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Experimental test of Leggett’s inequalities with solid-state spins
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Bell’s theorem states that no local hidden-variable model is compatible with quantum mechanics. Surprisingly,
even if we release the locality constraint, certain nonlocal hidden-variable models, such as the one proposed by
Leggett, may still be at variance with the predictions of quantum physics. Here, we report an experimental
test of Leggett’s nonlocal model with solid-state spins in a diamond nitrogen-vacancy center. We entangle an
electron spin with a surrounding weakly coupled 13C nuclear spin and observe that the entangled states violate
Leggett-type inequalities by more than four and seven standard deviations for six and eight measurement settings,
respectively. Our experimental results are in full agreement with quantum predictions and violate Leggett’s
nonlocal hidden-variable inequality with a high level of confidence.
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I. INTRODUCTION

Realism and locality are two fundamental concepts in
classical physics [1–3]. Roughly speaking, locality requires
that events that happened in spacelike separated regions can-
not influence each other, while realism suggests that the
results of observations are predetermined by the intrinsic
properties of a physical system and should be independent of
the measurement [4]. Quantum physics, however, challenges
these concepts in a profound way—no hidden-variable theory
based on the joint assumption of realism and locality can
reproduce all quantum correlations [2,3]. This fact is now well
known through Bell’s theorem [5] and has been verified by
a number of experiments with different platforms [6–23]. In
particular, recent experiments with entangled electron spins
[19], photons [20,21], and atoms [22] have been reported to
close the detection and locality loophole simultaneously. This,
together with the Bell Test project that attempts to close the
freedom-of-choice loophole [24], has reasonably established
that the violation of local realism in quantum physics is a
validated fact.

Then, should nonlocal realism be consistent with quan-
tum physics? This is a natural question, but the answer is
complicated. On the one hand, Bohm’s interpretation [25]
of quantum mechanics clearly implies that certain nonlocal
hidden-variable (NLHV) models can indeed reproduce all
predictions of quantum physics. On the other hand, however,
there also exist other NLHV models that are proved to be
incompatible with quantum predictions. The first testable
example of such NLHV model was the one proposed by
Suarez and Scarani [26], which has been falsified in a se-
ries of subsequent experiments [27,28]. Another notable ex-
ample involves the one introduced by Leggett [29]. This
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NLHV model fulfills the so-called Leggett’s inequalities, but
quantum correlations can violate them. Leggett’s model has
attracted considerable attention in the community [30–41]
and a number of experiments have been carried out to test
it [30–38,42]. All these experiments support the predictions
of quantum mechanics and show violations of Leggett’s in-
equalities. Nevertheless, most of these experiments use pho-
tons [30–37]; here, Leggett’s model is instead tested in a
solid-state system. Given the important roles that solid-state
systems play in quantum information sciences, it is highly
desirable that the Leggett inequalities should also be tested
in such systems. Violation of Leggett’s inequality requires
preparation of entangled states with a very high fidelity and
correlation measurements in various complementary settings,
which are experimentally challenging. Therefore, the test of
Leggett’s inequality, apart from its fundamental interest, is
also a demonstration of good quality of entanglement control
in the corresponding quantum systems. In addition, violation
of NLHV models implies the intrinsic random properties of
quantum mechanics, which might also be explored to build
random number generators which can generate true random
numbers [43,44]. A demonstration of violations of Leggett’s
inequality in solid-state systems would be useful to construct
random number generators in practical applications.

In this paper, we fill this important gap by reporting an
experimental test of Leggett’s NLHV model with solid-state
spins in a diamond nitrogen-vacancy center (see Fig. 1 for a
pictorial illustration). Following Branciard et al. [33], we de-
rive two Leggett-type inequalities with six and eight measure-
ment settings, respectively, without assuming a time ordering
of the events as in Leggett’s original paper [29]. We entangle
an electron spin in the nitrogen-vacancy (NV) center with a
surrounding 13C nuclear spin to form a maximally entangled
Bell state with high fidelity and perform appropriate single-
shot projection measurements on the electron spin to measure
the correlations between the electron and nuclear spins. We
observe that for large measurement parameter regions, the
entangled states violate both the derived six- and eight-setting
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FIG. 1. Tests of Leggett’s nonlocal hidden-variable theories with
solid-state spins in a diamond nitrogen-vacancy center. An electron
spin of the nitrogen-vacancy center is prepared to be entangled with
one of its surrounding 13C nuclear spins. We denote the nuclear spin
and the electron spin by Alice and Bob, respectively. Measurement
settings on the Poincaré sphere are shown for testing Eq. (2).

Leggett-type inequalities. In particular, for the six-setting
(eight-setting) inequality, the maximal violation exceeds the
classical bound by 4.0 and 10.9 (7.1 and 15.5) standard
deviations for the raw data and the data after correction of
the readout error, respectively. Our experimental results are
in full agreement with quantum predictions and thus falsify
Leggett’s NLHV model in a solid-state system.

II. LEGGETT’S INEQUALITIES

To begin with, let us first briefly introduce two inequal-
ities based on Leggett’s nonlocal model, following a simpler
approach introduced by Branciard et al. [33]. Consider a com-
mon Bell-type experimental scenario: two observers, denoted
by Alice and Bob, perform measurements labeled by n and
m on their qubits, respectively. The outcomes are denoted by
α and β (α, β = ±1). For the qubit case, n and m are unit
vectors on the Poincaré sphere (see Fig. 1 for an illustration)
and are independently and freely chosen by Alice and Bob.
According to hidden-variable theories [45], the conditional
probability distribution P(α, β|n, m) can be decomposed into
a statistical mixture of correlations characterized by the hid-
den variable λ,

P(α, β|n, m) =
∫

�

ρ(λ)Pλ(α, β|n, m)dλ, (1)

where � is the total λ space and ρ(λ) is a statistical dis-
tribution of λ which satisfies ρ(λ) � 0 and

∫
�

ρ(λ)dλ = 1.
Strikingly, the constraint of non-negativity of probabilities
Pλ(α, β|n, m) � 0 is sufficient to derive testable Leggett-type
inequalities which are satisfied by Leggett’s NLHV model
but can be violated by quantum predictions. The simplest
inequality reads (see [33] and Appendix A for details)

I26(φ) ≡ ∣∣Cn1,m1 + Cn1,m′
1

∣∣ + ∣∣Cn1,m2 + Cn1,m′
2

∣∣
+ ∣∣Cn2,m3 + Cn2,m′

3

∣∣ + 2 sin
φ

2
� 6, (2)

where Cn,m = ∑
α,β αβP(α, β|n, m) denotes the usual corre-

lation function and φ is the angle between a pair of vectors mi

and m′
i (i = 1, 2, 3) (see Appendix A). We note that the above

inequality is a bit different from the original one introduced in
Ref. [33], where three measurement settings for Alice’s side
were used. Here, we use only two settings for Alice because
the tests of this modified inequality are easier to implement in
our NV experimental setup.

III. EXPERIMENTAL SETUP AND VIOLATIONS OF
LEGGETT’S INEQUALITIES

In the experiment, we use solid-state spins, namely, an
electron spin and a surrounding 13C nuclear spin in a diamond
NV center [46], to test Leggett-type inequalities. The NV
center is a natural doped structure which is composed of a
vacancy and an adjacent nitrogen atom that replace the two
neighboring carbon atoms [47]. Our experiments utilize the
negative charge state of the NV center with an electron spin
S = 1 (denoted as |ms = ±1〉 and |ms = 0〉) and a nearby
weakly coupled 13C nuclear spin I = 1/2 (denoted as | ↑〉 and
| ↓〉) in a cryostat at temperature around 8 K, with optical
initialization and readout achieved through use of resonant
transitions [48] between excited states and ground states.

To realize efficient multiqubit control, we need to design
a set of single-qubit gates and electron-nuclear two-qubit
entangling gates. With a magnetic field Bz aligned along the
NV symmetry axis and under the rotating-wave approxima-
tion, the effective Hamiltonian of the system in the rotating
frame with respect to the modulated electron energy splitting
describing the electron spin and a single 13C nuclear spin has
the form

He f f = AzzŜzÎz + AzxŜzÎx + γnBzÎz, (3)

where Ŝz = diag{1, 0,−1} denotes the z component of the
spin-one operator, and Îx and Îz are the Pauli-X and Pauli-Z
matrix, respectively (here we define the NV symmetry axis as
the z axis); γn is the gyromagnetic ratio of the 13C nuclear
spin; and Azz and Azx form the parallel and perpendicular
components of the hyperfine interaction term between the
electron spin and the nuclear spin, with their values deter-
mined precisely from previous experiments [49]. Due to the
particular mutual interaction, the 13C nuclear-spin processes
around the axis conditioned on the electron spin state, so
we can construct a set of selective electron-nuclear two-qubit
gates based on the dynamical decoupling sequences [50].

One can verify that inequality (2) can be violated in quan-
tum mechanics for a range of φ and for various quantum
entangled states. The maximal violation is achieved when
the left side of Eq. (2) equals

√
40 and this happens at

φ0 = 2 arctan 1
3 ≈ 36.9◦ under the maximally entangled sin-

glet state [32]. For this optimally chosen setting, the minimal
visibility to observed violation of inequality (2) is about
Vmin = 94.3%. The minimal visibility measures how much
white noise can be added into the Bell state so that the
inequality is still violated, i.e., the minimal value of V under
the condition that the state ρV = V |	−〉〈	−| + (1 − V )I/4
(here, I is the 4 × 4 identity matrix) violates inequality (3).
The corresponding minimal fidelity is estimated to be Fmin =√

3Vmin + 1/2 ≈ 97.8%. This high value of the required
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FIG. 2. (a) Experimental sequences for initialization of a weakly coupled 13C nuclear-spin state and preparation of one of the electron-
nuclear Bell states. The initial state of the nuclear spin can be flipped by tuning the quantum gate parameters, and the phase settings of
two electron microwave π pulses in entanglement preparation can be changed to transform the generation between four Bell states. (b) The
measurement sequences for jointly measuring the electron and nuclear spins, in a rotated electron-nuclear basis ϕeXn/ϕeYn. After appropriate
basis rotation, the corresponding ϕ settings’ electron spin state is projected to the Xe/Ye axis and the joint detection can be achieved by following
the combined projective optical readout (see Appendix B).

minimum fidelity is a significant challenge for an experimen-
tal observation of violation of the Leggett inequality. In our
experiments, we have used the dynamical decoupling [50] and
optimized the sequence parameters to meet this requirement
(see Appendices C–E).

We choose the electron spin to act as the control qubit and
the 13C nuclear spin undergoing the conditional rotation as
the target qubit. To protect the single nuclear spin from the
decoherence effect and avoid the unwanted crosstalk between
multiple nuclear spins, we need to optimize the parameters
of single and controlled quantum gates based on the pre-

FIG. 3. Experimental violations of the Leggett’s inequality with
six measurement settings. The dashed orange line indicates the
bound of inequality (2), which is satisfied by Leggett’s nonlocal
hidden-variable model. The dotted line denotes the quantum me-
chanical prediction and the region above the dashed line implies
quantum violation. Our experimental raw data (denoted by circles) of
I26 exceed the Leggett’s bound for 23.02◦ < φ < 51.57◦. The largest
violation is observed for φmax = 38.96◦. The triangles show the data
after correction of the readout error, and the violating φ region in the
case becomes broader and the maximal violation also gets bigger.
Here, the error bars denote the readout standard deviations.

cisely characterized hyperfine interaction couplings [49]. The
sequence to achieve the nuclear-spin state initialization and
electron-nuclear-spin entanglement [51] is shown in Fig. 2(a).
First we prepare the electron spin in |0〉 and, after a swapping
procedure [52], the nuclear spin is initialized onto |↑〉 or
|↓〉 determined by the controlled quantum gate parameters.
We then reset the electron spin to be on state |0〉 and apply
the entangling gate on the electron and nuclear spins. After
this, the electron and nuclear spins are maximally entangled
with the state |	−〉 = (|0e ↑n〉 − |1e ↓n〉)/

√
2. From the mea-

sured expectation values of entanglement witness operators
described in Ref. [53], we can obtain a lower bound on the
fidelity of our prepared Bell state at 98.2(5)%.

For the quantum state measurements on the entangled Bell
state, instead of measuring electron spin and nuclear spin
separately [54], we choose appropriate basis projections of
both electron and nuclear spin followed by Z-basis optical
measurement to read out the electron-nuclear-spin state si-
multaneously in a single-shot readout scheme with sufficient
average fidelity at cryogenic temperature [Fig. 2(b)]. The
specific process starts with the rotation of electron spin from
pairs (mi, m′

i), which satisfy the corresponding ϕ settings to
the Xe/Ye basis of the two-qubit system, followed by a joint
measurement of XeXn/YeYn using the particularly designed
sequence (see Appendix E for the details). In this way, we are
able to measure the desired correlations appearing in Eq. (2).

We vary the measurement angle parameter φ in a discrete
way and, for each value of φ, we measure the quantum
expectation value of I26. Our experimental results are shown
in Fig. 3. From this figure, our experimental results match
the theoretical predictions qualitatively and the Leggett’s in-
equality (2) is violated for 23.02◦ < φ < 51.57◦. The largest
violation occurs at φmax = 38.96◦ and the violation for the
experimental raw data is 6.136 ± 0.034, violating Eq. (2) by
more than four standard deviations. In addition, since in our
experiments the state initialization and projective readout pro-
cedures consist of the same number of similar gate operations,
we can follow a standard recipe, as in Ref. [54], to correct
the readout error (see, also, Appendix F for the details). After
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this correction, each measured correlation will be closer to
its corresponding theoretical prediction without experimental
imperfections and the violation of the Leggett’s inequality will
be further enhanced. Our experimental data after the readout
error correction are also shown in Fig. 3. It is clear from this
figure that after the readout error correction, our experimental
results have excellent agreement with the theoretical quantum
predictions, and the the maximal violation in this case is
6.382 ± 0.035, which violates Eq. (2) by more than 10.9
standard deviations.

To obtain stronger quantum violations, one can increase
the number of measurement settings, similar to the case of
testing Bell inequalities. In Eq. (2), Alice has two measure-
ment settings and Bob has six settings. Following a similar
derivation, we obtain another Leggett-type inequality, where
Bob has eight measurement settings (see Appendix A),

I28(ϕ) ≡ ∣∣Cn1,m1 + Cn1,m′
1

∣∣ + ∣∣Cn1,m2 + Cn1,m′
2

∣∣
+ ∣∣Cn2,m3 + Cn2,m′

3

∣∣ + ∣∣Cn2,m4 + Cn2,m′
4

∣∣
+ 8√

6
sin

ϕ

2
� 8. (4)

It is straightforward to check that inequality (4) is violated
in quantum physics for a large range of ϕ, with measure-
ment settings shown in Fig. 4(a), and the maximal violation

occurs at ϕ0 = π − 2 arctan
√

6
7 ≈ 44.4◦. The maximal vio-

lation of inequality (4) is 8
√

7
6 and the threshold visibility

is Vmin ≈ 91.3% with the corresponding threshold fidelity
Fmin = 96.7%, which are both smaller than the ones for the
six-setting Eq. (2). Our experimental results for testing Eq. (4)
are plotted in Fig. 4(b), from which it is evident that the
inequality is violated for 17.96◦ < ϕ < 71.34◦. The maximal
violation is 8.323 ± 0.045, occurring at ϕmax = 40.11◦, which
violates Eq. (4) by more than 7.1 standard deviations. With
readout error correction, the maximal violation is 8.729 ±
0.047 (see Appendix F), violating Eq. (4) by more than
15.5 standard deviations. Our experiments confirm that the
violation of the eight-setting inequality (4) is notably larger
than that of the six-setting inequality (2).

IV. CONCLUSION

In summary, we have experimentally tested Leggett’s
NLHV model in a solid-state system. Our experimental results
are in agreement with quantum predictions and show clear vi-
olation of the Leggett-type inequalities with a high confidence
level, thus falsifying Leggett’s model with solid-state spins.
Our discussion is mainly focused on the two-qubit case, but
its generalizations to multiple qubits are possible and worth
future investigations. In addition, it would be interesting to
experimentally test nonlocal causality [55] with solid-state
spins in a similar setup.

ACKNOWLEDGMENTS

This work was supported by the Frontier Science Cen-
ter for Quantum Information of the Ministry of Education
of China, Tsinghua University Initiative Scientific Research

FIG. 4. (a) Measurement settings for nuclear (blue arrows) and
electron (yellow arrows) spins on the Poincaré sphere for testing
Eq. (4) (see Appendix E). The four vectors { �ei = mi − m′

i} point
to the four vertices of the regular tetrahedron. (b) Experimental
violations of the Leggett’s inequality (4). The quantum expectation
of I28 exceeds the Leggett’s bound for 17.96◦ < ϕ < 71.34◦ and the
maximal violation occurs at ϕmax = 40.11◦ for the raw data (circle).
With readout correction, we get the broader violating φ region and
the bigger maximal violation (triangle).

Program, and the National Key Research and Development
Program of China (Grant No. 2016YFA0301902).

APPENDIX A: DERIVATION
OF THE LEGGETT’S INEQUALITIES

In this Appendix, we give more details on how to derive
the two Leggett’s inequalities used in the main text, following
Ref. [33]. We consider a common Bell-type experimental
scenario, where two observers, denoted by Alice (A) and
Bob (B), perform measurements labeled by n and m on their
qubits, respectively. Their outcomes are denoted by α and
β (α, β = ±1). From the hidden-variable theories, the con-
ditional probability distribution P(α, β|n, m) can be decom-
posed into a statistical mixture of correlations characterized
by the hidden variable λ,

P(α, β|n, m) =
∫

�

ρ(λ)Pλ(α, β|n, m)dλ, (A1)

where � denotes the total hidden-variable space and ρ(λ)
is a statistical distribution of λ, satisfying ρ(λ) � 0 and∫
�

ρ(λ)dλ = 1. As discussed in Ref. [33], in the qubit case,
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one can write the above correlations as

P(α, β|n, m) = 1
4 [1 + αLA

λ (n, m) + βLB
λ (n, m)

+αβLAB
λ (n, m)]. (A2)

One advantage of this expression is that it enables one
to clearly distinguish the marginals and the correlation
coefficient, as discussed in Ref. [33]. For instance, Alice and
Bob’s marginal can be, respectively, expressed as

LA
λ (n, m) =

∑
α,β

αPλ(α, β|n, m), (A3)

LB
λ (n, m) =

∑
α,β

βPλ(α, β|n, m). (A4)

Similarly, the two-qubit correlation coefficients read

LAB
λ (n, m) =

∑
α,β

αβPλ(α, β|n, m). (A5)

In fact, from the above inequalities [Eqs. (A3) and (A4)],
it is obvious that LA

λ (n, m) and LB
λ (n, m) have their physical

meaning of the average. Taking LAB
λ (n, m), for example, it

stands for the average value of the product αβ when the
hidden variable is specified by λ, and Alice and Bob perform
their measurements n and m, respectively. Moreover, as in
Ref. [33], we also only concentrate on correlations satisfying
the so-called no-signaling condition, which implies the inde-
pendence of marginals on the other observer’s inputs. Here, it
indicates the following two equations:

LA
λ (n, m) = LA

λ (n), LB
λ (n, m) = LB

λ (m). (A6)

The probability distributions Pλ(α, β|n, m) should be non-
negative. This implies four inequalities:

1 + LA
λ + LB

λ + LAB
λ � 0, (A7a)

1 + LA
λ − LB

λ − LAB
λ � 0, (A7b)

1 − LA
λ + LB

λ − LAB
λ � 0, (A7c)

1 − LA
λ − LB

λ + LAB
λ � 0. (A7d)

Leggett’s original idea is mainly based on pairs of photons.
To derive the Leggett-type inequality, there are three basic
assumptions: (i) Realism. All measurement outcomes are pre-
determined and independent of the measurement. (ii) Perfect
polarization. Each photon in the pairs is perfectly polarized.
(iii) Malus’ law. Local marginals should obey Malus’s law.

From Eqs. (A7a)–(A7d), it is easy to obtain∣∣LA
λ (n) ± LB

λ (m)
∣∣ � 1 ± LAB

λ (n, m). (A8)

Consider one measurement setting n for Alice and two mea-
surement settings m, m′ for Bob. Then, by using inequalities
(A7a)–(A7d) and the triangle inequality, one obtains∣∣LAB

λ (n, m) ± LAB
λ (n, m′)

∣∣ + ∣∣LB
λ (m) ∓ LB

λ (m′)
∣∣ � 2. (A9)

As argued in Ref. [33], Leggett’s model has a basic as-
sumption that locally everything happens as if each single
quantum system would always be in a pure state. Conse-
quently, we may assume the hidden variables λ can be denoted
by normalized vectors u, v on the Poincaré sphere,

λ = |u ⊗ v〉, (A10)

and the local marginals should obey (a condition similar to the
Malus’ law for photons)

LA
λ (n) = 〈n|u · �σ |n〉 = u · n,

LB
λ (m) = 〈m|v · �σ |m〉 = v · m. (A11)

Combining inequalities (A8) and (A11) and after an inte-
gration, one arrives at∫

ρ(λ)dλ
∣∣LAB

λ (n, m) ± LAB
λ (n, m′)

∣∣

+
∫

ρ(λ)dλ|v · (m ∓ m′)| � 2. (A12)

We consider three triplets of measurement settings
(n1, m1, m′

1), (n1, m2, m′
2), and (n2, m3, m′

3), as shown in
Fig. 1 in the main text. The angle between mi and m′

i (i =
1, 2, 3) is φ, and mi − m′

i = 2sin φ

2 �ei, where �e1, �e2, �e3 form an
orthogonal basis. Combining the fact that

∑
i |v · �ei| � 1 and

Eq. (A12), one obtains the Leggett-type inequality used in our
experiment,

I26(φ) = ∣∣Cn1,m1 + Cn1,m′
1

∣∣ + ∣∣Cn1,m2 + Cn1,m′
2

∣∣
+ ∣∣Cn2,m3 + Cn2,m′

3

∣∣ + 2sin
φ

2
� 6, (A13)

where Cn,m = ∑
α,β

αβP(α, β|n, m) denotes the usual correla-

tion function and φ is the angle depending on Bob’s measure-
ment settings. For two-qubit Bell states, we get the quantum
expectation for I26(φ),

I26(φ) = 6

∣∣∣∣cos
φ

2

∣∣∣∣ + 2sin
φ

2
. (A14)

It is obvious from Eq. (A14) that Eq. (A13) can be violated by
appropriately choosing φ, and the maximal violation is

√
40

occurring at φ = 2 arctan 1
3 ≈ 36.9◦.

Similar to the case of testing Bell inequalities, one may in-
crease the number of measurement settings to obtain stronger
quantum violations. In Eq. (A13), Alice has two measurement
settings, whereas Bob has six settings. Following a similar
derivation, one can obtain another Leggett-type inequality
with more settings, but smaller critical visibility and fidelity:

I28(ϕ) = ∣∣Cn1,m1 + Cn1,m′
1

∣∣ + ∣∣Cn1,m2 + Cn1,m′
2

∣∣
+ ∣∣Cn2,m3 + Cn2,m′

3

∣∣ + ∣∣Cn2,m4 + Cn2,m′
4

∣∣
+ 8√

6
sin

ϕ

2
� 8. (A15)

Similarly, for two-qubit Bell states, we get the quantum ex-
pectation of I28(ϕ),

I28(ϕ) = 8

∣∣∣∣cos
ϕ

2

∣∣∣∣ + 8√
6

sin
ϕ

2
, (A16)

and Eq. (A15) can be violated by a wide range of ϕ, which is
clearly observed in our experiments.

APPENDIX B: EXPERIMENTAL DETAILS

All experiments in this paper are performed on an elec-
tronic grade diamond (Element Six) with a natural abundance
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FIG. 5. (a) Illustration of energy levels of the NV center system,
where resonant optical transitions between the ground and excited
states are used for electron spin initialization and readout. The
electron spin states are denoted by | − 1〉 (dark state) and |0〉 (bright
state), coherently manipulated by microwave fields. (b) Different axis
nuclear-spin rotation while the electron spin state remains | − 1〉
or |0〉 under the external magnetic field with each precession fre-
quency, respectively. (c) Experimental dynamical decoupling (DD)
sequences. Each microwave π pulse flips the electron spin state
(| − 1〉 ↔ |0〉) with adjustable interpulse parameter τ .

of 13C (1.1%) and a 〈100〉 crystal orientation. We fabricate
a solid-immersion lens (SIL) on the diamond sample to en-
hance the photoluminescence collection efficiency [56] and
two surrounding gold striplines to apply resonant microwave
fields. The chosen NV center has a natural 13C nuclear-spin
environment with hyperfine coupling strength Azz varying
from 5.50(7) to 564.3(3) kHz. We choose an appropriately
coupled 13C nuclear spin with the coupling strength Azz =
118.1(1) kHz as one of the qubits for this experiment to
establish entanglement with the electron spin.

The sample is held in a commercial close-cycle cryostat
(Nanoscale Workstation, Montana Instruments) at cryogenic
temperature (∼8 K). A permanent Samarium-Cobalt magnet
outside the cryostat is used to apply the external magnetic
field along NV axis with magnitude ∼500 Gauss. For optical
setup, two 637 nm lasers are used to initialize and read out
the electron spin states, while one 532 nm laser is used
to reset the NV center and keep it on the negative charge
state. In experiments, all microwave fields are generated by
a microwave source (Keysight N5181B) and an arbitrary-
wave-form generator (AWG, Tektronix 5014C). Afterwards,
we combine two microwave signals and transmit the signals
through gold striplines into the cryostat.

In our experiments, we use individual optical transitions
under appropriate selection rules to achieve single-shot read-
out and high-fidelity initialization of the NV electron spin
[57]. After obtaining the corresponding frequency from pho-
toluminescence excitation (PLE) spectroscopy to reconstruct
energy levels of the NV center, we can prepare the electron
spin in |0〉 by applying resonant pumping between |±1〉 ↔
|A1/A2〉 [Fig. 5(a)]. The slight spin mixing within the excited
states induces shelving into the other spin state, and high-
fidelity spin-state initialization of more than (99.0 ± 0.1)%
[58] can be achieved through this optical pumping mecha-
nism. Spin-dependent resonant transitions and low local strain
(with strength ∼1.0 GHz) also allow sufficient fidelity single-

TABLE I. Gate parameters of 13C spin used in the experiments.
Here, Rπ/2

±X denotes the nuclear-spin π/2 rotation around the x axis
with a direction depending on the electron spin, while Rπ/2

Z denotes
the nuclear-spin z-π/2 rotation.

U τ (ns) N Gate duration (us)

Rπ/2
±X 5450 28 306.04

Rπ/2
Z 37 4 0.416

shot readout of the electron spin: we apply the |0〉 ↔ |Ex〉
transition in experiment and use the presence or absence of
fluorescence to distinguish the spin states. Due to the fabri-
cated SIL on the sample, one or more photons are detected for
the bright state (|0〉), while basically no photons are detected
for the dark state (| ± 1〉) within the detection time.

APPENDIX C: SYSTEM HAMILTONIAN
CHARACTERIZATION

As described in the main text, we consider the system
consisting of one electron spin and one weakly coupled 13C
nuclear spin. According to the conditioned evolution of nu-
clear spin based on the state of the electron spin state (| − 1〉
or |0〉), the effective Hamiltonian in the main text can also be
written as

He f f = |1〉〈1| ⊗ [(Azz + γnBz )Îz + AzxÎx] + |0〉〈0| ⊗ γnBzÎz.

(C1)
Here, |0〉(|1〉) denotes the electron spin state |0〉(| − 1〉), re-
spectively.

In this scheme, under the external magnetic field along
the NV symmetry axis, nuclear spin undergoes precession of
different frequency around the axis defined by the electron
spin states [Fig. 5(b)]. For two electron spin states | − 1〉
and |0〉, the nuclear spin evolves through different routes
within the interpulse time τ . So, at specific τ condition,
the final state of nuclear spin will be entangled with the
electron spin in varying degrees. That forms the core inter-
nal mechanism of the dynamical decoupling (DD) sequence
[Fig. 5(c)] [50]. For a weakly coupled 13C spin environment,
the corresponding parameter τ of the resonant condition re-
veals typical hyperfine coupling strength Azz/Azx through DD
spectroscopy. Furthermore, we introduced an adaptive phase
estimation algorithm to significantly improve the efficiency
of learning the dominant Hamiltonian parameters with high
precision in the previous experiments [49]. Experimentally,
we choose a Carr-Purcell-Meiboom-Gill (CPMG) type of DD
sequence and, after resolving the spin environment, we work
with one 13C nuclear spin of appropriate coupling strength
[Azz = 118.1(1) kHz, Azx = 71(1) kHz]. Using the precisely
calibrated parameters, we can finally design a set of electron-
nuclear conditioned gates (Table I).

APPENDIX D: NUCLEAR-SPIN INITIALIZATION

As the beginning of experiments, we need to initialize
nuclear spins in the system environment. First it comes to the
measurement-based preparation on the strongly coupled nu-
clear spin, such as the host 14N nuclear spin in our system. For
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FIG. 6. The electron spin resonance experimental test before
(green, top panel) and after (orange, bottom panel) polarizing the 14N
spin in the desired nuclear spin state. In the scheme, we repeat the
initialization process twice to suppress imperfect optical detection
errors and the corresponding single dip indicates the 14N polarization
in |mI = −1〉.

the previous experimental scheme [57], the procedure begins
with preparing the electron spin in | ± 1〉 states. However, the
efficiency of 14N polarization can be increased following the
state-of-the-art NV technologies [59]: instead we choose to
initialize the electron spin state into |0〉 and then apply a fast
resonant microwave π pulse to drive |0〉 ↔ | − 1〉. Due to the
high efficiency of this scheme, we can perform the initializa-
tion process twice to further improve the preparation fidelity
of 14N . Although it is extremely challenging to precisely
measure the nuclear-spin polarization rate of 14N [57], one can
make sure that the rate is high enough for further experiments
after an electron-spin resonance experimental test (Fig. 6).

The initialization of weakly coupled 13C nuclear spin is
composed of a swapping operation mapping electron spin
onto the corresponding nuclear spin (see the main text). We
also tune the gate parameters to obtain better state preparation:
for the 13C nuclear spin that is used, after state preparation, we
optimize the single and controlled gate parameters, measuring
free evolution in the Y basis (Fig. 7). In our experiments,
we obtain initialization and readout combined fidelity with
maximal value 0.96(1), and the same gate parameter set is
used for the following experiments.

APPENDIX E: COMBINED READOUT OF ENTANGLED
STATES

To test Leggett’s inequalities, we design two sets of mea-
surement settings, i.e., one for Eq. (2) and the other for Eq. (4)
in the main text. For the combined readout of electron-nuclear
entangled states in the corresponding basis ϕeXn/ϕeYn, there
are two cases for ϕ settings of the inclined angle between
(mi, m′

i) for Bob (electron spin), while in both cases n1/n2
is a unit vector along the X/Y direction for Alice (13C nuclear
spin), as shown in Figs. 1 and 4 in the main text. More pre-
cisely, for the six-setting case, the six measurement directions

FIG. 7. 13C nuclear-spin measurement results (dots) in the Y ba-
sis within free evolution time t after initialization, where the observed
oscillation indicates the efficient control of the target nuclear spin.
The cosinusoidal fitting result (solid line) demonstrates maximal
readout-initialization combined fidelity of 0.96(1) with optimized
gate parameters.
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To achieve the combined measurements, we need to rotate
the electron spin (mi, m′

i) to the X/Y axis. The whole process
starts with a rotation to the Z axis and then a driving to
the X/Y axis for the final readout, all controlled by the
microwave fields through the modulation of output amplitude
A, respective phase �, and duration time T . For example, the
expression of mi can be rewritten as

mi = (sin � cos 	, sin � sin 	, cos �), (E3)

where � denotes the zenith angle from the positive Z axis and
	 denotes the azimuth angle from the positive X axis, respec-
tively. Experimentally, we rotate the electron spin along the
axis (	 − π/2) with angle � to return back to the positive Z
axis and then projected into the X/Y axis by the corresponding
π/2 microwave pulse.

After the projection of the electron spin, we subsequently
use the designed sequence to achieve the joint detection
XeXn/YeYn of Alice (13C nuclear spin) and Bob (electron spin)
simultaneously to test Leggett’s nonlocal model.

APPENDIX F: RAW-DATA VERIFICATION AND READOUT
ERROR CORRECTION

For the two sets of experimentally observed correlations
for testing Leggett’s inequalities described in the main text,
we now analyze the raw data without readout correction
under normalization corresponding to the contrast in Rabi
oscillation.

In both cases, we consider the error bars from readout
standard deviations in stochastic state projection and optical
measurement processes of a Bernoulli distribution, which is
taken as the standard deviation in Monte Carlo methods,

σ =
√

p0(1 − p0)

N
× F × 2, (F1)

where p0 denotes the readout probability in |0〉, N is the
repeating number of the measurement sequence, and F is
the normalization factor corresponding to the contrast in Rabi
oscillation; the factor of two in Eq. (F1) is due to the rescaling
of measurement values from [0,1] to [−1, 1].

As for the raw-data verification, we include error bars
for the two scenarios (six and eight settings) without data
correction, shown in Figs. 3 and 4(b) in the main text. Notably,
the maximal expectation values of two measurement settings
are equal to 6.136 ± 0.034 and 8.323 ± 0.045, violating the
corresponding Leggett’s inequalities by more than 4.0 and 7.1
standard deviations, respectively.

For further data processing, we need to avoid the effect
for infidelities during the measurement sequence and obtain
the accurate value after entanglement preparation. The result
is corrected based on the previous work [54]. For a single
nuclear spin, we first prepare it into the eigenstate |↓〉, then
project it into the Y basis, and measure after the varied
evolution time t . The spin preparation and projective readout
operation consist of the same set of gates; thus, after appropri-
ate fitting of the result, for a single nuclear spin, we assume
that Cinitial = Creadout = CQ and get the expressions

|〈Y+〉| = C2
Q+, (F2a)

|〈Y−〉| = C2
Q−, (F2b)

while 〈Y+〉 and 〈Y−〉 are the max and min cosinusoidal fitting
value of the Y basis. After that, we can extract the factors
CQ+/−, which is associated with the measurement processes,
and obtain the calibrated data in the main text.
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