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We present quantum algorithms to efficiently perform discriminant analysis for dimensionality re-
duction and classification over an exponentially large input data set. Compared with the best-known
classical algorithms, the quantum algorithms show an exponential speedup in both the number of
training vectors M and the feature space dimension V. We generalize the previous quantum algo-
rithm for solving systems of linear equations [Phys. Rev. Lett. 103, 150502 (2009)] to efficiently
implement a Hermitian chain product of k£ trace-normalized N x N Hermitian positive-semidefinite
matrices with time complexity of O(log(NV)). Using this result, we perform linear as well as nonlinear
Fisher discriminant analysis for dimensionality reduction over M vectors, each in an N-dimensional
feature space, in time O(p polylog(MN)/e*), where ¢ denotes the tolerance error, and p is the
number of principal projection directions desired. We also present a quantum discriminant analysis
algorithm for data classification with time complexity O(log(M N)/e%).

PACS numbers: 03.67.-a, 03.67.Ac

I. INTRODUCTION

With the rise in the fields of big data analysis and machine learning in the modern era, techniques such as di-
mensionality reduction and classification have gained significant importance in the information sciences. In machine
learning and statistical analysis problems, when input vectors are given in an extremely large feature space, it is
often necessary to reduce the data to a more manageable dimension/size before manipulation or classification. One
classical example is in the problem of face recognition [8, 9], where the size of the feature space is determined by a
huge number of pixels representing each face. More recent applications are also seen in fields of medical imaging. For
instance, [11] shows the necessity for dimensionality reduction in diagnosing cases of liver cirrhosis. Also, [12] shows
the importance of dimensionality reduction for early Alzheimer’s disease detection.

One widely used technique for dimensionality reduction is principal components analysis (PCA), where the data
is projected onto the directions of maximal variance. However, a significant disadvantage of PCA is that it looks
only at the overall data variance, and does not consider the class data. The extreme example of this would occur if
the overall data variance is in exactly the same direction as the maximal within-class data variance, but orthogonal
to the direction of maximal between-class data variance. In such a case, it is possible for a PCA projection to
completely overlap the data from different classes, making it impossible to use the projected data to perform future
discriminations. Fisher’s linear discriminant analysis (LDA) is a technique developed to overcome this problem by
instead projecting the data onto directions that maximize the between-class variance, while minimizing the within-
class variance of the training data. It is hence not surprising that LDA is shown to be more effective than PCA in
machine learning problems involving dimensionality reduction before classification [8, 9].

Another common application of discriminant analysis is to use it as a classifier itself, where labeled training vectors
are presented as input and new cases must be efficiently assigned to their respective classes. The discriminant analysis
classifier has recently been used in medical analysis, such as in analyzing electromyography (EMG) signals [13, 14],
lung cancer classification [15], and breast cancer diagnosis [16]. While other algorithms such as the support vector
machine (SVM) reach similar accuracy rates as the discriminant analysis classifier [17, 18], studies [18] show that
discriminant analysis is a significantly more stable model. This is because the separating hyperplane chosen by the
SVM can depend only on a few support vectors, subjecting it to high variance in the case of training vector errors.
On the other hand, since discriminant analysis bases its classification on the entire class means and variances, it tends
to show less fluctuation and is potentially more robust in the presence of error.

A significant drawback of discriminant analysis in both dimensionality reduction and classification is the time
complexity. Even the best existing classical algorithms for LDA dimensionality reduction require time O(Ms) [7],
where M is the number of training vectors given, and s is the sparseness (maximum number of nonzero components)
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of each feature vector. For large data sets in high dimensions, this can scale rather poorly, especially since it is often
hard to guarantee the sparseness of training vectors. While quantum algorithms have been designed to exponentially
speed up PCA to be polylogarithmic in the number of input vectors and their dimension [5], no such work has been
done yet to speed up LDA. In Section III, we provide a quantum algorithm for LDA polylogarithmic in both M, the
number of training vectors, and NV, the initial feature space dimension, regardless of the sparseness of the training
vectors.

Similarly, while a quantum algorithm has been presented to provide exponential speedup in SVM classification
[3], no work has been done yet for the discriminant analysis classifier. The best known algorithms for the classical
discriminant analysis classifier also require time polynomial in M and N (see Section II below), which again can scale
rather poorly. In Section IV, we provide a quantum algorithm for discriminant analysis classification logarithmic in
both the number of input vectors M and the dimension N.

This paper is arranged as follows: In Sec. II we briefly review the classical discriminant analysis algorithms for
dimensionality reduction and data classification. In Sec. III and IV, we present our major results of quantum
discriminant analysis algorithms for dimensionality reduction as well as classification. The detailed proof of Theorem
1 in Sec. III, which is about efficient quantum implementation of a Hermitian chain product of k trace-normalized
N x N Hermitian positive-semidefinite matrices, is included in the appendix.

II. REVIEW OF CLASSICAL DISCRIMINANT ANALYSIS
Dimensionality Reduction

The classical LDA dimensionality reduction algorithm is designed to return the directions of projection that maxi-
mize the between-class variance (for class discrimination), but minimize the within-class variance. With this result,
in big data problems as listed in Section I, the vectors in a high-dimensional feature space may be projected onto a
lower-dimensional subspace (spanned by the returned optimal unit vectors), so that less resources may be used to store
the same amount of information. Suppose we are given M (real-valued) input data vectors {z; € RY : 1 <i < M}
each belonging to one of k classes. Let u. denote the within-class mean (centroid) of class ¢, and Z denotes the
mean/centroid of all data points x. Furthermore, let

denote the between-class scatter matrix of the dataset, and let

k
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denote the within-class scatter matrix. The goal is then to find a direction of projection w € RY that maximizes
the between-class variance w’ Spw relative to the within-class variance w” Syyw. Mathematically, assuming that
the classes have approximately multivariate Gaussian distribution with similar covariances, this is the problem of
maximizing the objective function (commonly known as Fisher’s discriminant)

wT Spw

J(w) (3)

T wlSyw'
Since the expression for J(w) is invariant under constant rescaling of w, it is clear that the maximization problem

given in (3) is equivalent to the optimization problem

min —wTSBw (4)

subject to w’ Syw = 1. (5)



We are thus minimizing the Lagrangian [1]

Lp=—w"Spw+ MNw’ Syw — 1) (6)

where X is the desired Lagrange multiplier. By the Karush-Kuhn-Tucker conditions [27], this means that

Syt Spw = Aw. (7)

It follows that w is an eigenvector of Sy Sp. By plugging (7) back into the objective function J(w), we get J(w) = A.
Hence, we choose w to be the principal eigenvector.

The above procedure generalizes easily to higher-dimensional projection subspaces. In this case, we seek p vectors
which form a basis for our projection subspace; this corresponds to maximizing the discriminant

~ WTSpW

JW) = WTSwW

where W is the N X p matrix whose columns are the basis vectors. Using the same analysis as above, one can show

that the columns of W will be the eigenvectors corresponding to the p largest eigenvalues of SV_Vl Sp, as in the case of
PCA.

Classification

Although its most widely-used application is probably in dimensionality reduction, discriminant analysis is also
commonly used to directly perform data classification. For classification, one constructs the discriminant functions
for each class ¢

1
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where X, is the covariance matrix for class ¢, u. is the class mean for ¢ as before, and m. is the prior probability
for classifying into class ¢ [19]. Given a vector z, it is then classified into the class ¢ = argmax_.d.(z). From the
training vector data, if M, is the number of training vectors belonging to class ¢, we can approximate m. = M./M
for simplicity, i.e. the probability of classifying to a certain class ¢ is directly proportional to the fraction of training
vectors belonging to ¢ [19]. Assuming multivariate Gaussian distributions for each class, we also estimate
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Note that in the special case where the covariance matrices are all approximately equal (i.e. . ~ ¥ Ve), ¥ is
proportional to the scatter matrix Sy given by Eq. (2). In this special case, the functions . are known as linear
discriminant functions. In our paper, we present a quantum algorithm to solve the more general case, known as
quadratic discriminant analysis (QDA), in time logarithmic in both the number of input vectors M and their dimension
N. Our algorithm will be easily applicable to the special case of LDA classification. This provides exponential speedup
over the fastest existing algorithms, since the classical construction/inversion of . to evaluate the discriminant
functions must require time polynomial in both M and N.

III. QUANTUM LDA ALGORITHM: DIMENSIONALITY REDUCTION

Assumptions and Initialization

The quantum Principal Components Analysis algorithm of [5] presents methods for processing input vector data if
the covariance matrix of the data is efficiently obtainable as a density matrix, under specific assumptions about the



vectors given in quantum mechanical form. While our major contributions are also in the processing mechanisms of
the within- and between-class covariance matrices, we will describe how to obtain this density matrix under certain
assumptions about the input data, like in Refs. [2, 4, 5].

In our algorithm, similar to the assumptions made in Refs. [2, 4, 5], we will assume we have quantum access to the
training vector data in a quantum RAM (as described in [10]). We will assume that each training vector is stored in
the quantum RAM in terms of its difference from the class means. That is, if a training vector x; belongs to class c;
with centroid ji;, we have the Euclidean norm and complex-valued components of the difference vector d; = z; — pu,
stored as floating-point numbers in quantum RAM in polar form (alternatively, if the input is presented directly
as the training vectors x; and the class means ., we may first perform a component-wise subtraction of the given
floating-point numbers, by [26]). Following the methodology of [3-5], we will assume the following oracle:

O1(17) 10} 10)[0)) = 13) g — poes 1} 125 = pae; ) lej)

to get the j* training vector and its class cj, where |x; — pi.;) has already been normalized to one. Similarly, we also
assume that we are given the quantum representations of the class centroids |u.), in terms of their differences from
the overall training vector mean |Z). That is, if D. = u. — Z, we assume the oracle

Os(1¢) [0)10)) = [e) [llpe — 2} lpe — )

where we similarly assume that |, — Z) has been normalized to one. These oracles could, as an example, be realizable
if the input data is presented in this form as the output of a preceding quantum system, or if the vector components
are presented as floating-point numbers in the quantum RAM, and the sub-norms of the vectors can be estimated
efficiently [4, 28-30]. The oracles O7 and Os allow us to construct density matrices proportional to S and Sy as
follows: Let
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By [4, 28-30], if the norms of the vectors form an efficiently integrable distribution, we can obtain the states

|Ws) = \/—leuc—xl\l ) Mlpe = Z[) e — ) (12)
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where A =370, [|ue = Z|% B =320, |z — pe, 1>
In both cases, we now take the partial trace over the first register. Then, for the state of Eq. (12), the density
matrix of the second register [5] is given by

k
1 _ _ -
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and for the state of Eq. (13), the density matrix of the second register is given by

k
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Assuming our oracles 07 and O, we can hence construct the Hermitian operators Sg, Sy in time O(log(M N)).



LDA Approach

Having initialized the means and operators Sp, Sy, our main task will be to solve the eigenvector problem of
(7). This problem would be simpler if only SI,_VlS B were Hermitian positive semidefinite. However, we can reduce
this problem to an eigenvalue problem for a Hermitian density matrix: specifically, since Sp is Hermitian positive

semidefinite, letting w = 5151/ *v reduces (7) to the eigenvalue problem [1]

SY2S S = A (16)

To apply the quantum phase estimation algorithm to solve (16), we must first be able to construct the density matrix

S]lg/ 25",}15‘}3/ > In the following section, we present a more general theorem that can be applied to construct this
density matrix.

Implementing the Hermitian chain product

In this section, we state a theorem to construct the density matrix corresponding to the Hermitian chain product

[fe (k). fr(AD][fe (Ar)-w fr (AT (17)

to error ¢, for arbitrary normalized N x N Hermitian positive semidefinite matrices Ay, ...Ay, and functions fy, ... [
with convergent Taylor series. The derivation of this theorem follows the method presented in [2], and is presented in
Appendix A.

Theorem 1: Let Ay,... Ay be k normalized Hermitian positive semidefinite matrices whose quantum forms can be
constructed in time O(log(N)) (e.g., by visits to a quantum RAM) and let fi,...fr be k functions with convergent
Taylor series. Let {\j}¥, denote the eigenvalues of matriz A;. Then the Hermitian operator in Eq. (17) can be
implemented in time

k
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where k; is the condition number for matriz A;, i.e. the ratio of the largest to smallest eigenvalue of Aj. More
generally, if construction of each matriz A; takes time O(X), the operator can be implemented in time

k k 2
X A i(Aj
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We note that this provides exponential speedup over classical algorithms, as the optimal classical algorithm for
multiplication of non-sparse N x N matrices requires time O(N2-3737) [31].

Finding the principal eigenvectors

For LDA, we apply the theorem presented in the previous section to obtain the matrix product 5’113/ QS;VlS}B/ 2,
Specifically, we use 4; = Sw, Ay = Sp, fi(X) = X~1/2 and fo(X) = X/2. To avoid exponential complexity in
the case of exponentially small eigenvalues, we adopt a technique used in [3] by pre-defining an effective condition
number ko and taking into account only eigenvalues in the range [1/kes, 1] for phase estimation. (Typically, one
may take ke = O(1/€), because keg is a limit to the amount of eigenvalues considered in phase estimation, which
should be proportional to the error tolerance). By our initialization procedures, preparation of Sp and Sy take time
O(log(MN)), and by definition of fi, fa, and ke,
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Hence, by (19) we can obtain 5’113/25";/15113/2 in time O(log(M N)k37 /€®). Using the matrix exponentiation technique
presented in [5], we can then apply quantum phase estimation to obtain an approximation to the state

p= Z/\i [vi) (vi| ® |As) (Nl

where \; and v; are the eigenvalues and eigenvectors of S}B/ 25@18}3/ 2. If the p principal (largest) eigenvalues

are polynomially small, sampling produces the corresponding p principal eigenvectors v, of 5’113/ QS;VlS}B/ % in time
O(p polylog(M N)/e3) [22]. (If all eigenvalues are indeed super-polynomially small, there are typically no suitable
directions for discriminant analysis: all directions would be essentially the same in preserving between-class vs. within-
class data). Finally, having solved the eigenvalue problem of (16), we again use the technique of the previous section
to obtain the eigenvectors

w, = S5 %, (20)

of SV}IS B. After obtaining these principal eigenvectors, the data can be projected onto the dimensions of maximal
between-class variance and minimal within-class variance. At this stage, one has effectively performed dimensionality
reduction, and can now easily manipulate the data with existing tools, e.g. a classifier (see [3] or Section IV below).

Algorithm 1: Quantum LDA Dimensionality Reduction

Step 1: Initialization. By querying the quantum RAM /oracles, construct the Hermitian positive semidefinite
operators Sp and Sy as given by Equations (14) and (15), in time O(log(M N)).

Step 2: Since Sp and Sy are Hermitian positive semidefinite, use the method of [5] to exponentiate these
operators. Apply the generalized matrix chain algorithm of Theorem 1 to implement 5’113/ QS;VlS}B/ % in time
Ollog(MN)3E/e).

Step 8. Since 5119/ 25",_[,15’}9/ % is Hermitian positive semidefinite, use the method of [5] to exponentiate this
operator. Use quantum phase estimation methods and sample from the resulting probabilistic mixture to then
obtain the p principal eigenvalues/eigenvectors v,., in time O(p polylog(M N)/e3).

Step 4: Apply 5’;1/2 to the v,’s (by the algorithm of Theorem 1) to get desired directions w, = S’;l/zvr, in
time O(plog(MN)r2s/€3).

Step 5: Project data onto the w,’s for dimensionality reduction, or otherwise work in the directions of maximal
class discrimination.

Algorithmic Complexity for Dimensionality Reduction

Algorithm 1 above shows the pseudocode for our LDA algorithm. Step 1 (initialization) takes time O(log(M N))

with our quantum oracles. Implementing the operator 52/251/—‘/15119/2 takes time O(log(M N)x3;?/€®), and finding its
principal eigenvectors then takes O(log(MN)/e3). Finally, Step 4 takes time O(log(MN)r3;/€3) to apply Sg/? to

the v,’s and obtain the eigenvectors of SavlS . Hence, we can add these to get the total runtime:

Theorem 2: The quantum LDA algorithm presented in this paper (with pseudocode given by Algorithm 1) can
be implemented in time polylogarithmic in both the mumber of input vectors M and the input vector dimension N.
Specifically, it has a runtime of



O (p polylog(MN)rlg /€% (21)

where Keg is a pre-defined condition number restricting the range of eigenvalues considered for phase estimation,
typically taken to be O(1/€), and p is the number of principal eigenvectors.

Note that the complexity presented here in (21) is polylogarithmic in both the number of input vectors M and their
dimension N, regardless of training vector sparseness.

Nonlinear/Kernel Fisher Discriminant Analysis

Certainly, in many real-world cases, a straightforward linear discriminant may not be sufficient. Classically, a
simple generalization is known as kernel Fisher discriminant analysis (kernel FDA), where the input vectors are first
mapped (nonlinearly) by a function ¢ : ; — ¢(z;) into a higher-dimensional feature space F. The linear discriminant
corresponding to J(w) in the feature space then becomes nonlinear in the original space. In the classical case, if the
dimension of F is too large, it becomes computationally infeasible to perform operations such as matrix multiplication
or exponentiation on the resulting large covariance matrices Sﬁ and S“?V. Instead, one must find workarounds such as
kernel methods, and perform reductions so that the algorithm involves only dot products in the feature space [21], but
this may seriously limit the potential choices of mapping ¢. In the quantum case, however, we can directly perform
the LDA analysis in the higher-dimensional feature space. As long as the dimension of F scales polynomially with
the original input dimension, our algorithmic performance will be affected only by a constant factor. This allows for
a much wider range of mappings ¢ into the feature space.

IV. QUANTUM DISCRIMINANT ANALYSIS ALGORITHM FOR CLASSIFICATION

Algorithm

We now present an efficient quantum algorithm for the classification of an exponentially large data set by quadratic
discriminant analysis (QDA), and our results can easily be applied to perform LDA classification. As before, we
assume that the class means and training vector data are given with their norms and components stored as floating-
point numbers in quantum RAM. We again assume the oracle Os to obtain the class means of the training vectors .
and their norms, and in this section, we further assume that we can obtain the j* training vector of each class. As in
Section III initialization or Refs. [3-5], our oracle gives the vectors . ; are given as their difference from their class
means (as in Section III, this may also be obtained from the stored floating-point numbers if necessary). Specifically,
we assume the oracle

O3(|e) 17 10)[0)) = [e) [3) w5 = pell) [e 5 = pre) -

As in Section III, |z, ; — pc) has been normalized to one. Finally, we now assume that for each class ¢, we are given
the number of training vectors M, belonging to that class.
For QDA, we use the oracles to construct for each class ¢ the Hermitian positive semidefinite operator

M,
1 c
Y= A_ZHxC,j _Mc”2|$c,j _Mc> <$c,j _Nc|' (22)

¢ i=1

where A, = Zj]\icl lze,; — pell?. To do this, we first call O3 on the state \/%40 E;\/I;l [€) |7)10) |0) to obtain the register
\/Lﬁ ij\icl [e) [7) lwe,; — tell) |Te,j — pe)- As in the initialization procedure of Section III, we use the methods of

[4, 28-30] to obtain the state |x.) = LAC Z]I‘/il Zj]\icl e ; — pell le) 17) [|@e,j — ell) |Ze,j — tte). Tracing over |4) in the
outer product |x.) (.| then yields the operator X. in time O(log(M N)).
Given an input vector |z) in quantum form, we now present a method to find the maximum among the k discriminant

functions 6.(x) given in Eq. (8). First, we apply X! to the class mean |u.), using the matrix inversion algorithm of



[2]. As before, to avoid exponential complexity with small eigenvalues, we introduce the pre-defined effective condition
number kg to limit the range of considered eigenvalues. By [2], we can thus construct the state

|52 pie) (23)

for each class ¢ in time O(log(M N)r2g/€?). Next, recognizing the first two terms of the discriminant function of (8)
as an inner product, we perform a SWAP test [32] on the states | 'pc) and |z — $c) to obtain the value

a5 e - %ufEZluc- (24)
This inner product evaluation requires time O(log(N)). Finally, for each class ¢, we add to the value in (24) the class
prior m. = M./M. We hence obtain the discriminant values §.(z) for all of the k classes in time O(klog(MN)r2z/€?).
It is then straightforward to identify the class yielding the maximum discriminant, to which the input vector is then
classified. Note that our algorithm can be easily applied to perform quantum LDA classification, by using an operator
proportional to the scatter matrix Sy (see Section III, initialization) in place of 3. for each class.

Algorithm 2: Quantum Discriminant Analysis Classifier

Step 1: Initialization. By querying the quantum RAM or oracles, construct the Hermitian positive semidefinite
operators . in time O(klog(MN)) for all classes c.

Step 2: Since 3. is Hermitian positive semidefinite, use the method of [5] to exponentiate this operator. Apply

the inversion algorithm of [2] on the state |u.) for each class to construct the states given by Eq. (23) in time
O(klog(MN)k34/€%).

Step 3: Take the inner product of ¥ 1. with x — %uc using the SWAP test, yielding the value in Eq. (24).
This step requires time O(log N).

Step 4: For each class ¢, add the class prior 7. = M./M to the value in (24) to obtain the final discriminant
value 0.(x).

Step 5: Select the class ¢ yielding the maximum discriminant value, and classify x accordingly in time O(k).

Algorithmic Complexity for Classification

Algorithm 2 above shows the pseudocode for our quantum QDA classifier. Step 1 (initialization) takes time
O(klog(MN)/e). Applying the inversion algorithm of [2] for each class then takes time O(klog(MN)r3s/€®). Com-
puting all of the inner products given by (24) requires time O(k log N), and adding the class priors requires time O(k).
Finally, selecting the class with maximum discriminant takes time O(k). We add these to give the overall complexity
below:

Theorem 3: The quantum QDA classifier algorithm presented in this paper (with pseudocode given by Algorithm 2)
can be tmplemented in time logarithmic in both the number of input vectors M and the input vector dimension N.
Specifically, it has a runtime of

O (klog(MN)k2g/e®) (25)

where k is the number of classes for classification, and k.g is a pre-defined condition number restricting the range of
eigenvalues considered for phase estimation, typically taken to be O(1/¢).

Note that the complexity presented in Eq. (25) is logarithmic in both M and N regardless of training vector
sparseness.



V. DISCUSSION

In this paper, we have presented a generalized algorithm from [2] for implementing Hermitian matrix chain operators,
and applied it to implement an algorithm for quantum LDA in polylogarithmic time. As demonstrated by classical
works such as [8, 9], LDA is a powerful tool for dimensionality reduction in fields such as machine learning and big
data analysis. Although our performance in terms of error e is poorer than classical algorithms (polynomial instead
of logarithmic in 1/€), we believe that this is acceptable, since it is unlikely that someone desiring extreme levels
of precision will wish to perform significant dimensionality reduction like that provided by LDA. Rather, we believe
that the exponential speedup in terms of the parameters M and N should be more significant in reducing the overall
algorithmic runtime.

Our work has also presented a quantum algorithm providing exponential speedup for the LDA and QDA classifiers.
As classical studies [17, 18] have shown, these classifiers typically perform just as well in terms of accuracy as the SVM
(for which a quantum algorithm has been developed, [3]). However, they tend to have much better model stability [18],
which can make them more robust in face of training data errors. Finally, discriminant analysis methods are much
simpler when generalizing to multi-class classification, whereas the SVM is more suited for binary classification [23].
In conclusion, this work has provided efficient exponential speedup for two important algorithms for dimensionality
reduction and classification in big data analysis.

APPENDIX A: PROOF OF THEOREM 1

In this appendix, we present the derivation of Eq. (19) from Theorem 1 in Section III. The proof of the theorem
closely follows the matrix inversion algorithm presented in [2] (referred to in the following as the HHL algorithm).
The HHL algorithm begins with the initial state

T-1

o) = 3 sin "2 gy (26)
7=0

for large T (see [2] for more details on original algorithm, we make a sketch below). Since the original algorithm was
designed to apply the inverse of a matrix A on a specific vector |b), HHL considers the state |¢)g) ® |b). Here, we are

interested instead in obtaining an operator for (17), so we use the density operator py = \/—% sz\il i) (i| (proportional

to the identity) in place of |b), and we use |tbg) (¢o| in place of |t)p).
Following HHL, decompose pg in the eigenvector basis using phase estimation. Denote the eigenvectors of A; by
{lui) HY,, and let {\1;}{Y, be the corresponding eigenvalues. Then, we write

N
po = Z Bur |wir) (war] . (27)

Ll'=1

Quantum phase estimation is then applied on pg for time tg = O(k1/€) to obtain the state

N
P~ Y Bur ar) (vl fuw) (war] (28)

LU=1

up to a tolerance error € (1 is the condition number of the matrix Ay, or the ratio of the largest to smallest eigenvalue).
In this step, the exponentiation of the Hermitian operator A; is performed using the trick presented in [5]. By [5],
n = O(k?/e®) copies of A; are required to perform the phase estimation to error ¢, so if A; can be constructed in
time O(X), this step requires time O(nX) = O(Xr?}/e3).

HHL then add an ancilla and perform a unitary controlled on the eigenvalue register. Here, we generalize this step
to a controlled rotation from |0) (0| to the state [i)y,,) (¥, |, where

[Yan) = V1= C2f1(A)?[0) + Cfi(Au) [1) (29)
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and C' is a constant of order O(min;{|f1(A1;)|~1}) for normalization. Assuming f; has a convergent Taylor series, it is
possible to efficiently perform this rotation using controlled gates (see Appendix B). This results in the overall state

po = Z BiBrr (M) (Avv] Jur) Cuner | |ihag, ) (9a,, | (30)

IL'=1

Next, following HHL, we undo phase estimation to uncompute the eigenvalue register, resulting in the state

N
= D BB lua) (wrv] [9a,) (9, | (31)

Lr=1

Finally, as in HHL, measure the ancilla to be [1) (1|. By choice of C, this success probability is easily seen to be
[33]

0 <M) , (32)

max; | f1(A1)]?

This produces the density operator proportional to p; = f1(A1)I(f1(A1))" in runtime

0 (X |2 max; |f1(A11)|2> .

22 VAT
3 miny | f1 (A1) |?

To generalize this to the entire matrix chain, we can simply repeat this algorithm with As as the matrix, fo as the
function, and start with the state p; instead of py. More generally, at each iteration j, use A;, f; on pj—1. At each
step, n = O(FL? /€3) copies of A; are required, and the probability of success in measuring the ancilla is given by the
expression analogous to Eq. (32). Hence, for k& matrices, the Hermitian operator in Eq. (17) can be implemented in
time

X5 max | w)?
€3 ;K 1;[ (m1n1|fJ (M)l ' (33)

By [2], amplitude amplification can be used on the first matrix A; only to increase the measurement success
1 . . 2 1 . .
probability from € (%(’\”)“2) to (%(A”)D This reduces the complexity slightly to

max; [ f;(X\j1) max; [ f;(X\j1)
X i 2 Max; |f1 H max; |fj (Ao 2 (34)
—_ I{ B .
€3 I ming [ f1 ()| i ming | f;(A0)|

In the case where Aj,...Aj are density matrices presented in a quantum RAM, X = O(log(N)), and we obtain Eq.
(18).

APPENDIX B: PERFORMING THE CONTROLLED ROTATION OF (29)

In this section, we show how to perform a controlled rotation in the form of (29) for an arbitrary function f with
convergent Taylor series. Specifically, we are to rotate the ancilla by the angle #(\) = sin™'(Cf()\)). This is not
trivial, even for simple cases such as f(x) = 1/x in the original HHL algorithm. HHL do not provide a decomposition
of this rotation in terms of controlled gates. Here, we will present such a method for arbitrary f.

The idea behind our method is to approximate 6(A) by its Taylor series. We will first construct the register | f(\))
from |A), and then construct |§(\)) from |f(N)). This procedure is outlined below and presented in detail in Algorithm
3.
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Since f has a convergent Taylor series, we approximate

F (20)(A — 20)"

n!

FO) =~ f(zo) + f'(x0) (N — o) + ... + (35)

for some constant xg near A to order n. Now, by choice of C, |C'f(A\)| < 1 lies in the radius of convergence of the
Maclaurin series for sin™!(z). Hence, we can substitute C'f()\) into this Maclaurin series and approximate

(CION) | 3(CFN) | 5CIN)
6 * 40 * 112

The multiplication in steps 1 and 2 on the quantum registers in Algorithm 3 can be performed very similarly to the
exponentiation a” in Shor’s algorithm [25]. Suppose the binary strings |A) and |B) are given in quantum form. Then,
the classical grade-school multiplication algorithm can be carried out by performing addition operations controlled
on the qubits representing |B): at the k' iteration, if the k" qubit of |B) from the right is |1), add |2¥A) (obtained
by left-shifting qubits) to the result. Repeating for all k& between 0 and the number of qubits in |B) minus one gives
the desired product.

Finally, once we have the binary representation of the rotation angle in the register |#(\)), we can implement the
controlled rotation of the ancilla. Specifically, for each term 2" appearing in this binary expansion, add a unitary
controlled on the qubit coefficient of this term to rotate the ancilla by 2”. Since any two-qubit controlled-U operation
can be implemented with two controlled-NOT gates and single-qubit unitaries [24], the desired rotation of (29) can
be implemented efficiently.

O(\) =sin"H(CF(N) = Cf(N) + + . (36)

Algorithm 3: Constructing [#()\)) from |\)

Step I: Initialization. Prepare an auxiliary register to hold the value A — zy. Prepare three more working
registers: the first (initialized to 1) will hold the current power of A — g, the second (initialized to 1) will hold
the value of the first register multiplied by the Taylor coefficient f(*)(z0)/k!, and the third (initialized to 0)
will be a running total for the right hand side of Eq. (35).

Step 2: Multiply the first working register by A — z¢ from the auxiliary.

Step 3: Multiply the value in the first register by the k** Taylor coefficient f*)/k! and store the result in the
second working register.

Step 4: Add the value in the second working register to the third working register.

Step 5: Repeat steps 2-4 for each value k = 1,2,...n. After this step, we have successfully obtained the value
[£(\)) in the third working register.

Step 6: Repeat steps 1-5 now with a register containing |C'f(\)) in place of |A), and with the function sin™!

in place of f. It suffices to expand around xy = 0. This step yields the register |§())), by the Maclaurin series
approximation of (36).
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