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Quantum key distribution allows remote parties to generate information-theoretic secure keys. The
bottleneck throttling its real-life applications lies in the limited communication distance and key generation
speed, due to the fact that the information carrier can be easily lost in the channel. For all the current
implementations, the key rate is bounded by the channel transmission probability η. Rather surprisingly, by
matching the phases of two coherent states and encoding the key information into the common phase, this
linear key-rate constraint can be overcome—the secure key rate scales with the square root of the
transmission probability Oð ffiffiffi

η
p Þ, as proposed in twin-field quantum key distribution [M. Lucamarini et al.

Overcoming the Rate–Distance Limit of Quantum Key Distribution without Quantum Repeaters, Nature
(London) 557, 400 (2018)]. To achieve this, we develop an optical-mode-based security proof that is
different from the conventional qubit-based security proofs. Furthermore, the proposed scheme is
measurement device independent; i.e., it is immune to all possible detection attacks. The simulation
result shows that the key rate can even exceed the transmission probability η between two communication
parties. In addition, we apply phase postcompensation to devise a practical version of the scheme without
phase locking, which makes the proposed scheme feasible with the current technology. This means that
quantum key distribution can enjoy both sides of the world—practicality and security.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] is the most
successful application in quantum information science,
whose security was proved at the end of the last century
[3–5]. Since then, there has been a tremendous interest in
developing this quantum technology for real-life applica-
tions, starting from the first 32-cm demonstration in the
early 1990s [6] to the recent satellite QKD over 1200 km
[7]. In these implementations, photons are used as infor-
mation carriers, owing to their fast transmission speed
and robustness against decoherence from the environ-
ment. Also, optical quantum communication can be easily
integrated with the current telecommunication network
infrastructure.
Now, the transmission loss of photons has become a

major obstacle in practical implementations. The quantum
channel transmission efficiency is characterized by the
transmittance η, defined as the probability of a photon
being successfully transmitted through the channel and

being detected. For most of the current implemented
schemes, such as the well-known Bennet-Brassard 1984
(BB84) protocol [1], single-photon sources [8] are
employed for key information encoding. Since the photon
carries the quantum information, when it is lost in
the channel, no secure key can be distributed. Thus, the
transmittance η becomes a natural upper bound of the key
generation rate. A more strict derivation shows a linear
key-rate bound with respect to the transmittance [9–11],
R ≤ OðηÞ. Since the transmittance η decays exponentially
with the communication distance in the fiber-based net-
work, this linear key-rate bound severely limits the key
generation rate.
The following two approaches to overcome this rate limit

have been considered: quantum repeaters [12–14] and
trusted relays. Unfortunately, using quantum repeater
schemes with current technology is infeasible because they
require high-quality quantum memory and complicated
local entanglement distillation operations. The trusted-relay
approach, however, relies on the assumption that the
quantum relays between two users are trustworthy, which
is difficult to ensure or verify practically; this severely
undermines the primary goal of QKD, i.e., security. In
2012, the measurement-device-independent quantum key
distribution (MDI-QKD) scheme was proposed to close all
the detection loopholes [15], which enhances the security
of a practical QKD system. Nevertheless, the key rate of the
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MDI-QKD scheme is still bounded by OðηÞ. Therefore, the
linear key-rate bound [10,11] was widely believed to hold
for practical QKD systems without relays.
Significant efforts have been devoted to improve the key

rate by proposing different schemes. Recently, Lucamarini
et al. proposed a novel phase-encoding QKD protocol,
called twin-field quantum key distribution (TF-QKD) [16],
which shows the possibility to overcome the key-rate limit
and make a quadratic improvement over phase-encoding
MDI-QKD [17]. In both schemes, single-photon detection
is used, whereas coincident detection is required in other
MDI-QKD schemes [15,18]. From a technical point of
view, the single-photon detection is the key reason for the
quadratic improvement. Unfortunately, a rigorous security
proof is still missing at the moment. In fact, as shown later,
the widely used photon number channel model [19] used in
the security proof of MDI-QKD is proven to be invalid for
this kind of setting.
Following the TF-QKD scheme [16], we investigate

phase-encoding MDI-QKD schemes with single detection
[17] and propose a phase-matching quantum key
distribution (PM-QKD) scheme that can surpass the linear
key-rate bound, inspired by the relative phase-encoding
Bennett-1992 [20], phase-encoding MDI-QKD [17,18],
and passive differential-phase-shift QKD [21]. The two
communication parties prepare two coherent states inde-
pendently, encode the key information onto the common
phase, and match phases via interference detection at an
untrusted measurement site. Details are given in Sec. II. By
developing an optical-mode-based security proof, we show
that the key rate of the proposed scheme scales with the
square root of the transmittance, R ¼ Oð ffiffiffi

η
p Þ, in Sec. III,

with technical details given in Appendix A. Also, the
proposed phase-matching scheme falls into the MDI
framework, which is immune to all possible detection
attacks. Our security proof can be directly applied to TF-
QKD. In Sec. IV, we deal with related practical issues and
develop a phase postcompensation technique to ease the
experimental requirements. In Sec. V, we simulate the key-
rate performance of PM-QKD and compare it to former
QKD protocols, with all the practical factors taken into
account. Finally, in Sec. VI, we discuss possible future
work directions.

II. PM-QKD PROTOCOL

In PM-QKD, the two communication parties, Alice and
Bob, generate coherent state pulses independently. For a d-
phase PM-QKD protocol, Alice and Bob encode their key
information κa, κb ∈ f0; 1;…; d − 1g, into the phases of
the coherent states, respectively, and send them to an
untrusted measurement site that could be controlled by
Eve, as shown in Fig. 1(a). Eve is expected to perform
interference detection. Define a successful detection as
the case where one and only one of the two detectors
clicks, denoted by L click and R click. This interference

measurement would match the phases of Alice and Bob’s
signals. Conditioned on Eve’s announcement, Alice and
Bob’s key information is correlated.
In this work, we mainly focus on PM-QKD with

d ¼ 2 and phase randomization. That is, Alice and Bob
add extra random phases on their coherent state pulses
before sending these pulses to Eve. After Eve’s
announcement, Alice and Bob announce the extra
random phases and postselect the signals based on
the random phases. This PM-QKD scheme is detailed
below and shown in Fig. 1(b). For simplicity, by using
the name “PM-QKD” in the text below, we refer to the
case of d ¼ 2 plus phase randomization.

(a)

(b)

(c)

FIG. 1. (a) Schematic diagram of PM-QKD. Alice generates a
coherent state, j ffiffiffiffiffi

μa
p

e2πiκa=di, where κa ∈ f0; 1;…; d − 1g. Sim-
ilarly, Bob generates j ffiffiffiffiffi

μb
p

e2πiκb=di. The two coherent states
are sent and interfered at an untrusted measurement site.
(b) Schematic diagram of PM-QKD with d ¼ 2 plus phase
randomization. Alice prepares j ffiffiffiffiffi

μa
p

eiðϕaþπκaÞi and Bob prepares
j ffiffiffiffiffi

μb
p

eiðϕbþπκbÞi. The two coherent states interfere at an untrusted
measurement site. If the phase difference jðϕa þ πκaÞ − ðϕb þ
πκbÞj is 0, detector L clicks; if the phase difference is π, detector
R clicks. After Eve announces her measurement result, Alice and
Bob publicly announce ϕa and ϕb. (c) Equivalent scenario for the
postselected signals with ϕa ¼ ϕb. A trusted party (Charlie)
prepares jΨiC, splits it, and sends it to both Alice and Bob.
Without loss of generality, we consider the case where Alice and
Bob both modulate this by the same phase 0 or π to create the
systems A and B. If jΨiC only contains odd- or even-photon
number components, we can see that jΨ0i ¼ jΨπi.
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State preparation.—Alice randomly generates a key
bit κa and a random phase ϕa ∈ ½0; 2πÞ and then
prepares the coherent state j ffiffiffiffiffi

μa
p

eiðϕaþπκaÞiA. Similarly,
Bob generates κb and ϕb ∈ ½0; 2πÞ and then prepares
j ffiffiffiffiffi

μb
p

eiðϕbþπκbÞiB.
Measurement.—Alice and Bob send their optical
pulses, A and B, to an untrusted party, Eve, who is
expected to perform an interference measurement and
record the detector (L or R) that clicks.
Announcement.—Eve announces her detection results.
Then, Alice and Bob announce the random phases ϕa
and ϕb, respectively.
Sifting.—Alice and Bob repeat the above steps many
times. When Eve announces a successful detection (a
click from exactly one of the detectors L or R), Alice
and Bob keep κa and κb as their raw key bits. Bob
flips his key bit κb if Eve’s announcement was an
R click. Then, Alice and Bob keep their raw key bit
only if jϕa − ϕbj ¼ 0 or π. Bob flips his key bit κb
if jϕa − ϕbj ¼ π.
Parameter estimation.—For all the raw data that they
have retained, Alice and Bob analyze the gains Qμ and
quantum bit error rates EZ

μ . They then estimate EX
μ

using Eq. (2).
Key distillation.—Alice and Bob perform error cor-
rection and privacy amplification on the sifted key bits
to generate a private key.
Notations.—Denote a coherent state in mode A to be
j ffiffiffi

μ
p

eiϕiA, where μ is the intensity and ϕ is the phase;
μa ¼ μb ¼ μ=2; Alice’s (Bob’s) key bit κaðbÞ ∈ f0; 1g;
total gainQμ; phase error rate EX

μ ; and bit error rate EZ
μ .

The above implementation of the PM-QKD protocol
clearly resembles the phase-encoding MDI-QKD protocol
[17,18], where the key bits are encoded in the relative phase
of two coherent pulses (the reference and signal pulses).
However, in the PM-QKD protocol, the reference pulse can
be regarded as being shared by Alice and Bob. Therefore,
they no longer need to send the reference pulse, and the key
becomes the global phase of the coherent signal pulses.
Another significant difference between PM-QKD and the
former phase-encoding MDI-QKD scheme is that no basis
switching is required. In this respect, it resembles the
Bennett-1992 [20] and passive DPS [21] QKD protocols.
Note that, a similar protocol has been proposed named
“MDI-B92” protocol [22]. With the decoy-state method,
the quantum part of PM-QKD would be similar to that of
the TF-QKD protocol without basis sifting.

III. SECURITY OF PM-QKD

To provide an intuitive understanding of the manner in
which PM-QKD works, we demonstrate its security by
considering an equivalent scenario shown in Fig. 1(c).
Here, a trusted party (Charlie) prepares a pure state jΨiC,
splits it using a 50–50 beam splitter, and sends it to Alice

and Bob separately. Alice and Bob encode their key
information κa and κb into systems A and B by modulating
the phases, and then they send these to Eve, who is
supposed to tell whether jκa − κbj ¼ 0 or 1. Thus, the four
possible output states that could be sent to Eve can be
expressed as jΨ0;0i, jΨ0;πi, jΨπ;0i, and jΨπ;πi.
Without the loss of generality, we consider the following

case in which both encoded key bits are the same, κa ¼ κb.
Eve attempts to learn the keybit κaðbÞ from the state sent toher,
which is either jΨ0;0i or jΨπ;πi. Here, the phase, controlled by
κa and κb andmodulated intoA andB, has become the “global
phase”of the combined systemA andB. If jΨiC is a Fock state
jkiC with k photons, then jΨ0;0i ¼ jΨπ;πi, since the global
phases ofFock states aremeaningless. In this case, Eve cannot
tell in principle whether the modulated phases are 0 or π and
can only learn that κa ¼ κb.
In our PM-QKD protocol, both Alice and Bob

transmit weak coherent pulses, j ffiffiffiffiffi
μa

p
eiðϕaþπκaÞiA and

j ffiffiffiffiffi
μb

p
eiðϕbþπκbÞiB to Eve. The phase postselection condition

ϕa ¼ ϕb ¼ ϕ is equivalent to imagining that Charlie
employs a source state of jΨiC ¼ j ffiffiffi

μ
p

eiϕiC in Fig. 1(b).
For a phase-randomized state j ffiffiffi

μ
p

eiϕiC, it is equivalent for
Charlie to prepare a Fock state jΨiC ¼ jkiC with a proba-
bility of PðkÞ ¼ e−μμk=k!. Thus, the PM-QKD protocol is
secure if Eve cannot learn the phase ϕ. However, in the real
PM-QKD protocol, the phase ϕ will eventually be
announced during the sifting process. When this happens,
Charlie’s source jΨiC can no longer be regarded as combi-
nations of different photon-number states jkiC. The key
challenge of the security proof of PM-QKD lies in the fact
that the quantum source cannot be regarded as a mixture of
photon number states, after Alice and Bob announce the
phases,ϕa andϕb. That is, the photonnumber channelmodel
[19] and the “tagging”method used in the security proof by
Gottsman et al. (GLLP security proof) [23] can no longer be
applied here. In Appendix C, a beam-splitting attack is
proposed to show that theGLLP formula is incorrect after the
phase announcement. Therefore, one cannot simply reduce a
randomized-phase coherent state protocol to a single-pho-
ton-based protocol.
Our security proof of PM-QKD is based on analyzing the

distillable entanglement of its equivalent entanglement-
based protocol. Following the Shor-Preskill security argu-
ment [5], the key rate of PM-QKD protocol (for the sifted
signals) is given by

rPM ≥ 1 −HðEZ
μ Þ −HðEX

μ Þ; ð1Þ

where EZ
μ is the quantum bit error rate (QBER) that can be

directly estimated in the experiment; EX
μ is the phase error

rate, which reflects the information leakage; and HðxÞ ¼
−xlog2x − ð1 − xÞlog2ð1 − xÞ is the binary Shannon
entropy function. We demonstrate in Appendix A that
EX
μ can be bounded by
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EX
μ ≤ eZ0q0þ

X∞
k¼0

eZ2kþ1q2kþ1þ
�
1−q0−

X∞
k¼0

q2kþ1

�
: ð2Þ

Here, qk is the estimated ratio of the “k-photon signal” to
the full detected signal:

qk ¼
ðe−μμk=k!ÞYk

Qμ
; ð3Þ

where Qμ is the total gain of the pulses, and Yk and eZk are
the yield and bit error rate, respectively, if Charlie’s light
source is a k-photon number state. Alice and Bob can
estimate the yield and bit error rate via the decoy-state
method [24–26]. Note that the parameters Yk and eZk can
still be used to characterize Eve’s behavior even though
the source is not actually a combination of photon-number
states.
Unlike most of the existing security analysis of discrete-

variable QKD, our analysis is not single-qubit based. For a
long time, the sources in QKD implementations, such as
weak coherent sources and spontaneous parametric down-
conversion sources, have been fabricated as an approxi-
mation of single qubit, following the BB84 protocol [1].
Here, we show the security of PM-QKD with a coherent
light source by directly applying the Lo-Chau entanglement
distillation argument [4] on analyzing the optical modes.
This technique could be helpful for both a new QKD
scheme design and security analysis.
In the equivalent scenario considered above, shown in

Fig. 1(b), a trusted party Charlie is introduced. We need to
emphasize that the virtual Charlie will be removed in the
real implementation in Sec. IV. If Charlie does exist, Eve
may inject some probes after Charlie’s outputs, and then
she measures them at the output of Alice and Bob to learn
their operations. This is the main problem of detection-
device-independent QKD [27,28]. In the PM-QKD proto-
col shown in Fig. 1(a), Alice and Bob can simply isolate
their light source and modulators in an optical circulator to
prevent such Trojan-horse-like attacks. Hence, the PM-
QKD scheme, like other MDI-QKD schemes, is secure
against Trojan-horse-like attacks.

IV. PRACTICAL IMPLEMENTATION

Now we address a few practical issues. In the protocol
shown in Fig. 1, Alice and Bob only retain their signals
when their announced phases ϕa and ϕb are either exactly
the same or with a π difference. However, since the
announced phases are continuous, the successful sifting
probability tends to zero. Moreover, we assume that Alice’s
and Bob’s laser sources are perfectly locked, such that their
phase references meet, but it is very challenging in practice
to achieve such phase locking.
To address these practical issues, we employ a phase

postcompensation method [18], where Alice and Bob first

divide the phase interval ½0; 2πÞ into M slices fΔjg for
0 ≤ j ≤ M − 1, where Δj¼½2πj=M;2πðjþ1Þ=MÞ. Instead
of comparing the exact phases, Alice and Bob only
compare the slice indexes. This makes the phase-sifting
step practical, but introduces an intrinsic misalignment
error. Also, Alice and Bob do not perform the phase sifting
immediately in each round, and instead, they do it in data
postprocessing. In the parameter estimation step, they
perform the following procedures, as shown in Fig. 2.
(1) For each bit, Alice announces the phase slice index

ja and randomly samples a certain amount of key
bits and announces them for QBER testing.

(2) In the phase postcompensation method, given an
offset compensation jd ∈ f0; 1;…;M=2 − 1g, Bob
sifts the sampled bits with the phase postselection
condition jjb þ jd − jajmodM ¼ 0 orM=2. For the
case of M=2, Bob flips the key bit κb. After sifting,
Bob calculates the QBER EZ with Alice’s sampling
key bits. Bob tries all possible jd ∈ f0; 1;…;M − 1g
and figures out the proper jd to minimize the
sampling QBER. Using the phase postselection
condition with the proper jd, Bob sifts (and flips if
needed) the unsampled bits and announces the
locations toAlice.Alice sifts her key bits accordingly.

(3) Alice andBob analyze the overall gainQμi andQBER
EZ
μi for different values of intensities μa¼μb¼μi=2.

They estimate the phase error rate EðXÞ
μ by Eq. (2).

FIG. 2. Phase postcompensation. Without loss of generality,
here we consider the case κa ¼ κb. Denote the phase references of
Alice and Bob as ϕa0 and ϕb0, and, hence, the reference deviation
is ϕ0 ¼ ϕb0 − ϕa0 mod 2π. Bob can figure out the proper phase
compensation offset jd by minimizing the QBER from random
sampling as follows. Bob sets up a jd, sifts the bits by
jjb þ jd − jaj ¼ 0, and evaluates the sample QBER. He tries
all possible jd ∈ f0; 1;…;M − 1g and figures out the proper jd
to minimize the sample QBER. Then, he announces the sifted
locations of unsampled bits to Alice. As shown in the figure, we
set M ¼ 12, and the reference deviation ϕ0 ¼ 70°; hence, Bob
can set jd ¼ 2 to compensate the effect of ϕ0.
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Here, in the phase postcompensation step, Bob does not
need to fix a jd for the whole experiment. Bob can group
the raw data into data blocks, and then he is able to adjust
the offset jd for different data blocks. Alternatively, Bob
can also adjust jd in real time based on a prediction via
data-fitting samples nearby. A detailed description of the
operations and security arguments is presented in
Appendix A 6. We emphasize that the fluctuation of phases
will only introduce additional bit errors, but not affect the
security.
An alternative method to phase postcompensation is that

Alice and Bob can generate strong pulses independent of
quantum signals for phase calibration. The two pulses are
interfered at the measurement site so that Alice and Bob can
identify the phase fluctuations between two channels. Note
that the strong pulses can be set in an optical mode slightly
deviated from the quantum signals to reduce cross-talks.
According to the phase difference measured from the
strong calibration pulses, Alice and Bob can estimate
the offset jd accurately. This is a feasible way to replace
the phase postcompensation method. The main difference
of this phase calibration method from the usual phase-
locking method [29] is that no active feedback is required.
Alice and Bob learn the phase difference only for phase
sifting in data postprocessing.
Note that similar ideas of phase postcompensation

and phase calibration have already been adopted in some
continuous-variable QKD protocols, such as the Gaussian-
modulated coherent-state protocol [30,31] and the self-
referenced protocol [32].
Another important issue is how Alice and Bob set

random phases ϕa, ϕb. In practice, it would be experi-
mentally challenging to continuously set an accurate phase
to a coherent state. As discussed above, they only need to
set the slice indexes ja, jb instead of exactly modulating
phases. There are two methods to achieve this.

(i) Alice and Bob first generate strong laser pulses with
(unknown) randomized phases, either by turning on/
off the lasers or active phase randomization. They
then split the pulses and apply homodyne detection
on one beam to measure the phase ϕa, ϕb accurately
enough to determine the slice indexes ja, jb. They
use the rest beam for further quantum encoding.

(ii) Alice and Bob first generate pulses with stable
phases. Then, they actively randomize the phase
using phase modulators. Alice and Bob can record
the corresponding random numbers as for slice
indexes ja, jb. Note that the phase randomization
can be discrete, which has been proven to be secure
and efficient with a few discrete phases [33].

In order to optimize the estimated phase slice shift jd for
minimizing the bit error rate, the phase compensation or
calibration should be resettled with respect to phase drift. In
practice, there are two major factors which may cause
phase drift. One is the laser linewidth Δν, which causes a

dispersion effect on the output pulse. The phase varies
randomly with respect to the coherent time Tcoh ≈ ðΔνÞ−1.
To alleviate the dispersion, a CW laser source with a long
coherence time should be employed. The other major factor
for phase drift is the variation of optical path length ΔL. In
a recent work of TF-QKD [16], Lucamarini et al. exper-
imentally tested the phase drift in a MDI setting. The results
show that the phase drift follows a Gaussian distribution
with zero mean and a standard deviation of about
6.0 radms−1 for a total distance of 550 km. To enhance
the performance of PM-QKD protocol, former works on
phase stabilization of optical fibers [34–36] can be
employed.
With all the practical factors taken into account, the final

key-rate formula can be expressed as

RPM ≥
2

M
Qμ½−fHðEμÞ þ 1 −HðEX

μ Þ�; ð4Þ

where the phase error rate EX
μ is given by Eq. (2), 2=M is

the sifting factor, and f is the error correction efficiency.

V. SIMULATION RESULTS

We simulate the performance of PM-QKD with the
parameters given in Table I, assuming a lossy channel that
is symmetrical for Alice and Bob. The dark count rate pd is
from Ref. [37], and the other parameters are set to be typical
values. The simulation formulas forQμ, EZ

μ , and EX
μ of PM-

QKD are given in Eqs. (B14), (B22), and (B27), respec-
tively, in Appendix B 2. The simulation formulas for BB84
and MDI-QKD are listed in Appendix B 3.
The simulation results are shown in Fig. 3(a). From the

figure, one can see that PM-QKD is able to exceed the
linear key-rate bound when l > 250 km with practical
settings such as dark counts, misalignment errors, and
sifting factors. Compared with MDI-QKD, PM-QKD can
achieve a longer transmission distance of l ¼ 450 km, and
the key rate is increased by approximately 4–6 orders of
magnitude when l > 300 km. Moreover, if we set up a
cutoff line of key rate R ¼ 10−8 as real-life consideration,
then the longest practical transmission distance of PM-
QKD is over 400 km, whereas the ones of BB84 and MDI-
QKD are all lower than 250 km.
Several QKD schemes are compared in Table II. The

comparison shows that the PM-QKD scheme outperforms

TABLE I. Parameters used for simulation.

Parameters Values

Dark count rate pd 8 × 10−8
Error correction efficiency f 1.15
Detector efficiency ηd 14.5%
Number of phase slices M 16
Misalignment error ed 1.5%
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the existing protocols in the following aspects. First,
the PM-QKD scheme has a quadratic improvement
of key rate, Oð ffiffiffi

η
p Þ. In the security aspect, PM-QKD

enjoys the measurement-device-independent nature that
is immune to all detection attacks. In the practical aspect,
it removes the requirement of the basis switch, which can
simplify the experiment apparatus and reduce the random-
ness consumption.
Here, we would like to clarify that the linear key-rate

bound [11] is derived for point-to-point QKD protocols. In
the PM-QKD or other MDI-QKD schemes, there is an
untrusted relay held by Eve. The quadratic improvement in
PM-QKD seems unsurprising if we regard the untrusted
middle node as a quantum repeater.

Note that the security of recently proposed TF-QKD
protocol [16] can be reduced to the security of PM-QKD
protocol if the information for the two bases X, Y is ignored
in TF-QKD. It remains an open problem whether we can
reach a higher key rate by taking advantage of the basis
information together.

VI. OUTLOOK

There are a few interesting directions on PM-QKD. First,
it is interesting to work out the security of the general
d-phase PM-QKD protocol shown in Fig. 1(a) with and
without phase randomization. Meanwhile, in the above
discussions, PM-QKD in Fig. 1(b) is treated as a single-
basis scheme with phase randomization. In a dual view-
point, we can regard the different global phases ϕa, ϕb as
different bases and naturally treat the phase-sifting step as
basis sifting. This is interesting, since it shows the
advantage of QKD using multi-nonorthogonal bases.
Moreover, this multibases view may help us to generalize
the phase-matching scheme to, for example, a polarization-
based one.
Second, the phase-sifting factor 2=M is very small,

which undermines the advantage of PM-QKD for near-
distance (i.e., l < 120 km) communication. One possible
solution is to apply a biased phase randomization; i.e., the
ϕaðbÞ is not uniformly randomized in ½0; 2πÞ.
Third, we bound the total phase error EX

μ by pessimis-
tically considering the phase errors eXk for even photon
number components to be 1 in Eq. (A33), as shown in
Appendix A 5. There may be a scope to improve the bound
of total phase error EX

μ . For example, the two-photon error
eZ2 and eX2 can be better estimated with more decoy states,
which leads to a tighter bounds of EX

μ .
Finally, since we can overcome the key-rate linear

bound, it is interesting to investigate a repeaterless secret
key capacity bound for QKD, for example, whether it is
possible to push the key rate to R ¼ Oðη1=3Þ or Oðη1=4Þ
without repeaters. Note that the key-rate bound has been
derived for the single-repeater case [38], − logð1 − ffiffiffi

η
p Þ,

which is close to
ffiffiffi
η

p
when η is small. So far, our key rate,

Eq. (4), is still far away from this bound. It is an interesting
direction to improve the PM-QKD protocol to approach
this bound.
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FIG. 3. Simulation of our PM-QKD protocol. For the consid-
ered simulation parameters, the key rate of PM-QKD surpasses
that of the conventional BB84 protocol when l > 120 km, and it
exceeds the linear key-rate bound by Pirandola et al. (PLOB
bound) [11] when l > 250 km. In addition, our protocol is also
able to achieve a long transmission distance of l ¼ 450 km.

TABLE II. Comparison of different QKD protocols: PM-QKD;
TF-QKD [16]; MDI-QKD [15]; passive differential phase-shift
(DPS) QKD [21]; Bennett-1992 (B92) QKD [20]. Key rate:
dependence of the key rate on the channel transmittance η;
Detection loophole: whether the protocol is immune to all
detection loopholes; Qubit based: whether the security analysis
is based on the single-qubit case; Basis switch: whether the
source (measurement device) must prepare (measure) states in
complementary bases; Phase locking: whether the protocol
requires a fixed phase reference frame for the two users.

Protocol PM TF MDI Passive DPS B92

Key rate Oð ffiffiffi
n

p Þ Oð ffiffiffi
n

p Þa OðηÞ OðηÞ Oðη2Þ
Detection loophole No Noa No Yes Yes
Qubit based No Yes Yes Yes Yes
Basis switch No Yes Yes No No
Phase locking No Yes No Yes No

aOur security proof and performance analysis apply to TF-
QKD if the basis information X, Y is ignored.
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APPENDIX A: SECURITY PROOF OF PM-QKD

In this section, we provide a security proof for the PM-
QKD protocol with d ¼ 2 via entanglement distillation
[39]. Note that the existing security proofs of discrete-
variable QKD assume qubit (or qudit) states transmitted
through the channel. Here, we develop a new security proof
by exploring continuous optical modes directly.
The organization of the proof is presented as follows.

First, we briefly review the main results of the Lo-Chau [4]
and Shor-Preskill [5] security proofs in Appendix A 1.
Then, we provide a virtual entanglement-based protocol
(Protocol I) in Appendix A 2 and present a key result as
Lemma 1. In Appendix A 3, we employ a few equivalency
arguments, and eventually, we prove the security of PM-
QKD in Appendix A 4. In Appendix A 5, we employ the
decoy-state method to give tight bounds on phase error
rates. In Appendix A 6, we solve the phase-reference issue
with the phase postcompensation technique.
Here, we introduce some definitions and notations

for later discussions. For an optical mode A, whose
creation operator is a†, its Hilbert space is denoted as
HA. Let DðHAÞ denote the space of density operators
acting on HA and LðHAÞ denote the space of linear
operators acting on HA. A Fock state jkiA with k photons
in mode A is defined as

jkiA ≡ ða†Þkffiffiffiffi
k!

p j0iA; ðA1Þ

where j0iA is the vacuum state. A coherent state jαiA is
defined as

jαiA ≡ e−
1
2
jαj2 X∞

k¼0

αkffiffiffiffi
k!

p jkiA

¼ e−
1
2
jαj2 X∞

k¼0

ðαa†Þk
k!

j0iA

¼ e−
1
2
jαj2eαa† j0iA: ðA2Þ

The photon number of jαiA follows a Poisson distribution,

PðkÞ ¼ e−μ
μk

k!
; ðA3Þ

where μ ¼ jαj2 is the mean photon number or the light
intensity.
Define the odd subspace HA

odd ⊆ HA, which is spanned
by the odd Fock states fjkiAg, where all the photon
numbers k are odd. Similarly, define the even subspace
HA

even ⊆ HA, where the photon numbers are even. Name a
state ρ ∈ DðHA

oddÞ to be the odd state and a state ρ ∈
DðHA

evenÞ to be the even state. Name a state ρ ∈ DðHA
oddÞ or

ρ ∈ DðHA
evenÞ to be the parity state. Denote

jαoddiA ≡ 1

2
ffiffiffiffiffiffiffiffi
codd

p ðjαiA − j − αiAÞ

¼ 1ffiffiffiffiffiffiffiffi
codd

p e−
1
2
jαj2 X∞

k¼0

ðαÞ2kþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ 1Þ!p j2kþ 1iA;

jαeveniA ≡ 1

2
ffiffiffiffiffiffiffiffiffi
ceven

p ðjαiA þ j − αiAÞ

¼ 1ffiffiffiffiffiffiffiffiffi
ceven

p e−
1
2
jαj2 X∞

k¼0

ðαÞ2kffiffiffiffiffiffiffiffiffiffiffið2kÞ!p j2kiA; ðA4Þ

where

codd ¼ e−μ
X∞
k¼0

μ2kþ1

ð2kþ 1Þ! ¼ e−μ sinh μ;

ceven ¼ e−μ
X∞
k¼0

μ2k

ð2kÞ! ¼ e−μ cosh μ ðA5Þ

are the normalization factors with codd þ ceven ¼ 1, and
μ ¼ jαj2 is the light intensity. It is not hard to see that
jαoddiA ∈ HA

odd and jαeveniA ∈ HA
even.

Denote the photon number measurement fMkgk as

Mk ≡ jkiAhkj: ðA6Þ

Denote the parity measurement fModd;Meveng as

Modd ≡
X∞
k¼0

j2kþ 1iAh2kþ 1j;

Meven ≡
X∞
k¼0

j2kiAh2kj: ðA7Þ

For a beam splitter (BS), we express the input optical
modes as A, B, with creation operators a†, b†, respectively,
and the output optical modes as C, D, with creation
operators c†, d†, respectively. The BS transforms modes
A and B to C and D according to

�
c†

d†

�
¼ 1ffiffiffi

2
p

�
1 1

1 −1

��
a†

b†

�
: ðA8Þ

For a qubit system A0, the Hilbert space is denoted
by HA0

. The Pauli operators on HA0
are denoted as

XA0 , YA0 , and ZA0 . The eigenstates of XA0 , YA0 , and ZA0

are denoted by fj�iA0 g; fj � iiA0g; and fj0iA0 ; j1iA0 g,
respectively. The X-basis measurement is denoted by
MX∶fjþiA0 hþj; j−iA0 h−jg. The Z-basis measurement is
denoted by MZ∶fj0iA0 h0j; j1iA0 h1jg.
A control-phase gate Cπ , from a qubit A0 to an optical

mode A, is defined as

Cπ ≡ j0iA0 h0j ⊗ UAð0Þ þ j1iA0 h1j ⊗ UAðπÞ; ðA9Þ
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where UAðϕÞ≡ eiϕa
†a is a ϕ-phase shifter operation on the

mode A.
Definition 1. Two QKD protocols are equivalent if the

following criteria are satisfied:
(1) The quantum states transmitted in the channel are

the same.
(2) All announced classical information is the same.
(3) Alice and Bob perform the same measurement on

the same quantum states to obtain the raw key bits.
(4) Alice and Bob use the same postprocessing to

extract secure key bits.
Obviously, equivalent QKD protocols will lead to

identical key rates.

1. Security proof via entanglement distillation

Here, we briefly review the security proof based on
entanglement distillation [4,5]. Suppose that, in QKD,
Alice generates an l-bit key string S, and Bob generates
an estimate of the key string S0. Denote the space of S as S,
whose dimension is 2l. An adversary Eve attempts to learn
about S from the information leakage.
After QKD, Alice and Bob should share the same key

privately. A key S is called “correct,” if S0 ¼ S for any
strategy of Eve, and is called “ϵcor-correct,” if

Pr½S0 ≠ S� ≤ ϵcor: ðA10Þ

To define a private key, consider the quantum state ρAE that
describes the correlation between Alice’s classical key S
and Eve’s system E (for any attacks). A key S is called “ϵsec
private” from E if [40,41]

min
σE

1

2
kρAE − ωA ⊗ σEk1 ≤ ϵsec; ðA11Þ

where ωA ¼ ðjSjÞ−1PjSj−1
S¼0 jSiAhSj is the equally mixed

key state over all possible keys in space S and k · k1 is the
trace norm. A QKD protocol is called “secure” if the
generated key is both correct and private. It is called “ϵ-
secure” if the generated key is ϵcor-correct and ϵsec private
with ϵ ¼ ϵcor þ ϵsec.
Here, we consider the case where Alice and Bob share an

m-pair-of-qubits gigantic state ρðmÞ
A0B0 . If we can show that

FðρðmÞ
A0B0 ; jΦþiðmÞ

A0B0 Þ ≥
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2l

q
; ðA12Þ

where jΦþiðmÞ
A0B0 is the state of m perfect EPR pairs

jΦþi ¼ ðj00i þ j11iÞ= ffiffiffi
2

p
, and 0 ≤ ϵl ≤ 1, then it can be

shown that it is ϵl private and ϵl-correct, and then it is 2ϵl-
secure. That is, to show the security of a QKD protocol, we

only need to show that the state for key extraction ρðmÞ
A0B0 is

close to the perfect Einstein-Podolsky-Rosen (EPR)

pairs jΦþiðmÞ
A0B0 .

Here is the intuition of the Lo-Chau security proof [4].
Suppose Alice and Bob share an n-pair-of-qubit gigantic

state ρðnÞA0B0 at the beginning. If they perform an efficient
entanglement distillation protocol (EDP) to distill m EPR
pairs, then they will be able to share nearly m bit correct
and private keys. Now the task becomes how to find the
right EDP.
Bennett, DiVincenzo, Smolin, and Wootters (BDSW)

show that [39], if an n-pair-of-qubit state ρðnÞA0B0 can be
written as a classical mixture of Bell state products,

ρðnÞA0B0 ¼
X

b1;b2;…;bn

pb1;b2;…;bn jb1;b2;…;bnihb1;b2;…;bnj;

jb1;b2;…bni¼ ⊗
n

i¼1
jΦðiÞ

bi
i; ðA13Þ

where jΦðiÞ
bi
i is one of the four Bell states labeled by bi ∈

f0; 1; 2; 3gon the ith qubit, then one can distill entanglement
by employing EDPs. In the one-way hashing method [39], a
specific type of one-way EDP, Alice measures a series of
commuting operators based on some random-hashing
matrix on her n qubits, and she sends the results to Bob.
Bob measures the same operators on his n qubits and infers
the locations and types of the errors from the difference in the
measurement results. After that, Alice and Bob correct
the errors and obtain m (m ≤ n, almost perfect) EPR pairs.
In general, of course, the initial state ρðnÞA0B0 can deviate

from Bell-diagonal states and become highly entangled
between different pairs. In the Lo-Chau security proof [4],
it has been shown that, for the one-way hashing EDP
introduced above, the error syndrome and EDP perfor-

mance of such ρðnÞA0B0 is the same as that of the state after
dephasing between pairs,

ρðnÞA0B0;dep ≡WρðnÞA0B0W;

W ¼
X

b1;b2;…;bn

jb1; b2;…; bnihb1; b2;…; bnj; ðA14Þ

where jb1; b2;…; bni is defined in Eq. (A13). Therefore,

one can reduce the EDP for general ρðnÞA0B0 (i.e., the case with
coherent attacks) to the case in Eq. (A13).
In the Shor-Preskill security proof [5], the one-way EDP

protocol is reduced to a “prepare-and-measure” QKD
protocol, by employing the CSS code [42]. Later, other
techniques of decoupling X-error correction and Z-error
correction are introduced for this reduction. For a one-way
EDP protocol based on the CSS code, the distillation rate of
EPR pairs, r≡ limn→∞m=n, is given by

r ¼ 1 −HðEZÞ −HðEXÞ; ðA15Þ

where EZ and EX are the Z-error rate and X-error rate,
respectively, and HðxÞ ¼ −xlog2x − ð1 − xÞlog2ð1 − xÞ is
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the binary Shannon entropy function. The error rates can

defined as measurement results on ρðnÞA0B0 ,

EZ ≡ Tr

�
⨁
n

j¼1

1

2
ð1 − ZðjÞ

A0 ⊗ ZðjÞ
B0 ÞρðnÞA0B0

�
;

EX ≡ Tr

�
⨁
n

j¼1

1

2
ð1 − XðjÞ

A0 ⊗ XðjÞ
B0 ÞρðnÞA0B0

�
; ðA16Þ

where XðjÞ
A0ðB0Þ is the Pauli X operator and ZðjÞ

A0ðB0Þ is the Pauli
Z operator, on the jth pair-of-qubits system A0ðB0Þ. Since
the bit value is measured in the Z-basis and the phase value
is measured in the X-basis, we also call the Z-basis error the
“bit error” and the X-basis error the “phase error.”
Following the Shor-Preskill security proof, distillable

entanglement of the one-way EDP protocol is the key rate
for some prepare-and-measure QKD protocols such as
BB84 [1]. In the BB84 protocol, we can estimate EZ,
EX by randomly measuring the qubits in the X- and Z-basis.
In the PM-QKD protocol, on the other hand, Alice and Bob
can only measure in the Z-basis. In the following sections,
we will introduce entanglement-based PM-QKD protocols
and discuss how to infer the value of EX.

2. Entanglement-based PM-QKD protocol

We first introduce an entanglement-based PM-QKD
protocol, called Protocol I, as shown in Fig. 4.
Protocol I
(1) State preparation: A trusted party, Charlie, picks a

state ρ on optical mode C; splits ρ into two pulses A
and B; and sends them to Alice and Bob, respec-
tively. Alice and Bob initialize their qubits in j þ ii.
Alice applies the control gate Cπ , defined in
Eq. (A9), to qubit A0 and optical pulse A. Similarly,
Bob applies Cπ to B0 and B.

(2) Measurement: The two optical pulses A and B are
sent to an untrusted party, Eve, who is supposed to
perform interference measurement and record which
detector (L or R) clicks.

(3) Announcement: Eve announces the detection result,
L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the qubits of systems A0 and B0. In
addition, Bob applies a Pauli Y-gate to his qubit if
Eve’s announcement is R click.

(5) Parameter estimation: After many rounds of the
above steps, Alice and Bob end up with a joint

2n-qubit state, denoted by ρðnÞA0B0. They then perform

random sampling on the remaining ρðnÞA0B0 to estimate
EZ and infer EX by Eq. (A24).

(6) Key distillation: Alice and Bob apply a standard
EDP when the error rates are below a certain
threshold. The distillation ratio r is given by
Eq. (A15). Once Alice and Bob obtain nr (almost)
pure EPR pairs, they both perform local Z measure-
ments on the qubits to generate private keys.

Our first observation is that, if the state ρ prepared
by Charlie is a parity state, namely, ρ ∈ DðHC

oddÞ or
ρ ∈ DðHC

evenÞ, then the X-error rate and Z-error rate are
correlated. Here, we denote the Z-error rate and X-error rate
for an odd state ρodd as eZodd and eXodd, respectively, and
similarly, we denote them for an even state ρeven as eZeven
and eXeven.
Lemma 1. In Protocol I, for ρ ∈ DðHC

oddÞ, eXodd ¼ eZodd,
and for ρ ∈ DðHC

evenÞ, eXeven ¼ 1 − eZeven.
Proof.—First consider the case when ρ is a Fock state

jkiC, defined in Eq. (A1). After passing through the BS, as
shown in Fig. 4, the state on modes A and B becomes

1ffiffiffiffiffiffiffiffiffi
2kk!

p ða† þ b†Þkj00iAB: ðA17Þ

(a) (b)

FIG. 4. (a) Schematic diagram of Protocol I. (b) Equivalent view of Protocol I, where the X-basis measurement on A0 or B0 is realized
by a Hadamard gate followed by the Z-basis measurement.
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The joint state on system A0, B0, A, B before the Cπ operations is

1ffiffiffiffiffiffiffiffiffi
2kk!

p jþiþ iiA0B0 ða† þ b†Þkj00iAB ¼ 1ffiffiffiffiffiffiffiffiffi
2kk!

p 1

2
½ðj00i − j11iÞ þ iðj01i þ j10iÞ�A0B0 ða† þ b†Þkj00iAB: ðA18Þ

After the Cπ operations, this state becomes

jΨðkÞ
0 i ¼

8<
:

1

2
ffiffiffiffiffiffi
2kk!

p ½ðj00i þ j11iÞA0B0 ða† þ b†Þkj00iAB þ iðj01i − j10iÞA0B0 ða† − b†Þkj00iAB�; if k is odd;

1

2
ffiffiffiffiffiffi
2kk!

p ½ðj00i − j11iÞA0B0 ða† þ b†Þkj00iAB þ iðj01i þ j10iÞA0B0 ða† − b†Þkj00iAB�; if k is even:
ðA19Þ

As shown in Fig. 4(b), the X-basis measurement on A0 or B0 is realized by a Hadamard gate followed by the Z-basis

measurement. Denote the state after local Hadamard gates as jΨðkÞ
HHi≡ ðHA0 ⊗ HB0 ÞjΨðkÞ

0 i; then,

jΨðkÞ
HHi ¼

8<
:

1

2
ffiffiffiffiffiffi
2kk!

p ½ðj00i þ j11iÞA0B0 ða† þ b†Þkj00iAB þ iðj01i − j10iÞA0B0 ða† − b†Þkj00iAB�; if k is odd;

1

2
ffiffiffiffiffiffi
2kk!

p ½ðj01i þ j10iÞA0B0 ða† þ b†Þkj00iAB þ iðj00i − j11iÞA0B0 ða† − b†Þkj00iAB�; if k is even:
ðA20Þ

In other words, the X-error rate eXk can be understood as
the error rate by performing the Z-basis measurement on

the state of jΨðkÞ
HHi. The relation between the X- and Z-error

rates can be obtained by comparing Eqs. (A19) and (A20).

For the odd-photon-number case, since jΨð2kþ1Þ
HH i ¼

jΨð2kþ1Þ
0 i, we have eX2kþ1 ¼ eZ2kþ1. For the even-photon-

number case, since jΨð2kÞ
HH i ¼ IA

0 ⊗ YB0 jΨð2kÞ
0 i, we have

eX2k ¼ 1 − eZ2k.
Now, let us consider the case of pure parity states. For an

odd state jψoddiC¼
P

c2kþ1j2kþ1iC,where
P

kjc2kþ1j2¼1,
since the BS and Cπ are unitary operations, the state after
these operations can be written as

jΨðoddÞ
0 i ¼

X
k

c2kþ1jΨð2kþ1Þ
0 i: ðA21Þ

After local Hadamard gates, the state becomes jΨðoddÞ
HH i≡

ðHA0 ⊗ HB0 ÞjΨðoddÞ
0 i. From Eqs. (A19)–(A21), we can see

that jΨðoddÞ
HH i ¼ jΨðoddÞ

0 i, and hence eZodd ¼ eXodd. With the
same argument, we have eZeven ¼ 1 − eXeven.
For general parity states, we can regard them as mixtures

of pure parity states,

ρodd ¼
X
i

pijψ ðiÞ
oddihψ ðiÞ

oddj;

ρeven ¼
X
i

pijψ ðiÞ
evenihψ ðiÞ

evenj: ðA22Þ

This is equivalent to Charlie sending out jψ ðiÞ
oddðevenÞi with

probability pi. For each pure state component, we have
eXoddðiÞ ¼ eZoddðiÞ and eXevenðiÞ ¼ 1 − eZevenðiÞ. Thus, the rela-

tions hold for all (mixed) parity states. □

In general, Charlie might not use a parity state. Consider
the case that Charlie performs the parity measurement
fModd;Meveng, defined in Eq. (A7), before sending to Alice
and Bob. Denote the measurement outcome probabilities
for the odd and even parity to be podd and peven,
respectively. This is equivalent to Charlie preparing an
odd state ρodd and an even state ρeven with probabilities podd
and peven, respectively. Then, the state can be written as

ρ ¼ poddρodd þ pevenρeven; ðA23Þ

that is, ρ ∈ DðHC
odd ⊕ HC

evenÞ.
Suppose Charlie announces the parity information

publicly to Alice and Bob. Then, they can label the sifted
qubits with “odd” and “even.” Denote qodd and qeven, with
qodd þ qeven ¼ 1, to be the fractions of odd- and even-
labeled states in the sifted n-pairs of qubit states A0, B0,
respectively. Then, according to Lemma 1, the total X-error
rate can be calculated by

EX ¼ qoddeXodd þ qeveneXeven

¼ qoddeZodd þ qevenð1 − eZevenÞ: ðA24Þ

Here, the parameters qodd, qeven, eZodd, and eZeven can be
evaluated according to Charlie’s parity announcement.
When the parity information is missing, Alice and Bob
need to estimate these parameters, which will be described
later in Appendix A 5.

3. Coherent state protocol and equivalent process

From Protocol I to the PM-QKD protocol, there are a few
practical issues that need to be addressed. First, the trusted
party Charlie and the BS should be removed. In order to do
this, we consider a special case where Charlie prepares a
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coherent state j ffiffiffi
μ

p iC as the photon source. In addition,
Charlie adds a random phase ϕ ∈ f0; πg with equal
probabilities to the coherent state, so the density matrix
can be written as

ρðα;−αÞ ¼ 1

2
ðjαihαj þ j − αih−αjÞ

¼ coddjαoddihαoddj þ cevenjαevenihαevenj; ðA25Þ

where α ¼ ffiffiffi
μ

p
, and jαoddi, jαeveni, codd, and ceven are

defined in Eqs. (A4) and (A5). Clearly, one can see
that ρðα;−αÞ ∈ DðHC

odd ⊕ HC
evenÞ.

Now, Alice and Bob want to prepare the state given in
Eq. (A25) without Charlie’s assistance. They first locally
prepare two coherent states j ffiffiffiffiffiffiffiffi

μ=2
p iAðBÞ and add the

same random phase ϕ ∈ f0; πg to their states, as shown
in Fig. 5(b). Then, the state becomes

ρABð ffiffiffi
μ

p
;−

ffiffiffi
μ

p Þ¼ 1

2
ðj

ffiffiffiffiffiffiffiffi
μ=2

p
iAh

ffiffiffiffiffiffiffiffi
μ=2

p
j⊗ j

ffiffiffiffiffiffiffiffi
μ=2

p
iB

× h
ffiffiffiffiffiffiffiffi
μ=2

p
jþ j

ffiffiffiffiffiffiffiffiffiffiffi
−μ=2

p
iA

× h
ffiffiffiffiffiffiffiffiffiffiffi
−μ=2

p
j⊗ j

ffiffiffiffiffiffiffiffiffiffiffi
−μ=2

p
iBh

ffiffiffiffiffiffiffiffiffiffiffi
−μ=2

p
jÞ:
ðA26Þ

Apparently, ρABð ffiffiffi
μ

p
;− ffiffiffi

μ
p Þ is the state after ρðα;−αÞ

defined in Eq. (A25) going through the BS. Thus, this new
protocol (Protocol II) is equivalent to Protocol I with the
input state ρð ffiffiffi

μ
p

;− ffiffiffi
μ

p Þ. Protocol II runs as follows, as
shown in Fig. 5(b). Here, μa ¼ μb ¼ μ=2.
Protocol II
(1) State preparation: Alice and Bob prepare coherent

states j ffiffiffiffiffi
μa

p i and j ffiffiffiffiffi
μb

p i on optical modes A and B,
respectively. They initialize the qubits A0 and B0 in
j þ ii. They add the same random phase ϕ ∈ f0; πg
on the optical modes A and B. Alice applies the
control gate Cπ , defined in Eq. (A9), to qubit A0 and

optical pulse A. Similarly, Bob applies Cπ to B0
and B.

(2) Measurement: The two optical pulses A and B are
sent to an untrusted party, Eve, who is supposed to
perform interference measurement and record which
detector (L or R) clicks.

(3) Announcement: Eve announces the detection result,
L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the qubits of systems A0 and B0. In
addition, Bob applies a Pauli Y-gate to his qubit if
Eve’s announcement is an R click.

(5) Parameter estimation: After many rounds of the
above steps, Alice and Bob end up with a joint

2n-qubit state, denoted by ρðnÞA0B0. They then perform

random sampling on the remaining ρðnÞA0B0 to estimate
EZ and infer EX by Eq. (A24).

(6) Key distillation: Alice and Bob apply a standard
EDP when the error rates are below a certain
threshold. The distillation ratio r is given by
Eq. (A15). Once Alice and Bob obtain nr (almost)
pure EPR pairs, they both perform local Z measure-
ments on the qubits to generate private keys.

From Protocol II to the PM-QKD protocol, there are still
some missing links.
(1) Alice and Bob need to add the same random phase

ϕ ∈ f0; πg to their states, which would cost them a
private bit.

(2) They use Eq. (A24) to infer EX, which needs
information on the parameters of qodd, qeven, eZodd,
and eZeven.

(3) The phase references of Alice and Bob’s coherent
states are locked. That is, the phases of the initial
coherent states, j ffiffiffiffiffi

μa
p i and j ffiffiffiffiffi

μb
p i, are the same, and

hence remote phase locking is required.
We shall remove the simultaneous phase randomization
requirement in Appendix A 4; bound qodd, qeven, eZodd, and

(a) (b)

FIG. 5. (a) A specific realization of Protocol I, where Charlie prepares j ffiffiffi
μ

p i and j ffiffiffiffiffiffi−μp i with equal probabilities. (b) Schematic
diagram of Protocol II, where Alice and Bob prepare j ffiffiffiffiffiffiffiffi

μ=2
p i and add the same random phase ϕ ∈ f0; πg.
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eZeven in Appendix A 5; and remove the phase-locking
requirement in Appendix A 6.

4. Security with phase announcement

To remove the simultaneous phase randomization
requirement in Protocol II, a straightforward idea is that
Alice and Bob add random phases ϕaðbÞ ∈ f0; πg inde-
pendently (with equal probability 1=2); during the sifting
step, they announce the phases ϕa, ϕb and postselect the
bits only for ϕa ¼ ϕb, as shown in Fig. 6. All the other steps
remain unchanged. Here, there are two modifications that
need to be analyzed, the phase announcement of ϕa, ϕb and
postselection of ϕa ¼ ϕb.
We deal with the phase announcement of ϕa, ϕb first.

Consider Protocol IIa, as shown in Fig. 6, where Alice and
Bob announce the random phase ϕ in Protocol II during
postprocessing.
Protocol IIa
(1) State preparation: Same as Protocol II.
(2) Measurement: Same as Protocol II.
(3) Announcement: Same as Protocol II.
(4) Sifting: The first part is the same as Protocol II. After

that, Alice and Bob announce the random phase ϕ.
(5) Parameter estimation: Same as Protocol II.
(6) Key distillation: Same as Protocol II.

Note that the only difference between Protocol II and IIa
is that Alice and Bob announce their phase ϕ after
Eve’s announcement. Since the classical information
announced during postprocessing is different, according
to Definition 1, protocols II and IIa are not equivalent. In
fact, from some specific attacks (see Appendix C), one can
see that the security of the two protocols with and without
phase announcement can be very different.
In Protocol II, as shown in Fig. 6, because of phase

randomization, one can always assume that Alice and
Bob (or Eve) perform the total parity measurement
fMt

odd;M
t
eveng, which is defined as, similar to Eq. (A7),

Mt
odd ≡

X
k1þk2is odd

jk1k2iABhk1k2j;

Mt
even ≡

X
k1þk2is even

jk1k2iABhk1k2j: ðA27Þ

Here, fjk1k2iABg are the Fock states on mode A, B, with k1
photons on A and k2 photons on B. That is, in Protocol II,
the photon source can be regarded as a mixture of odd states
and even states. The parity-state channel model is similar to
the photon number channel used in the security proof of the
decoy-state method [19,25].
In Protocol IIa, as shown in Fig. 6, on the other hand, no

such parity measurement is allowed because it does not

FIG. 6. The schematic diagram of protocols II, IIa, and III. In Protocol II, Alice and Bob add the same phase ϕ ∈ f0; πg on their
coherent state

ffiffiffiffiffiffiffiffi
μ=2

p
. In Protocol IIa, Alice and Bob announce the phase ϕ after Eve’s announcement. In Protocol III, Alice and Bob add

phases ϕa and ϕb, independently. They announce ϕa and ϕb after Eve’s announcement.
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commute with the phase announcement. That is, Eve can
distinguish whether or not Alice and Bob perform
fMt

odd;M
t
eveng after the announcement of phases ϕa

and ϕb. In other words, the quantum signals sent by
Alice and Bob can no longer be regarded as a mixture
of ρodd and ρeven in Protocol IIa. To analyze the security of
Protocol IIa, we notice the following observation.
Observation 1. The joint states ρðnÞA0B0 obtained in pro-

tocols I, II, and IIa are the same after sifting in Step 4.
Note that qubit systems A0 and B0 are local and never sent

to Eve. Before the sifting step, these qubits are identical and
sampled independently and the same for protocols I, II, and

IIa. The state ρðnÞA0B0 is postselected by Eve’s announcement.

Of course, Eve can manipulate ρðnÞA0B0 by different measure-
ment or announcement strategies. We emphasize that Eve
announces before the phase announcement in Protocol IIa.
Then, her strategy cannot depend on the phase announce-

ment. Therefore, in all three protocols, the state ρðnÞA0B0

remains the same. This is crucial to our security analysis.
From Observation 1, we can have the following Corollary.
Corollary 1. Both the X- and Z-error patterns of the

joint states ρðnÞA0B0 in protocols II and IIa are the same. Then,
the X-error rates EX of protocols II and IIa are the same, as
given by Eq. (A24).
Now, we deal with the postselection of ϕa ¼ ϕb.

Regardless of the values of ϕa, ϕb, because of control-
phase gates Cπ , the state ρAB sent to Eve is

ρAB ¼ ρAð
ffiffiffiffiffiffiffiffi
μ=2

p
;−

ffiffiffiffiffiffiffiffi
μ=2

p
Þ⊗ ρBð

ffiffiffiffiffiffiffiffi
μ=2

p
;−

ffiffiffiffiffiffiffiffi
μ=2

p
Þ; ðA28Þ

where ρð ffiffiffiffiffiffiffiffi
μ=2

p
;−

ffiffiffiffiffiffiffiffi
μ=2

p Þ is defined in Eq. (A25). The state
ρAB is independent of ϕa, ϕb; hence, Eve’s attack cannot
depend on ϕa, ϕb, and the sifted qubits are also indepen-
dent of the value of ϕað¼ ϕbÞ.
Furthermore, we notice that discarded qubits with

jϕa − ϕbj ¼ π can also be used for entanglement distil-
lation. Here, adding a phase π to system B is equivalent to
performing a Pauli Y-gate to system B0 for a parity-state
source in protocols I, II, and IIa. Thus, for the qubits with
jϕa − ϕbj ¼ π, Bob performs a Y-gate on qubit B0.
Therefore, if Alice and Bob randomize their phases ϕa,

ϕb ∈ f0; πg independently and perform phase-sifting oper-
ations after Eve’s announcement, shown in Fig. 6, the
modified protocol is equivalent to Protocol IIa. We call this
Protocol III, which runs as follows, as shown in Fig. 6.
Here, μa ¼ μb ¼ μ=2.
Protocol III
(1) State preparation: Alice and Bob prepare coherent

states j ffiffiffiffiffi
μa

p i and j ffiffiffiffiffi
μb

p i on optical modes A, B,
separately. They initial their qubits A0, B0 in j þ ii.
They independently add random phases ϕa, ϕb ∈
f0; πg onopticalmodesA,B. Alice applies the control
gate Cπ, defined in Eq. (A9), to qubit A0 and optical
pulse A. Similarly, Bob applies Cπ to B0 and B.

(2) Measurement: The two optical pulses, A and B, are
sent to an untrusted party, Eve, who is supposed to
perform an interference measurement and record
which detector (L or R) clicks.

(3) Announcement: Eve announces the detection result,
L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the qubits of systems A0 and B0. Bob
applies a Pauli Y-gate to his qubit if Eve’s announce-
ment is R click. After Eve’s announcement, Alice
and Bob announce their encoded phase ϕa, ϕb. Bob
applies a Pauli Y-gate to his qubit if jϕa − ϕbj ¼ π.

(5) Parameter estimation: After many rounds of the
above steps, Alice and Bob end up with a joint

2n-qubit state, denoted by ρðnÞA0B0. They then perform

random sampling on the remaining ρðnÞA0B0 to estimate
EZ and infer EX by Eq. (A24).

(6) Key distillation: Alice and Bob apply a standard
EDP when the error rates are below a certain
threshold. The distillation ratio r is given by
Eq. (A15). Once Alice and Bob obtain nr (almost)
pure EPR pairs, they both perform local Z measure-
ments on the qubits to generate private keys.

5. Decoy-state method and phase randomization

Here, we introduce a method to estimate qodd, qeven, eZodd,
and eZeven. Without loss of generality, we mainly discuss the
decoy-state method in Protocol I. Similar arguments can be
applied to protocols II, IIa, and III.
Recall that, in Protocol I, if Charlie prepares coherent

state j ffiffiffi
μ

p i and adds a random phase f0; πg on it, it is
equivalent to preparing odd- and even-parity states with
probabilities pμ

odd ¼ codd and p
μ
even ¼ ceven, respectively, as

defined in Eq. (A5). Define the yield Yμ
odd (Yμ

even) as the
probability of successful detection conditional on the odd-
parity (even-parity) state. The fraction of odd- and even-
parity states in the final detected signal is given by

qμodd ¼ pμ
odd

Yμ
odd

Qμ
;

qμeven ¼ pμ
even

Yμ
even

Qμ
; ðA29Þ

where Qμ is the total gain of the signals. For signals with
intensity μ, we have

Qμ ¼ pμ
oddY

μ
odd þ pμ

evenY
μ
even;

EZ;μQμ ¼ eZ;μoddp
μ
oddY

μ
odd þ eZ;μevenp

μ
evenY

μ
even; ðA30Þ

where EZ
μ , eZ;μodd (eZ;μeven) are the quantum bit error rate

(QBER) and the Z-error rate of odd-state (even-state)
signals with total a intensity of μ, respectively.
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If we directly estimate qμodd, q
μ
even, e

Z;μ
odd, and eZ;μeven from

Eq. (A29), Eq. (A30), and the constraint that

qμodd; q
μ
even; e

Z;μ
odd; e

Z;μ
even; Y

μ
odd; Y

μ
even ∈ ½0; 1�; ðA31Þ

then the estimation is too loose to bound the X-error EX

in Eq. (A24).
Now, we introduce a more efficient method to estimate

qodd, qeven, eZodd, and eZeven. Essentially, we employ the idea
of the decoy-state method [25]. That is, in Protocol I,
Charlie adjusts the intensity μ of his prepared coherent
lights. After Eve’s announcement, Charlie announces the
value of μ. Furthermore, Charlie randomizes the phase ϕ on
state j ffiffiffi

μ
p

eiϕi continuously from ½0; 2πÞ. In this case, the
state prepared by Charlie can be written as

1

2π

Z
2π

0

dϕj ffiffiffi
μ

p
eiϕih ffiffiffi

μ
p

eiϕj ¼
X∞
k¼0

PðkÞjkihkj: ðA32Þ

That is, in Protocol I, if Charlie prepares j ffiffiffi
μ

p
eiϕi with

random phase ϕ, this is equivalent to preparing the Fock
states fjkig with probability PðkÞ. Obviously, Fock states
fjkig are parity states. Then, by directly applying
Lemma 1, we can estimate the X-error by

EX ¼
X∞
k¼0

q2kþ1eZ2kþ1 þ
X∞
k¼0

q2kð1 − eZ2kÞ; ðA33Þ

where q0 is the detection caused by the vacuum signal (i.e.,
dark counts) and eZ0 ¼ e0 ¼ 1=2 is the vacuum Z-error rate.
The source components are Fock states fjkig, whose

yields fYkg and Z-error rates feZkg are independent of μ.
The fractions qμk of the “k-photon component” in the final
detected signals are given by

qμk ¼ PμðkÞ Yk

Qμ
: ðA34Þ

The overall gain and QBER are given by

Qμ ¼
X∞
k¼0

PμðkÞYk;

EZ
μQμ ¼

X∞
k¼0

eZkP
μðkÞYk: ðA35Þ

The main idea of the decoy-state method is that Alice and
Bob can obtain a set of linear equations in the form of
Eqs. (A34) and (A35) by using a few values of μ. When an
infinite amount of decoy states is used, Alice and Bob can
estimate all the parameters Yk and eZk accurately, with
which they can estimate qμk, e

Z
k and the upper bound of the

X-error by Eq. (A33).

To apply the decoy-state method to protocols II and III,
we modify the phase randomization requirements accord-
ingly. In the decoy-state version of Protocol III, the phases
ϕa, ϕb should be randomized independently in ½0; 2πÞ
rather than f0; πg. Also, there will be an additional phase-
sifting condition, jϕa − ϕbj ¼ 0 or π. Such random-phase
announcement and postselection would not affect the
security, with the following reasons, similar to the argument
of the equivalence between protocols II and III. In
particular, Observation 1 in Appendix A 4 still holds.
First, we want to argue that the random-phase postse-

lection of jϕa − ϕbj ¼ 0 or πwould not affect the security. In
fact, any phase postselection would not be affected by Eve’s
announcement. Note that the random phases ϕa, ϕb are
determined by Alice and Bob locally. Thus, the sifted qubit

pairs ρðnÞA0B0 would be the same in the two cases: (1) Alice and
Bob independently randomize the phasesϕa,ϕb and employ
this phase postselection jϕa − ϕbj ¼ 0 or π; (2) Charlie
randomizes the same phases, ϕa ¼ ϕb, to A and B.
Second, we want to argue that the random-phase

announcement would not affect the security. Eve announ-
ces the detection events before Alice and Bob’s random-
phase announcement. Thus, her hacking strategy cannot
depend on the random phases. Note that with the post-
selection of jϕa − ϕbj ¼ 0 or π, the announced phase ϕa
(or ϕb) can be regarded as the phase reference in
Protocol III.
Third, we apply infinite decoy states to estimate qμk and

eZk accurately. In practical implementations, it is interesting
to explore if finite decoy states, such as the widely applied
vacuum and weak decoy states, are enough to make a valid
estimation.
Now, we can modify Protocol III with continuous phase

randomization ϕa, ϕb and the decoy-state method, namely,
Protocol IV, as shown in Fig. 7(a).
Protocol IV
(1) State preparation: Alice and Bob randomly select μa,

μb from a given set fμ0; μ1;…g=2. They prepare
coherent state j ffiffiffiffiffi

μa
p i and j ffiffiffiffiffi

μb
p i on optical modes A,

B separately. They initial their qubits A0, B0 in j þ ii
and independently add random phase ϕa, ϕb ∈
½0; 2πÞ on the optical modes A, B. Alice applies
the control gate Cπ , defined in Eq. (A9), to qubit A0
and optical pulse A. Similarly, Bob applies Cπ to B0
and B.

(2) Measurement: The two optical pulses A and B are
sent to an untrusted party, Eve, who is supposed to
perform interference measurement and record which
detector (L or R) clicks.

(3) Announcement: Eve announces the detection result,
L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the qubits of systems A0 and B0. Bob
applies a Pauli Y-gate to his qubit if Eve’s announce-
ment is R click. After Eve’s announcement, Alice
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and Bob announce their encoded intensities μa, μb
and phases ϕa, ϕb. They keep the signal if μa ¼ μb
and jϕa − ϕbj ¼ 0 (or π). Bob applies a Pauli Y-gate
to his qubit if jϕa − ϕbj ¼ π.

(5) Parameter estimation: After many rounds of the
above steps, Alice and Bob end up with a joint

2n-qubit state, denoted by ρðnÞA0B0. They then perform

random sampling on the remaining ρðnÞA0B0 to estimate
EZ and infer EX by Eq. (A33).

(6) Key distillation: Alice and Bob apply a standard
EDP when the error rates are below a certain
threshold. The distillation ratio r is given by
Eq. (A15). Once Alice and Bob obtain nr (almost)
pure EPR pairs, they both perform local Z measure-
ments on the qubits to generate private keys.

Finally, we need to reduce the entanglement-based proto-
col to a prepare-and-measure protocol. Following the Shor-
Preskill argument, we move the key measurement in Step 6
before the EDP, the parameter estimation, and the Cπ gates.
That is, they measure the systems A0 and B0 at the beginning.
Therefore, the entanglement-based protocol (Protocol IV)
becomes the PM-QKD protocol, as shown in Fig. 7(b).
PM-QKD protocol
(1) State preparation: Alice randomly generates a

key bit κa ∈ f0; 1g; a random phase ϕa ∈ ½0; 2πÞ;
and a random intensity μa ∈ fμ=2; μ1=2; μ2=2; � � �g.
She prepares a coherent-state optical pulse
j ffiffiffiffiffi

μa
p

eiðϕaþπκaÞiA. Similarly, Bob generates a key
bit κb and prepares j ffiffiffiffiffi

μb
p

eiðϕbþπκbÞiB.
(2) Measurement: The two optical pulses A and B are

sent to an untrusted party, Eve, who is supposed to
perform interference measurement and record which
detector (L or R) clicks.

(3) Announcement: Eve announces the detection result,
L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the key bits κa and κb. Bob flips his
key bit κb if Eve’s announcement is R click. After
Eve’s announcement, Alice and Bob announce
their encoded intensities and phases μa, ϕa; μb;ϕb.
They maintain the signal if μa¼μb and jϕa−ϕbj ¼ 0
or π. Bob applies a Pauli Y-gate to his qubit
if jϕa − ϕbj ¼ π.

(5) Parameter estimation: After many rounds of the
above steps, Alice and Bob end up with joint n
pairs of the raw key. They then perform random
sampling on this raw key. With Eqs. (A34) and
(A35), they estimate qk and eZk .

(6) Key distillation: Alice and Bob apply classical
communication for error correction and privacy
amplification. The key distillation ratio r is given
by Eq. (A15).

Note that the PM-QKD protocol mentioned above is the
exact PM-QKD protocol mentioned in the main text with
the decoy-state method contained.
Here, in Protocol IVand the PM-QKD protocol, there are

some unrealistic assumptions remaining.
(1) The phase of Alice and Bob’s coherent state is

locked; that is, the phase reference of Alice’s and
Bob’s coherent state is the same.

(2) The phase-sifting condition ϕa ¼ ϕb can be satisfied
with an acceptable probability.

We will discuss how to remove these two requirements in
Appendix A 6 and, hence, make the protocol practical.

6. Phase postcompensation

Here, we modify the PM-QKD protocol to remove the
requirement of phase locking between Alice and Bob, and
also relax the postselection condition of jϕa − ϕbj ¼ 0 or π.
The method is shown in Fig. 2.

(a) (b)

FIG. 7. (a) Schematic diagram of Protocol IV, where the decoy-state method is applied. The random phase ϕa, ϕb ∈ ½0; 2πÞ.
(b) Schematic diagram of PM-QKD protocol.
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First, we relax the postselection condition of jϕa−ϕbj¼0
or π by dividing the phase interval ½0; 2πÞ intoM slices fΔjg
for 0≤j≤M−1, where Δj ¼ ½2πj=M; 2πðjþ 1Þ=MÞ.
We change the phase postselection condition of ϕa ¼ ϕb
to slice postselection ja ¼ jb. Here, ja, jb are defined as

ja ¼
�
ϕa

2π
M

�
mod M;

jb ¼
�
ϕb

2π
M

�
mod M; ðA36Þ

where ½·� is the round function to output the nearest integer.
That is, Alice announces the jath slice Δja , which her
random phase ϕa falls into. Similarly, Bob announces jb.
The sifting condition is jjb − jaj ¼ 0 or M=2. This tech-
nique is first used in the phase-encoding MDI-QKD [18].
Announcing the phase slices ja and jb rather than the exact
phaseϕa andϕbwill only leak less information toEve. Thus,
all the security-proof results from previous subsections
apply here. Applying Eq. (A15), we also need to add a
phase-sifting factor 2=M. Therefore, the final key rate is
given by

RPM ≥
2

M
Qμ½1 − fHðEZ

μ Þ −HðEX
μ Þ�; ðA37Þ

where Qμ is the total gain of the pulses, EZ
μ is the overall

QBER, the phase error rateEX
μ is given byEq. (A33), andf is

the error correction efficiency. We need to point out that,
when M is too small, the misalignment caused by phase
slices Δja and Δjb is big and results in a large QBER EZ

μ .
Second, we remove the requirement of phase locking. In

the phase postselection step, either Alice or Bob announces
that the random phase is sufficient. Without loss of
generality, we assume that Alice announces the phase
and Bob performs the sifting of jjb − jaj ¼ 0 or M=2.
With less information announced, the key rate still holds.
Suppose that the difference between Alice’s and Bob’s

phase references, denoted by ϕ0 ∈ ½0; 2πÞ, is fixed but
unknown. In sifting, Bob needs to figure out the value of
ϕ0. Define an offset, where 0 ≤ j0 ≤ M − 1, as

j0 ≡
�
ϕ0

2π
M

�
mod M: ðA38Þ

During sifting, Bob can estimate the offset j0 for each
pulse. The estimation accuracy would not affect the
security. In fact, in the security proofs, we assume that
Eve knows the phase references ahead. Suppose Bob
compensates the offset by jd, and he has the freedom to
choose jd from f0; 1;…;M − 1g. In a practical scenario,
normally, the phase references (and, hence, the offset j0)
change slowly with time. Then, Bob can figure out the

proper phase compensation offset jd by minimizing the
QBER from random sampling, as shown in Fig. 2.
For the case where the phase reference difference ϕ0

varies, we can treat the changing caused by Eve. Such
deviation will introduce bit errors, but not help Eve learn
key information, since the variation of ϕ0 is independent of
the key κa, κb. Note that, in the security proof, we assume
that Eve knows the phase references accurately.
With all the modifications above, we propose the

following practical version of PM-QKD protocol.
PM-QKD protocol with phase postcompensation
(1) State preparation: Alice randomly generates a key bit

κa ∈ f0; 1g; a random phase ϕa ∈ ½0; 2πÞ; and a
random intensity μa∈fμ=2;μ1=2;μ2=2;���g. She pre-
pares a coherent-state optical pulse j ffiffiffiffiffi

μa
p

eiðϕaþπκaÞiA.
Similarly, Bob generates a key bit κb and pre-
pares j ffiffiffiffiffi

μb
p

eiðϕbþπκbÞiB.
(2) Measurement: The optical pulses, systems A and B,

are sent to an untrusted party, Eve, who is supposed
to perform interference measure and record which
detector (L or R) clicks.

(3) Announcement: Eve announces the detection re-
sults, L=R click or failure, for each round.

(4) Sifting: When Eve announces an L=R click, Alice
and Bob keep the key bits κa and κb. Bob flips his
key bit κb if Eve’s announcement is R click. After
Eve’s announcement, Alice and Bob announce their
encoded intensities μa and μb, respectively. They
keep the bits if μa ¼ μb.

(5) Parameter estimation: Alice and Bob run the above
procedures many times and then run the following
procedures.
(a) For each bit, Alice announces the phase slice

index ja, given in Eq. (A36), and she randomly
samples a certain amount of key bits and
announces them for QBER testing.

(b) In the phase postcompensation method, given an
offset compensation jd ∈ f0; 1;…;M=2 − 1g,
Bob sifts the sampled bits with the phase
postselection condition jjbþjd−jaj mod M¼0

or M=2. For the case of M=2, Bob flips the key
bit κb. After sifting, Bob calculates the QBER
EZ with Alice’s sampling key bits. Bob tries all
possible jd ∈ f0; 1;…;M − 1g and figures out
the proper jd to minimize the sampling QBER.
Using the phase postselection condition with the
proper jd, Bob sifts (and flips if needed) the
unsampled bits and announces the locations to
Alice. Alice sifts her key bits accordingly.

(c) Alice and Bob analyze the overall gain Qμi and
QBER EZ

μi for different values of intensities
μa ¼ μb ¼ μi=2. They estimate the phase error

rate EðXÞ
μ by Eq. (A33).
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(6) Key distillation: Alice and Bob apply error correc-
tion and privacy amplification. The key rate R is
given by Eq. (A37).

Here, in the phase postcompensation, Bob does not need
to fix a jd for the whole experiment. Instead, he can adjust
jd in real time. Given the total number of slices M, define
the phase-stable time τM to be the time period during which
the phase fluctuation is smaller than π=M. Roughly speak-
ing, Bob adjusts jd for every τM. In practice, Bob would
randomly sample some detections for tests. Here, in order
to obtain a good estimation of jd, Bob should sample
enough detections for the offset test within τM. Then, the
phase postcompensation method would put a requirement
on the detection rate.
Now, we consider a practical example. Considering

the slice number M ¼ 16, the tolerable fluctuation should
be about π=M ¼ 0.196 rad. The phase of a continuous-
wave (CW) laser pulse usually fluctuates randomly,
and its behavior can be modeled as a random walk. In
an experimental work of testing the phase drift for a
36.5-km Mach-Zehnder interferometer [43], within a time
duration of 0.2 ms, the mean phase fluctuation is about
0.15 rad. In the data presented in recent TF-QKD [16], via
the total transmission distance around 200 km, the phase
drift rate is about 3 radms−1. For a time period of 0.05 ms,
the mean phase fluctuation is about 0.15 rad, which is less
than π=M. Then, in this case, one can set τM ¼ 0.05 ms for
testing. Considering a GHz QKD system, there are 5 × 104

signals sent out within τM. Using the same parameters for a
longer transmission distance of 100 km from Alice to Eve
(same distance for Bob) using a standard telecom fiber
(0.2 dB=km), the transmission loss is η ¼ 20 dB ¼ 10−2,
and there will be 500 data left for postprocessing, which is
sufficient for sampling tests. From here, one can see that
our phase postcompensation method is feasible with current
technology. For a longer transmission distance, the phase
postcompensation method may not be sufficient. One can
use the phase calibration method as an alternative, as
introduced in the main text.

APPENDIX B: MODEL AND SIMULATION

Here, we show the details for the simulations of different
QKD schemes. We mainly follow the simulation model
used in the literature [19,44]. We calculate the detection
probabilities of PM-QKD in Appendix B 1 and then
evaluate the yields, gains, and error rates in Appendix B
2. In simulations, we also compare the performance of PM-
QKD with the decoy-state BB84 [1], MDI-QKD [15], and
the linear key-rate bound [11]. We list the used formulas
and simulation parameters in Appendix B 3.

1. Detection probabilities

The channel is assumed to be a pure loss one
and symmetric for Alice and Bob with transmittance η

(with detector efficiency ηd taken into account). We
suppose that the lights from Alice and Bob faithfully
interfered and measured with dark-count rate pd.
Without loss of generality, we only consider the case where
κa ¼ κb ¼ 0, ja ¼ jb ¼ 0.
In PM-QKD, the global phases ϕa, ϕb are divided intoM

slices. Without phase locking, the phase references for
Alice and Bob can differ. Therefore, even if the announced
slices meet, jja − jbj ¼ 0, there may be a considerable
difference ϕδ ≡ ϕb − ϕa between the two global phases
ϕa, ϕb.
First, for a fixed ϕδ, we calculate the detection proba-

bility in the single-photon case. After Alice and Bob’s
encoding, the state becomes

ðeiϕaa† þ eiϕbb†Þj00iA0;B0 ¼ ða† þ eiϕδb†Þj0i: ðB1Þ

Here, the transmittance η includes channel losses and
detection efficiencies, which transfer a†, b† according to

a† →
ffiffiffi
η

p
a† þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
s†;

b† →
ffiffiffi
η

p
b† þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
t†; ðB2Þ

where s†, t† are the modes coupled to the environment.
Before Eve’s interference, the state is

ð ffiffiffi
η

p ða† þ eiϕδb†Þ þ
ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
ðs† þ eiϕδt†ÞÞj0i; ðB3Þ

and after Eve’s interference, the state becomes

( ffiffiffi
η

2

r
½ð1þeiϕδÞl†þð1−eiϕδÞr†�þ

ffiffiffiffiffiffiffiffiffi
1−η

p
ðs†þeiϕδt†Þ

)
j0i;

ðB4Þ

where l† and r† are the creation operators for the modes to
L- and R-detectors, respectively. Then, the detection
probabilities are given by

pð1Þ
0 ¼ 1 − η;

pð1Þ
l ¼ ηcos2

�
ϕδ

2

�
;

pð1Þ
r ¼ ηsin2

�
ϕδ

2

�
;

pð1Þ
lr ¼ 0; ðB5Þ

where pð1Þ
0 , pð1Þ

l , pð1Þ
r , and pð1Þ

lr are, respectively, the
probabilities for no click, L click, R click, and double
click for the single-photon case.
Then, we consider the k-photon case, for which we

regard as k identical and independent click events of the
single-photon case; the click probabilities are given by
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pðkÞ
0 ¼ ðpð1Þ

0 Þk;
pðkÞ
l ¼ ðpð1Þ

0 þpð1Þ
l Þk− ðpð1Þ

0 Þk;
pðkÞ
r ¼ ðpð1Þ

0 þpð1Þ
r Þk− ðpð1Þ

0 Þk;
pðkÞ
lr ¼ 1−pðkÞ

0 −pðkÞ
l −pðkÞ

r

¼ 1þðpð1Þ
0 Þk− ðpð1Þ

0 þpð1Þ
l Þk− ðpð1Þ

0 þpð1Þ
r Þk; ðB6Þ

where pðkÞ
0 , pðkÞ

l , pðkÞ
r , and pðkÞ

lr are, respectively, the
probabilities for no click, L click, R click, and double
click for the k-photon case.
Now, we take into account the effects caused by the

detector dark counts pd. Since the dark counts are inde-
pendent of the photon-click events, we can draw a table for
all the cases, as shown in Table III. The final click
probabilities for the k-photon case are given by

PðkÞ
0 ¼ð1−pdÞ2pðkÞ

0 ;

PðkÞ
L ¼ð1−pdÞ2pðkÞ

l þpdð1−pdÞðpðkÞ
0 þpðkÞ

l Þ
¼pdð1−pdÞpðkÞ

0 þð1−pdÞpðkÞ
l ;

PðkÞ
R ¼ð1−pdÞ2pðkÞ

r þpdð1−pdÞðpðkÞ
0 þpðkÞ

r Þ
¼pdð1−pdÞpðkÞ

0 þð1−pdÞpðkÞ
r ;

PðkÞ
LR¼ð1−pdÞ2pðkÞ

lr þpdð1−pdÞðpðkÞ
l þpðkÞ

r þ2pðkÞ
lr Þþp2

d

¼ð1−p2
dÞpðkÞ

lr þpdð1−pdÞðpðkÞ
l þpðkÞ

r Þþp2
d: ðB7Þ

Similarly, we can derive the formulas for detection
probabilities with coherent state inputs. The states sent
out by Alice and Bob are j ffiffiffiffiffi

μa
p

eiϕai and j ffiffiffiffiffi
μb

p
eiϕbi,

respectively, where μa ¼ μb ¼ μ=2. After channel and
detection losses, the states become j ffiffiffiffiffiffiffi

ημa
p

eiϕai and
j ffiffiffiffiffiffiffi

ημb
p

eiϕbi. By going through the BS, the states become

jαLi ¼
����

ffiffiffiffiffi
ημ

p
2

ðeiϕa þ eiϕbÞ
�

¼
����

ffiffiffiffiffi
ημ

p
2

eiϕað1þ eiϕδÞ
�
;

jαRi ¼
����

ffiffiffiffiffi
ημ

p
2

ðeiϕa − eiϕbÞ
�

¼
����

ffiffiffiffiffi
ημ

p
2

eiϕað1 − eiϕδÞ
�
: ðB8Þ

Then, the detection click probabilities are

PμðL̄Þ ¼ ð1 − pdÞ exp ð−jαLj2Þ

¼ ð1 − pdÞ exp
�
−ημcos2

�
ϕδ

2

��
;

PμðLÞ ¼ 1 − PμðL̄Þ;
PμðR̄Þ ¼ ð1 − pdÞ exp ð−jαRj2Þ

¼ ð1 − pdÞ exp
�
−ημsin2

�
ϕδ

2

��
;

PμðRÞ ¼ 1 − PμðR̄Þ; ðB9Þ

where PμðLÞ and PμðL̄Þ are the probabilities of the L click
and no L click, respectively, and PμðRÞ and PμðR̄Þ are for
the R-detector. These probabilities are similar to Eq. (B7).
The difference is that the probabilities in Eq. (B7) are
mutually exclusive, while in Eq. (B9), the probabilities
PμðLÞ and PμðRÞ are independent.
All the above probability formulas are functions of the

phase difference ϕδ. In the simulation, one needs to
integrate ϕδ over its probability distribution fϕδ

ðϕÞ.
Recall that the phase reference deviation between Alice
and Bob is ϕ0. Here, with the phase postcompensation
method introduced in Appendix A 6, we assume that ϕ0 is
uniformly distributed in ½−π=M; π=MÞ, denoted by

ϕ0 ∼U½−π=M; π=MÞ: ðB10Þ

In this case, ϕa and ϕb are uniformly distributed in
½0; 2π=MÞ and ½ϕ0; 2π=M þ ϕ0Þ, respectively,

ϕa ∼ U½0; 2π=MÞ;
ϕb ∼ U½ϕ0; 2π=M þ ϕ0Þ: ðB11Þ

For a fixed ϕ0, the probability distribution of the phase
difference ϕδ is given by

TABLE III. Probability table of clicks with dark counts present.

Dark count condition Contributions to the overall click probabilities

L-dark count R-dark count No-click PðkÞ
0 L-click PðkÞ

L R-click PðkÞ
R

Double-click PðkÞ
LR

ð1 − pdÞ ð1 − pdÞ pðkÞ
0 pðkÞ

l pðkÞ
r pðkÞ

lr
ð1 − pdÞ pd 0 0 pðkÞ

0 þ pðkÞ
r pðkÞ

l þ pðkÞ
lr

pd ð1 − pdÞ 0 pðkÞ
0 þ pðkÞ

l
0 pðkÞ

r þ pðkÞ
lr

pd pd 0 0 0 1
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fðϕ0Þ
ϕδ

ðϕÞ ¼

8>>>>>><
>>>>>>:

�
M
2π

�
2
�
ϕþ

�
2π

M
− ϕ0

��
ϕ ∈

�
ϕ0 − 2π

M ;ϕ0

�
;�

M
2π

�
2
�
−ϕþ

�
2π

M
þ ϕ0

��
ϕ ∈

�
ϕ0;ϕ0 þ 2π

M

�
;

0 otherwise:

ðB12Þ

Furthermore, in the simulation, one needs to take another integration of ϕ0 over ½−π=M; π=MÞ to get the yields, gain, and
error rates.

2. Yields, gain, and error rates

We first analyze the yield fYkg for k ≥ 0 and the total gainQμ according to the probability formulas given in Appendix B
1. Note that, in PM-QKD, both no-click and double-click events are regarded as failure detection. The yield Yk of the k-
photon state is given by Eqs. (B5)–(B7),

Yk ¼ PðkÞ
L þ PðkÞ

R ¼ ð1 − pdÞðpðkÞ
l þ pðkÞ

r Þ þ 2pdð1 − pdÞpðkÞ
0

¼ ð1 − pdÞ
��

1 − ηsin2
�
ϕδ

2

��
k
þ
�
1 − ηcos2

�
ϕδ

2

��
k
�
− 2ð1 − pdÞ2ð1 − ηÞk

≈ ð1 − pdÞ(1þ ð1 − ηÞk) − 2ð1 − pdÞ2ð1 − ηÞk
¼ ð1 − pdÞ½1 − ð1 − 2pdÞð1 − ηÞk�
≈ 1 − ð1 − 2pdÞð1 − ηÞk: ðB13Þ

Here, in the first approximation, we take the first order of a small ϕδ and ignore sin2ðϕδ=2Þ ¼ 0. In the second
approximation, we omit the higher-order term pd½1 − ð1 − 2pdÞð1 − ηÞk� ¼ Oðp2

d þ pdηÞ, since normally pd is small.
The total gain Qμ is given by Eq. (B9),

Qμ ¼ PðLÞPðR̄Þ þ PðL̄ÞPðRÞ

¼ ð1 − pdÞ exp
�
−ημsin2

�
ϕδ

2

���
1 − ð1 − pdÞ exp

�
−ημcos2

�
ϕδ

2

���

þ ð1 − pdÞ exp
�
−ημcos2

�
ϕδ

2

���
1 − ð1 − pdÞ exp

�
−ημsin2

�
ϕδ

2

���
≈ ð1 − pdÞ½1 − ð1 − pdÞ exp ð−ημbÞ� þ pdð1 − pdÞ exp ð−ημbÞ
¼ ð1 − pdÞ½1 − ð1 − 2pdÞe−ημ�
≈ 1 − e−ημ þ 2pde−ημ; ðB14Þ

where the two approximations are the same as the ones
used in Eq. (B13). Since ϕδ does not affect the yields Yk
and gain Qμ much with the first-order approximation, the
average yields Yk and gain Qμ over ϕδ∈½−π=M;π=MÞ can
be regarded as the ones when ϕδ ¼ 0. Also, the results of
Eqs. (B13) and (B14) are consistent with the ones presented
in the regular QKDmodel [44], as shown in Eqs. (B29) and
(B30).
Then, we calculate the bit error rate for the k-photon

signal eZk and the QBER EZ
μ with coherent states input

μa ¼ μb ¼ μ=2. The bit error rate eZk ðϕδÞ is given by

eZk ðϕδÞ ¼
PðkÞ
R

PðkÞ
L þ PðkÞ

R

; ðB15Þ

where PðkÞ
L and PðkÞ

R are given by Eqs. (B5)–(B7). The
average bit error rate of eZk over ϕδ is given by the following
integral,

eZk ¼ M
2π

Z
π=M

−π=M
dϕ0

Z
3π=M

−3π=M
dϕfðϕ0Þ

ϕδ
ðϕÞeZk ðϕÞ; ðB16Þ

where fðϕ0Þ
ϕδ

ðϕÞ is given by Eq. (B12). For the case k ¼ 1,
we explicitly calculate the error rate eZ1 , given by Eqs. (B5),
(B6), (B7), and (B15),

eZ1 ðϕδÞ ¼
ð1 − pdÞ2pð1Þ

l þ pdð1 − pdÞðpð1Þ
0 þ pð1Þ

l Þ
ð1 − pdÞ2ηþ pdð1 − pdÞð2 − ηÞ

¼ sin2ðϕδ=2Þηþ pdð1 − ηÞ
ηþ 2pdð1 − ηÞ ; ðB17Þ

PHASE-MATCHING QUANTUM KEY DISTRIBUTION PHYS. REV. X 8, 031043 (2018)

031043-19



and integrate Eq. (B17) with Eq. (B16),

eZ1 ¼ M
2π

Z
π=M

−π=M
dϕ0

Z
3π=M

−3π=M
dϕfðϕ0Þ

ϕδ
ðϕÞeZ1 ðϕÞ

¼ eδηþ pdð1 − ηÞ
ηþ 2pdð1 − ηÞ ; ðB18Þ

where

eδ ¼
π

M
−
M2

π2
sin3

�
π

M

�
ðB19Þ

can be regarded as the misalignment error rate.
Equation (B18) can be understood that, if a signal causes
a click, the error rate is eδ; and if a dark count causes a
click, the error rate is e0 ¼ 1=2. Since the double-click
events are discarded, when both a signal and a dark count
cause clicks, the error rate is eδ. Then, we can approximate
eZk with the same spirit, for the contributions in Yk, given in
Eq. (B13),

eZk ≈
pdð1 − ηÞk þ eδ½1 − ð1 − ηÞk�

Yk
: ðB20Þ

Here, note that, in Eq. (B20), we ignore the double clicks
caused by multiphoton signals, which would further reduce
the misalignment error and, hence, the value of eZk . The
QBER EZ

μ ðϕδÞ for a given ϕδ is given by substituting
Eq. (B9),

EZ
μ ðϕδÞ¼

PðL̄ÞPðRÞ
PðL̄ÞPðRÞþPðLÞPðR̄Þ

¼ 1

Qμ
ð1−pdÞexp

�
−ημcos2

�
ϕδ

2

��

×

	
1−ð1−pdÞexp

�
−ημsin2

�
ϕδ

2

��


¼ 1

Qμ
ð1−pdÞ

	
exp

�
−ημcos2

�
ϕδ

2

��
−ð1−pdÞe−ημ




≈
e−ημ

Qμ

�
pdþημsin2

�
ϕδ

2

��
ðB21Þ

similar to Eq. (B18),

EZ
μ ¼ M

2π

Z
π=M

−π=M
dϕ0

Z
3π=M

−3π=M
dϕfðϕ0Þ

ϕδ
ðϕÞEZ

μ ðϕδÞ

¼ ðpd þ ημeδÞe−ημ
Qμ

; ðB22Þ

where eδ is given in Eq. (B19). The results of Eqs. (B22)
and (B18) are consistent with the one presented in the
regular QKD model [44], as shown in Eqs. (B29) and
(B30), with a slight difference. The difference is caused by
how the double-click events are processed. In BB84, Alice

and Bob need to randomly assign a bit to double clicks,
while in PM-QKD, double clicks are discarded.
Now, we can evaluate the key rate with the above model.

Let us restate the key-rate formula, Eq. (A37),

RPM ≥
2

M
Qμ½1 − fHðEZ

μ Þ −HðEX
μ Þ�; ðB23Þ

where the phase error rate is given by Eq. (A33),

EX
μ ¼

X∞
k¼0

q2kþ1eZ2kþ1 þ
X∞
k¼0

q2kð1 − eZ2kÞ;

≤ q0eZ0 þ
X∞
k¼0

eZ2kþ1q2kþ1 þ ð1 − q0 − qoddÞ: ðB24Þ

In simulation, Qμ and EZ
μ are given by Eqs. (B14) and

(B22). The fractions, fqkg with k ≥ 0, of different photon
components k contributing to the valid detections (L=R
clicks) are given by

qk ¼
PðkÞYk

Qμ
¼ e−μ

μk

k!
Yk

Qμ
: ðB25Þ

For the odd-photon-number component, we have

qodd ¼
X∞
k¼0

q2kþ1

¼ 1

Qμ

X∞
k¼0

Y2kþ1μ
2kþ1e−μ

ð2kþ 1Þ!

¼ e−μ

Qμ

X∞
k¼0

	
μ2kþ1

ð2kþ 1Þ! − ð1 − 2pdÞ
½ð1 − ηÞμ�2kþ1

ð2kþ 1Þ!



¼ e−μ

Qμ
fsinhðμÞ − ð1 − 2pdÞ sinh½ð1 − ηÞμ�g: ðB26Þ

To simplify the simulation, we explicitly calculate the
eZk and qk for 0 ≤ k ≤ 5. Further zooming into Eq. (B24),
we have

EX
μ ¼

X∞
k¼0

q2kþ1eZ2kþ1 þ
X∞
k¼0

q2kð1 − eZ2kÞ;

≤ q0eZ0 þ ðq1eZ1 þ q3eZ3 þ q5eZ5 Þ
þ ð1 − q0 − q1 − q3 − q5Þ; ðB27Þ

where eZk and qk are given by Eqs. (B15) and (B25),
respectively.

3. Simulation formulas for BB84 and MDI-QKD
protocol and simulation parameters

We compare our derived key rate with that of the
prepare-and-measure BB84 [1] protocol, whose key rate
is given by the GLLP-decoy method [23].

XIONGFENG MA, PEI ZENG, and HONGYI ZHOU PHYS. REV. X 8, 031043 (2018)

031043-20



The key rate of the decoy-state BB84 protocol is given
by [25]

RBB84 ¼
1

2
Qμf−fHðEZ

μ Þ þ q1½1 −HðeX1 Þ�g; ðB28Þ

where 1=2 is the basis sifting factor.
In the simulation, the yield and error rates of the k-

photon component are given by [19]

Yk ¼ 1 − ð1 − Y0Þð1 − ηÞk;

ek ¼ ed þ
ðe0 − edÞY0

Yk
; ðB29Þ

where ed is the intrinsic misalignment error rate caused
by a phase reference mismatch. The gain and QBER are
given by

Qμ ¼
X∞
k¼0

μke−μ

k!
Yk;

¼ 1 − ð1 − Y0Þe−ημ;

Eμ ¼
X∞
k¼0

μke−μ

k!
ekYk;

¼ ed þ
ðe0 − edÞY0

Qμ
; ðB30Þ

where Y0 ¼ 2pd and e0 ¼ 1=2.
The key rate of MDI-QKD is given by [15]

RMDI ¼
1

2
fQ11½1 −Hðe11Þ� − fQrectHðErectÞg; ðB31Þ

where Q11 ¼ μaμbe−μa−μbY11, and 1=2 is the basis sifting
factor. We take this formula from Eq. (B27) in Ref. [18]. In
simulation, the gain and error rates are given by

Y11 ¼ ð1 − pdÞ2
�
ηaηb
2

þ ð2ηa þ 2ηb − 3ηaηbÞpd

þ 4ð1 − ηaÞð1 − ηbÞp2
d

�
;

e11 ¼ e0Y11 − ðe0 − edÞð1 − p2
dÞ
ηaηb
2

;

Qrect ¼ QðCÞ
rect þQðEÞ

rect;

QðCÞ
rect ¼ 2ð1 − pdÞ2e−μ0=2½1 − ð1 − pdÞe−ηaμa=2�

× ½1 − ð1 − pdÞe−ηbμb=2�;
QðEÞ

rect ¼ 2pdð1 − pdÞ2e−μ0=2½I0ð2xÞ − ð1 − pdÞe−μ0=2�;
ErectQrect ¼ edQ

ðCÞ
rect þ ð1 − edÞQðEÞ

rect: ðB32Þ

Here,

μ0 ¼ ηaμa þ ηbμb;

x ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηaμaηbμb

p
; ðB33Þ

where μ0 denotes the average number of photons reaching
Eve’s beam splitter, and μa ¼ μb ¼ μ=2, ηa ¼ ηb ¼ η. We
take these formulas from Eqs. (A9), (A11), (B7), and
(B28)–(B31) in Ref. [18].
In 2014, Takeoka et al. derived an upper bound of the

key rate of the point-to-point-type QKD protocols [10],

RTGW ¼ −log2

�
1 − η

1þ η

�
: ðB34Þ

Later, Pirandola et al. established a tight upper bound [11],

RPLOB ¼ − log2ð1 − ηÞ; ðB35Þ

which is the linear key-rate bound used in the main text.
Note that Eq. (B35) is the secret key capacity of the pure
loss channel, as it coincides with the lower bound pre-
viously known [45].

APPENDIX C: BEAM-SPLITTING ATTACK:
INVALIDATION OF THE PHOTON

NUMBER CHANNEL MODEL

Here, we argue that the tagging technique does not work
for PM-QKD, by showing that the lower bound of the key
rate from naively employing the tagging technique can be
higher than an upper bound derived from a specific attack, in
some parameter regime. The failure of the tagging technique
stems from the failure of the photon number channel model
used in the security proof [19]. In other words, the photon
number channel model does not hold for the case when the
random phases are announced during postprocessing.

1. Key rate with/without the photon number channel

Assuming the existence of the photon number
channel model in PM-QKD, we can apply the tagging
method and obtain a key-rate formula following the GLLP
analysis [23,25],

rGLLP ¼ q1½1 −HðeX1 Þ� − fHðEZ
μ Þ; ðC1Þ

where q1 is the single-photon detection ratio, eX1 and EZ
μ are

the single-photon phase error rate and total QBER, and f is
the error correction efficiency.
As for comparison, our PM-QKD key-rate formula is

given by Eq. (A15),

rPM ¼ 1 −HðEZ
μ Þ −HðEX

μ Þ; ðC2Þ
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where EX
μ is bounded by Eq. (B27),

EX
μ ¼

X∞
k¼0

q2kþ1eZ2kþ1 þ
X∞
k¼0

q2kð1 − eZ2kÞ;

≤ q0eZ0 þ ðq1eZ1 þ q3eZ3 þ q5eZ5 Þ
þ ð1 − q0 − q1 − q3 − q5Þ: ðC3Þ

2. Beam-splitting attack

Now, we consider a beam-splitting attack, where Eve
sets beam splitters with transmittance η on both Alice and
Bob’s side to simulate a lossy channel. She intercepts the
pulses on A and B, regardless of the keys and bases of the
pulses, and stores the reflected lights on her quantum
memories, modes A0 and B0. Eve interferes the two
transmitted pulses, modes A1 and B1, and announces
the results. After Alice’s and Bob’s phase announcements,
Eve performs an unambiguous state discrimination (USD)
[46] on the states on modes A0 and B0 separately to guess
the key information. Since the states on A0ðB0Þ and
A1ðB1Þ are uncorrelated because of the beam splitting of
coherent states, the beam-splitting attack will not introduce
any error or other detectable effects. Apparently, this beam-
splitting attack is an individual attack. We will calculate
Eve’s successful probability for guessing the key bits
unambiguously, and calculate the mutual information
IðκaðbÞ∶EÞ, from which we can derive an upper bound
on the secure key rate.
In PM-QKD, Alice and Bob prepare coherent states

fj ffiffiffiffiffi
μa

p
eiðϕaþκaÞiA and j ffiffiffiffiffi

μb
p

eiðϕbþκbÞiBg, where μa ¼ μb ¼
μ=2, ϕa, ϕb ∈ ½0; 2πÞ are the random phases, and κa, κb ∈
f0; πg are the key information. The states on system A0, B0
reflected by Eve’s beam splitters are given by

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
eiðϕaþκaÞiA0;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμb

p
eiðϕbþκbÞiB0: ðC4Þ

The two remaining pulses on the system A1, B1, used for
interference, are given by

j ffiffiffiffiffiffiffi
ημa

p
eiðϕaþκaÞiA1;

j ffiffiffiffiffiffiffi
ημb

p
eiðϕbþκbÞiB1: ðC5Þ

Suppose Eve interferes systems A1 and B1; then the total
gain Qμ is given by

Qμ ¼ 1 − e−ημ: ðC6Þ
Here, we consider the signal with ϕa ¼ ϕb, and Eve holds
perfect single-photon detectors. Without loss of generality,
we consider Eve’s attack on system A0. If Eve cannot get
the sifted phase information ϕa, then no matter the value of
key phases κa, the state on A0 from Eve’s perspective is

1

2π

Z
2π

0

dϕaj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
eiðϕaþκaÞiA0h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
eiðϕaþκaÞj

¼
X∞
k¼0

Pð1−ηÞμaðkÞjkiA0hkj; ðC7Þ

where

Pð1−ηÞμaðkÞ ¼ ½ð1 − ηÞμa�k
k!

e−ð1−ηÞμa : ðC8Þ

In this case, Eve cannot obtain any information about κa.
While in PM-QKD, the phase ϕa will be announced. In this
case, Eve can first rotate the states on system A0 by −ϕa.
Now, the state becomes

1

2
ðj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
iA0h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
j

þ j −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
iA0h−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞμa

p
jÞ: ðC9Þ

Then, Eve only needs to determine whether the phase κa is
0 or π to obtain the key information. As shown in Ref. [46],
if two pure states jpi and jqi are prepared with the same
a priori 1=2, the maximum probability of unambiguous
discrimination is

Pdes ¼ 1 − jhpjqij: ðC10Þ

Therefore, the probability of successfully distinguishing the
states j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞμa

p i and j − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞμa
p i is given by

Psuc ¼ 1− jh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ηÞμa

p
j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ηÞμa

p
ij ¼ 1−e−ð1−ηÞμ:

ðC11Þ

Note that Eve already know the value κa − κb with
interference results on A1, B1. Eve only needs to learn
either of κa or κb. Thus, Eve’s successful unambiguous
measurement probability is

PBS ¼ 1 − ð1 − PsucÞ2 ¼ 1 − e−2ð1−ηÞμ: ðC12Þ

If the light intensity μ is large enough, PBS ¼ 1, then Eve
can learn the key information with a high probability.
With unambiguous state discrimination, the mutual

information of Eve’s measurement result (denoted by
variable E) and Alice’s and Bob’s key κaðbÞ is

IðκaðbÞ∶EÞ ¼ PBS ¼ 1 − e−2ð1−ηÞμ: ðC13Þ

Suppose that there is no extra error induced by other
factors; then the beam-splitting attack provides an upper
bound on the key rate,
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rBS ¼ ½1 − IðκaðbÞ∶EÞ�
¼ e−2ð1−ηÞμ

¼ e−2μ

ð1 −QμÞ2
: ðC14Þ

Here, the third equality is based on Eq. (C6).

3. Comparison

Now we make a simulation to compare the key rate in the
following cases: with the “tagging”method, by our security
proof, and the upper bound under the beam-splitting attack.
In the discussion, we neglect the misalignment error and
dark counts.
First, under the beam-splitting attack, the yield is given

by

Yk ¼ 1 − ð1 − ηÞk; ðC15Þ

and the fraction of the k-photon component is

qk ¼
�
e−μ

μk

k!

�
Yk

Qμ
¼ ½1 − ð1 − ηÞk� e

−μμk

k!Qμ
: ðC16Þ

Note that q0 ¼ 0.
Second, in the beam-splitting attack scenario, Eve’s

operations will not introduce any error; hence,

eZk ¼ 0; ∀ k ≥ 0;

EZ
μ ¼ 0: ðC17Þ

Then Eqs. (C1), (A15), and (B27) can be simplified to

rGLLP ¼ q1 ¼ ημe−μ;

rPM ¼ ½1 −HðEXÞ�
≥ ½1 −Hð1 − q1 − q3 − q5Þ�: ðC18Þ

We compare the key-rate formula rGLLP, rPM in
Eq. (C18) with the key-rate upper bound by the beam-
splitting attack rBS in Eq. (C14). We set the total light
intensity to be a typical value μ ¼ 0.5, and we adjust η to
compare the key-rate performance. As shown in Fig. 8, the
GLLP “tagging” formula for the “single-photon” compo-
nent cannot hold under the beam-splitting attack for a
transmittance η < 0.6. If we fix the transmittance η ¼ 0.2
and adjust μ, Fig. 9 shows that the GLLP tagging formula
cannot hold under the beam-splitting attack.
The beam-splitting attack results serve to invalidate the

tagging method so that even the single-photon component
cannot exist, since the announcement of phase ϕa, ϕb will
leak more information of the key bits κa and κb.
Recently, Wang et al. proposed an eavesdropping strat-

egy to the TF-QKD protocol [47]. The attack can also be
performed against the PM-QKD protocol. Under such an
attack, Eve can learn all the key bits. The key rate provided
by the GLLP formula, Eq. (C1), is 0.5 (for all the clicked
signals), while that given by our security proof is strictly 0.
This also shows the invalidation of the GLLP key-rate
formula, and our security proof is still valid under such an
attack.

APPENDIX D: COMPARISON WITH OTHER
PHASE-ENCODING MDI-QKD

Here, we compare three related phase-encoding MDI-
QKD protocols, including the previous phase-encoding
MDI-QKD (Scheme I in Ref. [17]), the recently proposed

FIG. 8. Key-rate comparison with fixed light intensity μ ¼ 0.5.
Here, we can see that the GLLP tagging formula for the single-
photon component cannot hold under the beam-splitting attack
when the transmittance η < 0.6.

FIG. 9. Key-rate comparison with fixed transmittance η ¼ 0.2.
The GLLP tagging formula for the single-photon component
cannot hold under the beam-splitting attack.
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TF-QKD [16], and our protocol (PM-QKD). For the
simplicity of the statements, we assume that the phase
reference of Alice and Bob is locked in all the protocols.

1. Phase-encoding MDI-QKD

In the phase encoding MDI-QKD (Scheme I in
Ref. [17]), Alice generates two random bits κa, βa as the
key and the random choice of the X or Y basis, respectively,
and then generates a coherent pulse j ffiffiffiffiffiffiffiffi

μ=2
p

eiðπκaþπβa=2ÞiA.
Similarly, Bob generates j ffiffiffiffiffiffiffiffi

μ=2
p

eiðπκbþπβb=2ÞiB. They send
their coherent pulses to Eve, who is supposed to perform an
interference measurement and announce the detection
results [Fig. 10(a)]. After Eve’s announcement, Alice
and Bob announce the basis information βa, βb and perform
basis sifting.
Note that there is only single-photon detection in this

protocol. Therefore, the number of clicked signals scales
with Oð ffiffiffi

η
p Þ, where η is the total transmittance between

Alice and Bob. However, there is a considerable source
flaw caused by using a coherent state as an approximation
of an ideal single-photon state, resulting in a final key rate
of OðηÞ.

2. TF-QKD

To avoid the performance deterioration caused by the
source flaw in the phase-encoding MDI-QKD protocol
above, a natural idea is to apply the decoy-state method
[25], that is, to perform phase randomization, and to
estimate the fraction of q1 and the error rate e1 of a
single-photon component.
Recently, Lucamarini et al. modified the phase-encoding

QKD protocol, namely, TF-QKD [16]. As shown in
Fig. 10(b), Alice generates two random bits κa, βa as
the key, chooses randomly the X or Y basis, and modulates
another random phase ϕa for the phase randomization
in the decoy-state method. She generates a coherent
pulse j ffiffiffiffiffiffiffiffi

μ=2
p

eiðπκaþπβa=2þϕaÞiA. Similarly, Bob generates a
coherent pulse j ffiffiffiffiffiffiffiffi

μ=2
p

eiðπκbþπβb=2þϕbÞiB. They send their
coherent pulses to Eve, who is supposed to perform the
interference measurement and announce the detection
results. After Eve’s announcement, Alice and Bob
announce βa, βb;ϕa, ϕb and perform basis sifting and
phase sifting.

3. d-phase phase-matching QKD

In the d-phase PM-QKD, Alice first generates a random
integer κa ∈ f0; 1;…; d − 1g and then prepares a coherent
pulse j ffiffiffiffiffiffiffiffi

μ=2
p

exp ½iκað2π=dÞ�iA. Similarly, Bob generates
κb ∈ f0; 1;…; d − 1g and prepares a similar state
j ffiffiffiffiffiffiffiffi

μ=2
p

exp ½iκbð2π=dÞ�iB. They send their coherent pulses
to Eve, who is supposed to perform an interference
measurement and announce the detection results. If Eve
announces detector L=R clicks, Alice and Bob keep the
numbers κa, κb and which detector clicks.
After many rounds of the steps above, Alice and Bob

randomly select some of the data, announce them, and
calculate the L=R detection probability for each case. By
the estimated probabilities, they calculate the key rate and
extract private keys.
As we can see, after Eve’s announcement, Alice and Bob

will share some mutual information. While Eve cannot
fully learn the variable κa, the information-secure key can
be generated between Alice and Bob.
The PM-QKD protocol in the main text and Appendix A

corresponds to the case of d ¼ 2, which is combined with a
random phase announcement and the decoy-state method.
In Appendix A, we completed the proof for the PM-QKD
of d ¼ 2 with a random phase announcement. The security
proof for this generalized case is left for future work.

4. Comparison of different protocols

In all three protocols, phase-encoding MDI-QKD [17],
TF-QKD [16], and PM-QKD, single-detection clicks on the
untrusted node are used as successful measurement events,
whose rate scales with Oð ffiffiffi

η
p Þ. Technically, this is the

reason why the key rate could have square-root scaling in

(a)

(b)

(c)

FIG. 10. (a) Schematic diagram of phase-encoding MDI-QKD
(Scheme I in Ref. [17]). (b) Schematic diagram of TF-QKD,
which is the decoy-state version of the scheme in (a). (c) Sche-
matic diagram of d-phase PM-QKD.
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the first place [16]. Nevertheless, in the phase-encoding
MDI scheme, without phase randomization, the single-
photon source can be approximated by two weak coherent
states, which decreases significantly the key rate of the
protocol to OðηÞ. In TF-QKD, a single-qubit view is taken
and a higher key rate is targeted. Unfortunately, the phase
announcement invalidates the existence of the photon
number channel model [19], and, hence, no enhancement
can be claimed by directly applying the decoy-state method
onto the phase-encoding MDI-QKD scheme.
Here, in the phase-matching QKD scheme, we switch

from the qubit-based view to the optical-mode-based view.
As shown above, our proposed phase-matching QKD
follows the phase-encoding MDI-QKD scheme and the
TF-QKD scheme, by modifying the encoding and basis
choice. The name “phase-matching (MDI-)QKD” follows
“phase-encoding MDI-QKD.” We removed MDI (which is
not the key point to our work) to make the name concise.
The PM-QKD protocol in the main text and Appendix A

is the one with d ¼ 2 and random phase announcement.
Though the current practical implementations of phase-
encoding MDI-QKD/TF-QKD and PM-QKD do resemble
each other, the security scenarios are quite different. The
TF-QKD can be taken as an extension of the BB84
protocol, which utilizes the single-photon source and is
a discrete-variable QKD protocol. In the future, many
discrete-variable QKD design techniques, such as a six-
state protocol and reference-frame-independent protocol,
can be employed in this framework. On the other hand, in
PM-QKD, we focus more on the optical modes rather than
single-photon states (qubits). It would be interesting to see
whether the security proof techniques developed in con-
tinuous-variable QKD can be applied to PM-QKD.

5. Recent related works on TF-QKD

There are some recent works based on TF-QKD. Tamaki
et al. provided a security proof of the TF-QKD protocol
[48]. They modified the TF-QKD protocol by introducing a
“test mode,” where Alice and Bob do not announce the
phase information and the photon-number-channel model
holds. The original TF-QKD protocol is called “code
mode.” Following the original security proof of phase-
encoding MDI-QKD [17], they estimated the phase error
EX by considering the imbalance of different bases. With a
fair sampling argument on the test mode and the code
mode, the basis imbalance in the code mode can be
estimated by the one in the test mode. A square-root-
scaling key rate has been derived, but it is significantly
lower than ours. Note that there are still two bases in
Tamaki et al.’s protocol and security proof, which follows
the qubit-based view of BB84. The two-basis requirement
in the security proof implies that it cannot be applied to our
PM-QKD protocol directly, which also highlights the
difference between the phase-encoding MDI-QKD/TF-
QKD and PM-QKD.

Wang et al. proposed a “sending or not sending” TF-
QKD protocol [49], which aims to utilize the Z-basis of
single-photon for key generation, following the viewpoint
of TF-QKD. However, the definition of the Z-basis
encoding seems confusing. In the original TF-QKD pro-
tocol, the definitions of the X or Y bases refer to the
ancillary bits rather than the real single photon. Also, the
Z-basis encoding on the real photon does not correspond to
a Z-basis encoding on the ancillary bits. This protocol
needs further studies.
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