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Abstract. We show the existence of an explicit pseudorandom genera-
tor G of linear stretch such that for every constant k, the output of G is
pseudorandom against:
– Oblivious branching programs over alphabet {0, 1} of length kn and

size 2O(n/ log n) on inputs of size n.
– Non-oblivious branching programs over alphabet Σ of length kn,

provided the size of Σ is a power of 2 and sufficiently large in terms
of k.

– The model of logarithmic space randomized Turing Machines (over
alphabet {0, 1}) extended with an unbounded stack that make k
passes over their randomness.

The construction of the pseudorandom generator G is the same as in
our previous work (FOCS 2011). The results here rely on a stronger
analysis of the construction. For the last result we give a length-efficient
simulation of stack machines by non-deterministic branching programs.
(over a large alphabet) whose accepting computations have a unique
witness.

1 Introduction

We consider the problem of constructing an explicit pseudorandom distribution
for branching programs of bounded width. A branching program with input
symbols from the alphabet Σ, is a directed acyclic graph with a unique start
vertex, where every non-sink vertex is labeled by one of n variables and has |Σ|
outgoing arcs, each labelled with σ ∈ Σ, and each sink vertex is labeled by an
output value “accept” or “reject.” The branching program computes a Boolean
function over n variables in the natural way: it begins at the start vertex, reads
the value of the variable at that vertex, and follows the corresponding arc to the
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next vertex. When it reaches a sink vertex, it halts and outputs the corresponding
label.

Fix an alphabet Σ. A family of distributions p : Σs(n)→Σn is pseudorandom
with seed length s(n) < n, and bias ε(n) for a class of functions F if for every
f ∈ F in n inputs,

∣
∣Ep[f(p)]−Eu[f(u)]

∣
∣ ≤ ε(n).

where u is the uniform distribution on n symbols.
The problem of constructing explicit, unconditionally pseudorandom distri-

butions for various models of computation has been met with the most success
for two types of models, the first being small-depth computation [AB84,AW85,
Nis91,Bra10]. The second type is space-bounded computation, for which branch-
ing programs play an important role: the computation of a randomized Turing
Machine that uses n random bits and space S can be modeled as a width 2S

branching program, where the inputs to the program are the n random bits. The
pseudorandom generators constructed by Nisan [Nis92] and by Impagliazzo et
al. [INW94] use seed length O(log2 n) to fool fixed input-order, poly(n) width,
read-once branching programs.

Pseudorandom generators for space-bounded algorithms take advantage of
the limited communication that can occur between parts of the computation,
and are typically based on the following principle: a space-bounded algorithm
records a small amount of information between stages of its computation, so
randomness may be reused from one stage to the next without substantially
altering performance.

However, in the constructions mentioned, the ability to recycle randomness
relies not only on limited communication between the computation stages, but
also on the nature of its access to the randomness. The random bits cannot be
accessed too often and the order in which they are accessed must be known in
advance. A natural goal is to construct distributions that remain pseudorandom
without these access restrictions.

Recent work [BPW11] makes some progress towards removing these restric-
tions, giving the first pseudorandom generator (with linear stretch) for read-once
branching programs under any ordering of the inputs. However, the access to the
randomness is still restricted: the branching program is read-once and oblivious,
i.e., it reads bits in an order independent of their values.

One motivation for our work comes from the problem of derandomizing log-
space stack machines which make a bounded number of sequential passes over
their randomness. These machines were proposed by David et al. [DNPS11] as
a model of randomized polynomial time with limited access to randomness.1

Without the random tape access restriction, randomized stack machines charac-
terize randomized polynomial time [Coo71]. If they are allowed one pass over the
randomness, however, such machines can be simulated deterministically. David
et al. suggest studying what happens between these two extreme cases.

1 They are also known as auxiliary pushdown automata, see the full version of [DP10]
for terminology.
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1.1 Results

In this work we show that the distribution in [BPW11] (with different param-
eters) is pseudorandom even for bounded-width branching programs that have
linear length. In other words, the input symbols may be accessed adaptively and
arbitrarily many times, provided that the total number of accesses is O(n).

Theorem 1. For every k > 1 there exist constants ρ, γ, λ and and an explicit
pseudorandom distribution family p : Σ(1−ρ)n→Σn, where Σ = {0, 1}λ so that
for every n,

∣
∣Ep[F (p)]−Eu[F (u)]

∣
∣ = 2−Ω(n)

for every length kn, width 2γn branching program F : Σn→{0, 1} over n inputs.

Here the constants ρ, γ, λ are inverse exponential in k; see the end of Section 3.2
for the precise dependence on k. For oblivious branching programs, we obtain a
stronger form of the theorem in which Σ = {0, 1}. This theorem is stated and
proved as Theorem 2 in Section 3.1.

As an example application, consider the problem of identity testing for linear-
size arithmetic formulas (see [KI04]). Let f be a linear-size arithmetic formula on
inputs of length n coming from some subset S of a field F. Such a formula can be
computed2 by a boolean oblivious branching program of linear length and width
|F|O(logn). The Schwarz-Zippel lemma says that if f is nonzero, then f(u) takes
value zero with probability at most deg(f)/|S|. By Theorem 2, f(p) takes value

zero with probability at most deg(f)/|S| − 2−Ω(n), as long as |F| � 2n/(logn)2 .
Our proof of Theorem 1 immediately applies to non-deterministic branch-

ing programs with unique witnesses as well; we apply this result to fool (non-
uniform) randomized Turing Machines over alphabet {0, 1} extended with an
unbounded stack, henceforth called stack machines, which make a constant num-
ber of passes over their randomness tape. As mentioned previously, randomized
log-space stack-machines characterize probabilistic polynomial time. David et
al. [DNPS11] showed that pseudorandom generators that fool polynomial size
circuits of depth d(n) = Ω(log n) also fool stack machines that make 2O(d(n))

passes over their randomness. It is conceivable that one can derandomize stack
machines that make a sub-polynomial (and in particular constant) number of
passes over the randomness without the full derandomization of BPNC1.

In the full version, we show that our pseudorandom distribution fools stack
machines that make k sequential passes over their input. This in particular im-
plies that we can replace the random tape of a randomized stack machine (re-
stricted to make k passes over its randomness – and unrestricted in every other
tape) with our distribution. Here k is the same constant as in Theorem 1. Pre-
viously, no nontrivial simulation was known even for k = 2.

2 Lemma 1 of [BPW11] shows this for boolean formulas. The extension to larger
domains is straightforward.
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1.2 Techniques

Fooling Branching Programs. In order to construct pseudorandomness that
can be accessed in arbitrary order, the approach in [BPW11] addresses the is-
sue of limited communication in the following way. Consider the computation as
occurring in two halves, where only a bit of information (however, it may be com-
puted in an arbitrary fashion) is remembered from each half. The distribution p
constructed in [BPW11] was shown to satisfy the following property:

For every pair of Boolean functions f, g : {0, 1}n/2→{0, 1} and every
equipartition (I, J) of [n], the joint distribution (f(p|I), g(p|J )) is close
(in statistical distance) to the distribution (f(U |I), g(U |J)).

The distribution output by the base generator of the expander-based construc-
tion from [INW94] satisfies the above property for any fixed equipartition such
as {1, · · · , n/2} ∪ {n/2 + 1, · · · , n} (but not all at the same time).

The distribution from [BPW11] has the advantage that it is pseudorandom
for every equipartition and hence will accomodate access to the inputs under
every ordering. In fact, it was observed in [BPW11], without proof, that the
distribution remains pseudorandom for any f and g which depend on at most
(1 − Ω(1))n of the input bits. We prove this more general lemma (Lemma 1)
in Section 2. In the lemma, inputs to f and g can now be shared, so one might
expect that the distribution will remain pseudorandom with multiple accesses.

Now consider an oblivious branching program of length kn. We split the com-
putation into t stages, for some large enough t that will be set later. The result
of the computation can then be stated as a sum over wt products of t Boolean
functions, each over nk/t variables. We do not argue that the outputs of these
functions look independent; instead, we show in Section 3.1 that each summand
can always be rewritten as a pair of functions (f, g), where f and g each depend
on at most (1−Ω(1))n bits, and then apply Lemma 1.

A more complicated argument is required if the branching program is non-
oblivious; under the previous decomposition, a single stage of the computation
may depend on all n input symbols. In fact, in this case we do not know how to
construct a pseudorandom distribution with symbols from {0, 1}. However, we
can achieve this over any sufficiently large (in terms of k) alphabet Σ, where |Σ|
is a power of 2. Achieving this over {0, 1} is a very interesting open question.
In Lemma 3, we show how to rearrange the paths of the branching program so
that the combinatorial argument in Section 3.1 can still be used. Thus, we can
express any branching program as a short sum (the size of the summation is
substantially larger than in the oblivious case) over pairs of functions that fulfill
the conditions of Lemma 1.

In fact, the decompositions we obtain for (oblivious) branching programs are
implicit in work of Beame, et al. [BJS01]. That work gives similar decomposi-
tions for branching programs in order to prove lower bounds using communica-
tion complexity arguments. Accordingly, they decompose a branching program
as a disjunction of function pairs, and the conditions on the function pairs are
stronger. Our application requires the summation instead of the disjunction;
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however, the proofs are essentially the same, and we include them here for com-
pleteness and simplification. We remark that further decompositions that yielded
stronger lower bounds were given in subsequent work [Ajt99,BSSV03], but, to
our knowledge, these are not relevant to the constructions here.

Fooling Stack Machines. We show that for every constant λ, a log-space stack
machine over alphabet {0, 1} that makes k(n) passes over its randomness can
be simulated by a family of nondeterministic branching programs over alphabet
{0, 1}λ of size 2O((logn)2) and length nk(n). Moreover, the branching programs
can be designed to have unique witnesses; namely, for every accepting input
there is exactly one accepting computation path. We observe that our proof of
Theorem 1 easily extends to nondeterministic branching programs with unique
witnesses, and we conclude that our distribution p is pseudorandom for the
corresponding stack machines. Due to space limitations, our reduction is given
in the full version of this work.

A log-space stack machine computes a polynomial time predicate but it may

run in time 2n
O(1)

. In [DNPS11] it is shown that given a stack machine that makes
k(n) passes over its randomness, for a given input x, there is an advice string and
a stack machine that computes the same predicate, runs in time k(n)·poly(n), and
preserves the number of passes over the random tape. Such stack machines can be
simulated by small space computations [All89,BCD+89,Ruz80]. Niedermeier and
Rossmanith [NR95] give a variant of this simulation that preserves the number
of witnesses. However, these simulations fail to preserve the number of accesses
to the input, even when the stack machines are equipped with an index tape to
access the memory.

We show that with a non-trivial modification to [Ruz80], a randomized stack
machine that makes k(n) many passes can be simulated by a non-deterministic
branching program with a unique witness that preserves the number of accesses
to input bits (but not necessarily the order). More specifically, the branching pro-
gram recursively verifies a kind of a “proof tree” that the computation accepts.
For our purposes it is crucial to ensure that the random tape is not accessed
more than nk(n) times.

2 Fooling Pairs of Functions with Shared Inputs

In this section we give a distribution p over {0, 1}n that looks pseudorandom to
any pair of functions f, g : {0, 1}n→[−1, 1] such that f and g depend on at most
(1−Ω(1))n of their inputs. The construction is identical to the one from our pre-
vious work [BPW11], with different parameters. Note, however, that later on we
will apply this theorem in two different ways, one of which regards distributions
over alphabets other than {0, 1} (and this is essential for obtaining non-trivial
stretch). In [BPW11] we proved that the desired pseudorandomness under the
additional restriction that f and g each depend on n/2 bit inputs which are
disjoint. We also remarked (without proof) that our analysis can be extended
to the more general case, which is needed for the applications in this work. We
now give a proof of that statement.
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Our Pseudorandom Distribution. The pseudorandom distribution p has the form
p = Mz + e, where M is a fixed n ×m for m = (1 − ρ) · n matrix over GF (2)
such that every subspace spanned by α · n rows has dimension α · n− r, and all
operations are over GF (2). Here z ∼ {0, 1}m is a uniformly random seed, and
e ∈ {0, 1}n is chosen independently of z from an ε-biased distribution. (Recall
that e is ε-biased if for every s ∈ {0, 1}n, s �= 0, |Ee[(−1)|〈s,e〉|]| ≤ ε.)

The existence of an explicit matrix M with the desired properties follows
from constructions of binary codes with small list size for list-decoding radius
bounded away from 1/2. We now explain this connection. Recall that a linear
code C over {0, 1}n is (δ, �) list-decodable if for every x ∈ {0, 1}n, the number of
codewords of C within hamming distance δn of x is at most �. A parity check
matrix M for C is a GF (2) matrix such that cTM = 0 if and only if c is a
codeword of C.

It is easily seen (by substituting α for 1/2) that the proof of Proposition 1
from [BPW11] yields the following more general statement:

Proposition 1. Let C be a (α2 , �) list-decodable code over {0, 1}n. Let M be the
parity check matrix of C. Then every subset of α · n rows of M spans a vector
space over GF (2) of dimension at least α · n− log2(2�).

Then we have the following fact, which follows from the Johnson bound and
standard constructions of asymptotically good binary linear codes; see Theorems
3.1 and 7.1 from [Gur07].

Proposition 2. For every α > 0 there exists ρ > 0 and an explicit matrix M
of size n× (1−ρ)n such that every subset of α ·n rows spans a vector space over
GF (2) of dimension at least α · n− r, with r = 4 log(4n/(1− α)).

The Main Lemma Now, we prove the main lemma that powers our results in
Section 3.

Lemma 1. For every α > 0 there exists ρ > 0 and an explicit matrix M of
size n × (1 − ρ) · n so that for every pair of (possibly intersecting) ordered sets

I, J with |I|, |J | ≤ αn and for every pair of functions f : {0, 1}|I|→[−1, 1], g :

{0, 1}|J|→[−1, 1],

∣
∣Ep[f(p|I)g(p|J)]−Eu[f(u|I)g(u|J)]

∣
∣ ≤ 2rε

where u is the uniform distribution over {0, 1}n, p is defined as above, and
x|I , x|J denote the projections of x on the sets I and J , respectively, and r =
4 · log 4n

1−α .

In particular, when g = 1, |Ep[f(p|I)]−Eu[f(u|I)]| ≤ 2rε, so the pseudorandom
distribution also preserves the marginal probabilities of events, within 2rε, over
all subsets of size at most α · n.
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Proof (Proof of Lemma 1). Using Fourier decomposition, for any pair of subsets
I, J of [n] with |I|, |J | ≤ αn, we have

Ep[f(p|I)g(p|J)] = Ez,e[f((Mz + e)|I)g((Mz + e)|J)]
=

∑

S⊆I,T⊆J

f̂(S)ĝ(T )Ez,e[χS(Mz|I)χS(e|I)χT (Mz|J)χT (e|J )]

(1)

We may view subsets S ⊆ I and T ⊆ J as subsets of [n], so we write χS(Mz|I) =
χS(Mz) and χT (Mz|J) = χT (Mz), and (1) becomes:

∑

S⊆I,T⊆J

f̂(S)ĝ(T )Ez[χS(Mz)χT (Mz)]Ee[χS(e)χT (e)].

We denote by SΔT the symmetric difference of S and T viewed as subsets of
[n].

We have that Eu[f(u|I)g(u|J )] =
∑

S⊆I∩J f̂(S)ĝ(S) and |Ee[χSΔT (e)]| ≤ ε,
therefore

∣
∣Ep[f(p|I)g(p|J )]−Eu[f(u|I)g(u|J)]

∣
∣

=

∣
∣
∣
∣

∑

S⊆I,T⊆J
SΔT �=∅

f̂(S)ĝ(T )Ez[χSΔT (Mz)]Ee[χSΔT (e)]

∣
∣
∣
∣

≤
∑

S⊆I,T⊆J
SΔT �=∅

ε · |f̂(S)||ĝ(T )|∣∣Ez[χSΔT (Mz)]
∣
∣.

Let G be a bipartite graph over vertices (subsets of I) ∪ (subsets of J), with an
edge (S, T ) present whenever Ez[χSΔT (Mz)] �= 0. We will shortly argue that G
has maximum degree 2r. Assuming this, we can upper bound the last expression
by

ε ·
∑

edge (S,T )

|f̂(S)||ĝ(T )| ≤ ε ·
√

∑

edge (S, T )

f̂(S)2
√

∑

edge (S,T )

ĝ(T )2

≤ ε ·
√

2r ·
∑

S⊆I

f̂(S)2
√

2r ·
∑

T⊆J

ĝ(T )2 ≤ ε · 2r,

where the first inequality follows from the Cauchy-Schwarz inequality, the second
from the fact that G has maximum degree 2r, and the third from Parseval’s
identity.

It remains to argue that G has maximum degree 2r. We let s ∈ {0, 1}n, t ∈
{0, 1}n be indicator vectors for the sets S and T , respectively, and s and t as
vectors in GF (2)n. Then

Ez[χSΔT (Mz)] = E[(−1)(s+t)TMz ] =

{

1, if (s+ t)TM = 0

0, otherwise.
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Now, (s + t)TM = 0 if and only if sTM = tTM , where sTM is zero at least
everywhere outside I and similarly for tTM and J . Since (by assumption) the
matrix M |I has rank at least αn − r, for every t ∈ {0, 1}n, there can be at
most 2r distinct vectors s ∈ {0, 1}n such that sTM = tTM . Similarly, for every
s ∈ {0, 1}n, there can be at most 2r vectors t ∈ {0, 1}n such that sTM = tTM .

In Section 3.2 we will apply the pseudorandom generator to strings of length n
over alphabet Σ = {0, 1}λ. These can be viewed as strings in {0, 1}λn in the
natural way.

3 Fooling Branching Programs of Linear Length

We show that essentially the same generator (modulo the setting of the parame-
ters and the different input alphabets) fools branching programs of linear length.
For oblivious branching programs we obtain this for binary {0, 1} input alpha-
bets (Section 3.1), whereas for arbitrary branching programs we show this for
branching programs over (larger) constant size alphabets (Section 3.2).

Let F be a width w, length kn, layered branching program over n inputs; we
think of k as an arbitrarily large but fixed constant as n increases. We view the
computation of the branching program on an input x as occurring in t stages,
where each stage reads kn/t variables. Suppose first that the branching program
is oblivious. Then, for every input each stage reads the same kn/t variables. In
this case, we may write the branching program as a sum over wt many t-tuples
of Boolean functions (as was done in [BPW11] for k = 1 and t = 2).

More formally, divide the inputs into t sets of layers so that S1 consists of
inputs {1, · · · , kn/t}, S2 of inputs {kn/t + 1, · · · , 2kn/t}, etc. (if variables re-
occur within a set, its size might be smaller). We define functions fi,p,q(x|Si) :

{0, 1}|Si|→{0, 1} to be indicator functions for the event that the program moves
from state p to q when the inputs in Si are read from x. By definition, we have

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St) (2)

3.1 Pseudorandomness for Oblivious Branching Programs

We will argue that each of the summands in (2) can be rewritten in terms of
two functions, each over at most αn bits. Then, we apply Lemma 1 to show that
the output of the generator fools each of these summands. This will give us the
following theorem for oblivious branching programs.

Theorem 2. Let F : {0, 1}n→{1,−1} be computable by a width w, length kn
oblivious branching program on n inputs. Let p be the pseudorandom distribution.
Then

|Ep[F (p)]−EU [F (U)]| ≤ wt · 2rε.
where t = 24k, r = 4 log 4n

1−α , and α > 1− 1
22k .



Pseudorandomness for Linear Length Branching Programs 455

The proof of Theorem 2 will use the following combinatorial lemma, which shows
that we can always find a way to color each stage by one of two colors, so that
neither color will contain too many variables. A slightly different version of this
lemma was proven in [BJS01]; in the full version, we include a proof and argue
that the parameter α below is close to optimal.

Lemma 2. Fix any k ∈ Z
+. Let {S1, · · · , St} be a collection of subsets over

[n], each of size at most kn/t. Then there exists a partition (C, C) of {1, · · · , t}
satisfying:

∣
∣
⋃

i∈C Si

∣
∣ ≤ α · n and

∣
∣
⋃

i∈C Si

∣
∣ ≤ α · n

where α ≥ 1− 1
2k

+ 2k√
t
+ 2√

n
.

Proof (Proof of Theorem 2). Now, consider the expected bias of the branching
program using Equation 2; by linearity of expectation and the triangle inequality,
we have:

|E[F (U)]−E[F (p)]| ≤
∑

p1,...,pt:

pt∈accept

|E[f1,s,p1(p|S1) · · · ft,pt−1,pt(p|St)]−E[f1,s,p1(U |S1) · · · ft,pt−1,pt(U |St)]|.

(3)

For each expectation of the summation, we can apply Lemma 2 to rewrite each
product as a product of two functions, i.e.,

f1,s,p1(x|S1) · · · ft,pt−1,a(xSt) = g1(x|S)g2(x|S),
where both S :=

∣
∣
⋃

i∈C Si

∣
∣ ≤ α · n and S contain at most α · n variables.

Setting t = 24k in Lemma 2 and applying Lemma 1 with α from Lemma 2,
we bound the magnitude of each difference by 2rε. Since there are wt terms, we
obtain

|E[F (U)]−E[F (p)]| ≤ wt2r · ε. (4)

3.2 Arbitrary Linear Size Branching Programs over Large
Alphabets

We show how to fool arbitrary branching programs with inputs over alphabet
Σ = {0, 1}λ, where λ is a sufficiently large constant which depends on the
multiplicative constant k in the length of the branching program.

Lemma 3. Let P (x) = P1(x) ∧ . . . ∧ Pt(x), where P1, · · · , Pt : Σ
n→{0, 1} are

branching programs of length at most kn/t each. Then, there exist collections
of boolean functions {FC,U} and {GC,V }, where C ranges over all partitions of
{1, . . . , t} and U, V range over all subsets of [n] of size αn such that

P (x) =
∑

C⊆[t],U,V⊆[n]
|U|=|V |=αn

FC,U (x) ·GC,V (x) (5)

and α ≥ 1− 1
2k

+ 2k√
t
+ 2√

n
.
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Proof. We can express every Pi as Pi(x) =
∑

	i∈Li
fi,	i(x) where the summation

ranges over Li which denotes all accepting paths �i of Pi and fi,	i(x) is the
indicator function for the event that the computation of Pi on input x takes
path �i. We can write

P (x) =

t∏

i=1

Pi(x) =

t∏

i=1

∑

	i∈Li

fi,	i(x) =
∑

(	1,...,	t)∈L1×···×Lt

f1,	1(x) · . . . · ft,	t(x).

By Lemma 2, for every collection � = (�1, . . . , �t) there exists a partition C(�)
of [t] and sets U(�) and V (�), each of size at most αn, such that when i ∈ C,
fi,	i(x) depends only on inputs in U(�) and when i ∈ C, fi,	i(x) depends only on
inputs in V (�). Without loss of generality we will assume that the sizes of U(�)
and V (�) are exactly αn. We set

FC,U (x) =
∨

	:C(	)=C
U(	)=U

∧

i∈C
fi,	i(x) and GC,V (x) =

∨

	:C(	)=C
V (	)=V

∧

i∈C
fi,	i(x)

We now prove the identity (5). If P (x) = 1, then there is a unique path � =
(�1, . . . , �t) such that fi,	i(x) = 1 for all i, and so FC,U (x) and GC,V (x) both take
value 1 when and only when C = C(�), U = U(�), and V = V (�). Then exactly
one term on the right hand side of (5) evaluates to 1.

If P (x) = 0, then Pi(x) = 0 for some i, so fi,	i(x) = 0 for all accepting paths
�i of Pi. This forces FC,U (x) to equal zero when i ∈ C, and GC,V (x) = 0 when
i ∈ C. So all terms on the right hand side of (5) evaluate to 0.

To prove Theorem 3 below, we will use Lemma 3 to write the branching program
as a sum of a limited number of pairs of functions, where each pair satisfies the
desired property. We then use Lemma 1 to bound the deviation of each term in
this summation when the uniform distribution is replaced by the pseudorandom
one.

Theorem 3. Let k > 0 be a constant, and fix an alphabet size λ ≥ 2. Let
F : Σn→{0, 1} be computable by a branching program on n inputs of width w
and length kn. Then

|Ep[F (p)]−Eu[F (u)]| ≤
(

4λn

1− α

)4

· w24k · 22H(α)n · ε,

where p is the pseudorandom distribution over {0, 1}λn, and α ≥ 1− 1
22k .

Proof. Applying the decomposition (2) we write

F (x) =
∑

p1,...,pt:

pt∈accept

f1,s,p1(x|S1)f2,p1,p2(x|S2) · · · ft,pt−1,pt(x|St)

=
∑

p1,...,pt:

pt∈accept

Fp1,...,pt(x).
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Here, fi,p,q are all branching programs of length kn/t. By Lemma 3 we have

F (x) =
∑

p1,...,pt:

pt∈accept

∑

C,U,V

Fp1,...,pt,C,U (x) ·Gp1,...,pt,C,V (x). (6)

where C ranges over all partitions of [t], U, V range over all subsets of [n] of
size αn, and Fp1,...,pt,C,U : Σαn→{0, 1} and Gp1,...,pt,C,V : Σαn→{0, 1} de-
pend only on inputs coming from U and V respectively. Now, let us view
Fp1,...,pt,C,U , Gp1,...,pt,C,V as functions with domain {0, 1}αλn. Set t = 24k and
r = 4 log(4λn/(1− α)). By Lemma 1 for each term in the sum, the difference in
expectations under the uniform and pseudorandom distributions is at most ε2r

in absolute value. Since there are at most wt choices for (p1, . . . , pt), 2
t choices

for C, and (
n
αn

)

choices for each of U and V , by the triangle inequality we obtain
that

|Ep[F (p)]−Eu[F (u)]| ≤ ε2r · wt · 2t
(

n

αn

)2

,

which yields the desired bound after substituting the values for r and t and the
standard bound for binomial coefficients.

Parameters. We now set the parameters to obtain Theorem 1. We assume the
availability of a family small-biased generators over {0, 1}m for bias ε and seed
length log(m/ε)K for some constant K constructible in time polynomial in the
seed length (see e.g. [AGHP90] for a construction with K = 2). We instantiate
this construction with parameters m = λn and ε = 2−4n to obtain a seed length
of 4Kn + o(n). Set α = 1 − 2−2k. By Lemma 1, there exists a constant 2ρ
(depending on α) for which the distribution p can be generated efficiently with
seed length (1−2ρ)λn+4Kn+o(n). Setting λ = 5K/ρ, the seed length is upper
bounded by (1−ρ)λn bits, i.e. (1−ρ)n elements of Σ, when n is sufficiently large.

To calculate the bias, we simplify the upper bound in Theorem 3 to 4λ4n4w24k ·
22n · ε. When w ≤ 2n/2

4k

, this expression is upper bounded by 4λ4n4 · 2−n =
2−Ω(n).
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