
Real-Time Recursive Routing in Payment Channel
Network: A Bidding-based Design

Jiayuan Liu∗, Canhui Chen∗, Lulu Zhou† and Zhixuan Fang∗‡
∗IIIS, Tsinghua University, Beijing, China

†Department of Computer Science, Duke University, USA
‡Shanghai Qi Zhi Institute, Shanghai, China

Abstract—Payment Channel Network (PCN) is proposed as a
promising layer-two solution to tackle the scalability problem of
current blockchain systems, which allows the two transacting par-
ties to perform off-chain transactions through their established
payment channel. For the transacting parties who are not directly
connected, PCN allows them to route the transaction through
some intermediate nodes with sufficient balance. Designing an
efficient routing protocol is one of the most important and
challenging problems in improving the performance of PCN. To
tackle this challenge, we propose Real-Time Recursive Routing
(RTRR), an efficient routing algorithm that can achieve a short
routing time with strong privacy protection and high flexibility
in the dynamic scenario. In addition, we investigate the bidding
process in RTRR and derive the equilibrium strategy, which
implies that the proposed protocol prefers to route the transaction
through the nodes with a higher success rate, contributing to
a better performance. Both the theoretical analyses and the
empirical experiment results demonstrate the high efficiency of
RTRR.

Index Terms—payment channel network, routing, pricing

I. INTRODUCTION

Blockchain systems are widely used in cryptocurrencies,
Internet of things, and other applications in that they are
decentralized, hard to tamper with, and highly reliable [1].
However, with their increasing popularity, the scalability prob-
lem becomes a primary concern ([2], [3]). Current solutions
for blockchain scalability can be classified into two directions
(see [4] and references therein). The first direction focuses on
layer-one on-chain optimization methods such as segregated
witness [5], block compression [6], and sharding [7], [8].
Layer-one methods usually improve the system performance
by redesigning the protocol on the main chain, which may
sometimes be hindered by the complexity of design, as well as
protocol compatibilities. The other direction focuses on layer-
two off-chain methods such as off-chain verification [9], off-
chain smart contract [10], and cross-chain technology [11].

As a fundamental building block of many layer-two ap-
plications, the mechanism of payment channel enables safe
and frequent transaction transfers between two users without
broadcasting to the blockchain. Instead of establishing chan-
nels between every two users, a more efficient solution is to
establish a Payment Channel Network (PCN) among payment
channel users so that funds can be transferred from the sender

Jiayuan Liu and Canhui Chen contribute equally.
Corresponding author: Zhixuan Fang at IIIS, Tsinghua University (Email:
zfang@mail.tsinghua.edu.cn).

to the receiver through intermediate nodes on the network.
Therefore, a problem arises: how to select intermediate nodes
to ensure successful and efficient transaction transfer, i.e.,
routing.

The Lightning Network [3] and the Raiden network [12]
are among the most famous and widely-used payment channel
networks in the current blockchain systems, both of which are
based on source routing [13]. In source routing, the sender
specifies the relay route for each transaction according to
the locally-cached global information, including the network
topology, the capacity of each channel in the network, etc.
Recent work on Spider [14] and Flash [15] is also based on
the source routing method.

One of the key concerns in source routing is the requirement
of global knowledge for all nodes, which leads to two major
problems. First, since global information of the network can
be acquired by every node in the network, the privacy of
nodes cannot be well preserved. Second, source routing may
not perform well in practical scenarios such as Internet of
things (IoT) or sensor network. In these scenarios, the com-
munication capacity is limited; the nodes (e.g., IoT devices)
have limited computing resources and may join and leave the
network all the time, leading to a fragile dynamic network of
frequently changing network topology and channel balance (
[16]–[18]). In this case, the request for consistent updates of
global network information imposes much pressure on network
communication and a huge processing load on the nodes in
the network. It would be impractical for all nodes to keep
track of all changes in the network. Thus, source routing could
induce a dilemma for these dynamic networks: The outdated
global information could lead to multiple retries of routing,
degenerating the system performance, while the frequent up-
date of global network information among nodes could lead
to congestion and a direct performance degeneration.

To tackle this problem, we propose a routing scheme, Real-
Time Recursive Routing (RTRR), where each node only needs
to interact with its neighboring nodes without accessing global
information. Different from the source routing, where the
transaction initiator is totally responsible for finding a path
and relaying the transaction, RTRR adopts a more flexible and
decentralized routing approach, where the subsequent node is
chosen recursively by outsourcing during the relay process.
Furthermore, we develop an auction model to investigate
the dynamic pricing in the outsourcing process. We propose

TABLE I
COMPARISON WITH OTHER ROUTING SCHEMES.

RTRR Traditional Source Routinga Spider Landmark-Routing DHT

Privacy
Local information only " % % " "

Broadcast-free " % % % "

Decentralized routing " " " % "

Performance

Dynamic pricing " % % % %
Routing time Fast Medium Medium Fast Fast

Cost for topology change Low High High Low High
Healthy balance Medium Low High Low Low

aincludes Lightning Network, Raiden Network, shortest-path, min-cost, water-filling, etc.

a variant of HTLC protocol [3], the HTLC-bid protocol,
that incorporates a bidding process into the payment chan-
nel transfer to facilitate the outsourcing auction. Theoretical
analysis shows that the proposed mechanism adapts to network
changes with dynamic pricing and helps to improve the system
performance. To validate the proposed routing scheme, we
also conduct intensive experiments, on both synthetic and real-
world network topologies. Experiment results demonstrate the
high performance of RTRR.

The main contributions are listed as follows.
• We propose a routing scheme in PCN, Real-Time Re-

cursive Routing (RTRR), which simultaneously supports
distributed routing and dynamic pricing with only local
information and achieves strong privacy protection. In
addition, to facilitate a secure auction-based routing pro-
cess, we design the HTLC-bid protocol, a variant from
the current HTLC in PCN.

• We characterize the routing process in PCN and show that
RTRR can achieve a shorter transaction routing time than
the source routing algorithm. In addition, we investigate
the bidding process in RTRR and derive the equilibrium
strategy, which implies that the RTRR prefers to route
the transaction through the nodes with a higher success
rate, contributing to a higher performance of RTRR.

• We conduct intensive experiments using the data from
Lightning Network to show the performance advantage
of RTRR. Experiment results show that RTRR can route
a transaction with less time and a lower transaction fee
compared with the existing protocols.

In the following sections, we first formally give our model
of PCN, routing scheme, and contract design with secu-
rity guarantee in Section III. In Section V, we analyze the
performance of our scheme. In Section IV, we construct a
model for self-interested bidding strategy. In Section VI, some
experiment settings and results are presented showing the
performance of our method compared with several existing
ones. Finally, there are some discussions and conclusions.

II. RELATED WORK

Prior work has proposed several routing schemes that are
used in some existing payment channel networks (PCNs). For
example, Lightning Network [3], a PCN in Bitcoin [19], and
Raiden Network [12], an off-chain network in Ethereum [20],
both of which serve as tentative solutions to the scalability

problem of cryptocurrency. Both Lightning Networks and
Raiden Networks use the source routing mechanism, i.e., the
transaction initiator is responsible for finding the complete
transaction route, and specifying the exact intermediate nodes
for the relay. Such source-based routing scheme is efficient
when information such as network topology is accurate and
up to date. However, in a dynamic network environment, nodes
may go offline at any time, and the payment channel may not
be available due to insufficient balance.

Recently, Spider [14] is proposed as another source routing
scheme in PCN. It divides transactions into small packages,
and routes in a package switching network according to the
solution to a local optimization problem that maximizes the
network throughput and maintains the channels at a balanced
state. Another source routing scheme, Celer [21], also tries
to keep the channels balanced by adopting a network flow
routing scheme cRoute where each node runs the optimization
algorithm to find the route according to the network congestion
condition in its vicinity. However, [4] points out that these
schemes may suffer from scalability issue due to the complex
local computation overhead, especially when the network is
changing frequently.

In addition to source routing, there are many new schemes
based on local information. Flare [22] utilizes Distributed
Hash Table (DHT) to find routes in PCN, but it does not
support network topology changes [4]. SilentWhispers [23]
adopts the landmark routing transaction routing scheme, where
there are several supernodes dedicated as landmarks through
which transactions are relayed. To reduce the computational
overheads of SilentWhispers, SpeedyMurmurs [24] adopts an
embedded routing scheme and uses the spanning-tree structure
to maintain the network topology. However, SpeedyMurmurs
does not consider the balance on the payment channels, which
also causes inefficiency in the dynamic PCNs [4].

Previous routing schemes usually rely on one of the fol-
lowing assumptions, e.g., updated information, static network
topology, or centralized source routing. As a comparison,
we show in Table I that our proposed Real-Time Recursive
Routing (RTRR) simultaneously supports distributed routing
and dynamic pricing with only the local information, achieves
strong privacy protection, and well adapts to topology changes.

TABLE II
DESCRIPTION OF COMMONLY-USED NOTATIONS.

Variable Description
G the PCN modeled by a graph
E the set of edges in graph G
V the set of nodes in graph G
s the source node of a transaction
t the destination node of a transaction
µ the value of a transaction
f the transaction fee in RTRR
d the security deposit in RTRR
τ the auction phase timeout in RTRR
Tb the bidding lock time in RTRR
Tt the transfer lock time in RTRR

pu[t] the success rate of transactions through node u to node t

III. REAL-TIME RECURSIVE ROUTING

In this section, we first introduce the PCN model, then
describe the way RTRR routes transactions, and finally explain
how security is guaranteed in this routing scheme.

A. PCN Model

Payment Channel Network (PCN) builds upon bidirectional
payment channels and each payment channel connects two
parties. Both parties of a payment channel put a certain
amount of money in escrow. If one party wants to send
money to another, then the two parties reassign the distribution
of the total escrow by cryptographically signing a message
establishing a joint agreement of the new balances on the two
sides.

A PCN can be modeled by a directed graph G(V,E) where
V is the set of nodes, i.e. participants of PCN, and E is the
set of directed edges representing the payment channels. Note
that each bidirectional payment channel between two nodes
u, v is represented by two directed edges in G, edge (u, v)
and edge (v, u). Each edge e = (u, v) is associated with a
value be representing the remaining balance on the channel
from u to v, i.e., at most be amount of value can be relayed
from u to v. The deposited value be will be secured in the
channel with the signatures of both parties.

To successfully relay a transaction tx(s, t, µ) from s to t
with value µ, a routing scheme needs to find a route in PCN
from s to t where each node on the route is currently online
and each edge on the route has enough remaining balance for
value µ. During the routing process, the nodes on the routing
path will deposit the transaction value and the corresponding
transaction fee on the Hash Time Lock Contracts (HTLCs)
[3] of their related channels, these values will be locked until
the transaction succeeds or timeout Tt expires. If a transaction
succeeds, then for each edge e = (u, v) on the selected relay
route, its balance be will be updated to be−µ and the balance
be′ on the reverse direction edge e′ = (v, u) will be updated
to be′ + µ. Otherwise, if timeout Tt expires, the deposit value
locked in HTLCs will be unlocked and can then be withdrawn
by the nodes.

B. Real-time Recursive Routing and HTLC-bid

Unlike the source routing where the source node is respon-
sible for specifying a path to relay the transaction, we utilize
out-sourcing in RTRR where each node on the transaction
route selects one of its neighbors as the next node to relay,
and the selection process goes on recursively from the source
to the destination. In RTRR, each node is only required
to communicate with its neighbors, i.e., the nodes it has
established payment channels with. As a result, information
about the local network is enough for our protocol, which
substantially protects the privacy of each node in the network.

To ensure security, we design a modified version of HTLC
(HTLC-bid), which enables the implementation of both the
bidding lock and the transfer lock, as well as the security
deposit, i.e. the amount of compensation the bidder needs to
pay if it is selected to relay the transaction but fails.

In RTRR, each node v has the following three actions.
1) Notification: In this method, node v works as an auc-

tioneer which starts an auction and requests all its neighbors
to bid a transaction fee before a timeout τ for the current
transaction tx with destination t and value µ. Specially, if the
destination node t is one of v’s neighbors, then the routing
process successfully ends and t directly sends back to v the
preimage R of a hash value hash(R) as a proof of success.
The hash value is set in advance by the source node and its
preimage R is revealed only to the destination node before
routing starts [3].

2) Bidding: When receiving a fee-bidding invitation from
its neighboring node u, node v decides whether to participate
in bidding or not. If it decides to participate, it proposes a
bid (i.e. the required transaction fee) fv based on its local
information. It then constructs an HTLC-bid for u containing
the transfer lock time Tt and value µ + dv + fv that will be
locked in HTLC if signed by both parties. Here, dv is the
security deposit set to be a fixed portion of fv , which will
be paid to u as compensation if v fails to relay tx to the
destination. Node v signs on the contract and sends it to the
preceding node, agreeing to lock the amount of value dv on its
side for bidding lock time Tb where τ ≤ Tb ≪ Tt. This means
the contract is valid only if selected and signed by u within
Tb, and otherwise, the value dv is unlocked after Tb passes
and can immediately be used to bid for other transactions. If
node v decides not to bid, v would respond NO-ACK to the
principal, for example when it is unprofitable for v to relay
this transaction or v has already been found impassable for
the current transaction in previously failed relays.

3) Outsourcing: Having received at least one responding
contract from its neighbors, v chooses the node w with the
smallest bid to relay the transaction by accepting the corre-
sponding contract sent by w. It agrees to lock the transaction
value µ and w’s required fee fw into the HTLC for a transfer
lock time Tt, and meanwhile the security deposit dw continues
to be locked on w’s side for Tt. Node v sends the contract
signed by both parties to w, it is then w’s responsibility to
complete the remaining routing of tx by calling its Notification

Response
timeout τ

u (auctioneer) v1 (bidder 1) v2 (bidder 2)

Request bidding:
tx(value, destination)
Request bidding:
tx(value, destination)

Decide fee f1

Bidding: modified-HTLC
(value, f1+d1, Tt, Tb, sig1(1))

Decide fee f2

Bidding: modified-HTLC
(value, f2+d2, Tt, Tb, sig2(2))

Bidding lock (Tb) Bidding lock (<Tb)

Case 1: Successful

Case 2: Impassable

Restart
auction

Requesting bidding
on its neighbors

Get preimage from
subsequent node

Send back preimage

[Update channel balance]
Balance: +f2 Balance: -f2

Balance: -d2 Balance: +d2

No preimage received
in Timeout Tt

[Update channel balance]

Select and sign contract: sigu(2)

……

Transfer lock (Tt) Transfer lock (Tt)

Auction

Outsourcing

Fig. 1. Flow chart of RTRR.

method, repeating the bidding process with its neighboring
nodes.

• Successful: Node v relays the transaction successfully if
it receives the preimage from subsequent node within
transfer timeout Tt. Node v then sends the preimage to
its preceding node and gets all deposit value in HTLC
µ+ dv + fv . As a result, the preceding node pays fee fv
to relay value µ forward to its selected bidder v, while
node v withdraws its security deposit dv and earns fv .

• Impassable: Node v is impassable for transaction tx if
either auction timeout τ expires but none of v’s neighbors
responds to the bidding request, or transfer lock time
Tt expires but v has not received preimage from the
subsequent node. In these cases, v’s preceding node
gets all deposit value in HTLC µ + dv + fv , unlocking
µ + fv on its side and meanwhile earning dv from v
as compensation for the failure. The preceding node will
then restart a bidding process by calling its Notification
method. Specially, if v is the source node, the transaction
tx fails immediately.

RTRR starts routing by source node’s calling its Notification
method, and one iteration of RTRR is shown in Fig. 1.

IV. BIDDING AND PRICING STRATEGY

In this section, we demonstrate that RTRR enables dynamic
pricing and shows how PCN participants can leverage this
property to strategically bid for different transactions.

We model the nodes as rational agents and analyze their
bidding behaviors. In each iteration of RTRR, the auctioneer

node selects a neighbor with the least fee to outsource the
transaction after receiving bids from the neighbors. Bidder
v proposes its fee according to the empirical success rate
for transactions sending through v to destination node t
based on v’s local history. The bidding value incorporates the
risk of compensation in case the transaction fails. Moreover,
each self-interested bidder will bid strategically, taking into
consideration the fee its competitors may propose because only
the lowest bid will be selected. If it proposes a bid higher than
any one of its competitors’, then it will not be chosen, while
if the bid is too cheap, the node may risk losing money from
relaying this transaction.

We formalize an auction model to characterize this bidding
process. Consider the situation where a transaction tx with
destination node t reaches node u. Then, node u acts as
the auctioneer which calls upon its neighbors to bid for the
transaction. We consider symmetric bidding strategy for all K
neighbors of u, i.e., v1,vK . Each bidder has a private signal
pvi [t] indicating the probability that it can successfully deliver
the transaction to the destination. Assume that all pvi [t]’s
are i.i.d. random variables following the same continuous
distribution F (·) and assume that the distribution is common
knowledge among v1, ...vK . Bidder vi bids fvi [t] as its fee for
this transaction tx with destination node t. Define the security
deposit to be αfvi [t] which vi needs to pay as compensation
if it is selected to relay but fails. Auctioneer u aims to select
the bidder with the least fvi [t]. This process is similar to a
procurement auction [25], where multiple sellers bid their fees
to satisfy the demand of one buyer.

Theorem 1. A rational node vi will bid

fvi [t] ∝ (1− F (pvi [t]))
K−1

where K is the number of neighbors in our model, pvi [t] is
the success probability for the current transaction from node
vi to destination node t, and F (·) is the distribution for pvi [t].

Proof. According to the RTRR, when neighbor vi is selected
by auctioneer u, its expected utility is

E[U (selected)
i] = pvi [t]fvi [t] + (1− pvi [t])(−αfvi [t])

in which fvi [t] is the fee vi earns if the transaction succeeds
(with probability pvi [t] it succeeds), and αfvi [t] is the com-
pensation vi has to pay to u if the transaction fails (with
probability 1 − pvi [t] it fails). vi’s expected utility equals 0
if it is not selected by u. Thus, vi’s overall expected utility is

E[Ui] =E[U (selected)
i] · Pr[vi is selected]

=
(
pvi [t]fvi [t]− (1− pvi [t])αfvi [t]

)
· Pr[fvj [t] > fvi [t],∀j ̸= i].

As we consider symmetric bidding strategy, each neighbor
vi decides its bid fvi [t] according to its estimated winning
probability pvi [t] by a common function g(·), i.e., fvi [t] =

g(pvi [t]). Further assume function g(·) is differentiable and
strictly monotone. Then,

E[Ui] =
(
pvi [t]fvi [t]− (1− pvi [t])αfvi [t]

)
· Pr[g(pj) > g(pvi [t]),∀j ̸= i]

=
(
(pvi [t](1 + α)− α)fvi [t]

)(
1−F (g−1(fvi [t]))

)K−1

.

Note that a tie fvi [t] = fvj [t] can only occur with infinitesimal
probability because g is monotone and pj(∀j) can be updated
to any real number when the history information accumulates.

Then, we derive the equilibrium strategy in bidding. To
reach a maximum of expected utility, we calculate the station-
ary point of the utility function with respect to the bidding
strategy. Its first order derivative is

∂E[Ui]

∂fvi [t]
= (pvi [t](1 + α)− α)

(
1− F (g−1(fvi [t]))

)K−1

+ (pvi [t](1 + α)− α)fvi [t]
(
1− F (g−1(fvi [t]))

)K−2

· (K − 1)f(g−1(fvi [t]))
1

g′(pvi [t])

where f(·) is the p.d.f. with respect to c.d.f. F (·) and g′(·) is
the derivative of strategy function g(·). Then, ∂E[Ui]

∂fvi [t]
= 0 is

equivalent to

γi(1−F (pvi [t])) + γig(pvi [t])(K − 1)f(pvi
[t])

1

g′(pvi [t])
= 0

where γi ≡ pvi [t](1+α)−α. This is in fact a linear differential
function with variable coefficients. By solving this differential
equation, we can derive the equilibrium bidding strategy for
a rational bidder vi for this auction with a bidder-specific
constant Ci,auc as

fvi [t] = g(pvi [t]) = Ci,auc(1− F (pvi [t]))
K−1.

The proof is thus completed. ■

From Theorem 1, if a transaction that goes through u to
t succeeds, then node u’s estimation for the success rate
of transactions with destination t will increase according to
Bayes’ rule, and from the pricing model, u will bid a lower
value next time for transactions with destination t, and vice
versa.

Corollary 2. For a rational bidder vi, its optimal bidding
price fvi [t] is decreasing in pvi [t].

Corollary 2 shows that the bidder with the least proposed
transaction fee is exactly the bidder with the highest transac-
tion success rate.

By proposing different prices for each bidding request, the
nodes in RTRR are naturally allowed to dynamically adjust
their transaction fees according to the updated information.
On the contrary, source routing schemes either fix the fee at
a certain proportion to the transaction value or require extra
commitments, broadcasts, and delays when fee rate changes.

With dynamic pricing, each node in RTRR has greater
flexibility in pricing and prefers to relay to a subsequent

neighbor with a higher success probability, thus contributing
to a higher transaction success rate.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance advantage of
RTRR over the source routing schemes such as the routing
scheme used in Lightning Network [3] by comparing the
expected time needed to find a passable path.

Source routing schemes send each transaction tx to its
destination node through a path specified by the source node
s. However, this proposed path may be unavailable due to
containing either channels with insufficient balance or offline
nodes. When encountering such situations, the proposed route
will fail. Then, tx needs to be resent starting from s on another
route again specified by s. This process repeats until a passable
path is found or timeout is reached. While in RTRR, every
intermediate node on the path can resume the routing process
when the previously selected neighbor fails, thus reducing
overheads by not having to restart the relay from the source
node.

To investigate the routing time of our protocol, we model
the network as a K-regular graph. Let N be the total number
of nodes in the network. For simplicity, we assume that all
routes on PCN for a transaction tx(s, t, µ) are of the same
length L and all nodes have the same degree K.

In RTRR, the time for the auction phase is upper bounded
by τ . In practice, we can choose a small τ such that τ ≪ Tt,
as bidder nodes only send their bids to the auctioneer in
the auction phase, while establishing HTLC in the outsourc-
ing phase requires complicated cryptographic signatures and
verifications. In addition, the outsourcing phase in RTRR
consists of the same transaction relay process and HTLC
termination process as in the protocol of existing payment
channel networks, such as Lightning Network. Therefore, we
assume that the time for the interaction between two nodes
in RTRR is equivalent to that of the traditional source-based
routing algorithm. Based on this assumption, the performance
analysis goes as follows.

The search process of RTRR is similar to a depth-first
search (DFS) because it proceeds through one path until an
endpoint node if no failure occurs, and retrogrades to the
preceding node if fails at some point. Because DFS search
trajectory forms a search tree, it is natural to model the
network structure by a (K−1)-ary tree of depth L+1, where
each internal node of the tree has exactly K neighbors. The
process of RTRR corresponds to a DFS search starting from
the root node and going down through edges to one of the
leaf nodes of the depth-(L + 1) tree, with each edge being
available with probability θ. An available edge means that
the two ends of the corresponding channel are both online
and the remaining balance on it is enough for the transaction.
Encountering failure, RTRR retrogrades to the preceding node
while source routing restarts from the source node. We prove
the performance advantage of RTRR in the following theorem.

Theorem 3. The transaction routing time in RTRR Trec is at
least 100η% shorter than that of the source routing protocols
Tsrc, where

η ≡Tsrc − Trec

Tsrc
= 1− Trec

Tsrc

≥1− 2

L− 1

(
(1− (K + 1)(1− θ)K +K(1− θ)K+1)

− θ(1− θ)KK

1− (1− θ)K
+

(1− θ)K

(1− (1− θ)K)L

)
. (1)

The proof is shown in Appendix A in the online technical
report [26]. Theorem 3 shows that RTRR is more efficient
compared to the source routing algorithm, achieving a shorter
transaction routing time.

We analyze the asymptomatic case when the number of
participants N → ∞ and the number of neighbors K → ∞.

Corollary 4. When N → ∞ and K → ∞, the transaction
routing time in RTRR is 100L−3

L−1% shorter than that of the
source routing protocols asymptotically,

lim
K→+∞

η ≥ L− 3

L− 1
. (2)

Note that L = 2 indicates a highly-centralized system and
L = 1 indicates a fully-connected graph, neither of which is
idealized in a distributed payment system. When L ≥ 3, the
lower bound for η in the limit case is non-negative, and when
L ≫ 1 our scheme shows a significant performance advantage.

VI. EXPERIMENTS

In this section, we first introduce the settings and envi-
ronments used in our experiments, then show the results and
interpretations.

A. Experiment Settings and Environments

We use python SimPy framework [27] to do discrete-event
simulation and use NetworkX python library [28] to construct
directed graphs to simulate PCNs.

We implement our protocol on two types of network topol-
ogy: the synthetic structure based on Erdős–Rényi graph [29],
and the network topology from Lightning Network [3]. Then,
we use the data from Lightning Network [3] to demonstrate the
performance advantage of RTRR on typical PCN structures.
Note that among all the 1,917 nodes in the Lightning Network,
there exist some “supernodes”, nodes with degree larger than
100, which are well connected in the network. For example,
there exists a node with 858 neighbors, and exists two nodes
together connecting more than 1,000 nodes in the network.
With an average degree of 424, the top 10 supernodes directly
connect with more than 80% of the nodes in the network.
These supernodes are serving as trading hubs for PCN trans-
action relays. The existence of these stable and well-connected
nodes could be due to the requirements for watchtowers in the
Lightning Network ([30], [31]). Such network topology may
not reflect more general decentralized and dynamic networks,
e.g., networks of IoT devices or sensors [16]. Thus, we also
conduct experiments on a pruned Lightning Network topology

without supernodes, which is derived by eliminating the 58
supernodes from the original Lightning Network.

To leverage the property of allowing dynamic pricing,
RTRR decides transaction-specific fee by the empirical esti-
mation of success rate based on the previous transactions that
went through it. Specifically, in RTRR, each node v maintains
local counters Nsucc,v[t], Nfail,v[t] for every other node t in the
network, which counts the number of successful and failed
relays that goes through the current node v with destination
node t, respectively. Node v calculates the empirical success
rate for transactions to a certain destination node t by

pv[t] =
Nsucc,v[t]

Nsucc,v[t] +Nfail,v[t]
. (3)

Each successful (failed) relay will increment the corresponding
counter Nsucc,v[t] (Nfail,v[t]) by one.

Apply the result in Theorem 1 and get

fv[t] = g(pv[t]) = Cv,t(1− F (pv[t]))
K−1. (4)

Take differentiate on both sides of equation (4) to get the
amount of fee update ∆fv[t] with respect to the change of
transaction success probability ∆pv[t],

∆fv[t] = Cv,t(K−1)(1−F (pv[t]))
K−2F ′(pv[t])∆pv[t]. (5)

From equation (4) and equation (5), we can derive

∆fv[t] = fv[t]
K − 1

1− F (pv[t])
F ′(pv[t])∆pv[t]. (6)

For each update, we change the fee by ∆fv[t] according to
equation (6), where ∆pv[t] is the difference between the values
of pv[t] after and before the counters Nsucc,v[t], Nfail,v[t] are
updated in such iteration. As a result, a succeeded (failed)
relay leads to an increase (decrease) in transaction fee.

To model dynamic network topology, which occurs in
wireless networks and sensor networks, we consider that for
each coming transaction, each node has a fixed probability to
be offline and does not participate in relaying such transaction.
This probability is set to be 35% in the experiments. In
each run of the experiments, we use 2,000 transactions. We
assume that the interaction, including the communication and
operations on HTLC of the established payment channel,
between two directly connected nodes costs one time unit.
And the timeout for each transaction is set to be 300 time
units.

We compare our proposed method with the following base-
lines, which are common source routing schemes and also used
as baselines in recent works ([14], [15]).

1) Shortest-Path Routing (SP): This scheme sends each
transaction to its destination node through a path with the
shortest length on its local cached network. Both Lightning
Network and Raiden Network use this scheme in relaying
transactions.

2) Min-Cost Routing (MC): This scheme sends each trans-
action to its destination node through a path with the minimum
transaction fee on its local cached network.

0 50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

1.0

c.
d.

f.

c.d.f. of Transaction Routing Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 2. The c.d.f. of transaction routing time
in random graph with 1870 nodes.

0 50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

1.0

c.
d.

f.

c.d.f. of Transaction Routing Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 3. The c.d.f. of transaction routing time in
Lightning Network.

0 50 100 150 200 250 300
Time

0.0

0.2

0.4

0.6

0.8

1.0

c.
d.

f.

c.d.f. of Transaction Routing Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 4. The c.d.f. of transaction routing time in
Lightning Network without supernodes.

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

Tr
an

sa
ct

io
n

Fe
e

Fee ~ Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 5. Average transaction fee over time on
random graph.

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

Tr
an

sa
ct

io
n

Fe
e

Fee ~ Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 6. Average transaction fee over time on
Lightning Network.

0 50 100 150 200 250 300
Time

0

100

200

300

400

500

Tr
an

sa
ct

io
n

Fe
e

Fee ~ Time

Real-Time Recursive Routing (ours)
Shortest-Path Routing
Min-Cost Routing
Water-Filling Routing
Routing Scheme in Spider

Fig. 7. Average transaction fee over time on
Lightning Network without supernodes.

3) Water-Filling Routing (WF): This scheme sends each
transaction to its destination node through a path with the
maximum bottleneck capacity on its local cached network,
where the bottleneck capacity of a route is the minimum
capacity among all channels on the route.

4) Routing Scheme in Spider: 1 This scheme characterizes
the important channel balancing feature in Spider’s routing
scheme. To achieve high performance, Spider imposes a
higher cost to routes that would cause imbalance or would
cause congestion [14] and sends each transaction through an
available path with minimum adjusted total cost. This is the
most important feature of Spider’s routing scheme. As the
complete version of Spider also includes transaction division,
packetization, channel balancing optimization, etc., we only
compare our protocol with this routing scheme of Spider.

B. Experiment for Performance Advantage

Fig. 2, Fig. 3, and Fig. 4 show the cumulative distribution of
transaction routing time in random graph, Lightning Network,
and Lightning Network without supernodes. These figures
depict the performance advantage of RTRR over baselines in
terms of the time needed to find an available path.

Fig. 5, Fig .6, and Fig. 7 demonstrate the average transaction
fee over time, from which we can find that RTRR can achieve
a higher performance, i.e., finding a path with a lower fee in
a shorter time compared to the existing protocols.

It is not surprising that in Fig. 3 and Fig. 6, where
supernodes exist, our protocol only outperforms baselines at

1Original Spider code is not open-source, so we extract the key idea from
Spider’s routing scheme.

a moderated level since all baselines prefer to route through
the supernodes, which is already nearly optimal. Fig. 2, Fig. 4,
Fig. 5, and Fig. 7 depict more remarkable performance advan-
tage of RTRR in more decentralized network structures. The
Min-Cost routing method and the routing scheme in Spider
achieve fewer average transaction fees but cost more time
compared with RTRR. A lower average fee is because Min-
Cost routing and the routing scheme in Spider prefer to find
the route with the least cost, while longer routing time is due
to encountering more failures on a comparatively longer route
in the dynamic network. Summarizing these results, RTRR
works well on real PCN structures and performs substantially
better on decentralized and dynamic networks.

VII. DISCUSSIONS

A. Privacy Protection

In RTRR, each node only needs to know the local informa-
tion (the information of its neighbors and its adjacent payment
channels) because, in RTRR, each node only needs to interact
with its neighbors, without acquiring extra information from
other nodes. While in source routing schemes, the source
node needs to know the global information such as the fee
and capacity of all channels in the network in order to
specify the optimal path. Furthermore, to adapt to the dynamic
environment, in source routing, announcement messages are
encouraged to be broadcast to all nodes in the network when
some node becomes offline or changes its fee rate. Thus,
compared to the traditional source routing protocol such as
the one used in Lightning Network, RTRR achieves stricter
privacy protection.

B. Decentralization Tendency

The traditional source routing protocol, such as the routing
method based on the shortest path, aims to find an optimal
path with less transaction fee and a higher success rate. Thus,
the source routing protocol prefers to route through some
supernodes that are well connected in the network. Indeed, the
current PCNs, such as the Lightning Network, suffer from the
centralization problem caused by these supernodes. In RTRR,
the outsourcing process prefers to relay the transaction through
the nodes with lower bidding fees, which can be proposed
by some “small” nodes with fewer neighbors instead of the
supernodes. Such a design tends to degrade the centralization
of the PCN.

C. Security

RTRR has the same guarantee of security as the original
HTLC because HTLC-bid requires the same commitment
procedures between two parties of the contract as the ones
in HTLC. Due to the security deposit, malicious behaviors
such as defecting in either the bidding stage or relay stage
will lead to the punishment, i.e., the defector will forfeit its
security deposit.

VIII. CONCLUSION

In this work, we propose Real-Time Recursive Routing
(RTRR), an efficient routing protocol that simultaneously
supports distributed routing and dynamic pricing with only
local information and achieves strong privacy protection. Both
the theoretical analyses and the intensive experiment results
show that RTRR can route a transaction in a shorter time with
a lower transaction fee compared to the existing protocols.
One of the future works is to design a more efficient bidding
strategy based on the local information paradigm of RTRR
scheme.

REFERENCES

[1] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
2017 IEEE international congress on big data (BigData congress). Ieee,
2017, pp. 557–564.

[2] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. Gün Sirer et al., “On scaling decentral-
ized blockchains,” in International conference on financial cryptography
and data security. Springer, 2016, pp. 106–125.

[3] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[4] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Off the chain transactions.” IACR Cryptol. ePrint Arch., vol. 2019,
p. 360, 2019.

[5] E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus
layer),” Bitcoin Core Develop. Team, Tech. Rep. BIP, vol. 141, 2015.

[6] D. Ding, X. Jiang, J. Wang, H. Wang, X. Zhang, and Y. Sun, “Txilm:
Lossy block compression with salted short hashing,” arXiv preprint
arXiv:1906.06500, 2019.

[7] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th symposium on operating systems principles, 2017, pp. 51–68.

[9] J. Teutsch and C. Reitwießner, “A scalable verification solution for
blockchains,” arXiv preprint arXiv:1908.04756, 2019.

[10] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1353–1370.

[11] G. Wood, “Polkadot: Vision for a heterogeneous multi-chain frame-
work,” White Paper, vol. 21, pp. 2327–4662, 2016.

[12] R. Network, “What is the raiden network?”
URL:https://raiden.network/101.html.

[13] C. A. Sunshine, “Source routing in computer networks,” ACM SIG-
COMM Computer Communication Review, vol. 7, no. 1, pp. 29–33,
1977.

[14] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang,
R. Mittal, G. Fanti, and M. Alizadeh, “High throughput cryptocurrency
routing in payment channel networks,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020, pp.
777–796.

[15] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: efficient dynamic
routing for offchain networks,” in Proceedings of the 15th International
Conference on Emerging Networking Experiments And Technologies,
2019, pp. 370–381.

[16] S. L. Ullo and G. Sinha, “Advances in smart environment monitoring
systems using iot and sensors,” Sensors, vol. 20, no. 11, p. 3113, 2020.

[17] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,”
Information systems frontiers, vol. 17, no. 2, pp. 243–259, 2015.

[18] H. J. La, C. W. Park, and S. D. Kim, “A framework for effectively
managing dynamism of iot devices,” Journal of KIISE: Software and
Applications, vol. 41, no. 8, pp. 545–556, 2014.

[19] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[20] W. Ethereum, “Ethereum whitepaper,” Ethereum. URL: https://ethereum.
org [accessed 2022-05-01], 2014.

[21] M. Dong, Q. Liang, X. Li, and J. Liu, “Celer network: Bring internet
scale to every blockchain,” arXiv preprint arXiv:1810.00037, 2018.

[22] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,
“Flare: An approach to routing in lightning network,” White Paper, p.
144, 2016.

[23] P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhispers: Enforcing
security and privacy in decentralized credit networks,” in Proc. NDSS,
2017.

[24] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” arXiv preprint arXiv:1709.05748, 2017.

[25] R. R. Chen, R. O. Roundy, R. Q. Zhang, and G. Janakiraman, “Effi-
cient auction mechanisms for supply chain procurement,” Management
Science, vol. 51, no. 3, pp. 467–482, 2005.

[26] “Online technical report,” URL: https://cloud.tsinghua.edu.
cn/f/e28c3b985ed84dff9836/.

[27] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy:
symbolic computing in python,” PeerJ Computer Science, vol. 3, p. e103,
Jan. 2017.

[28] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of
the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[29] E. Paul and R. Alfréd, “On random graphs i,” Publicationes Mathemat-
icae (Debrecen), vol. 6, pp. 290–297, 1959.

[30] Z. Avarikioti, O. S. Thyfronitis Litos, and R. Wattenhofer, “Cerberus
channels: Incentivizing watchtowers for bitcoin,” in International Con-
ference on Financial Cryptography and Data Security. Springer, 2020,
pp. 346–366.

[31] M. Leinweber, M. Grundmann, L. Schönborn, and H. Hartenstein, “Tee-
based distributed watchtowers for fraud protection in the lightning net-
work,” in Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 2019, pp. 177–194.

