388

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

Trinary-Projection Trees for Approximate
Nearest Neighbor Search

Jingdong Wang, Senior Member, IEEE, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Member, IEEE,
Hongbin Zha, Member, IEEE Computer Society, and Xian-Sheng Hua, Member, IEEE

Abstract—We address the problem of approximate nearest neighbor (ANN) search for visual descriptor indexing. Most spatial
partition trees, such as KD trees, VP trees, and so on, follow the hierarchical binary space partitioning framework. The key effort is to
design different partition functions (hyperplane or hypersphere) to divide the points so that 1) the data points can be well grouped to
support effective NN candidate location and 2) the partition functions can be quickly evaluated to support efficient NN candidate
location. We design a trinary-projection direction-based partition function. The trinary-projection direction is defined as a combination of
a few coordinate axes with the weights being 1 or —1. We pursue the projection direction using the widely adopted maximum variance
criterion to guarantee good space partitioning and find fewer coordinate axes to guarantee efficient partition function evaluation. We
present a coordinate-wise enumeration algorithm to find the principal trinary-projection direction. In addition, we provide an extension
using multiple randomized trees for improved performance. We justify our approach on large-scale local patch indexing and similar

image search.

Index Terms—Approximate nearest neighbor search, KD trees, trinary-projection trees

1 INTRODUCTION

NEAREST neighbor (NN) search is a fundamental
problem in computational geometry [12] and machine
learning [42]. It also plays an important role and has
various applications in computer vision and pattern
recognition. The basic but essential task, content-based
image and video retrieval, is a nearest neighbor problem: to
find the examples that are most similar to the query in a
large database. The nearest neighbor classifier, relying on
NN search, is frequently employed for recognition and
shape matching [18], [57]. Local feature-based object
retrieval methods include the step of searching a huge
database of patch descriptors for most similar descriptors

o |. Wang is with the Media Computing Group, Microsoft Research Asia, 13/
F, Building 2, No. 5 Danling Street, Haidian District, Beijing 100080,
P.R. China. E-mail: jingdw@microsoft.com.

o N. Wang is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Room 4215,
Academic Building, Clear Water Bay, Hong Kong, P.R. China.

E-mail: winsty@gmail.com.

e Y. Jia is with Facebook, 1 Hacker Way, Menlo Park, CA 94025.
E-mail: jiayoub0@gmail.com.

e | Li is with the Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, P.R. China. E-mail: lapordge@gmail.com.

o G. Zeng is with the Key Laboratory on Machine Perception, Department of
Machine Intelligence, School of Electronics Engineering and Computer
Science, Peking University, Room 2202, Science Building No. 2, Beijing
100871, P.R. China. E-mail: g.zeng@iece.org.

e H. Zha is with the Department of Machine Intelligence, School of
Electronics Engineering and Computer Science, Peking University,
Beijing, P.R. China. E-mail: zha@cis.pku.edu.cn.

e X.-H. Hua is with Microsoft Corporation, 1 Microsoft Way, Redmond, WA
98052. E-mail: xshua@microsoft.com.

Manuscript received 10 Jan. 2012; revised 1 Oct. 2012; accepted 16 June 2013;
published online 26 June 2013.

Recommended for acceptance by P. Felzenszwalb.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2012-01-0026.

Digital Object Identifier no. 10.1109/TPAMI.2013.125.

0162-8828/14/$31.00 © 2014 IEEE

[38]. Vision applications, such as 3D modeling from photo
databases [44] and panorama building [8], depend on NN
search for fast matching to establish the correspondences of
local feature points among images. Graphics applications,
such as texture synthesis [13], [27], image completion [19],
and so on, also adopt NN search to quickly find the reliable
image patches.

Nearest neighbor search in the d-dimensional metric
space IR is defined as follows: Given a query q, the goal
is to find an element NN(q) from the database X =
{x1,...,%,} so that NN(q) = arg minycy dist(q,x). In this
paper, we assume that IR’ is a euclidean space and
dist(q, x) = ||q — x||,, which is appropriate for most pro-
blems in computer vision. The straightforward solution,
linear scan, is to compute the distance to each point whose
time complexity is O(nd). The time cost is too expensive for
large-scale high-dimensional cases. Multidimensional in-
dexing methods, such as the popular KD tree [6], [17] using
branch and bound or best first techniques [3], [5], have been
proposed to reduce the time of searching exact NNs.
However, for high-dimensional cases it turns out that
such approaches are not much more efficient (or even less
efficient) than linear scan.

To overcome this issue, a lot of investigations have been
made instead on approximate nearest neighbor (ANN)
search. There are two basic categories of ANN search. One
is error-constrained ANN search that terminates the search
when the minimum distance found up to now lies in some
scope around the true minimum (or desired) distance. For
example, given ¢>0 and 6>0, (1+¢)-approximate
nearest neighbor search with the query q is to find one
point p so that dist(q,p) < (1+¢) dist(q,p*), with p*
being the true nearest neighbor, and randomized (1 + ¢)-
approximate nearest neighbor search is to find such a
point p with probability at least 1 —¢. There are some

Published by the IEEE Computer Society

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

389

TABLE 1
Comparison of Trinary-Projection (TP) Trees with KD Trees, PCA Trees, Spill Trees,
Random Projection (RP) Trees, k-Means Trees, and Vantage Point (VP) Trees

\ [TP tree | KD tree | PCA tree | Spill tree | RP tree || K-means tree | VP tree |

search order medium poor good medium | medium good good
branching cost 0(1) O(1) O(d) O(d) O(d) O(d) O(d)
time overhead low low high high high high high
overall performance good medium | medium poor poor medium poor

Search order: the order of visiting data points. Branching cost: the time cost of determining which child is next accessed at the internal node. Time
overhead: the extra time cost of accessing the point in a leaf node. Overall performance: the overall ANN search performance in terms of time cost

and precision.

other error-constrained ANN search problems, including
randomized R-near neighbor reporting that reports each R-
near neighbor of q with probability at least 1 — é. The other
one is time-constrained ANN search that terminates the
search when the search reaches some prefixed time (or
equivalently examines a fixed number of data points). The
latter one, the focus of this paper, is more practical and
gives better performance. In the following, we will review
existing widely studied ANN search algorithms, and then
present the proposed approach.

1.1 Related Work

A comprehensive survey on ANN search algorithms can be
found from [40]. We mainly present the review on two
categories: partition trees and hashing, which are widely
used in computer vision and machine learning.

1.1.1 Partition Trees

The partition tree-based approaches recursively split the
space into subspaces, and organize the subspaces via a tree
structure. Most approaches select hyperplanes or hyper-
spheres according to the distribution of data points to divide
the space, and accordingly data points are partitioned into
subsets. The typical partition trees include KD trees [6], [17]
and its variants [3], [5], [43], box-decomposition trees
(BD tree) [3], PCA tree [45], metric trees (e.g., ball trees [33],
vantage point trees (VP tree) [56], random projection trees (RP
tree) [10], and spill trees [29]), hierarchical k-means trees [36].
Other partition trees, such as Quadtrees [16], Octrees [55],
and so on, are designed only for low-dimensional cases.

In the query stage, the branch-and-bound methodology
[6] is usually adopted to search (approximate) nearest
neighbors. This scheme needs to traverse the tree in the
depth-first manner from the root to a leaf by evaluating the
query at each internal node, and pruning some subtrees
according to the evaluation and the currently found nearest
neighbors. The current state-of-the-art search strategy,
priority search [3] or best first [5], maintains a priority
queue to access subtrees in order so that the data points
with large probabilities being true nearest neighbors are
first accessed.

Let us look at more details on KD trees, PCA trees, RP
trees, and spill trees, all of which use hyperplanes to split
the data points. KD trees use a coordinate axis to form the
partition hyperplane. In contrast, PCA trees find the
principal direction using principal component analysis
(PCA) to form the partition hyperplane, and spill-trees and
RP trees select the best one from a set of randomly
sampled projection directions. Compared with KD trees,

PCA trees, RP trees, and spill trees yield better space
partitions and thus lead to better order for visiting the
points because the partition hyperplanes are less limited
and more flexible than those in KD trees. However, in the
query stage, the time overhead in PCA trees, RP trees, and
spill trees is larger because the branching step, determin-
ing which child of an internal node is next visited, requires
an inner-product operation that consists of O(d) multi-
plications and O(d) additions while it costs only O(1) in
KD trees. Therefore, in high-dimensional problems KD
trees usually achieve better accuracy than PCA trees and
spill trees within the same search time. In practice, KD
trees are widely adopted for computer vision applications.
A comparison of these partition trees is summarized in
Table 1.

Multiple randomized KD trees, proposed in [43], gen-
erate more space partitions to improve the search perfor-
mance. In the query stage, the search is performed
simultaneously in the multiple trees through a shared
priority queue. It is shown that the search with multiple
randomized KD trees achieves significant improvement. A
boosting-like algorithm is presented in [48] to learn
complementary multiple trees for further performance
improvement. FLANN [34], which is probably the most
widely used approach in computer vision, automatically
selects one from multiple randomized KD trees and
hierarchical k-means trees according to a specific database
and finds the best parameters. Similarly, a priority search
scheme is also used in the query stage. The proposed
approach in this paper can also be combined into the
FLANN framework to automatically tune the parameters.
This is left for future work.

1.1.2 Hashing

Locality sensitive hashing (LSH) [11], one of the typical
hashing algorithms, is a method of performing ANN search
in high dimensions. It could be viewed as an application of
probabilistic dimension reduction of high-dimensional
data. The key idea is to hash the points using several hash
functions to ensure that for each function the probability of
collision is much higher for points that are close to each
other than those far apart. Then, one can determine near
neighbors by hashing the query and retrieving elements
stored in the buckets containing it. Several followup works,
such as LSH forest [4] and multiprobe (MP) LSH [31],
improve the search efficiency or reduce the storage cost.
LSH has been widely applied to computer vision, for
example, for pose matching, contour matching, and mean

390 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

shift clustering. A literature review could be found in [42].
LSH suffers from poor access order because the hash
functions are achieved without exploiting the distribution
of data points and the points in the same bucket (with the
same hash code) are not differentiated.

Recently, a lot of research efforts have been devoted on
finding good hashing functions, by using metric learning-
like techniques, including optimized kernel hashing [20],
learned metrics [22], learned binary reconstruction [25],
kernelized LSH [26], and shift kernel hashing [39], semi-
supervised hashing [50], spectral hashing [53], and com-
plementary hashing [54]. Such approaches get better data
partitions than LSH as the hashing functions are learned
from the data, but still poorer data partitions compared
with partition trees because the hierarchical way to
partitioning data points in trees has better capability to
group the data points than the flat way in hashing methods.
In addition, it still suffers from the drawback that the points
in the same bucket are not differentiated. As a result, the
access order is not satisfactory and the search performance
is in practice poorer than partition trees.

1.1.3 Others

There are some other methods for ANN search, such as
embedding (or dimension reduction), neighborhood graph,
distance-based methods and so on. LSH essentially is also
an embedding method, and other classes of embedding
methods include Lipschitz embedding [24] and FastMap
[14]. Neighborhood graph methods are another class of
index structures. A neighborhood graph organizes the data
with a graph structure connecting nearby data points, for
example, Delaunay graph in Sa-tree [35], relative neighbor-
hood graph [47], and k-NN (R-NN) graph [41]. The
combination with KD trees shows promising performance
[51]. The disadvantage of those neighborhood graph-based
methods lies in quite expensive computation cost for
constructing the data structure. To reduce the computation
cost, an algorithm of building an approximate neighbor-
hood graph is developed in [52].

1.2 Our Approach

In this paper, we aim to improve the hyperplane-based
partition trees for ANN search. The key novelty lies in
designing a trinary-projection tree' to well balance search
efficiency and search effectiveness, i.e., the time overhead of
accessing the points and the order of accessing them. We
use a combination of a few coordinate axes weighted by 1 or
—1 (equivalently a combination of all the coordinate axes
weighted by 1, 0, or —1), called trinary-projection direction,
to form the partition hyperplane. We propose a coordinate-
wise enumeration scheme based on the maximum variance
criterion to efficiently pursue trinary-projection directions,
guaranteeing satisfactory space partitions.

Thanks to trinary-projection directions, our approach is
superior over current state-of-the-art methods. Compared
with KD trees, our approach is more effective to find
partition hyperplanes and hence more effective to locate
NN candidates because the trinary-projection direction is
capable of generating more compact data partitions. The
overall time cost of evaluating the same number of leaf

1. A short version appeared in our CVPR2010 paper [23].

nodes does not increase much because the time overhead,
the time cost of branching that includes projection
operations, is comparable to that in KD trees. Compared
with PCA trees and k-means trees, our approach is much
more efficient to locate NN candidates because the
projection operation in our approach only requires a sparse
operation that consists of a few addition or subtraction
operations while PCA trees and k-means trees conduct a
more expensive projection operation that includes an inner
product operation.

2 DEFINITION

In this section, we give a brief introduction to partition
trees and partition functions, and define the trinary-
projection direction that combines the coordinate axes
using trinary weights.

2.1 Partition Tree

A partition tree is a tree structure that is formed by
recursively splitting the space and aims to organize the data
points in a hierarchical manner. Each node of the tree is
associated with a region in the space, called a cell. These
cells define a hierarchical decomposition of the space. The
root node r is associated with the whole set of data points
X. Each internal node v is associated with a subset of data
points X, that lie in the cell of the node. It has two child
nodes left(v) and right(v), which correspond to two disjoint
subsets of data points Xy (,) and Aygne(). The leaf node !
may be associated with a subset of data points or only
contain a single point. The pseudocode of constructing a
partition tree (with hyperplanes for space division) is
presented in Algorithm 1.

Algorithm 1. Partition tree construction.
Procedure PartitionTreeConstruct(/ist pointList)
1. if pointList.empty() = true then

2. return null;
3. else
/* Select the partition direction */
4, direction « SelectPartitionDirection(pointList);

/* Sort pointList and choose median as the pivot element */
5. select median by direction from pointList;
/* Create nodes and construct subtrees */
treeNode node;
node.partitiondirection « direction;
node.partitionvalue «— pointList[median];
node.left — PartitionTreeConstruct(points in
pointList before median);
10. node.right « PartitionTreeConstruct(points in

pointList not before median);

11. return node;
12. end if

The key problem in constructing partition trees is to find
a partition function for each internal node. For approximate
nearest neighbor search, the partition function determines
if the space is well decomposed and accordingly affects the
order of accessing the points. On the other hand, the time
complexity of evaluating partition functions determines
the search efficiency because traversing the tree involves
executing a lot of branching operations in internal nodes for
which we need to evaluate the partition functions.

0O XN

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 391

2.2 Linear Partition Function

The partition function can generally be written as f(x;)
with @ being function parameters. Depending on the
function design, partition trees can be categorized into
binary partition trees, including KD trees, PCA trees, RP
trees, VP trees and so on, and multiway partition trees,
including hierarchical k-means trees, quadtrees and so on.
This paper mainly focuses on binary partition trees. The
partition function for KD trees, PCA trees, and RP trees is
essentially a linear function, f(x;0) = f(x;w,b) = wlx — b,
where w is the projection direction (also called partition
direction) and b is the partition value. The space is
partitioned by the hyperplane f(x;w,b) = 0. To determine
which of the two sides a particular point lies on, we
simply evaluate the sign of the partition function value at
the point. The evaluation of such a partition function
generally requires O(d) multiplication operations and O(d)
addition operations. Particularly, its evaluation in KD
trees is much cheaper and costs only O(1), independent of
the dimension d because only one entry in w in KD trees
is 1, and all the other entries are 0. In VP trees, f(x;80) =
f(x;c,7) = ||lc — x||, — 7. In this paper, we study the linear
partition function and aim to find one function that is able
to generate compact space partitions and can be efficiently
evaluated.

2.3 Trinary Projection

The main idea of trinary projection is to make use of a
linear combination of coordinate axes with trinary-valued
weights to determine the linear partition function f(x;0) =
f(x;w,b) = wix —b. Here, w=[w;...w;...wg" with w
being 1, 0, or —1 is called the trinary-projection direction.
One of the advantages is that it takes O(||w]|,) addition
(subtraction) operations to evaluate f(x;0), which is
computationally cheap. The value b can be chosen as the
mean or the median of the projection values of the points
along the projection direction w.

Moreover, trinary projection is able to produce more
compact space partitions compared with KD trees using
coordinate axes to directly form the partition hyperplane
because the partition function formed from the trinary-
projection direction is more flexible. The projection direc-
tion in KD trees can be regarded as a special trinary-
projection direction, only selecting one coordinate axis,
equivalently, ||w||, = 1. An illustration of partitioning with
a KD tree and a TP tree is shown in Fig. 1.

2.4 Principal Trinary-Projection Tree

A principal trinary-projection tree is a partition tree, in which
the direction w used in the partition function is the
principal trinary projection direction that leads to compact
space partitions. The principal trinary-projection direction p
is a trinary-projection direction along which the variance of
the normalized projections of the data points is maximized.
The mathematical formulation is as follows:

p = argmax h(w) (1)
weT
— - -1,,T
= argmax Var, gy [[[w], w'x], (2)

(@) (b)

Fig. 1. lllustrating a KD tree and a TP tree in the 2D space. Using a KD
tree, coordinate axes are directly used to formulate the projection
directions to partition the space, as shown in (a), while using a TP tree,
the space can be partitioned more flexibly and can be like the partitions
shown in both (a) and (b).

where 7 is the whole set of trinary projection directions, X’ is
the set of the points that is to be split, and Var_ 3 [||w||5 'wTx]
is the variance of the projections along the normalized
direction ||w/; ' w.

Partitioning along the projection direction with a large
variance is known to be a competent method to partition the
data [6], [17], [45]. Consider two projection directions p;
and p, with variances ¢; and ¢y, where ¢; > ¢; and ¢ is the
largest variance. The larger variance over the data points
corresponding to the two partitions resulting from p, is
likely to be close to ¢;, while that resulting from p, is likely
to be much smaller than ¢;. As a result, the two partitions
obtained from the projection direction with a larger
variance tend to be more compact, and thus, roughly
speaking, the distances between the points within one
partition are smaller on average. On the other hand, as
pointed out in [45], the ball centered at the query point with
the radius being the distance to the current best nearest
neighbor intersects the partition hyperplane formed by the
projection direction with a larger variance less often, and
hence fewer nodes are visited in traversing the tree on
average. Based on the above rationale, we adopt the
maximum variance criterion to determine the partition
function. We would like to remark that other criteria may
work well in some cases.

3 CONSTRUCTION

The procedure of constructing a principal trinary projection
tree is described as follows: It starts from the root that is
associated with the whole set of points, and divides the
points into two disjoint subsets using a partition function,
each corresponding to a child node. The process is
recursively performed on each new node and finally forms
a tree, in which each leaf node may contain a certain
number of points. This procedure is almost the same to that
for constructing a KD tree, and the only difference lies in the
partition function construction.

Finding the optimal principal trinary-projection direction,
i.e., solving (2), is a combinatorial optimization problem,
which might be NP-hard. The solution space 7 consists of
% elements, which grows exponentially with respect to the
dimension d. We can simply turn the problem into the
problem of maximizing the joint probability over a Markov
random field, and then optimize it using the iterated

392

conditional modes approach [7] or other approaches, such as
belief propagation. However, the weights are highly coupled
together, making those solutions unsuitable.

In the following, we first present a coordinate-wise
enumeration algorithm to find an approximate principal
trinary-projection direction. Then we give a brief review of
the cardinality-wise enumeration algorithm proposed in
[23]. Last, we propose an extension to multiple randomized
principal trinary projection trees.

3.1 Coordinate-Wise Enumeration

One can decompose the problem formulated in (2) into
a sequence of d subproblems, {P,...,P,...,FP;}. The
subproblem P, is defined as follows:

max h(w) (3)
st.w; =0,Vje{i+1,...,d} (4)
weT. (5)

It can be easily validated that the subproblem F; is
equivalent to the problem in (2). Intuitively, the subproblem
P, only exploits the first 7 coordinate axes to form a trinary-
projection direction. We denote the feasible solutions of P,
by a set 7;, where 7; = {w||E;w|, =0,we 7} and E; is a
diagonal matrix with the first ¢ diagonal entries being 0 and
the remaining diagonal entries being 1.

It is apparent that 7,_; C 7;. Let 4; =7; — 7;_;. From
the definition, U; can be generated from 7,_;, U; =
{w]|w; €{1,-1},w©®e; € T,_1}, where ® is a coordinate-
wise product operator and ||e;||; = d — 1 and its ith entry is
equal to 0. Intuitively, for each solution w € 7;_;, we can
set w; to be 1 and —1 to form ;. This suggests that we
incrementally enumerate the feasible solutions 7 in order
of increasing i from 7 to 74 which is called coordinate-
wise enumeration.

Searching for the true principal trinary-projection direc-
tion with this incremental enumeration manner still
requires to check all the % feasible solutions. The
expensive time cost makes it impractical to find the optimal
solution. Instead, we are willing to settle for an approximate
principal trinary-projection direction, and enumerate a
subset of possibly better feasible solutions coordinate-
wisely. We show that there is an optimal order of exploiting
coordinate axes to form the feasible solutions. Moreover, we
analyze the performance of our approximation algorithm by
providing proper upper bounds of the difference between
the approximate solution and the optimal solution.

Consider the d subproblems {P,...,P;}. It can easily
be validated that maxwer, h(w) < maxyer,h(w) <--- <
maxwer,h(w), since 7, C7TyC---C 74 In addition,
maxwer, h(w) is lower bounded, which is stated in the
following theorem. The proof of the theorem can be found
from the online supplemental material.

Theorem 1. For coordinate-wise enumeration with the order of
coordinate axes B = {by,..., by}, the optimal result of the
problem P; is lower bounded:

d
h(w) > max h(w) — 3 h(by).
max h(w) > max h(w) j;1 (b))

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

Let us consider ordered coordinate axes B* = {bj,...,
b}}, a permutation of {by,...,bs}, where h(b])>--- >
h(b}), and another permutation B’ = {b/,...,b)}. We can
easily prove that Zj:iﬂ h(b}) < Zj:iﬂ h(b}) for any
ie{l,...,d—1}. This implies that the lower bound of
maxyer: h(w) for B is not less than that of max,c7h(w) for
B, ie,

d d

> h(b}) = maxh(w) — > h(b)).

max h(w) — ma
j=i+1 ¢ j=it+1

WETd

In other words, the optimal result of P, with respect to B*
has the largest lower bound, and hence is potentially a
better solution. This suggests an optimal coordinate-wise
enumeration scheme exploiting the coordinate axes in order
of decreasing variances, which is able to find better
solutions quickly.

In the optimal coordinate-wise enumeration scheme, we
have a property how the solution of P, approximates the
global principal trinary-projection direction (the one of P;)
as stated in Corollary 1, which is derived from Theorem 1.

Corollary 1. The variance deficiency, i.e., the difference of the
variance along the principal trinary projection direction for the
subproblem P; from that along the global principal trinary-
projection direction, is upper bounded: maxwerh(w) —
maxyez:h(w) < Zj:iH h(b7).

This corollary indicates that we can avoid an expensive
process of computing the global solution and only conduct
a cheap process (O(d)) of computing the summation of
the variances over all the coordinate axes to estimate the
approximation degree. This suggests that we can early
terminate the enumeration at the problem P, if the
deficiency upper bound Z‘LL +1 h(b}) is small enough.

The early termination scheme reduces the time cost from
0(3%) to O(37) if the enumeration process stops at the
problem P; for which the variance deficiency is small
enough or d reaches a fixed number. But the time cost is still
expensive. To reduce the cost furthermore, we introduce a
practical coordinate-wise enumeration scheme. Let us
compare the number of the feasible solutions, 7,_; and
T, for subproblems P,_; and P, respectively. We have that
|Ti| =|7;1 UU;| = |T;-1] + [U;|. This suggests a speedup
algorithm by generating a smaller set ;. Recall that U/; =
{W | w; € {1, 71},W@ €e; € Ti—l} and |Ul| = 2‘T7,1| We use
a subset of 7,_; to form U;. Specifically, we select a small
number (g) of leading trinary-projection directions with
the largest variances, 7,;_4, to form U; = {w | w; € {1,-1},
w @ e; € T, 1}. In this way, the time complexity is reduced
from an exponential one O(3%) to a polynomial one O(gd).
The pseudocode of coordinate-wise enumeration is pre-
sented in Algorithm 2.

Algorithm 2. Coordinate-wise enumeration.
/* D: the dimension; topD: the number of used
coordinate axes; r: the threshold of the ratio between
the variance of the best direction and the maximum
variance gain; topK: the number of directions kept in
each enumeration; */

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 393

Procedure CoordinateWiseEnumeration(list pointList)
/* Compute variances for all coordinate axes */
1. axesVariances[1 ... D] «— ComputeVariances
(pointList);
/* Record the possible maximum variance gain */
2. remained Variance «—
ComputeSum(axesVariances|[1... D]);
/* Sort the axes in the variance-increasing order */
. C[1...D] « SortAxes(axesVariances[1... D]);
. directions « 0;
. bestDirection « null;
1+ 0;
. while (i < topD and directionVariances(bestDirection)/
remainedVariance < r) do
t— 1+ 1;
9. directions < MergeEnumerations(directions,
directions +CJi], directions — C[i]);
10. directionVariances «+ ComputeVariances
(directions, axesVariances [1... D]);
/* Keep topK directions */
11. directions « Prune(directions, topK);
12. bestDirection «+ FindMaximum(directions,
directionVariances);
/* Update the possible maximum variance gain */
13. remainedVariance « remained Variance
— axesVariances[C[¢]];
14. end while
15. return bestDirection;

N Ul AW

o

3.2 Cardinality-Wise Enumeration

We give a brief review of the approach presented in [23].
One can decompose the problem of maximizing h(w) into a
sequence of subproblems, {Pi,...,P;}, where P, corre-
sponds to maximizing h(w) subject to ||w||; <iand w € 7.
It can be easily validated that the subproblem F; is
equivalent to the problem in (2). We denote the feasible
solutions of the subproblem P, by 7, ={w]||w]|, <i,
w e T} It can be easily shown that 7, =7,_; UU; w1th

= {w | |w]l, =4}. U; can be easily generated from U;_4,

Ui ={w||lw—-w|=1,3w € U;_1}. This suggests the so-
called Cardinality-wise enumeration scheme, enumerating
the feasible solutions in order of increasing the number of
the coordinate axes that are used to form the partition
function.

Instead of solving the expensive problem P, the
approach in [23] solves the subproblem P; to get an
approximate solution. Here, we present Theorem 2 to
show the approximation quality of the approximate
solution Pj, compared with the optimal solution. The
proof of the theorem can be found from the online
supplemental material.

Theorem 2. For cardinality-wise enumeration, the optimal result
of the problem Pj is lower bounded:

d
max h(w) > max h(w) —

weT, weT, Z h(b7),

i=d+1

where {b},...,b}} is a permutation of coordinate axes
{b1,...,bg} and h(by) > --- > h(b}).

The approximate solution reduces the time cost from an
exponential one O(3) to a polynomial one O(d), which is
still very large. A further approximation method is intro-
duced in [23]. In that method, we select a small number (d) of
leading coordinate axes with the largest variances and keep
only g trinary-projection direction candidates, to form f;,
which results in small time cost O(gd?).

3.3 Multiple Randomized TP Trees

We propose to make use of multiple randomized TP trees to
organize the points. It has been shown that the simulta-
neous search over multiple trees through a shared priority
queue is superior to the priority search over a single tree
[23], [43].

The simple approach for constructing a randomized TP
tree is to randomly sample the weights w. For example, one
can sample the weight w; for each coordinate axis from
{-1,0,1} with probabilities {p_1,po,p1}. The probabilities
could be the same, p 1 =py=p1 = % Or they can be
computed from a Gaussian-like distribution:

1 a?

where o = —1,0,1, and o is used to adjust the weights,
further normalized so that p_; + py + p1 = 1. The latter one
can be regarded as an approximate to the random
projection tree [10]. One drawback is that those approaches
are independent to the data distribution. Instead, we
propose to modify the coordinate-wise enumeration scheme
to generate randomized multiple TP trees.

One candidate scheme is to randomly sample one from
several top candidate principal trinary-projection direc-
tions collected from the coordinate-wise enumeration
scheme. This straightforward scheme is, however, time-
consuming for generating multiple trees. Instead, we
propose a coordinate-wise random enumeration scheme
to sample a principal trinary-projection direction, which
may result in lower search quality for a single tree, but can
still guarantee high search quality due to the complemen-
tarity of multiple trees.

We permute the coordinate axes in order of decreasing
variances, bj,...,b), where h(b})>---> h(b}). The co-
ordinate-wise random enumeration scheme is described as
follows: We first randomly sample a coordinate axis from
the d leading coordinate axes, forming a trinary projection
direction v; for the first iteration. For discussion conve-
nience, we assume v; = b*. i Then, we sequentially consider
the remaining coordinate axes {bj,...,bj ;,b} ..., by}.
We denote the trinary-projection directlon by v, at the tth
iteration. For the (¢ + 1)th iteration considering the next
coordinate axis b, there are three candidates for vy,
Ci ={vi,vi + b,v; —b}. The sampling weight for each
candidate c € C; is computed from the variances,

h(c)
ZWEC, h(W) .

In our implementation, we found that the coordinate axes
with small variances contribute little to space partitioning
and add a little more time cost in the query stage. So we

p(c) =

394 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

stop the iteration when the top d coordinate axes have
been considered.

4 ANALYSIS

4.1 Construction Time Complexity

The computation required to find the partition function for a
node v associated with n, points is analyzed as follows: It
consists of the computation of the covariances and the
enumeration of feasible trinary projection directions. Com-
puting the variances for all the d coordinate axes requires
O(dn,) time, and computing the covariances for the top d
coordinate axes requires O(d’n,) time. The enumeration cost
is independent of the number of points and only depends on
the number of top coordinate axes d, denoted by O(e,),
which will be analyzed in detail later. The above analysis
indicates that the time cost for the node v includes two parts:
O(ey) and O((d + d?)n,). Consider the first part, there are
O(n) nodes in the tree, then the time cost contributed by the
first part is O(ne;). Considering the tree built in the case of
using the median as the partition value is a balanced tree
with the height log n and the number of points in each level
is n, the time cost for each level contributed by the second
part is O((d+ d*)n). In summary, the total time cost is
O(n((d+ d*)logn + e;)).

Let us look at the enumeration cost e;. Coordinate-wise
enumeration totally generates O(gd) candidate directions,
where g is the number of the candidate directions generated
for each enumeration iteration. Evaluating the variance of
each one using an incremental manner takes O(d) time.
Thus, coordinate-wise enumeration takes e; = O(gd?) and
coordinate-wise random enumeration takes O(d?).

4.2 Storage Cost

The tree structure needs to store the data points and
partition functions for internal nodes. Generally, a partition
function needs O(d), for example, for PCA-trees and
random projection trees. The trinary-projection direction
in our approach is sparse, and only costs O(d). The total
storage cost is O(nd + mnd) for m trees, where nd is the cost
for storing the features of data points.

4.3 Search Time Complexity

To find approximate nearest neighbors of a query point, a
top-down searching procedure is performed from the root
to the leaf nodes. At each internal node, it is required to
inspect which side of the partition hyperplane the query
point lies in, then the associated child node is accordingly
accessed. The descent down process proceeds till reaching
a leaf node. The data point associated with the first leaf
node is the first candidate for the nearest neighbor, which
is not necessarily the true nearest neighbor. It must be
followed by a process of iterative search, in which more
leaf nodes are searched for better candidates. The widely
used scheme with high chances to find true nearest
neighbors early is priority search so that the cells are
searched in order of increasing their distances to the query
point. The ANN search terminates when a fixed number of
leaf nodes are accessed. The pseudocode of the search
procedure is presented in Algorithm 3.

Algorithm 3. Partition tree query.

Procedure PartitionTreeQuery(Point q, treeNode root)
1. PriorityQueue queue;

. topElement.node « root;

. topElement.distance — 0;

. minDistance < INF;

. accessedPointNumber = 0;
/* maxAccessedPointNumber: the maximum number of
accessed points */

6. while accessedPointNumber < maxAccessedPoint

Number do
/* Descend down to a leaf node */

Q= Wi

7 while topElement.node.IsLeaf() = false do
8. left «— topElement.node.left;
9 right < topElement.node.right;
10. direction « topElement.node.partitiondirection;
11. value « topElement.node.partitionvalue;
12. projection « q along direction;
13. if (projection < value) then
14. topElement.node « left;
15. newElement.node « right;
16. else
17. topElement.node «+ right;
18. newElement.node — left;
19. end if

/* Estimate the lower bound of the distance of the query
to the cell */

20. newElement.distance < topElement.distance +
(projection — value)?/||direction||3;

21. queue.insert(newElement);

22. end while

23. accessedPointNumber « accessedPointNumber +1;

24. currentDistance < ComputeDistance

(topElement.node.point, q);

25. if currentDistance < minDistance then

26. minDistance < currentDistance;

27. nearestNeighbor « topElement.node.point;

28. end if

29. topElement « queue.top();
30. queue.pop();

31. end while

32. return nearestNeighbor;

In the following, we show the time cost for ANN search by
bounding the number of accessed leaf nodes. Accessing a
leaf node in the priority search requires the descent from an
internal node to this leaf node, then the descent needs to
check O(logn) internal nodes. Handling each internal node
consists of the evaluation of the corresponding partition
function, computing the lower bound of the distance to the
cell that is to be inserted to the priority queue, and the
insertion and extraction operations on the priority queue.
The evaluation of the partition function costs only O(d).
Using the binomial heap for the priority queue, it takes
amortized O(1) time to insert and extract a cell. In our
experiments, we implemented the priority queue as a binary
heap. Theoretically, the insertion operation may take
O(logn) time with a binary heap, but we observed that they
took only O(1) time on average. The computation of the

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 395

lower bound of the distance of a query to a cell costs only
O(1) time. Therefore, assuming that one leaf node contains
only one data point, the time cost when accessing N leaf
nodes is O(Ndlogn + Nd), where Nd is the cost of comput-
ing the distances between the query and the data points.

5 DISCUSSION

5.1 Embedding versus Space Partition

In metric embedding, if we project the data points to
randomly sampled trinary-projection directions (this is also
called database-friendly random projection [1]), the distor-
tion of the embedding is very close to 0 (all pairwise
distances are approximately preserved). This is guaranteed
by the theorem in [1], which is an analogue of the Johnson-
Lindenstrauss lemma for random projections: Given a set X
of n points in RY, and ¢, 3 > 0, let

4424
k0:52 23 IOgTL
23

and k > k. Let f(x) = %RTX, where R is a matrix of size d x k.
The entry ry; is sampled from {1,0,—1} with the corresponding
probabilities {%,%,%}. Then, with probability at least 1 —n~",
(1= e)llxi = xolly < [[f(x1) = fx2) 3 < (1 + &)1 —xa]3 for
all x1,x9 € X.

In this paper, we use the trinary-projection directions for
partitioning the data points rather than for metric embed-
ding. Assume that the tree is formed by adopting the same
trinary projection for the nodes in the same depth. As the
goal, the points lying in the same subspace (cell) generated
by the tree are expected to be compact in the embedding
space. According to the above theorem that indicates that
the distances computed over the embedding space can
approximate the distances computed over the original
space, it can be expected that those points are likely to be
compact in the original space. This implies that the points in
the same subspace are very likely to be near neighbors and,
in other words, a query point lying in a subspace can
potentially find the nearest neighbors from the subspace.
To obtain a better distance approximation, the projection
direction of each internal node can be estimated adaptively
from the points associated with the node, discarding the
constraint of using the same trinary-projection direction for
the nodes with the same depth.

5.2 Partition Value

Let us discuss the choice of the partition value b in the
partition function f(x;w,b). The partition value is usually
determined according to the projection values. Several
choices, such as mean, median, and bisector, have been
discussed in [45]. It is shown that selecting the median
value as the partition value, resulting in a balanced tree [17].
However, it should be noted that there is no guarantee that
one choice will always generate the optimal search
performance in all cases. A learning-based approach is
proposed in [9] to determine the partition value. In our
experiments, we find that adopting the mean as the
partition value (the resulting TP tree is nearly balanced in
our experiments) produces similar (better in some cases)
search results and takes less construction time.

5.3 Orthogonal TP Tree

The priority search procedure relies on maintaining a
priority queue so that we can access the cells in order
efficiently. The lower bound of the distance of the query to
the cell that is possible to be accessed next is used as the key
to maintain the priority queue. The exact lower bound
requires the computation between a point and a hyperpo-
lygon, which is generally time-consuming. As pointed out
in [2], the computation can be much more efficient if the
projection directions along each path from the root to a leaf
node are parallel or orthogonal, which we call the
orthogonality condition. To make an orthogonal TP Tree,
i.e., a TP tree satisfying orthogonality condition, we need to
modify the enumeration scheme by checking if the
candidate direction is orthogonal to or parallel with all
the projection directions of its ancestors, which results in an
increase of the time cost by a logn factor. In our
experiments, we find that ANN search is still very good
without any performance loss even if the orthogonality
condition does not hold. Therefore, we simplify the
implementation by intentionally ignoring the orthogonality
condition and compute an approximate lower bound by
directly accumulating the distance to the partition hyper-
plane with the distance lower bound of its parent node.

5.4 Adaptation to Low-Dimensional Manifold

Space partitioning is one of the key factors that affect the
order of accessing the data points and determine the search
efficiency. It is shown in [49] that PCA tree can reduce the
diameter of the cell in a certain ratio given the low
covariance dimension assumption, while KD tree cannot
adapt to low-dimensional manifolds. With regard to the
maximum variance criterion, the principal direction in PCA
tree is the best. The solution space of TP tree is apparently
much larger than that of KD tree, and the principal trinary-
projection direction is an approximation of the principal
direction, which is not worse than the approximation using
any coordinate axis. Although it remains unclear if TP tree
adapts to low-dimensional manifolds, our experiments
show that our approach can produce good space partition-
ing that leads to better order to access data points.

5.5 Approximate and Exact NN Search

The proposed principal and randomized TP trees can also
be applied to answer exact NN queries if the orthogonality
condition holds. The priority search can be terminated
when the minimum distance lower bound in the priority
queue is larger than the best distance found currently, and
thus the best NN found so far is the exact NN. A (1 + ¢)-
approximate NN can also be found when the minimum
distance in the priority queue is larger than (1 + €)dmin,
where d,;, is the best distance found so far. We have a
theorem for (1+ ¢)-approximate NN search over an
orthogonal TP tree given as follows. The proof can be
found from the supplemental material, which can be found
in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2013.125.

Theorem 3. Consider a set X of data points in R indexed by an
orthogonal trinary projection tree. Given a constant € > 0, there
. 2(1'\/3 d ;
is a constant ¢y, < [1 + 2% where « is the largest of aspect
ratio of any cell, such that a (1 + e)-approximate nearest
neighbor of a query q can be reported in O(dcy. logn) time, and

396 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

TABLE 2
The Description of the Data Sets Used in Our Experiments
Caltech | Ukbench | Notre Dame | Oxford | Tiny images | PCA tiny images
dimension 128 128 128 128 384 64
#(reference points) 1000K 1000K 400K 10M 1000K 1000K
#(query points) 100K 100K 60K 100K 100K 100K

a sequence of k (1 + €)-approximate nearest neighbors of a query
q can be computed in O(d(cqe + k) logn) time.

The lower bound of the distance between the query and
the cell may not be tight enough, and hence the
performance of exact NN and (1 + ¢)-approximate NN
search is not satisfactory. As a result, ANN search within a
time budget is practically conducted, equivalently termi-
nating the search when a fixed number of data points have
been accessed.

6 EXPERIMENTAL RESULTS

6.1 Data Sets

Caltech. The Caltech 101 data set [15] contains about 9,000
images and has been widely used for image classification.
We extract the maximally stable extremal regions (MSERs)
[32] for each image, and compute a 128D SIFT feature [30]
for each MSER. On average, there are about 400 SIFT
features for each image. In this way, we get a data set
containing around 4,000K SIFT feature points. In our
experiment, we randomly sample 1,000K points to build
the reference data set. To formulate the query data set, we
randomly sample 100K points from the original data points
and guarantee that these query points do not appear in the
reference data set.

Ukbench. The recognition benchmark images [36] consist
of 2,550 groups of four images each, most of which are
about CD covers, indoor images and similar or identical
objects, taken at different views. The images are all of size
640 x 480. We also extract MSERs and represent each MSER
with a 128D SIFT feature. We randomly sample 1,000k SIFT
features for the reference data set, and 100K SIFT features
as queries.

Notre Dame. The patch data set [21], associated with the
Photo Tourism project [44], consists of local image patches
of Flickr photos of various landmarks. The goal is to
compute correspondences between local features across
multiple images, which can then be provided to a structure-
from-motion algorithm to generate 3D reconstructions of
the photographed landmark [44]. Thus, one critical subtask
is to take an input patch and retrieve its corresponding
patches within any other images in the database, which is
essentially a large-scale similarity search problem. We use
400K image patches (represented by a 128D SIFT feature)
from the Notre Dame Cathedral as the reference data set
and 60K image patches as queries.

Oxford. The Oxford 5K data set [38] consists of 5,062 high
resolution images of 11 Oxford landmarks. There are about
16M SIFT features extracted from those images. We
randomly sample 100 features as the reference data set
and other 100K features as queries.

Tiny images. The tiny images data set consists of 80 million
images, introduced in [46]. The sizes of all the images in this
database are 32 x 32. Similarly to [26], we use a global GIST
descriptor [37] to represent each image, which is a 384D
vector describing the texture within localized grid cells. We
randomly sample 1,000k images to build the reference data
set and other 100K as queries from the remaining images.
We also generate a data set, PCA tiny images, which is
produced by reducing the dimension of the GIST feature to
64 using PCA.

The description of the data sets is summarized in Table 2.
All the features are byte-valued except that the features in
PCA tiny images are int-valued.

6.2 Evaluation Metric

We use the precision score to evaluate the search quality.
For k-ANN search, the precision is computed as the ratio of
the number of retrieved points which are contained in the
true k nearest neighbors to k. The true nearest neighbors are
computed by comparing each query with all the data points
in the reference data set. We compare different algorithms
by calculating the search precisions given the same search
time, where the search time is recorded by varying the
number of accessed data points. We report the performance
in terms of search time versus search precision. All the
results are obtained with 64-bit programs on a 3.4-GHz
quad core Intel PC with 16G memory.

6.3 Empirical Analysis

We present empirical results to show how various factors in
our approach affect search precision and search efficiency.

6.3.1 Construction Cost

Fig. 2 reports the time cost of constructing trinary projection
trees when varying the number of used axes and the
number of trees. From Figs. 2a and 2b (one TP tree is built),
one can see that the construction cost using more axes
becomes larger, which conforms to the complexity analysis.
In terms of the construction cost, the coordinate-wise
enumeration scheme proposed in this paper is better than
the cardinality-wise enumeration scheme that was used in

——Notre Dame|
—Caltech

140

120
1o
£ o
o
«

20

2 4 6 & 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 2 2 4 6 8 10 12 14 16
number of axes number of axes number of trees

() (®) (©

Fig. 2. Construction cost. (a) and (b) The comparison for construction
cost (seconds) versus different numbers of axes using coordinate-wise
enumeration and cardinality-wise enumeration over Notre Dame and
Caltech. (c) Construction cost versus different numbers of trees for
coordinate-wise enumeration.

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 397

o
@

precision
o
3
precision

0.6

—— Coordinate-wise enumeration
—— Cardinality-wise enumeration
Random enumeration

— Coordinate-wise enumeration|
0.5 —— Cardinality-wise enumeration 0.5
Random enumeration
0.4 0.4
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
average query time average query time

(a) (b)

Fig. 3. lllustrating search performance using coordinate-wise enumera-
tion and cardinality-wise enumeration in terms of precision versus
average query time (milliseconds) over (a) Notre Dame and (b) Caltech.

[23]. From Fig. 2c (five axes are used), we can observe that
the time taken by the coordinate-wise enumeration scheme
increases linearly with respect to the number of trees.

6.3.2 Coordinate-Wise Enumeration versus
Cardinality-Wise Enumeration

We conduct experiments to compare the search performance
over TP trees constructed using different enumeration
schemes with the same parameters, d=15 leading axes
used, g =15 trinary-projection directions kept in each
enumeration iteration, and 1 NN searched. From the
comparison shown in Fig. 3, we can see that the coordinate-
wise enumeration scheme performs the best in terms of both
search efficiency and precision, which is consistent with
the previous analysis. Random enumeration means ran-
domly sampling the trinary-projection direction w and
the partition value b. Considering the less construction time
using coordinate-wise enumeration, we choose it in the
implementation.

6.3.3 Dominant Axes

We present the results to show how the number of axes
used to form the projection direction for each internal node
affects the search performance. The comparisons, obtained
when one TP tree is used, are presented in Fig. 4. There are
several observations. Using more axes boosts the perfor-
mance, and the improvement is even more significant,
especially when the data is in high dimensions, as shown in
Fig. 4b. The performance improvement becomes less
significant when the number of used axes becomes larger.

6.3.4 Multiple Randomized Trees

This part presents experimental results to show using
multiple randomized trees can lead to significant perfor-
mance improvements. Fig. 5 illustrates the comparisons

o
3

°
o ©
o 8

o o

o >

precision
o
™
&
precision

—1 axis
5 axes

— 10 axes
15 axes

——20 axes

)

@
o
IS

=3
@

o
3
o

0.2
1 2 3 4 5 [¢] 1 2 3 4 5 6 7
average query time average query time

o
o

(a) (®)

Fig. 4. lllustrating the performance of using different numbers of axes
over (a) Notre Dame and (b) tiny images.

0.95

o
©
5}

o
©

0.85

precision
=)
%

a
precision
=)
©

—1tree
2trees

—4 trees 07
8trees

——16trees 0.65

—1tree
2trees

—4 trees
8 trees

—— 16 trees

o
®

o
3
o

o
3
o

o

5 6 0 1 2 3 4 5 6

4
average query time average query time

(@) (b)

Fig. 5. lllustrating search performance when using different numbers of
trees over (a) Notre Dame and (b) Caltech.

over 1,2, 4, 8, and 16 trees with 15 leading axes used for tree
construction. As we can see, the performance with more
trees is better. The precision improvement is quite
significant when taking less query time. With more query
time, the precision improvement becomes less significant.
We can also see that the performances of 8 trees and 16 trees
are very close.

6.4 Comparisons

We compare the search performance of our approach with
state-of-the-art ANN search algorithms.

PCA tree. The PCA tree [45] is a binary spatial partition
tree that chooses the principal direction as the projection
direction at each internal node. It can yield compact space
partitions. However, the projection operations at the
internal nodes are very time-consuming, as it requires an
inner product operation that takes O(d) time. Consequently,
the search performance is deteriorated. The priority search
is used as a speedup trick in the implementation.

Vantage point tree. A vantage point (VP) tree [56] is a
binary spatial partition tree that at each internal node
segregates data points by choosing a position (the vantage
point) in the space and dividing the data points into two
partitions: those that are nearer to the vantage point than a
threshold, and those that are not. The priority search is also
used as a speedup trick in the implementation.

Spill tree. The spill tree [28] is a type of random projection
tree. It generates the projection direction randomly. A key
point of spill tree is that it allows overlapping partitions
around the separating hyperplane. We implement the
algorithm by following the description in [28].

Box-decomposition tree. This box-decomposition tree, BD
tree for short [3], modifies the KD tree mainly in that, in
addition to the splitting operation, there is a more general
decomposition operation called shrinking for space parti-
tioning. More details can be found from [3]. We report the
experimental results by running their public implementa-
tion with a slight modification making the search proceed
till a fixed number of points are accessed.

FLANN. FLANN [34] is a combination of multiple
randomized KD trees and hierarchical k-means trees. It
seeks the best configuration between them. We assume that
its performance is better than the performances of KD trees
and hierarchical k-means trees; thus, we only report the
results from FLANN.

Hashing. We also compare the performance with the
hashing methods, E2LSH [11], multiprobe LSH [31], LSH
forest [4], and spectral hashing [53]. The key idea of LSH is

398

—O— TP tree

PCA tree =@ Spill tree = © = BD tree

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

FLANN = ® = VP tree
1

0.9
0.8
207
S 4
606
g)
205
0.4
0.3
. 0.2
o 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35 o 05 1 15 2 25 3 35
average query time average query time average query time
(a) (b) (©)
’
0.9
0.8
207 -
Ee] k]
3 0.6 3
[} ¢ Qo
050 e
0.4
0.3

02 i i i i i i]
0 1 1.5 2 25 3 3.5 0

1.5 2

25 3

0.5 1 0.5 1 15 2
average query time average query time average query time
(d) (e ()

25 3 3.5 0

Fig. 6. Performance comparison over 1,000K 128D features from Caltech. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN, and (f) 100-NN.

to hash the points using several hash functions to ensure
that for each function the probability of collisions is much
higher for objects that are close to each other than for those
that are far apart. Then, one can determine near neighbors
by hashing the query point and retrieving elements stored
in buckets containing that point. It has been shown in [34]
that randomized KD trees can outperform the LSH
algorithm by about an order of magnitude. Multiprobe
LSH is built on the LSH technique, but it intelligently
probes multiple buckets that are likely to contain query
results in a hash table. LSH forest represents each hash table
by a prefix tree so that the number of hash functions per
table can be adapted for different approximation distances.
Spectral hashing aims to learn the hash functions according
to the data distribution to build an effective hash table. As
hashing methods are slower than our approach by about an
order of magnitude, we report the comparisons with
hashing-based methods separately for clarity.

We first report the results of searching 1-NN, 5-NN,
10-NN, 20-NN, 50-NN, and 100-NN on three data sets:
1,000K 128D SIFT features over Caltech and Ukbench, and
1,000K 384D GIST features over Tiny images. Searching
for a small number of NNs is useful for patch matching
and for more NNs is useful for similar image search. Our
approach builds the tree using the mean as the partition
value due to the cheap construction cost, uses 15 dominant
axes and 10 random trees. The results of other approaches
are obtained by using the well-tuned or autoconfigured
(if applicable) parameters. The comparisons are shown
in Figs. 6, 7, and 8, respectively. The horizontal axis
corresponds to average query time (milliseconds), and the
vertical axis corresponds to search precision.

From the results with 128D features as shown in Figs. 6
and 7, our approach outperforms other approaches.
Particularly in the case of short query time, the superiority
of our approach is much more significant, which is a
desired property in the real search problems. The
comparisons over 1,000K high-dimensional GIST features
are shown in Fig. 8. The search for 384D features is
actually more challenging. It can be seen that the
improvement of our approach over other approaches is
much more significant than for low-dimensional SIFT
features. The precision of our approach is consistently
higher than other methods at least 10 percent except PCA
tree, which is a very significant improvement. One can see
that the superiority of our approach, for searching
different numbers of nearest neighbors, is consistent in
the cases of both low- and high-dimensional cases. In
contrast, other approaches cannot consistently produce
satisfactory results.

We also conduct the experiments over a larger scale data
set, 10M SIFT features over Oxford, shown in Fig. 9. In this
case, due to very high construction cost and much memory
cost for PCA tree and Spill tree, we only report other three
approaches. It can be seen that our approach consistently
gets superior search performance.

Besides, we conduct the experiments to illustrate how
preprocessing through PCA dimension reduction affects the
search performance. We first do the PCA dimension
reduction for the reference data set (tiny images) over
which principal directions are computed, and get 64D
features, forming a data set (PCA tiny images). We
construct the index structure over 64D features. In the
query stage, each query is also reduced by PCA to a 64D
feature. The distances to the data points in the leaf nodes

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH 399

—O— TP tree PCA tree —@— Spilltree = © =BDtree = # = FLANN = # = VP tree
1 1r
09 R e 600 09
" eeeo‘o‘o'ee_-r-
o R
0.8 oo ﬁf— - 0.8
D’“‘,-
- 07 0.7 -
S S 4 S
306 506 5
(5 [l (3
a s a

0.5 0.5

0.4 0.4
0.3 0.3
0.2 0.2 .
0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 25 3 K 1.5 2 25
average query time average query time average query time
(@) (b) (©

precision
precision

“0 0.5 1 15 2 25 3) . 1 1.5 2 25 3 “0 05 1 1.5 2 25 3
average query time average query time average query time
(d) (e) (H)
Fig. 7. Performance comparison over 1,000K 128D features from Ukbench. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN, and (f) 100-NN.
—O— TP tree PCA tree —6— Spilltree = © =BDtree = # = FLANN = # = VP tree
0.8 0.8
0.8
0.7
0.7
06 0.6
s s s
305 05 @
3 3 3
S04 504 a
0.3[¢
:’l}
0.2’\4(;
o1
average query time average query time average query time
(a) (b) (©

o
3
o
3
o
~

o
)
o
)
o
)

05 0.5 05
c c c
s S S
304 504 304
o o o
(% [s8 (%
0.3 0.3

o
)
o
)

0.1 ;‘7

average query time average query time average query time
(d) (e) ()
Fig. 8. Performance comparison over 1,000K 384D features from tiny images. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN, and (f) 100-NN.

are evaluated over the original features and the ground Fig. 10, one can observe that our approach performs the
truth is also computed over the original features. As Spill best. Compared with the result without dimension reduc-
tree and VP tree perform very poorly, we only report the tion shown in Fig. 8, the performances of all the approaches
results of other three approaches. From the result shown in get improved. In comparison, the improvement of PCA tree

400 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

—©— TPtree = © =BDtree = # = FLANN = # = VP tree

0.9
0.8
0.7
0.6

recision
precision

205
0.4
0.3

precision

precision

average query time

(©)

average query time

()

0.9
0.8

0.7

O T
average query time average query time
(@) (®)

0.8
0.7
0.6

c c

S S

§ § 0.5

s S04
0.3 §
0.2/
0.10

average query time average query time
(d) (®
Fig. 9. Performance comparison over 100/ 128D features from Oxford. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN, and (f) 100-NN.
—6— TP tree PCAtree = © =BD tree = # = FLANN
0.9
0.8 ”(x,x—x*""‘“*x
e

0.7 : o

precision

I
IS

precision
o o
o (2]
“l.«.““‘)
*
%,
*,

0.3/ 2°
b &€
1 2 3 4 5 6 7
average query time average query time
(@) (b)

precision
cision

pr

&,
0

1 2 3 4 5 6 7
average query time average query time

(d) (e

recision

o

precision

0.6
05
0.4f ¢
0.3}
0.2 '

0.1

average query time

(©)

average query time
®
Fig. 10. Performance comparison over PCA tiny images. (a) 1-NN, (b) 5-NN, (c) 10-NN, (d) 20-NN, (e) 50-NN, and (f) 100-NN.

is relatively small. This is as expected because PCA tree The above experimental results indicate that 1) our
already has selected the principal directions for space approach achieves a large improvement in the case of
partition while our approach as well as BD tree benefit a lot searching a small number of nearest neighbors and 2) the
from the better coordinate axes produced by PCA dimen- improvement is relatively small in the case of searching a
sion reduction. large number of nearest neighbors. The first point implies

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

——TPtree + LSH

SH

401

LSH Forest v MP LSH

=X
ER

average query time
average query time

3
5

ge query time
o,
y time
<.
<

ge query time

_avera
%
4
avera
%

06 0.8

precision

(a)

05 0.6 0.7

precision

(b)

0.8 0.9

1

02 03 04 05

precision

()

06 07 08 0.1 0.2 0.3 0.4 0.5

precision

(d

0.6 0.7 0.8

Fig. 11. Performance comparison with various hashing methods. (a) and (b) correspond to the comparison of 1-NN and 20-NN over Caltech, and
(c) and (d) correspond to the comparison of 1-NN and 20-NN over tiny images.

that our approach is powerful to discriminate the points
that are near to the query. The second point means that
most approaches are able to discriminate the near neighbors
from the far neighbors.

Last, we report the comparison with hashing methods.
As hashing methods are very slow, we report the
performance with the time axis in a logarithmic scale, to
make the comparisons clear. We include the results
searching for 1-NN and 20-NN, over two data sets: Caltech
with 128D features and tiny images with 384D features as
we observed that the conclusions for other A-NNs and
other data sets remain valid. The comparisons are shown
in Fig. 11. It can been observed that hashing methods
perform poorly, and are much slower (even several orders)
than our approach. MP LSH and SH perform the second
best, which is reasonable because MP LSH performs the
best first search scheme and SH learns better space
partitioning than other hash algorithms. The superiority
of our approach comes from good space partitioning and
the best first search scheme.

7 CONCLUSION

In this paper, we present a novel hierarchical spatial
partition tree for approximate nearest neighbor search. The
key idea is using a trinary projection direction, a linear
combination of a few coordinate axes with weights being
—1 or 1, to form the partition hyperplane. The superiority
of our approach comes from two aspects: 1) fast projection
operation at internal nodes in traversing, only requiring a
few addition/subtraction operations, which leads to high
search efficiency, and 2) good space partition guaranteed
by a large variance along the projection direction for
partitioning data points, which results in high search
accuracy. The data sets used in our experiments and the
implementation of our approach are publicly available
from the project page http://research.microsoft.com/
~jingdw /SimilarImageSearch /tptree.html.

ACKNOWLEDGMENTS

Jian Li was supported in part by the National Basic
Research Program of China grants 2011CBA00300,
2011CBA00301, the National Natural Science Foundation
of China grants 61202009, 61033001, 61061130540, and
61073174.

REFERENCES
[1]

D. Achlioptas, “Database-Friendly Random Projections: Johnson-
Lindenstrauss with Binary Coins,” . Computer and System Science,
vol. 66, no. 4, pp. 671-687, 2003.

S. Arya and D.M. Mount, “Algorithms for Fast Vector Quantiza-
ton,” Proc. Data Compression Conf., pp. 381-390, 1993.

S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu,
“An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions,” |. ACM, vol. 45, no. 6, pp. 891-
923, 1998.

M. Bawa, T. Condie, and P. Ganesan, “LSH Forest: Self-Tuning
Indexes for Similarity Search,” Proc. 14th Int'l Conf. World Wide
Web (WWW), pp. 651-660, 2005.

J.S. Beis and D.G. Lowe, “Shape Indexing Using Approximate
Nearest-Neighbour Search in High-Dimensional Spaces,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
pp- 1000-1006, 1997.

J.L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509-517,
1975.

J. Besag, “On the Statistical Analysis of Dirty Pictures,”]. Royal
Statistical Soc., vol. 48, no. 3, pp. 259-302, 1986.

M. Brown and D.G. Lowe, “Recognising Panoramas,” Proc. Ninth
IEEE Int’l Conf. Computer Vision (ICCV), pp. 1218-1227, 2003.

L. Cayton and S. Dasgupta, “A Learning Framework for Nearest
Neighbor Search,” Proc. Neural Information Processing Systems Conf.
(NIPS), 2007.

S. Dasgupta and Y. Freund, “Random Projection Trees and Low
Dimensional Manifolds,” Proc. 40th Ann. ACM Symp. Theory of
Computing (STOC), pp. 537-546, 2008.

M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on P-Stable Distributions,” Proc.
20th Ann. Symp. Computational Geometry, pp. 253-262, 2004.

M. de Berg, T. Eindhoven, O. Cheong, M. van Kreveld, and M.
Overmars, Computational Geometry: Algorithms and Applications.
Springer-Verlag, 2008.

A.A. Efros and W.T. Freeman, “Image Quilting for Texture
Synthesis and Transfer,” Proc. ACM SIGGRAPH, pp. 341-346, 2001.
C. Faloutsos and K.-I. Lin, “FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional and
Multimedia Datasets,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD), pp. 163-174, 1995.

L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual
Models from Few Training Examples: An Incremental Bayesian
Approach Tested on 101 Object Categories,” Proc. Conf. Computer
Vision and Pattern Recognition Workshop (CVPR '04), 2004.

R.A. Finkel and J.L. Bentley, “Quad Trees: A Data Structure for
Retrieval on Composite Keys,” Acta Informatica, vol. 4, pp. 1-9,
1974.

J.H. Friedman, J.L. Bentley, and R.A. Finkel, “An Algorithm for
Finding Best Matches in Logarithmic Expected Time,” ACM Trans.
Math. Software, vol. 3, no. 3, pp. 209-226, 1977.

A. Frome, Y. Singer, F. Sha, and]J. Malik, “Learning Globally-
Consistent Local Distance Functions for Shape-Based Image
Retrieval and Classification,” Proc. IEEE 11th Int'l Conf.Computer
Vision (ICCV), pp. 1-8, 2007.

J. Hays and A.A. Efros, “Scene Completion Using Millions of
Photographs,” ACM Trans. Graphics, vol. 26, no. 3, p. 4, 2007.

(2]

(3]

4

(5]

o]

(71
(8]
[l

(10]

(1]

(12]

(13]

(14]

[15]

[16]

(7]

(18]

[19]

402

(20]

(21]

(22]

(23]

(24]

[25]

[20]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

[38]

[39]

[40]

[41]

[42]

(43]

(44]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 2, FEBRUARY 2014

J. He, W. Liu, and S.-F. Chang, “Scalable Similarity Search with
Optimized Kernel Hashing,” Proc. 16th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD), pp. 1129-1138, 2010.
G. Hua, M. Brown, and S.A.]. Winder, “Discriminant Embedding
for Local Image Descriptors,” Proc. IEEE Int'l Conf. Computer
Vision (ICCV), pp. 1-8, 2007.

P. Jain, B. Kulis, and K. Grauman, “Fast Image Search for Learned
Metrics,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2008.

Y. Jia, J]. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing KD-
Trees for Scalable Visual Descriptor Indexing,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pp. 3392-3399,
2010.

W. Johnson and]. Lindenstrauss, “Extensions of Lipschitz
Mappings into a Hilbert Space,” Contemporary Math., vol. 26,
pp- 189-206, 1984.

B. Kulis and T. Darrells, “Learning to Hash with Binary
Reconstructive Embeddings,” Proc. Neural Information Processing
Systems (NIPS), pp. 577-584, 2009.

B. Kulis and K. Grauman, “Kernelized Locality-Sensitive Hashing
for Scalable Image Search,” Proc. IEEE Int’l Conf. Computer Vision
(ICCV), pp. 2130-2137, 2009.

L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-Time
Texture Synthesis by Patch-Based Sampling,” ACM Trans.
Graphics, vol. 20, no. 3, pp. 127-150, 2001.

T. Liu, A.W. Moore, and A.G. Gray, “New Algorithms for Efficient
High-Dimensional Nonparametric Classification,”]. Machine
Learning Research, vol. 7, pp. 1135-1158, 2006.

T. Liu, AW. Moore, A.G. Gray, and K. Yang, “An Investigation of
Practical Approximate Nearest Neighbor Algorithms,” Proc.
Neural Information Processing Systems Conf. (NIPS), 2004.

D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int’l |. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity
Search,” Proc. 33rd Int’l Conf. Very Large Data Bases (VLDB),
pp- 950-961, 2007.

J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions,” Proc.
British Machine Vision Conf. (BMVC), 2002.

AW. Moore, “The Anchors Hierarchy: Using the Triangle
Inequality to Survive High Dimensional Data,” Proc. 16th Conf.
Uncertainty in Artificial Intelligence (UAI), pp. 397-405, 2000.

M. Muja and D.G. Lowe, “Fast Approximate Nearest Neighbors
with Automatic Algorithm Configuration,” Proc. Int’l Conf.
Computer Vision Theory and Applications (VISSAPP), vol. 1,
pp. 331-340, 2009.

G. Navarro, “Searching in Metric Spaces by Spatial Approxima-
tion,” The Int’l]. Very Large Data Bases (VLDB), vol. 11, no. 1,
pp- 28-46, 2002.

D. Nistér and H. Stewénius, “Scalable Recognition with a
Vocabulary Tree,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 2, pp. 2161-2168, 2006.

A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A
Holistic Representation of the Spatial Envelope,” Int’l]. Computer
Vision, vol. 42, no. 3, pp. 145-175, 2001.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
Retrieval with Large Vocabularies and Fast Spatial Matching,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
2007.

M. Raginsky and S. Lazebnik, “Locality Sensitive Binary Codes
from Shift-Invariant Kernels,” Proc. Neural Information Processing
Systems (NIPS), 2009.

H. Samet, Foundations of Multidimensional and Metric Data
Structures. Elsevier, 2006.

T.B. Sebastian and B.B. Kimia, “Metric-Based Shape Retrieval in
Large Databases,” Proc. 16th Int’l Conf. Pattern Recognition (ICPR),
vol. 3, pp. 291-296, 2002.

G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-Neighbor
Methods in Learning and Vision: Theory and Practice. The MIT Press,
2006.

C. Silpa-Anan and R. Hartley, “Optimised KD-Trees for Fast
Image Descriptor Matching,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2008.

N. Snavely, S.M. Seitz, and R. Szeliski, “Photo Tourism: Exploring
Photo Collections in 3D,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 835-846, 2006.

(43]

[40]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

[50]

[57]

R.F. Sproull, “Refinements to Nearest-Neighbor Searching in K-
Dimensional Trees,” Algorithmica, vol. 6, no. 4, pp. 579-589, 1991.
AB. Torralba, R. Fergus, and W.T. Freeman, “80 Million Tiny
Images: A Large Data Set for Nonparametric Object and Scene
Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
G.T. Toussaint, “The Relative Neighbourhood Graph of a Finite
Planar Set,” Pattern Recognition, vol. 12, no. 4, pp. 261-268, 1980.
W. Tu, R. Pan, and J. Wang, “Similar Image Search with a Tiny
Bag-of-Delegates Representation,” Proc. 20th ACM Int’l Conf.
Multimedia (Multimedia), pp. 885-888, 2012.
N. Verma, S. Kpotufe, and S. Dasgupta, “Which Spatial Partition
Trees Are Adaptive to Intrinsic Dimension?” Proc. 25th Conf.
Uncertainty in Artificial Intelligence (UAI), pp. 565-574, 2009.
J. Wang, S. Kumar, and S.-F. Chang, “Semi-Supervised Hashing
for Scalable Image Retrieval,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2010.
J. Wang and S. Li, “Query-Driven Iterated Neighborhood Graph
Search for Large Scale Indexing,” Proc. 20th ACM Int’l Conf.
Multimedia (Multimedia), pp. 179-188, 2012.
J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable K-
NN Graph Construction for Visual Descriptors,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pp. 1106-1113,
2012.
Y. Weiss, A.B. Torralba, and R. Fergus, “Spectral Hashing,” Proc.
Neural Information Processing Systems (NIPS), pp. 1753-1760, 2008.
H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
Hashing for Approximate Nearest Neighbor Search,” Proc. IEEE
Int’l Conf. Computer Vision (ICCV), pp. 1631-1638, 2011.
K. Yamaguchi, T.L. Kunii, and K. Fujimura, “Octree-Related Data
Structures and Algorithms,” IEEE Computer Graphics and Applica-
tions, vol. 4, no. 1, pp. 53-59, Jan. 1984.
P.N. Yianilos, “Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces,” Proc. Fourth Ann.
ACM-SIAM Symp. Discrete Algorithms (SODA), pp. 311-321, 1993.
H. Zhang, A.C. Berg, M. Maire, and]J. Malik, “SVM-KNN:
Discriminative Nearest Neighbor Classification for Visual Cate-
gory Recognition,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), vol. 2, pp. 2126-2136, 2006.
Ii Jingdong Wang received the BSc and MSc
degrees in automation from Tsinghua University,
' Beijing, China, in 2001 and 2004, respectively,
and the PhD degree in computer science from
the Hong Kong University of Science and
Technology in 2007. He is currently a researcher
in the Media Computing Group, Microsoft
Research Asia. His research interests include
computer vision, machine learning, and multi-

N media search. At present, he is mainly working

on the Big Media p?oject, including large-scale indexing and clustering,
and web image search and mining. He is an editorial board member of
Multimedia Tools and Applications. He is a senior member of the IEEE.

Naiyan Wang received the BS degree in
computer science from Zhejiang University,
China, in 2011. He is currently working toward
the PhD degree at The Hong Kong University of
Science and Technology. His research interests
include sparse representations, matrix factoriza-
tions, manifold learning, and their applications in
computer vision and data mining.

You Jia received the BS degree in computer
science from Peking University, Beijing, China,
in 2010, and the MS degree in robotics from
Carnegie Mellon University, Pittsburgh, Penn-
sylvania, in 2011. After graduation, he joined
Facebook as a software engineer. During his
brief research career, his research interests
included the problems of large-scale image
retrieval and, later, text detection in the wild.

WANG ET AL.: TRINARY-PROJECTION TREES FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

Jian Li received the BSc degree from Sun
Yat-sen (Zhongshan) University, Guangzhou,
China, the MSc degree in computer science
from Fudan University, Shanghai, China, and
the PhD degree from the University of Mary-
land, Baltimore. He is currently an assistant
professor at the Institute for Interdisciplinary
Information Sciences, Tsinghua University,
Beijing, China. His research interests include
: algorithms, databases, and wireless sensor
networks He coauthored several research papers that have been
published in major computer science conferences and journals. He
received the Best Paper Awards at VLDB 2009 and ESA 2010.

Gang Zeng received the BS degree from the
School of Mathematical Sciences, Peking Uni-
versity, Beijing, China, in 2001 and the PhD
degree from the Department of Computer
Science and Engineering, Hong Kong University
of Science and Technology, Sai Kung, in 2006.
He worked as a postdoctoral research fellow in
the BIWI Computer Vision Laboratory, ETH
Zurich during 2006 to 2008. He is currently

. working as a research professor at the Key
Laboratory on Machine Perception, Peking University. His research
interests include computer vision and graphics, specifically in 3D scene
reconstruction, image-based or interactive modeling and rendering, and
unsupervised image segmentation. He served as the program chair of
the Seventh Joint Workshop on Machine Perception and Robotics 2011,
and a member of the organizing committee of the Ninth Asian
Conference on Computer Vision 2009, the Workshop on Computer
Vision 2009, and the International Symposium on Machine Perception
and Cognition 2010. He is also the assistant director of the MOE-
Microsoft Key Laboratory of Statistics and Information Technology of
Peking University. He is a member of the IEEE.

403

Hongbin Zha received the BE degree in
electrical engineering from Hefei University of
Technology, Anhui, China, in 1983 and the MS
and PhD degrees in electrical engineering from
Kyushu University, Fukuoka, Japan, in 1987 and
1990, respectively. After working as a research
associate at Kyushu Institute of Technology, he
PRSI joined Kyushu University in 1991 as an associ-
- ate professor. He was also a visiting professor in
‘v L Centre for Vision, Speech, and Signal Proces-
sing, Surrey University, United Kingdom, in 1999. Since 2000, he has
been a professor at Key Laboratory of Machine Perception, Peking
University, Beijing, China. His research interests include computer
vision, digital geometry processing, and robotics. He has published
more than 250 technical publications in journals, books, and interna-
tional conference proceedings. He received the Franklin V. Taylor
Award from the IEEE Systems, Man, and Cybernetics Society in 1999.
He is a member of the IEEE Computer Society.

L/ Xian-Sheng Hua received the BS degree in
" 1996 and the PhD degree in applied mathe-
matics in 2001 both from Peking University,
Beijing, China. He became a principal research
and development lead in multimedia search for
the Microsoft search engine, Bing, in 2011. He
leads a team that designs and delivers leading-
edge media understanding, indexing, and
searching features. He joined Microsoft Re-
i search Asia in 2001 as a researcher. Since
then, his research interests have been in the areas of multimedia
search, advertising, understanding, and mining, as well as pattern
recognition and machine learning. He has authored or coauthored more
than 200 research papers in these areas and has filed more than
60 patents. He served as an associate editor of the /EEE Transactions
on Multimedia, from 2007 to 2011, and is currently serving as an
associate editor of the ACM Transactions on Intelligent Systems and
Technology, an editorial board member of Advances in Multimedia and
Multimedia Tools and Applications, and an editor of Scholarpedia
(multimedia category). He has been the vice program chair, workshop
organize,; senior TPC member and area chair, and demonstration,
tutorial, and special session chairs, and PC member for many more
international conferences. He served as a program cochair for ACM
Multimedia 2012 and IEEE ICME 2012. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

