) follows
from Lemma 2. Then it can be verified that for V , U ≤ F

T

with V ≤ U , dim(U) = r and dim(V ) = s,

p〈X〉〈Y 〉(U, V ) = prk(X) rk(Y )(r, s)[
T
r

] [
r
s
] . (20)

Similarly, we can show that p〈X〉(U) = p〈X〉(U ′) for U,
U ′ ≤ F

T with dim(U) = dim(U ′) = r , which implies

p〈X〉(U) = prk(X)(r)[
T
r

] . (21)
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Moreover, for V ≤ F
T with dim(V ) = s,

p〈Y 〉(V ) =
∑
r≥s

∑
U :V ≤U,dim(U )=r

p〈X〉〈Y 〉(U, V )

=
∑
r≥s

prk(X) rk(Y )(r, s)[
T
r

] [r
s
]

∑
U :V ≤U,dim(U )=r

1

=
∑
r≥s

prk(X) rk(Y )(r, s)[
T
r

] [r
s
]

[
T
r

]
χr

s

χT
s

(22)

= prk(Y )(s)[
T
s

] , (23)

where (22) is obtained by Lemma 1.
Substituting (20), (21) and (23) into I(〈X〉; 〈Y 〉) completes

the proof.
1) Optimal Uniform-Given-Row-Space Input Distribution

for Subspace Coding: Define

CUSS � max
p〈X�〉

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))],

which is the maximum achievable rate of subspace
coding using uniform-given-row-space input distribution.
Rewrite p〈X�〉(U) = prk(X)(dim(U))P〈X�〉| rk(X)(U | dim(U)).
By treating prk(X) and P〈X�〉| rk(X) as variables, we can rewrite
the above maximization problem as

max
prk(X)

max
P〈X�〉| rk(X)

[I(rk(X); rk(Y )) + J(rk(X); rk(Y ))]. (24)

Both I(rk(X); rk(Y )) and J(rk(X); rk(Y )) depend on
Prk(Y )| rk(X). We have

Prk(Y )| rk(X)(s|r)

=
∑

U∈Gr(r,FM )

Prk(Y )|〈X�〉(s|U)P〈X�〉| rk(X)(U |r),

in which Prk(Y )|〈X�〉(s|U) is a function of pH and is not related
to prk(X) and P〈X�〉| rk(X) (see Lemma 4). The formulation of
J(rk(X); rk(Y )) can be rewritten as

J(rk(X); rk(Y ))

=
∑

r

prk(X)(r)
∑

U∈Gr(r,FM )

P〈X�〉| rk(X)(U |r)RH,T (U), (25)

where

R(U) = RH,T (U) �
∑

s

Prk(Y )|〈X�〉(s|U) log
χT

s

χ
dim(U )
s

(26)

is only related to the distribution of H . Note that R(U) is the
achievable rate of subspace coding for the uniform-given-row-
space input with p〈X�〉(U) = 1.

For fixed prk(X), I(rk(X); rk(Y )) is a convex function
of P〈X�〉| rk(X), and J(rk(X); rk(Y )) is a linear function of
P〈X�〉| rk(X). For fixed P〈X�〉| rk(X), I(rk(X); rk(Y )) is a con-
cave function of prk(X), and J(rk(X); rk(Y )) is a linear func-
tion of prk(X). Therefore, [I(rk(X); rk(Y ))+ J(rk(X); rk(Y ))]
is not concave for prk(X) and P〈X�〉| rk(X). The following
lemma characterizes a special optimizer of (24).

Lemma 8: There exists a deterministic transition matrix
P〈X�〉| rk(X) achieving CUSS.

Proof: The proof is similar to the one of Lemma 7, and
hence omitted.

2) Optimal Uniform-Given-Row-Space Input Distribution
for Large T and q: We can further narrow down the range to
search an optimal uniform-given-row-space input distribution
when both T and q are large. For a random matrix H , define

rk∗(H ) � max{r : Pr{rk(H ) = r} > 0}.
Theorem 4: There exists T0 and R0 as functions of M and

the rank distribution of H , such that when T ≥ T0 and
(T − M) log q ≥ R0, CUSS is achieved by the uniform-given-
row-space input distribution with Pr{rk(X) ≥ rk∗(H )} = 1.

Proof: By Lemma 8, there exists a uniform-given-row-
space input achieving CUSS such that p〈X�〉(U(r)) = prk(X)(r)
for all r ≤ min{M, T }, where dim(U(r)) = r . In other words,
for r such that prk(X)(r) > 0, P〈X�〉| rk(X)(U(r)|r) = 1. We
show by contradiction that Pr{rk(X) ≥ rk∗(H )} = 1 for
sufficiently large T .

Consider an input distribution with Pr{rk(X)< rk∗(H )}>0.
By Theorem 3 and (25),

CUSS = I(rk(X); rk(Y )) +
∑

r

prk(X)(r)R(U(r)).

Define a uniform-given-row-space input distribution p′
X with

p′
〈X�〉(U(r)) = p′

rk(X)(r) = prk(X)(r) for rk∗(H ) ≤
r < M and p′

〈X�〉(U(M)) = p′
rk(X)(M) = prk(X)(M) +∑

k<rk∗(H) prk(X)(k). We have that

I(〈X〉; 〈Y 〉)|p′
X

− CUSS

≥
rk∗(H)−1∑

r=0

prk(X)(r)[R(FM ) − R(U(r))]

− I(rk(X); rk(Y ))|pX

>

rk∗(H)−1∑
r=0

prk(X)(r)�(T, r, H ) log q

− I(rk(X); rk(Y ))|pX , (27)

where the last inequality follows from Lemma 14 in Appen-
dix C with

�(T, r, H ) = (T − M)
∑

k:k>r

Pr{rk(H ) ≥ k}

−r(M − r) + logq ζ r
r .

The quantity �(T, r, H ) is a lower bound on (R(FM ) −
R(U))/ log q with dim(U) = r and it is positive when T is
sufficiently large.

Fix a sufficiently large T such that �(T, r, H ) > 0 for
r < rk∗(H ). Since Pr{rk(X) < rk∗(H )} > 0 by assumption,
we see that when (T − M) log q is sufficiently large, the RHS
of (27) becomes positive, a contradiction to CSS(H, T ) ≥
I(〈X〉; 〈Y 〉) for any input distribution.

3) Constant-Rank Uniform-Given-Row-Space Input Distri-
butions: An input distribution with prk(X)(r) = 1 is called
a constant-rank or rank-r input distribution. Note that for a
subspace degradation, using rank-r input is corresponding to
using r -dimensional subspace coding.

For a constant-rank uniform-given-row-space input distri-
bution, we always have I(rk(X); rk(Y )) = 0. So, together
with (18), an optimal contant-rank uniform-given-row-space
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input distribution for subspace coding can be found by maxi-
mizing J(rk(X); rk(Y )). Define

CCUSS � max
pX :constant-rank uniform-given-row-space

J(rk(X); rk(Y ))

= max
U∈Pj(min{M,T },FM )

R(U), (28)

where (28) follows from (25).
Since I(rk(X); rk(Y )) ≤ log(min{T, M, N} + 1), the loss

of rate by using constant-rank uniform-given-row-space input
distribution is small when

CCUSS  log(min{T, M, N} + 1). (29)

By Lemma 5, we know that when T > M ,

CCUSS > (T − M) E[rk(H )] log q.

So when (T − M) E[rk(H )] log q  log(min{T, M, N} + 1),
it is reasonable to use constant-dimensional subspace coding.

Example 4: Consider T − 1= M = N =64, E[rk(H )]=32,
and q = 256. We can calculate that J(rk(X); rk(Y )) > 256,
while log(min{T, M, N}+1) ≈ 5. So the loss of rate by using
constant-rank uniform-given-row-space input distribution is
small.

The following corollary is a direct result of Theorem 4 with
the condition that rk∗(H ) = M .

Corollary 1: For a transfer matrix H with rk∗(H ) = M,
when both T and (T − M) log q are sufficiently large, the
optimal value of (24) is achieved by the uniform-given-row-
space input with prk(X)(M) = 1, and the optimal value is

R(FM ) = ∑
s prk(H)(s) log χT

s
χ M

s
.

C. LOCs With a Unique Subspace Degradation

Now let us turn to LOCs with a unique subspace degra-
dation, i.e., P〈Y 〉|〈X〉 is invariant with respect to PX |〈X〉. For
such LOCs, we do not have the issue of finding an optimal
subspace degradation—a subspace U can be converted to any
matrix X with 〈X〉 = U . This property makes it easier to apply
subspace coding on LOCs with a unique subspace degradation.
As we will further show in this paper, all LOCs studied in
existing literature have a unique subspace degradation, and
some results previous obtained for special cases are actually
shared by all LOCs with a unique subspace degradation.

By definition, a LOC has a unique subspace degradation if
and only if for any V ,

P〈Y 〉|X (V |X) = P〈Y 〉|X (V |X′) whenever 〈X′〉 = 〈X〉. (30)

If H is uniform-given-row-space, then the transition matrix
of LOC(H, T ) satisfies (30), and hence LOC(H, T ) has a
unique subspace degradation. Therefore, the LOCs studied in
[17] and [18] with uniform-given-rank transfer matrices have
a unique subspace degradation. Since a row-space-symmetric
LOC has a uniform-given-row-space transfer matrix when
T ≥ M (see Lemma 6), we have the following lemma.

Lemma 9: When T ≥ M, a row-space-symmetric LOC has
a unique subspace degradation.

When T < M , a row-space-symmetric LOC may not have
a unique subspace degradation.

Example 5: Consider LOC(H, 1). By (30), LOC(H, 1) has
a unique subspace degradation if and only if for any nonzero
x1, x2 ∈ F

1×M ,

P〈Y 〉|X (〈0〉|x1) = P〈Y 〉|X (〈0〉|x2) (31)

P〈Y 〉|X (〈1〉|x1) = P〈Y 〉|X (〈1〉|x2). (32)

However, (31) implies (32) since

P〈Y 〉|X (〈1〉|x) = 1 − P〈Y 〉|X (〈0〉|x).

The equalities in (31) give linear constraints on the distribution
of H , from which we can find the set of H such that
LOC(H, 1) has a unique subspace degradation.

More examples of LOCs with a unique subspace degrada-
tion will be provided in Section V-C.

Lemma 10: A LOC has a unique subspace degradation if
and only if

P〈Y 〉|X (V |X) = P〈Y 〉|X (V ′|X′) (33)

whenever dim(V ) = dim(V ′), rk(X) = rk(X′), V ≤ 〈X〉 and
V ′ ≤ 〈X′〉.

Proof: The sufficient condition holds since (33) implies
(30). We prove the necessary condition as follows. Fix a full
column-rank matrix B0 such that 〈B0〉 = V . Since V ≤ 〈X〉,
we can find full rank matrix B1 and D such that [B0B1]D = X.
Therefore,

P〈Y 〉|X (V |X)

= P〈Y 〉|X (V |[B0B1]D)

=
∑

Y:〈Y〉=V

PY |〈X〉 (Y|[B0B1]D)

=
∑

E∈Fr(Fdim(V )×N )

PY |X
(

[B0B1]
[

E
0

] ∣∣∣∣[B0B1]D
)

=
∑

E∈Fr(Fdim(V )×N )

Pr

{
DH =

[
E
0

]}
, (34)

where (34) follows from Lemma 2. If (30) holds, then (34)
holds for any full row-rank rk(X) × M matrix D, and hence
(33) holds.

Recall the definition of uniform-given-dimension distribu-
tions over Pj(FT ) in Definition 3.

Theorem 5: For a LOC with a unique subspace degrada-
tion, the capacity of the subspace degradation can be achieved
by a uniform-given-dimension distribution, and

CSS = max
prk(X)

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))]. (35)

Proof: For a LOC with a unique subspace degradation,
P〈Y 〉|〈X〉 is well defined without specifying pX |〈X〉. So con-
sidering p〈X〉 is sufficient for I(〈X〉; 〈Y 〉). We first show that
there exists a uniform-given-dimension input distribution that
maximizes I (〈X〉; 〈Y 〉).

Fix a LOC with a unique subspace degradation. Let p be a
distribution over Pj(FT ) achieving the capacity of the subspace
degradation, i.e., p achieves CSS. For � ∈ Fr(FT ×T ), define
p� as p�(U) = p(�U), where �U is defined in (2). First
p� is a PMF because 0 ≤ p�(U) = p(�U) ≤ 1 and∑

U∈Pj(FT ) p�(U) = 1.
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We show that p� also achieves the capacity. For the
simplicity of the notations, we write p′ = p�. Let p〈Y 〉
and p′〈Y 〉 be the PMF of 〈Y 〉 when the input distributions are
p and p′, respectively. We have

p′〈Y 〉(V ) =
∑

U∈Pj(FT ):V≤U

p′(U)P〈Y 〉|〈X〉(V |U)

=
∑

U∈Pj(FT ):V≤U

p(�U)P〈Y 〉|〈X〉(�V |�U) (36)

=
∑

U ′∈Pj(FT ):�V ≤U ′
p(U ′)P〈Y 〉|〈X〉(�V |U ′)

= p〈Y 〉(�V ),

where (36) follows from p′(U) = p(�U) and Lemma 10.
Therefore,

I(〈X〉; 〈Y 〉)|p′

=
∑

U∈Pj(FT )

p′(U)
∑

V ∈Pj(FT ):V ≤U

P(V |U) log
P(V |U)

p′〈Y 〉(V )

=
∑

U∈Pj(FT )

p(�U)
∑

V ∈Pj(FT ):V≤U

P(�V |�U)

× log
P(�V |�U)

p(�V )

=
∑

U ′∈Pj(FT )

p(U ′)
∑

V ′∈Pj(FT ):V ′≤U ′
P(V ′|U ′) log

P(V ′|U ′)
p(V ′)

= I(〈X〉; 〈Y 〉)|p,

which implies that p′ also achieves the subspace coding
capacity.

Define p∗ on Pj(FT ) as

p∗(U) = 1

| Fr(FT ×T )|
∑

�∈Fr(FT×T )

p�(U).

Note that p∗ is uniform-given-dimension. Since mutual infor-
mation is a concave function of the input distribution [25],

I(〈X〉; 〈Y 〉)|p∗ ≥ 1

| Fr(FT×T )|
∑

�∈Fr(FT ×T )

I(〈X〉; 〈Y 〉)|p� .

Thus, p∗ is also an optimal input distribution for the subspace
channel.

Note that for a uniform-given-dimension LOC,

p〈X〉(V ) = prk(X)(dim(V ))[
T

dim(V )

] .

So CSS can be found by only optimizing over the input rank
distribution prk(X).

If X is a uniform-given-row-space distribution, then 〈X〉
is uniform-given-dimension. For any uniform-given-dimension
distribution p on Pj(FT ) we can find a uniform-given-
row-space distribution p′ on F

T ×M such that p(U) =∑
X:〈X〉=U p′(X). Hence, by Theorem 3 and the fact that a

uniform-given-row-space input distribution pX can be deter-
mined by p〈X�〉, we get

CSS = max
p〈X�〉

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))].

Fix U, U ′ ≤ F
M with dim(U) = dim(U ′). Find XU and XU ′

with 〈XU 〉 = 〈XU ′ 〉, 〈X�
U 〉 = U and 〈X�

U ′ 〉 = U ′. By Lemma 4,
Prk(Y )|〈X�〉(s|U) = Prk(Y )|X (s|XU ) and Prk(Y )|〈X�〉(s|U ′) =
Prk(Y )|X (s|XU ′). Further by Lemma 10,

Prk(Y )|X (s|XU ) =
∑

V ∈Gr(s,〈XU 〉)
P〈V 〉|X (V |XU )

=
∑

V ∈Gr(s,〈XU ′ 〉)
P〈V 〉|X (V |XU ′)

= Prk(Y )|X (s|XU ′).

Therefore, Prk(Y )|〈X�〉(s|U) = Prk(Y )|〈X�〉(s|U ′). Thus,
Prk(Y )| rk(X) only depends on the distribution of H , and hence
prk(X) rk(Y ) depends on 〈X�〉 only through rk(X). The proof
is completed.

The above theorem implies that input distributions pX with
p〈X〉 being uniform-given-dimension achieve the subspace
coding capacity for LOCs with a unique subspace degradation.
Since only the input rank affects the subspace coding capacity,
it has no penalty if we only consider uniform-given-rank input
distributions for subspace coding.

Now, consider the computation of CSS for LOCs with a
unique subspace degradation, i.e., solving the maximization
in (35). The problem is simpler than the one of computing
CUSS (see (24)) since we do not need to optimize P〈X�〉| rk(x).
The proof of Theorem 5 implies

Prk(Y )| rk(x)(s|r) = Prk(Y )|〈X�〉(s|U) = Prk(Y )|X (s|X) (37)

for any U ∈ Gr(r, F
M ) and any X with rk(X) = r . The

optimization in (35) is convex and has min{M, T } variables.
Similar to RH,T (U) (defined in (26)), by abuse of

notations, we define for LOCs with a unique subspace
degradation

R(r) = RH,T (r) =
∑

s

Prk(Y )| rk(X)(s|r) log
χT

s

χr
s

.

Actually, RH,T (dim(U)) = RH,T (U) and hence we can
rewrite

J(rk(X); rk(Y )) =
∑

r

prk(X)(r)R(r).

When applying on LOC with a unique subspace degradations,
the same result of Theorem 4 still holds (with CSS in place of
CUSS) and the proof can be simplified by using R(r) instead
of R(U). Similar to the discussion around (28), the maximum
achievable rate of constant-rank input distributions is

max
prk(X)

J(rk(X); rk(Y )) = max
r

R(r).

Example 6: Let’s apply the above general discussion on
LOCs with uniform-given-rank transfer matrices. Assume that
prk(H) is known. To compute Prk(Y )| rk(X)(s|r), we choose the
input matrix

X(r) =
[

Ir 0
0 0

]
.
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For transfer matrix H =
[

H1
H2

]
where H1 has r rows and H2

has M − r rows, the output matrix is

[
H1
0

]
. So

Prk(Y )| rk(X)(s|r)

= Prk(Y )|X (s|X(r)) = Pr{rk(H1) = s}

=
min{M,N}∑

k=s

Pr{rk(H1) = s| rk(H ) = k}prk(H)(k).

Since the transfer matrix is uniform-given-rank, we have

Pr{rk(H1) = s| rk(H ) = k}
= |{H ∈ F

M×N : rk(H1) = s, rk(H) = k}|
|{H ∈ FM×N : rk(H) = k}| ,

where the RHS can be counted using the techniques introduced
in Preliminaries. After computing Prk(Y )| rk(X)(s|r), R(r) can
be computed accordingly. Then the subspace coding capacity,
as well as an optimal input rank distribution, can be obtained
by solving

max
p(r)

∑
r

p(r)R(r) +
∑

r

p(r)
∑

s

Prk(Y )| rk(X)(s|r)

× log
Prk(Y )| rk(X)(s|r)∑

r ′ p(r ′)Prk(Y )| rk(X)(s|r ′)
s.t. p(r) ≥ 0,

∑
r

p(r) = 1.

We would not go into the details about solving the above
optimization problem. Readers are referred to [17] and [18] to
find more results about LOCs with uniform-given-rank transfer
matrices.

V. SHANNON CAPACITY VS SUBSPACE CODING CAPACITY

In this section, we discuss some necessary conditions and
sufficient conditions for a LOC such that C = CSS as
applications of the results obtained in the previous sections.
A new class of LOCs such that C = CSS is explicitly
characterized.

A. Unique Subspace Degradation

Theorem 2 says

C ≥ CL � max
p〈X�〉

[
J (rk(X); rk(Y )) + I (〈X�〉; 〈Y �〉)],

and for a LOC with a unique subspace degradation Theorem 5
shows

CSS = max
p〈X�〉

[J(rk(X); rk(Y )) + I(rk(X); rk(Y ))].

The above bounds imply a necessary condition such that
C = CSS.

Theorem 6: Consider a LOC with a unique subspace degra-
dation. If C = CSS, then for certain p〈X�〉 that achieves CL,
〈X�〉 → rk(X) → rk(Y ) → 〈Y �〉 is a Markov chain. In other
words, subspace coding is not capacity achieving if the LOC
does not satisfy the Markov condition 〈X�〉 → rk(X) →
rk(Y ) → 〈Y �〉 for any p〈X�〉 achieving CL.

Proof: Fix a LOC with a unique subspace degradation
and C = CSS. If there is no p〈X�〉 achieving CL and CSS
simultaneously, C > CSS. Consider a distribution p∗

〈X�〉 of

〈X�〉 that achieves CL and CSS simultaneously, for which
we have I(〈X�〉; 〈Y �〉) = I(rk(X); rk(Y )), which implies
I(〈X�〉; 〈Y �〉| rk(Y )) = 0 and I(〈X�〉; rk(Y )| rk(X)) = 0.
So both 〈X�〉 → rk(X) → rk(Y ) and (〈X�〉, rk(X)) →
rk(Y ) → 〈Y �〉 form Markov chains. Hence 〈X�〉 →
rk(X) → rk(Y ) → 〈Y �〉 is a Markov chain.

We know that for a distribution p〈X�〉, 〈X�〉 → rk(X) →
rk(Y ) → 〈Y �〉 is a Markov chain if and only if

prk(X)(r)prk(Y )(s)p〈X�〉 rk(X)〈Y �〉 rk(Y )(U, r, V , s)

= p〈X�〉 rk(X)(U, r)prk(X) rk(Y )(r, s)p〈Y �〉 rk(Y )(V , s),

∀r, s, U, V ,

which is equivalent to

prk(X)(r)prk(Y )(s)p〈X�〉〈Y �〉(U, V )

= p〈X�〉(U)prk(X) rk(Y )(r, s)p〈Y �〉(V ),

∀r ≥ s, dim(U) = r, dim(V ) = s. (38)

For U such that p〈X�〉(U) > 0, the equality in (38) becomes

prk(Y )(s)P〈Y �〉|〈X�〉(V |U) = prk(Y )| rk(X)(s|r)p〈Y �〉(V ),

where r = dim(U) ≥ dim(V ) = s. Thus, for each V , among
all U ∈ Gr(r, F

M ) with p〈X�〉(U) > 0, p〈Y �〉|〈X�〉(V |U) are
the same. Therefore, we can have the following lemma.

Lemma 11: If p∗
〈X�〉 achieves CL and satisfies the Markov

chain 〈X�〉 → rk(X) → rk(Y ) → 〈Y �〉, then there exists
p′
〈X�〉 achieving CL such that

1) for each r there exists at most one Ur ∈ Gr(r, F
M ) such

that p′
〈X�〉(Ur ) > 0; and

2) the Markov chain 〈X�〉 → rk(Y ) → 〈Y �〉 holds.
Proof: Let

f (p〈X�〉) = J (rk(X); rk(Y )) + I (〈X�〉; 〈Y �〉).
Then CL = maxp〈X�〉 f (p〈X�〉). We have

∂ f (p〈X�〉)
∂p〈X�〉(U)

=
dim(U )∑

s=0

∑

V ∈Gr(s,FN )

P(V |U) log
P(V |U)

p〈Y �〉(V )

+R(U) − log e. (39)

Let p′
〈X�〉 be a distribution on Pj(FM ) such that for each r

with p∗
rk(X)(r) > 0, there exists Ur ∈ Gr(r, F

M ) such that
p′
〈X�〉(Ur ) = ∑

U∈Gr(r,FM ) p∗
〈X�〉(U) and p∗

〈X�〉(Ur ) > 0.

Let p∗
〈Y �〉 and p′

〈Y �〉 be the distribution of 〈Y �〉 with respect
to p∗

〈X�〉 and p′
〈X�〉, respectively. We have

p∗
〈Y �〉(V )

=
∑

r

∑

U∈Gr(r,FM ):p〈X�〉(U )>0

P〈Y �〉|〈X�〉(V |U)p〈X�〉(U)

=
∑

r

∑

U∈Gr(r,FM ):p〈X�〉(U )>0

P〈Y �〉|〈X�〉(V |Ur )p〈X�〉(U)
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=
∑

r

P〈Y �〉|〈X�〉(V |Ur )p′
〈X�〉(Ur )

= p′
〈Y �〉(V ),

where the second equality follows from the discussion after
(38). By checking the KKT condition [28], p′

〈X�〉 achieves CL

since
∂ f (p〈X�〉)
∂p〈X�〉(U )

∣∣∣
p′
〈X�〉

= ∂ f (p〈X�〉)
∂p〈X�〉(U )

∣∣∣
p∗
〈X�〉

.

For r with p〈X�〉(r) > 0, we further have

prk(Y )| rk(X)(s|r)

=
∑

U∈Gr(r,FM ):p〈X�〉(U )>0

Prk(Y )|〈X�〉(s|U)p〈X�〉| rk(X)(U |r)

= Prk(Y )|〈X�〉(s|Ur )

= p′
rk(Y )| rk(X)(s|r).

Therefore, p′
〈X�〉 also satisfies the Markov condition in (38).

Note that since in this case, the distributions of rk(X) and
〈X�〉 are the same, we equivalently have the Markov condition
〈X�〉 → rk(Y ) → 〈Y �〉.

Using Lemma 11, the sufficient condition in Theorem 6
can be refined, and more explicit necessary conditions can be
obtained for special cases.

Example 7: Suppose that C = CSS for certain LOC(H, 1)
with a unique subspace degradation. Fix p′

〈X�〉 such that 1)
p′
〈X�〉 achieves CL and 2) p′

〈X�〉(U1) = 1 − prk(X)(0) for

U1 ∈ Gr(1, F
M ). The existence of such p〈X�〉 is guaranteed

by Theorem 6 and Lemma 11. Using (39), we have for
U ∈ Gr(1, F

M)

∂ f (p〈X�〉)
∂p〈X�〉(U)

∣∣∣∣
p=p′

=
1∑

s=0

∑

V ∈Gr(s,FN )

P(V |U) log
P(V |U)

p〈Y �〉(V )
− log e

= P(〈0〉|U) log
P(〈0〉|U)

p〈Y �〉(〈0〉)
+

∑

V∈Gr(1,FN )

P(V |U) log
P(V |U)

P(V |U1)p〈X�〉(U1)
− log e

= − log p′
〈X�〉(U1) − log e + DKL(P(·|U)||P(·|U1))

+P(〈0〉|U) log
P(〈0〉|U1)p′

〈X�〉(U1)

p〈Y �〉(〈0〉) ,

where DKL is the Kullback-Leibler divergence (see [26]). By
(31), P〈Y �〉|〈X�〉(〈0〉|U) = P〈Y �〉|〈X�〉(〈0〉|U1) for all U ∈
Gr(1, F

M ). Since p〈X�〉 achieves CL , by the KKT condition,
we have for all U �= U1

∂ f (p〈X�〉)
∂p〈X�〉(U)

∣∣∣∣
p=p′

≤ ∂ f (p〈X�〉)
∂p〈X�〉(U1)

∣∣∣∣
p=p′

which implies DKL(P(·|U)||P(·|U1)) = 0. Therefore, for
LOC(H, 1) with a unique subspace degradation, a nec-
essary condition such that subspace coding is capacity
achieving is that for each V ∈ Gr(1, F

N ), P〈Y �〉|〈X�〉(V |U) =
P〈Y �〉|〈X�〉(V |U ′) for all U, U ′ ∈ Gr(1, F

M ).

We can get a stronger result if the LOC with a unique
subspace degradation is also row-space symmetric. Note that
when T ≥ M , a row-space-symmetric LOC has a unique
subspace degradation (see Lemma 9).

Corollary 2: For a row-space-symmetric LOC which has
a unique subspace degradation, C = CSS if and only if for
certain p〈X�〉 that achieves C, 〈X�〉 → rk(X) → rk(Y ) →
〈Y �〉 is a Markov chain.

Proof: For a row-space-symmetric LOC, C = CL . So
the necessary condition follows from Theorem 6. On the
other hand, assume 〈X�〉 → rk(X) → rk(Y ) → 〈Y �〉
is a Markov chain for certain p〈X�〉 that achieves C . So
I(〈X�〉; 〈Y �〉) = I(rk(X); rk(Y )) for this p〈X�〉. Therefore
C = J (rk(X); rk(Y )) + I (〈X�〉; 〈Y �〉) = J (rk(X); rk(Y )) +
I(rk(X); rk(Y )) ≤ CSS, which implies C = CSS.

Example 8: Following Example 2, we discuss LOC2(H, 1)
with a unique subspace degradation. We know H satisfies (31).
Since LOC2(H, 1) is row-space-symmetric, we can apply the
necessary and sufficient for C = CSS given in Corollary 2.
Similar to the discussion in Example 7, we have that for
LOC2(H, 1) with a unique subspace degradation, C = CSS
if and only if for each y ∈ F

1×N

PY |X (y|x1) = PY |X (y|x2), ∀x1, x2 ∈ F
1×M . (40)

We will connect the above condition to another class of LOCs
to be discussed.

B. Row-Space-Symmetric LOCs (T < M)

When T ≥ M , a row-space-symmetric LOC has a unique
subspace degradation (see Lemma 9). Hence, we can apply the
results in the last subsection. But when T < M , a row-space-
symmetric LOC may not have a unique subspace degradation.
The following lemma gives an upper bound on the subspace
coding capacity of row-space-symmetric LOCs.

Lemma 12: For a row-space-symmetric LOC,

CSS ≤ max
p〈X�〉

[
J(rk(X); rk(Y )) + I(〈X�〉; rk(Y ))

]
.

Proof: See Appendix D.
Theorem 7: Consider a row-space-symmetric LOC.

1) (Necessary condition) If C = CSS, then for certain
p〈X�〉 that achieves C, 〈X�〉 → rk(Y ) → 〈Y �〉 is
a Markov chain. In other words, subspace coding is
not capacity achieving if the LOC does not satisfy the
Markov condition 〈X�〉 → rk(Y ) → 〈Y �〉 for all p〈X�〉
achieving C.

2) (Sufficient condition) If for certain p〈X�〉 that achieves
C, 〈X�〉 → rk(X) → rk(Y ) → 〈Y �〉 is a Markov
chain, then C = CSS.

Proof: We first prove the necessary condition. Fix a row-
space-symmetric LOC such that C = CSS. By Lemma 12,

CSS ≤ RU � max
p〈X�〉

[
J(rk(X); rk(Y )) + I(〈X�〉; rk(Y ))

]
.

On the other hand, by Theorem 2,

C = max
p〈X�〉

[
J (rk(X); rk(Y )) + I (〈X�〉; 〈Y �〉)].
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Since I (〈X�〉; 〈Y �〉) ≥ I(〈X�〉; rk(Y )) for any p〈X�〉, if
there exists no p〈X�〉 achieving C and RU simultaneously,
C > RU ≥ CSS, a contradiction to C = CSS. Fix p〈X�〉 that
achieves C and RU simultaneously. We have I(〈X�〉; 〈Y �〉) =
I(〈X�〉; rk(Y )), which implies I (〈X�〉; 〈Y �〉| rk(Y )) = 0, i.e.,
〈X�〉 → rk(Y ) → 〈Y �〉 is a Markov chain.

Now we show the sufficient condition. Fix a p〈X�〉 that
achieves C and for which 〈X�〉 → rk(X) → rk(Y ) → 〈Y �〉
is a Markov chain. So I(〈X�〉; 〈Y �〉) = I(rk(X); rk(Y )) for
this p〈X�〉. Thus

C = J (rk(X); rk(Y )) + I (〈X�〉; 〈Y �〉)
= J (rk(X); rk(Y )) + I(rk(X); rk(Y )) ≤ CSS,

where the last inequality follows from Theorem 3. Therefore
C = CSS.

To verify the sufficient condition given in Theorem 7, we
do not need to check all input distributions that achieve C .
If p〈X�〉 satisfies the sufficient condition in Theorem 7, we
can apply Lemma 11 on p〈X�〉 since C = CL for row-space-
symmetric LOCs, and obtain that p′

〈X�〉 satisfies the sufficient
condition and has the structure defined in Lemma 11-1).
Therefore, we only need to check the sufficient condition
for input distributions with the structure that for each r ,
prk(X)(r) = p〈X�〉(Ur ) for certain Ur ∈ Gr(r, F

M ).
Example 9: Since LOC2(H, 1) is row-space-symmetric for

any H (see Example 2), we can use Theorem 7 to characterize
a sufficient condition such that C = CSS.

Consider an input distribution p∗ with p∗
rk(X)(0) = p0

and p∗
rk(X)(1) = p∗

〈X�〉(U1) = 1 − p0 = p1 for some

U1 ∈ Gr(1, F
M ). Hence p∗

〈X�〉(U) = 0 for all U �= U1 ∈
Gr(1, F

M ). We first check the sufficient condition. By (38),
for p∗, the Markov chain in the sufficient condition holds
for any choices of p0, 0 ≤ p0 ≤ 1 and U1. To satisfy the
sufficient condition, we further require that p∗ achieves C .
Now we assume 0 < p0 < 1 since otherwise, p∗ would not
be capacity achieving unless the channel is trivial. A necessary
and sufficient condition such that p∗ achieves C is given by
the KKT condition:

C = log
1

prk(Y )(0)
,

C = − log p1 + Prk(Y )|〈X�〉(0|U1) log
Prk(Y )|〈X�〉(0|U1)p1

prk(Y )(0)
,

C ≥ − log p1 + Prk(Y )|〈X�〉(0|U) log
Prk(Y )|〈X�〉(0|U1)p1

prk(Y )(0)

+DKL(P〈Y �〉|〈X�〉(·|U)||P〈Y �〉|〈X�〉(·|U1)).

Note that the first two equalities fix p1 and C as functions of
Prk(Y )|〈X�〉(0|U1). The third inequality gives a constraint for
U1, i.e., for all U �= U1 ∈ Gr(1, F

M ), we have

DKL(P(·|U)||P(·|U1))

≤ (Prk(Y )|〈X�〉(0|U) − Prk(Y )|〈X�〉(0|U1))

× log
prk(Y )(0)

Prk(Y )|〈X�〉(0|U1)p1
.

Substituting the value of p1, we have,

DKL(P(·|U)||P(·|U1))

≤ Prk(Y )|〈X�〉(0|U) − Prk(Y )|〈X�〉(0|U1)

Prk(Y )|〈X�〉(1|U1)

× log
1

Prk(Y )|〈X�〉(0|U1)
, ∀U �= U1 ∈ Gr(1, F

M ). (41)

Therefore, if (41) holds, there exists p1 such that p∗ is
capacity achieving, and hence C = CSS.

C. Degraded Linear Operator Channels

Definition 7: A LOC is degraded if I(X; Y ) = I(〈X〉; 〈Y 〉)
for all pX .

By definition, it is clear that a degraded LOC has C = CSS.
Some degraded LOCs have been studied in the literature.
When M = N , the LOC with H uniformly distributed among
all full rank M × M matrices is degraded [15]. If H contains
uniformly i.i.d. components, it was shown that the correspond-
ing LOC is also degraded [16]. LOCs with uniform-given-rank
transfer matrices [17], [18] are degraded, and uniform-given-
rank transfer matrices include the transfer matrices studied in
[15] and [16] as special cases.

In this section, we focus on the general properties of
degraded LOCs. Since

I(X; Y )

=
∑

V ,U∈Pj(FT )

∑
X,Y:

〈X〉=U,〈Y〉=V

p(X, Y) log
p(X, Y)

pX (X)pY (Y)

≥
∑

V ,U∈Pj(FT )

p〈X〉〈Y 〉(U, V ) log
p〈X〉〈Y 〉(U, V )

p〈X〉(U)p〈Y 〉(V )

= I(〈X〉; 〈Y 〉),
where the inequality follows from the log-sum inequality
(see [26]), a LOC is degraded if and only if

∀Y, PY |X (Y|X) = PY |X (Y|X′) if 〈X〉 = 〈X′〉, (42)

and for all pX

∀X,
PY |X (Y|X)

pY (Y)
= PY |X (Y′|X)

pY (Y′)
if 〈Y〉 = 〈Y′〉. (43)

Example 10: We check when LOC2(H, 1) is degraded. For
this example, (43) holds trivially and (42) is equivalent to

PY |X (y|x1) = PY |X (y|x2), ∀y, x1, x2 ∈ F
1×2. (44)

We have at most six linear constraints on the distribution of H
such that LOC2(H, 1) is degraded.

Note that (44) is equivalent to (40). Hence we can rephrase
the conclusion of Example 8 as LOC2(H, 1) with a unique
subspace degradation has C = CSS if and only if it is degraded.
However, a LOC may not be degraded even if C = CSS. As
an example, for the distribution of H2 ∈ F

2×2 in Table I,
LOC2(H2, 1) has multiple subspace degradations, but C =
CSS = 1bit. The optimal input distribution has prk(X)(0) =
p〈X�〉(〈[1 1]�〉) = 0.5.

Theorem 8: A degraded LOC has a unique subspace degra-
dation and it is row-space-symmetric.
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TABLE I

A DISTRIBUTION OVER F
2×2
2 . EACH NUMBERED CELL IS THE

PROBABILITY MASS OF THE MATRIX WHOSE FIRST COLUMN

IS THE ROW INDEX OF THE TABLE AND SECOND COLUMN

IS THE COLUMN INDEX OF THE TABLE

Proof: Fix a degraded LOC. Since (42) implies the
condition given in (30), the subspace degradation is unique for
a degraded LOC. Fix full-row-rank r × M matrices D and D′,
and an r × N matrix E. By (42), for any full-column-rank
matrix B,

PY |X (BE|BD) = PY |X (BE|BD′).

By Lemma 2,

Pr{DH = E} = Pr{D′H = E}. (45)

We show that the LOC is row-space symmetric using the above
equality.

Fix any input X and X′ and output Y and Y′ satisfying
〈Y〉 ≤ 〈X〉, 〈Y′〉 ≤ 〈X′〉, 〈X�〉 = 〈X′�〉 and 〈Y�〉 = 〈Y′�〉.
Then we can write X = BD, Y = BE, X′ = B′D and Y′ =
B′E′ (see (50) and (51) in Appendix A). Since 〈E�〉 = 〈E′�〉,
there exists a full-rank square matrix � such that E = �E′.
Then we have

P(Y|X) = Pr{DH = E} (46)

= Pr{DH = �E′}
= Pr{�−1DH = E′}
= Pr{DH = E′} (47)

= P(Y′|X′), (48)

where (46) and (48) follow from Lemma 2, and (47) follows
from (45) and rk(�−1D) = rk(D). The proof is completed
by noting that (48) is sufficient for a LOC being row-space-
symmetric.

The above theorem tells us that all the LOCs studied in
[15]–[18] have a unique subspace degradation. Now we have
a better understanding of why the capacity of these LOCs can
be achieved by only optimizing the input rank distribution.

We say a LOC is rank-symmetric if its transition matrix is
rank-symmetric (see Definition 5). We see that LOC(H, T )
is rank-symmetric if and only if there exists a function μ :
Z

+ × Z
+ → [0 1] such that

PY |X (Y|X) =
{

μ(rk(X), rk(Y)) 〈Y〉 ≤ 〈X〉
0 otherwise,

where Z
+ is the set of nonnegative integers.

By the definition, we see that a rank-symmetric LOC is
also row-space-symmetric (see Definition 4 and Definition 5).

TABLE II

A DISTRIBUTION OVER F
2×2
2 . EACH NUMBERED CELL IS THE

PROBABILITY MASS OF THE MATRIX WHOSE FIRST COLUMN

IS THE ROW INDEX OF THE TABLE AND SECOND COLUMN

IS THE COLUMN INDEX OF THE TABLE

The following theorem gives a stronger characterization of
rank-symmetric LOCs.

Lemma 13: A rank-symmetric LOC is degraded.
Proof: We can check that (42) and (43) hold for a

rank-symmetric LOC. By the definition of rank-symmetric
LOCs, we know that PY |X (Y|X) only depends on U and V ,
which verifies (42). By the same property of rank-symmetric
LOCs,

pY (Y) =
∑

X′:V ≤〈X′〉
PY |X (Y|X)pX(X)

=
∑

U ′∈Pj(FT ):V≤U ′
μ(dim(U ′), dim(V ))

∑
X:〈X〉=U ′

pX (X)

=
∑

r

μ(r, dim(V ))
∑

U ′∈Gr(r,FT ):V ≤U ′
p〈X〉(U ′).

This verifies (43).
But a degraded LOC may not be rank-symmetric.
Example 11: Consider LOC2(H2, 1), H2 ∈ F

2×2 as an
example. For the distribution of H as given in Table II, we
can calculate that

PY |X (z1|zi ) = 1

6
, i = 1, 2, 3

PY |X (z2|zi ) = 1

6
, i = 1, 2, 3

PY |X (z3|zi ) = 1

3
, i = 1, 2, 3

PY |X (z0|zi ) = 1

3
, i = 1, 2, 3,

where

z0 = [0 0], z1 = [1 0], z2 = [0 1], and z3 = [1 1]. (49)

We can check by (44) that LOC2(H, 1) with the distribution
of H given in Table II is degraded. But this LOC is not rank
symmetric.

The following theorem shows the relation between uniform-
given-rank transfer matrices and rank-symmetric LOCs.

Theorem 9: Let H be a random matrix with dimension
M × N. i) If T ≥ M and LOC(H, T ) is rank-symmetric,
then H is uniform-given-rank. ii) If H is uniform-given-rank,
then LOC(H, T ) is rank-symmetric.
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Proof: Proof of i). Fix X ∈ F
T×M with rk(X) = M . The

existence of such X follows from T ≥ M . For any Y ∈ F
T ×N ,

we have a unique H such that Y = XH. Since the LOC is
rank-symmetric,

pH (H) = Pr{Y = XH }
= μ(rk(X), rk(Y))

= μ(M, rk(H)).

Therefore H is uniform-given-rank.
Proof of ii). Fix X ∈ F

T ×M and Y ∈ F
T×N with rk(X) = r ,

rk(Y) = s and 〈Y〉 ≤ 〈X〉. By the similar procedure for
obtaining (34), we have

PY |X (Y|X) = Pr

{
DH =

[
E
0

]}
,

for certain full row-rank matrices D and E are full row-rank
matrices satisfying 〈D�〉 = 〈X�〉 and 〈E�〉 = 〈Y�〉. Fix any
full-row-rank matrices D′ ∈ F

r×M and E′ ∈ F
s×N . Find full

rank matrices � and � such that D′ = D� and E′ = E� .
We have

Pr

{
D′H =

[
E′
0

]}
= Pr

{
D�H�−1 =

[
E
0

]}

= Pr

{
DH =

[
E
0

]}
,

where the last equality follows that H is uniform-given-rank.
Hence

PY |X (Y|X) = Pr

{
D′ H =

[
E′
0

]}
.

So PY |X (Y|X) only relates to the ranks of X and Y, i.e.,
LOC(H, T ) is rank-symmetric.

There exists rank-symmetric LOCs with non-uniform-given-
rank transfer matrices.

Example 12: We give an example of a rank-symmetric
LOC that has a non-uniform transfer matrix. Consider
LOC2(H2, 1), H2 ∈ F

2×2 with

pH2(H) = 1

4
, for H =

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
1 1
1 1

]
.

We can check that H2 is not uniform-given-rank, but we can
verify that LOC2(H, 1) is rank-symmetric. �

In the last of this section, we verify a claim given in
Section III-C. Note that any transfer matrix H can be con-
verted to a uniform-given-rank transfer matrix H ∗ with the
same rank distribution [17], [18], [29] obtained by H ∗ =
�H� , where � and � are independent uniformly distributed
random matrices in Fr(FM×M ) and Fr(FN×N ), respectively.
Hence C(H, T ) ≥ C(H ∗, T ) = CSS(H ∗, T ). We show that
the lower bound on C(H, T ) given in Theorem 2 is at least
as good as CSS(H ∗, T ).

Let pX be a uniform-given-rank input distribution that
achieves CSS(H ∗, T ), the existence of such a distribution is
guaranteed by Theorem 5. Let P∗ and P be the transition
matrices corresponding to H ∗ and H respectively. For any

input matrix X′ with rk(X′) = r , we have

P∗
rk(Y )| rk(X)(s|r) = P∗

rk(Y )|X (s|X′)
= Pr{rk(X′�H�) = s}
= Pr{rk(X′�H ) = s}
=

∑
X:rk(X)=r

Pr{rk(X̃ H ) = s, X̃ = X}

=
∑

X:rk(X)=r

Prk(Y )|X (s|X)pX | rk(X)(X|r)

= Prk(Y )| rk(X)(s|r),

where the first equality follows from (37); and X̃ = X′�
is uniformly distributed among all input matrices with rank
r , and has the same distribution of pX | rk(r)(X|r). Therefore
for pX ,

I (X; Y )|pH ≥ J(rk(X), rk(Y ))|Prk(Y )| rk(X)

+I (〈X�〉; 〈Y �〉)|P〈Y �〉|〈X�〉
≥ J(rk(X), rk(Y ))|Prk(Y )| rk(X)

+I (rk(X); rk(Y ))|Prk(Y )| rk(X)

= J(rk(X), rk(Y ))|P∗
rk(Y )| rk(X)

+I (rk(X); rk(Y ))|P∗
rk(Y )| rk(X)

= CSS(H ∗, T ),

where the first inequality follows from Theorem 2 and the
last equality follows from Theorem 5. Thus C(H, T ) ≥
CSS(H ∗, T ).

VI. CONCLUDING REMARKS

In this paper, we studied upper and lower bounds for
both the Shannon capacity and the subspace coding capacity
of LOCs. We characterized various classes of LOCs with
different properties of these bounds, where row spaces and
ranks of input and output matrices play important roles.

Our results provide some guidelines for coding design.
Subspace coding is good for LOCs with a unique subspace
degradation since otherwise we have difficulty to find an
optimal input distribution for subspace coding. For general
LOCs, we can use constant-rank uniform-given-row-space
input distribution for subspace codes since 1) such an optimal
input distribution is relatively easy to compute, and 2) the loss
of rate, compared with the subspace coding capacity, can be
small for typical parameters. Further, it is not always optimal
to uniform input and output of a LOC for applying subspace
coding.

We are motivated to consider other coding schemes for
LOCs since for many cases either the optimal subspace coding
scheme is difficult to find or subspace coding is not capacity
achieving. Readers are referred to [27] for a superposition
based coding scheme that can achieve rate higher than sub-
space coding.

APPENDIX A
SYMMETRY PROPERTIES IN CHANNEL

CAPACITY OPTIMIZATION

We discuss how the symmetry properties is used to solve
the optimization problem for finding the channel capacity
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of LOCs. This is useful for getting some numerical results.
We first introduce some notations that will be used in this
section and Appendix B.

Let B be a t ×r matrix with rank r , i.e., B is of full column-
rank. For a t × m matrix A with 〈A〉 ≤ 〈B〉, define A/B to
be a matrix such that A = B(A/B). The notation “/” is well
defined because i) there always exists C such that A = BC
since 〈A〉 ≤ 〈B〉 and ii) such C is unique since B is full column
rank.

Let X and Y be the input and output matrices of
LOC(H, T ), respectively, with 〈Y〉 ≤ 〈X〉. A decomposition
of X and Y as in Lemma 2 can be found as follows. First, fix a
full column rank matrix B with 〈X〉 = 〈B〉. Then, X = B(X/B)
and Y = B(Y/B). By Lemma 2,

PY |X (Y|X) = Pr{(X/B)H = Y/B}.

For U ∈ Pj(FM ), let DU be a dim(U) × M matrix with
〈D�

U 〉 = U . For any X ∈ F
T ×M and Y ∈ F

T×N with 〈Y〉 ≤
〈X〉, we can write

X = BD〈X�〉, (50)

Y = BE, (51)

where BT = X�/D�
〈X�〉 and E = Y/B.

Due to the symmetry properties of the matrix of transition
probabilities in Lemma 3, it is not necessary to calculate
PY |X (Y|X) for all pairs of X and Y. For each subspace
U ∈ Pj(min{T, M}, F

M ), we choose one full row rank matrix
D with 〈D�〉 = U to compute (Pr{DH = E} : E ∈ F

k×N ).
Then for any X and Y with 〈Y〉 ≤ 〈X〉 and 〈X�〉 = U , we
know PY |X (Y|X) = Pr{DH = Y/(X�/D�)�}. The overall
complexity of computing the transition matrix is

min{T ,M}∑
k=0

[
M
k

]
qkN <

{
cq M N M ≤ min{T, N}
c′q L(M+N−L) otherwise,

where L = min{T, (M + N)/2}, c and c′ are constants. The
inequality for M ≤ min{T, N} is obtained as follows.2 We
have

χ N
k = q Nk

N∏
i=N−k+1

(1 − q−i ) > q Nk
∞∏

i=1

(1 − q−i ) ≥ κq Nk,

(52)

where κ = ∏∞
i=0(1 − 2−i) ≈ 0.28879 is a constant [22]. Thus

M∑
k=0

[
M
k

]
qkN <1/κ

M∑
k=0

[
M
k

]
χ N

k =1/κ
∑
k=0

χ M,N
k =1/κq M N ,

where the last equality is obtained by (5). When M >

2This method is suggested by an anonymous reviewer, who is thereby
acknowledged.

min{T, N}, we have

min{T ,M}∑
k=0

[
M
k

]
qkN =

min{T ,M}∑
k=0

χ M
k

χk
k

qkN

<

min{T ,M}∑
k=0

1/κq Mk

qk2 qkN

= 1/κ

min{T ,M}∑
k=0

qk(M+N−k), (53)

where the inequality is obtained by (52) with M in place of N
and χk

k < qk2
. Note that the k(M + N − k) in (53) takes its

maximum at k = min{min{T, M}, (M + N)/2} = L. Then
by a technique similar to the one used in [12, Lemma 1], the
inequality for M > min{T, N} is obtained, where the constant
c′ = 1/κ

∑∞
i=0 2−i2 ≈ 5.4137.

After obtaining the transition matrix, we can find an optimal
input distribution by solving the maximization problem in
Theorem 1, which is equivalent to finding an optimal distrib-
ution over Pj(min{T, M}, F

M ). Since | Pj(min{M, T }, F
M )| =∑min{M,T }

k=0

[
M
k

]
, we can bound the number of probability

masses to determine as
min{M,T }∑

k=0

[
M
k

]
<

{
�1q M2/4 T ≥ M/2
�2qT (M−T ) otherwise,

where �1 and �2 are constants. The inequality for
T ≥ M/2 is obtained by [12, Lemma 1], while the inequality
for T < M/2, is obtained by [12, Proposition 1].

APPENDIX B
PROOF OF CLAIMS IN THE PROOF OF THEOREM 2

Proof of Claim 1: Define random variable Y (r) = Y for
r = 0. For r = 1, . . . , min{T, M}, define random variables
Y (r) and Y (r,�) with � ∈ Fr(Fr×r ) over F

T×N as follows. For
〈Y〉 ≤ 〈X〉, let

PY (r,�)|X (Y|X) =
{

PY (r−1)|X (Y|X) rk(X) �= r,
Pr{D〈X�〉H = �E} rk(X) = r,

where E = Y/(X�/D�
〈X�〉)

� (see (50) and (51)). Random

variables Y (r) are over F
T ×N such that for 〈Y〉 ≤ 〈X〉,

PY (r)|X (Y|X) = 1

χr
r

∑
�∈Fr(Fr×r )

PY (r,�)|X (Y|X).

Note that when rk(X) > r ,

PY (r,�)|X (Y|X) = PY (r)|X (Y|X) = PY |X (Y|X). (54)

We will show that for r = 1, . . . , min{M, T },
PY ∗|X = PY (min{M,T })|X , (55)

and
I(X; Y (r,�)) = I(X; Y (r−1)). (56)

Since for a fixed pX , mutual information I (X; Y ) is a convex
function of the transition probabilities, we have

I(X; Y (r)) ≤ 1

χr
r

∑
�∈Fr(Fr×r )

I(X; Y (r,�)) = I(X; Y (r−1)).
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Then, the lemma is proved by

I(X; Y ) = I(X; Y (0)) ≥ I(X; Y (min{M,T })) = I(X; Y ∗).

We first prove (55). For X and Y with rk(X) = r , rk(Y) = s,
〈Y�〉 = V , 〈X�〉 = U and 〈Y〉 ≤ 〈X〉, by definition,

PY (min{M,T })|X (Y|X) = 1

χr
r

∑
�∈Fr(Fr×r )

Pr{DU H = �E},

where DU and E are defined in (50) and (51), respectively.
For E0 ∈ E � {K ∈ F

r×N : 〈K�〉 = V }, let C(E0) = {C ∈
Fr(Fr×r ) : CE = E0}. We see that {C(E0), E0 ∈ E} gives a
partition of Fr(Fr×r ). Since C(E0) for all E0 ∈ E have the
same cardinality, |C(E0)| = | Fr(Fr×r )|

|E | = χr
r

χr
s

for all E0 ∈ E .
Therefore,

1

χr
r

∑
�∈Fr(Fr×r )

Pr{DU H = �E}

= 1

χr
r

∑
E0∈E

∑
�∈C(E0)

Pr{DU H = �E}

= 1

χr
r

∑
E0∈E

|C(E0)| Pr{DU H = E0}

= 1

χr
s

∑
E0∈E

Pr{DU H = E0}

= 1

χr
s

Pr{〈(DU H )�〉 = V }

= 1

χr
s

P〈Y �〉|〈X�〉(V |U).

By the definition of Y ∗, (55) is proved.
Now we prove (56). First, we have for i �= r ,

prk(X),Y (r,�)(i, Y) =
∑

X:rk(X)=i

PY (r,�)|X (Y|X)pX(X)

=
∑

X:rk(X)=i

PY (r−1)|X (Y|X)pX(X)

= prk(X),Y (r−1)(i, Y), (57)

where the second equality is obtained by the definition of
PY (r,�)|X (Y|X) for rk(X) �= r . Specifically, when r < i ,

prk(X),Y (r) (i, Y) = prk(X),Y (r−1)(i, Y)

by the definition of PY (r)|X and (57). Recursively applying the
above equality, we have that when r < i ,

prk(X),Y (r) (i, Y) = prk(X),Y (i, Y). (58)

We also have

prk(X),Y (r,�)(r, Y)

=
∑

X:rk(X)=r

PY (r,�)|X (Y|X)pX(X)

=
∑

U∈Gr(r,FM )

∑

B∈Fr(FT×r )

PY (r,�)|X (Y|BDU )pX (BDU )

=
∑

U∈Gr(r,FM )

∑

B∈Fr(FT×r )

Pr{DU H = �(Y/B)} p〈X�〉(U)

χT
r

=
∑

U∈Gr(r,FM )

p〈X�〉(U)

χT
r

∑

B′∈Fr(FT ×r )

Pr{DU H = Y/B′}

= prk(X),Y (r, Y) = prk(X),Y (r−1)(r, Y), (59)

where the third equality follows that pX is uniform-given-
row-space and the definition of PY (r,�)|X (Y|X) for rk(X) = r ;
the forth equality follows by �(Y/B) = Y/(B�−1) and sub-
stituting B�−1 by B′ ∈ Fr(FT ×r ); and (59) follow from (58).

Thus, by (57) and (59), we have

pY (r,�) (Y) =
∑

i

prk(X),Y (r,�)(i, Y)

=
∑

i

prk(X),Y (r−1) (i, Y)

= pY (r−1) (Y),

and hence
H(Y (r,�)) = H(Y (r−1)). (60)

Further, for X with rk(X) �= r , since PY (r,�)|X (Y|X) =
PY (r−1)|X (Y|X), we have

H(Y (r,�)|X = X) = H(Y (r−1)|X = X). (61)

On the other hand, for X with rk(X) = r , by substituting
X = BD〈X�〉, we have

H(Y (r,�)|X = X)

=
∑

Y:〈Y〉≤〈B〉
Pr{D〈X�〉H = �(Y/B)}

× log
1

Pr{D〈X�〉 H = �(Y/B)} (62)

=
∑

Y:〈Y〉≤〈B〉
Pr{D〈X�〉H = Y/(B�−1)}

× log
1

Pr{D〈X�〉 H = Y/(B�−1)} (63)

=
∑

Y:〈Y〉≤〈B〉
PY |X (Y |B�−1D〈X�〉)

× log
1

PY |X (Y |B�−1D〈X�〉)
(64)

= H(Y |X = B�−1D〈X�〉) (65)

where (62) follows from 〈X〉 = 〈B〉 and the definition of
PY (r,�)|X (Y|X) for rk(X) = r ; (63) follows by �(Y/B) =
Y/(B�−1); (64) follows from Lemma 2; and (65) is obtained
by 〈B�−1D〈X�〉〉 = 〈B〉.

Hence
∑

X:rk(X)=r

H(Y (r,�)|X = X)pX(X)

=
∑

U∈Gr(r,FM )

∑

B∈Fr(FT×r )

H(Y (r,�)|X = BDU )pX (BDU )

=
∑

U∈Gr(r,FM )

∑

B∈Fr(FT×r )

H(Y |X = B�−1DU )pX (BDU )

=
∑

U∈Gr(r,FM )

∑

B′∈Fr(FT ×r )

H(Y |X = B′DU )pX (B′DU )
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=
∑

X:rk(X)=r

H(Y |X = X)pX(X)

=
∑

X:rk(X)=r

H(Y (r−1)|X = X)pX (X), (66)

where the second equality follows from (65); the third equality
follows by substituting B�−1 by B′ ∈ Fr(FT ×r ) and the
fact that pX is uniform-given-row-space; and (66) follows
from (54).

Therefore,

H(Y (r,�)|X) =
∑

X:rk(X) �=r

H(Y (r,�)|X = X)pX (X)

+
∑

X:rk(X)=r

H(Y (r,�)|X = X)pX(X)

=
∑

X:rk(X) �=r

H(Y (r−1)|X = X)pX(X)

+
∑

X:rk(X)=r

H(Y (r−1)|X = X)pX (X) (67)

= H(Y (r−1)|X), (68)

where (67) follows from (61) and (66). Lastly, the equality in
(56) is proved by (60) and (68). �

Proof of Claim 2: By the definition of PY ∗|X ,

H(Y ∗|X)

=
∑

X

pX (X)
∑

Y:〈Y〉≤〈X〉
PY ∗|X (Y|X) log

1

PY ∗|X (Y|X)

=
∑

r

∑

U∈Gr(r,FM )

∑

X:〈X�〉=U

p〈X�〉(U)

χT
r

∑
s

∑

V ∈Gr(s,FN )

×
∑

Y:〈Y�〉=V ,〈Y〉≤〈X〉

× P〈Y �〉|〈X�〉(V |U)

χr
s

log
χr

s

P〈Y �〉|〈X�〉(V |U)

=
∑

r

∑

U∈Gr(r,FM )

p〈X�〉(U)
∑

s

∑

V ∈Gr(s,FN )

×P〈Y �〉|〈X�〉(V |U) log
χr

s

P〈Y �〉|〈X�〉(V |U)

=
∑
s≤r

prk(X) rk(Y )(r, s) log χr
s + H(〈Y �〉|〈X�〉),

which proves the first equality in the claim.
For Y with 〈Y�〉 = V and rk(Y�) = s, we have

pY ∗(Y) =
∑

X:〈Y〉≤〈X〉
PY ∗|X (Y|X)pX(X)

=
∑

r

∑

U∈Gr(r,FM )

∑

X:〈X�〉=U,〈Y〉≤〈X〉

1

χr
s

×P〈Y �〉|〈X�〉(V |U)
1

χT
r

p〈X�〉(U)

=
∑

r

∑

U∈Gr(r,FM )

1

χT
s

P〈Y �〉|〈X�〉(V |U)p〈X�〉(U)

= 1

χT
s

p〈Y �〉(V )

where the third equality follows from

|{X : 〈X�〉 = U, 〈Y〉 ≤ 〈X〉}|
=

∑

Ũ∈Gr(r,FT ):〈Y〉≤Ũ

|{X : 〈X�〉 = U, 〈X〉 = Ũ}|

=
[

T
r

]
χr

s

χT
s

χr
r .

Here, {Ũ ∈ Gr(r, F
T ) : 〈Y〉 ≤ Ũ} is calculated in Lemma 1.

Hence,

H(Y ∗) =
∑

Y

pY ∗(Y) log
1

pY ∗(Y)

=
∑

s

∑

V ∈Gr(s,FN )

∑

Y:〈Y�〉=V

p〈Y �〉(V )

χT
s

log
χT

s

p〈Y �〉(V )

=
∑

s

∑

V ∈Gr(s,FN )

p〈Y �〉(V ) log
χT

s

p〈Y �〉(V )

=
∑

s

prk(Y )(s) log χT
s + H(〈Y �〉). �

APPENDIX C

A TECHNICAL LEMMA

The following lemma gives a lower bound on the difference
R(FM ) − R(V ) for V ∈ Pj(FM ). The intuition behind the
bound is that if the input rank is larger, the output rank also
tends to be larger.

Lemma 14: Consider LOC(H, T ) with T ≥ M. Fix
a uniform-given-row-space input. For V ∈ Pj(FM ) with
dim(V ) = r < rk∗(H ),

R(FM ) − R(V ) > �(T, r, H ) log q,

where

�(T, r, H ) � (T − M)
∑

k:k>r

Pr{rk(H ) ≥ k}

−r(M − r) + logq ζ r
r .

Proof: Let Ũ = F
M . Since V ≤ Ũ , there exists a full

rank M × M matrix

D =
[

D0
D1

]

such that 〈D�〉 = Ũ and 〈D�
1 〉 = V . By Lemma 4,

∑
s≥k

Prk(Y )|〈X�〉(s|V ) = Pr{rk(D1 H ) ≥ k},

and

Prk(Y )|〈X�〉(s|Ũ) = Pr{rk(DH ) = s}
= Pr{rk(H ) = s}. (69)

We know Pr{rk(H ) ≥ s} ≥ Pr{rk(D1 H ) ≥ s}. So∑
s≥k

Prk(Y )|〈X�〉(s|Ũ) ≥
∑
s≥k

Prk(Y )|〈X�〉(s|V ). (70)

Moreover, for k such that r < k ≤ rk∗(H ),∑
s:s≥k

Prk(Y )|〈X�〉(s|V ) = 0. (71)
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Thus,
∑

s

s(Prk(Y )|〈X�〉(s|Ũ) − Prk(Y )|〈X�〉(s|V ))

=
∑

k

∑
s:s≥k

(Prk(Y )|〈X�〉(s|Ũ) − Prk(Y )|〈X�〉(s|V ))

≥
∑

k:rk∗(H)≥k>r

∑
s:s≥k

Prk(Y )|〈X�〉(s|Ũ) (72)

≥
∑

k:rk∗(H)≥k>r

Pr{rk(H ) ≥ k} (73)

� E[H, r ], (74)

where (72) is obtained by (70) and (71); (73) follows from
(69).

By the definition of R(U) in (26),

R(Ũ) − R(V )

log q

=
∑

s

Prk(Y )|〈X�〉(s|Ũ)

(
(T − M)s + logq

ζ T
s

ζ M
s

)

−
∑

s

Prk(Y )|〈X�〉(s|Ṽ )

(
(T − r)s + logq

ζ T
s

ζ r
s

)

= (T − M)
∑

s

s(Prk(Y )|〈X�〉(s|Ũ) − Prk(Y )|〈X�〉(s|V ))

−(M − r)
∑

s

s Prk(Y )|〈X�〉(s|V )

+
∑

s

Prk(Y )|〈X�〉(s|Ũ) logq
ζ T

s

ζ M
s

−
∑

s

Prk(Y )|〈X�〉(s|V ) logq
ζ T

s

ζ r
s

> (T − M) E[H, r ] − r(M − r) + logq ζ r
r ,

where the last inequality follows from (74),

(M − r)
∑

s

s Prk(Y )|〈X�〉(s|V ) ≤ r(M − r),

∑
s

Prk(Y )|〈X�〉(s|Ũ) logq
ζ T

s

ζ M
s

≥ 0,

and
∑

s

Prk(Y )|〈X�〉(s|V ) logq
ζ T

s

ζ r
s

<
∑

s

Prk(Y )|〈X�〉(s|V ) logq
1

ζ r
s

≤ logq
1

ζ r
r
. �

APPENDIX D
PROOF OF LEMMA 12

We will show that for a row-space-symmetric LOC,

I(〈X〉; 〈Y 〉) ≤ J(rk(X); rk(Y )) + I(〈X〉; rk(Y )) (75)

where equality holds if and only if p〈Y 〉(U) = p〈Y 〉(U ′) for all
U , U ′ with dim(U) = dim(U ′). For convenience, we call an
input distribution β-type if for any U ∈ F

T , there exists XU

with 〈XU 〉 = U such that pX (XU ) = p〈X〉(U). By Lemma 7,

there must exist a β-type input distribution achieving CSS.
When the input distribution is β-type,

I(〈X〉; rk(Y )) = I(X; rk(Y ))

= I(X〈X�〉; rk(Y ))

= I(〈X�〉; rk(Y )), (76)

where the first equality is due to the fact that X is β-type, and
the last equality follows from the Markov chain X → 〈X�〉 →
rk(Y ) implied by Lemma 4. Then, for a row-space-symmetric
LOC,

CSS = max
pX :β-type

I(〈X〉; 〈Y 〉) (77)

≤ max
pX :β-type

[J(rk(X); rk(Y )) + I(〈X〉; rk(Y ))] (78)

= max
pX :β-type

[
J(rk(X); rk(Y )) + I(〈X�〉; rk(Y ))

]
(79)

≤ max
p〈X�〉

[
J(rk(X); rk(Y )) + I(〈X�〉; rk(Y ))

]
, (80)

where (77) follows Lemma 7, (78) is obtained by applying
(75) for row-space-symmetric LOCs, (79) follows from (76),
and (80) follows that J(rk(X); rk(Y )) and I(〈X�〉; rk(Y )) are
related to pX only through p〈X�〉.

To prove (75), fix a row-space-symmetric LOC. Let X be an
input matrix with rank r . Consider two subspaces V ′ and V of
〈X〉 with dimension s. There exists a full rank matrix � such
that �V = V ′. Then, by the property of row-space-symmetric
LOCs,

P〈Y 〉|X (V ′|X) =
∑

Y:〈Y〉=V ′
PY |X (Y|X)

=
∑

Y:〈Y〉=V

PY |X (�Y|X)

=
∑

Y:〈Y〉=V

1

χr
s

P〈Y �〉|〈X�〉(〈Y���〉|〈X�〉)

=
∑

Y:〈Y〉=V

1

χr
s

P〈Y �〉|〈X�〉(〈Y�〉|〈X�〉)

= P〈Y 〉|X (V |X).

In other words, for all the subspaces V of 〈X〉 with
the same dimension, P〈Y 〉|X (V |X) are the same. Since by
Lemma 4,

Prk(Y )|〈X�〉(s|〈X�〉) = Prk(Y )|X (s|X)

=
∑

V ∈Gr(s,〈X〉)
P〈Y 〉|X (V |X),

we have for any V ∈ Gr(s, 〈X〉),

P〈Y 〉|X (V |X) = 1[
r
s

] Prk(Y )|〈X�〉(s|〈X�〉).
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Then we have for V ≤ U with dim(U) = r and dim(V ) = s,

P〈Y 〉|〈X〉(V |U)

=
∑

X:〈X〉=U

P〈Y 〉|X (V |X)PX |〈X〉(X|U)

=
∑

Ũ∈Gr(r,FM )

∑

X:〈X〉=U,〈X�〉=Ũ

1[
r
s

]

×Prk(Y )|〈X�〉(s|〈X�〉)PX |〈X〉(X|U)

=
∑

Ũ∈Gr(r,FM )

1[
r
s

] Prk(Y )|〈X�〉(s|Ũ)P〈X�〉|〈X〉(Ũ |U)

= 1[
r
s

] Prk(Y )|〈X〉(s|U). (81)

Substituting (81) into the conditional entropy H(〈Y 〉|〈X〉), we
obtain

H(〈Y 〉|〈X〉) =
∑
r,s

prk(X) rk(Y )(r, s) log

[
r
s

]
+ H(rk(Y )|〈X〉).

(82)

Further, we have

H(〈Y 〉) = H(〈Y 〉 rk(Y ))

= H(rk(Y )) + H(〈Y 〉| rk(Y ))

= H(rk(Y )) +
∑

s

prk(Y )(s)H(〈Y 〉| rk(Y ) = s)

≤ H(rk(Y )) +
∑

s

prk(Y )(s) log

[
T
s

]
(83)

with equality if and only if

p〈Y 〉(V ) = prk(Y )(dim(V ))/

[
T

dim(V )

]

for all V . Therefore, (75) is proved by (82) and (83).
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