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Ion trap is one of the most promising candidates for quantum computing. Current schemes mainly
focus on a linear chain of up to about one hundred ions in a Paul trap. To further scale up the qubit
number, one possible direction is to use 2D or 3D ion crystals (Wigner crystals). In these systems,
ions are generally subjected to large micromotion due to the strong fast-oscillating electric field,
which can significantly influence the performance of entangling gates. In this work, we develop an
efficient numerical method to design high-fidelity entangling gates in a general 3D ion crystal. We
present numerical algorithms to solve the equilibrium configuration of the ions and their collective
normal modes. We then give a mathematical description of the micromotion and use it to generalize
the gate scheme for linear ion chains into a general 3D crystal. The involved time integral of highly
oscillatory functions is expanded into a fast-converging series for accurate and efficient evaluation
and optimization. As a numerical example, we show a high-fidelity entangling gate design between
two ions in a 100-ion crystal, with a theoretical fidelity above 99.9%.

I. INTRODUCTION

Over the past few decades, quantum computing has
attracted wide interest because it challenges the strong
Church-Turing thesis and has a potential exponential
speedup over any classical computers for certain prob-
lems [1]. To realize quantum computing, some basic re-
quirements, known as the DiVincenzo’s criteria [2], need
to be fulfilled, among which is a universal gate set that
any desired multi-qubit unitary gates can be generated
from. A commonly used universal gate set consists of a
few single-qubit gates and a two-qubit entangling gate
[1]. While the single-qubit gates are relatively simple,
the two-qubit gate usually turns out to be much more
difficult and has become the focus of research. Besides,
such entangling gates also find applications in other fields
such as digital quantum simulation [3], variational hybrid
quantum-classical algorithms [4, 5] and quantum metrol-
ogy [6].
Trapped ions have become one of the leading platforms

for realizing quantum computing owing to the long co-
herence time, convenient initialization and readout, and
the strong state-dependent coupling between ions medi-
ated by laser [7–10] or microwave [11–14] driving. Ded-
icated schemes for high-fidelity entangling gates, known
as the Molmer-Sorensen (MS) gate [15] and its variants,
have been developed for ion chains in a linear Paul trap.
The gate can be designed using different collective mo-
tional modes of the ions [16, 17], through various control
and optimization methods for the driving field [18–20],
and have been demonstrated in experiments from two to
more than ten ions [21–27].
One major problem of the linear configuration is the

scalability. It is estimated that the current gate schemes
can be generalized to about one hundred ions [28–30],
while for larger number of qubits we need more compli-
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cated schemes like ion shuttling [28, 31] or photonic quan-
tum networks [32–34]. Although noticeable progress has
been achieved in these directions in recent years, these
approaches require additional exquisite control of the ion
system and their speed is limited by the slow quantum
wiring process.

Therefore, it is appealing to consider a scheme using
the current control techniques and move the complexity
into the design of the control sequence. One such pos-
sibility is to increase qubit numbers by exploring higher
dimensional ion systems in 2D or 3D, where large Wigner
crystals of ions have been observed in experiments for
hundreds to thousands of ions [35, 36]. Some pioneering
works have been performed in Refs. [37–40]. In particu-
lar, it has been shown that the micromotion of the ions,
which is inevitable for large 2D or 3D ion crystals in a
Paul trap and leads to deviation from the gate scheme in
1D, is not a source of decoherence. Actually, micromo-
tion has been exploited earlier in experiments for selective
single-ion addressing [41]. The idea is then to describe
the micromotion of an ion crystal theoretically and exper-
imentally [42–45], and to find a suitable laser sequence to
realize high-fidelity gates under micromotion [37–39, 46].
In previous works, approximations are made to the low-
est orders of micromotion; while for high gate fidelity,
it will be necessary to consider higher order corrections.
In this work, we will develop an efficient algorithm to
design entangling gates in general ion crystals up to ar-
bitrary orders of micromotion. We will assume a general
3D crystal, with our results directly applicable to 2D as
a special case of the trapping potential.

The paper is organized as follows. First we briefly re-
view a commonly used gate scheme in a 1D ion chain
in Sec. II and describe the effects of micromotion when
generalizing it to 3D. In Sec. III A we describe a numer-
ical method to solve the equilibrium positions and mi-
cromotion of the ions, from which we further solve all
the collective normal modes in Sec. III B. In Sec. IV we
provide efficient numerical algorithms to include the mi-
cromotion into the gate design, whose theoretical errors
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can be systematically controlled to arbitrary orders. A
numerical example is presented in Sec. V. Finally we con-
clude in Sec. VI. Appendix A summarizes the numerical
algorithms and Appendix B gives an example of incorpo-
rating the robustness condition against certain parameter
drifts into our algorithms.

II. GATE SCHEME IN 1D ION CHAIN

In this section, we briefly review how two-ion entan-
gling gates can be realized in a linear chain of N ions.
It will later be generalized to a 3D ion crystal in the
following sections. Here we will follow the notation of
Ref. [47].

The coupling between two ions is generated by off-
resonantly driving them near some motional sidebands
simultaneously. Assuming two driving fields on the ion
j with the same Rabi frequency Ωj , opposite detun-
ing ±µ to the atomic transition frequency and opposite
wave vectors ±∆k along a transverse direction x, which
is known as the phase-insensitive configuration [48], the
qubit-phonon interaction Hamiltonian takes the form

Ĥ =
∑

j

~Ωj cos [µt+ ϕj −∆k · x̂j(t)] σ̂
x
j , (1)

where the index j runs over the two ions being driven,
ϕj a motional phase depending on the initial phases of
the driving fields and the equilibrium positions of the
ions, σ̂x

j the corresponding Pauli X operators, and x̂j(t)
the time-evolved position operators in the transverse di-
rection. We can decompose the transverse motion into
normal modes

x̂j(t) =
∑

k

bkj

√

~

2mωk

(

âke
−iωkt + â†ke

iωkt
)

, (2)

where k labels a normal mode with a creation (annihi-

lation) operator â†k (âk), a mode frequency ωk, and a

normalized mode vector bkj for j = 1, 2, · · · , N .

With the Lamb-Dicke parameter ηk ≡
∆k
√

~/2mωk ≪ 1 for typical experiments, and as-
suming weak excitation of the phonon modes during the
gate (which is known as the Lamb-Dicke regime), we
only need to consider the lowest order expansions in ηk

Ĥ =
∑

j

∑

k

χj(t)ηkb
k
j

(

âke
−iωkt + â†ke

iωkt
)

σ̂x
j , (3)

where χj(t) ≡ ~Ωj sin (µt+ ϕj). The zeroth order term
is dropped as a single-qubit rotation which can be com-
pensated after the entangling gate. The error of neglect-
ing the higher order terms is shown to be O(η4k) in the
gate fidelity [47].

Time evolution under this Hamiltonian with duration
τ is given by the unitary operator

Û(τ) = exp



i
∑

j

φ̂j(τ)σ̂
x
j + i

∑

i<j

Θij(τ)σ̂
x
i σ

x
j



 , (4)

where

φ̂j(τ) = −i
∑

k

[

αk
j (τ)â

†
k − αk∗

j (τ)âk

]

, (5)

αk
j (τ) = − i

~
ηkb

k
j

∫ τ

0

χj(t)e
iωktdt, (6)

describe the spin-phonon coupling after the gate, and

Θij(τ) =
1

~2

∑

k

η2kb
k
i b

k
j

∫ τ

0

dt1

∫ t1

0

dt2

× [χi(t1)χj(t2) + χj(t1)χi(t2)] sin [ωk(t1 − t2)] (7)

is the coupling between the two spins i and j.
For an ideal entangling gate, we want the qubit state

to be decoupled from the phonon modes, that is, αk
j = 0;

we also want Θij = ±π/4 for the maximal entanglement
such that the ideal gate exp(±iπσx

i σ
x
j /4) is equivalent to

the CNOT gate up to single-qubit rotations. To char-
acterize the deviation from the ideal gate, we compute
the average gate fidelity over different initial qubit states
and a thermal distribution of the phonon states. For
small deviation from the ideal case, we have [47]

δF =
4

5





(

Θij ∓
π

4

)2

+
∑

jk

|αk
j |2(2n̄k + 1)



 , (8)

where n̄k is the average phonon number in the k-th mode.
Up to this point the formulation is general and we can

apply amplitude, frequency or phase modulations [18–
20] of the driving field to optimize the gate fidelity. For
concreteness, below we will focus on a specific method of
amplitude modulation to optimize the gate performance.
Let us set the driving fields on the two ions to be the

same and divide the gate time τ into nseg equal segments.
In each segment we set the Rabi frequency on the two
ions to be a constant. Define a real column vector Ω =
(Ω1,Ω2, · · · ,Ωnseg)

T corresponding to the Rabi frequency
of each segment, and we get

αk
j (τ) = Ak

jΩ, Θij = ΩTγ ′Ω, (9)

where Ak
j is a row vector whose n-th component is

Ak
j (n) = −iηkb

k
j

∫ nτ/nseg

(n−1)τ/nseg

sinµt · eiωktdt, (10)

and γ′ is an nseg by nseg matrix with the (p, q) component
given by
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γ′(p, q) =



























2
∑

k

η2kb
k
i b

k
j

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ qτ/nseg

(q−1)τ/nseg

dt2 sinµt1 sinµt2 sin[ωk(t1 − t2)] (p > q)

2
∑

k

η2kb
k
i b

k
j

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ t1

(p−1)τ/nseg

dt2 sinµt1 sinµt2 sin[ωk(t1 − t2)] (p = q)

0 (p < q)

. (11)

By suitably scaling Ω, we can always set Θij = ±π/4.
Then the gate infidelity can be approximated as

δF =
4

5
ΩTMΩ, (12)

where M ≡
∑

jk A
k†
j Ak

j (2n̄k +1). By definition, M is a
Hermitian matrix, but actually we can express it in a real
symmetric form since ΩTMΩ = ΩTRe[M ]Ω. Similarly
we can define a symmetric matrix γ ≡ (γ′ + γ′T )/2 such

that Θij = ΩTγ′Ω = ΩTγΩ.

To optimize the gate fidelity, we minimize ΩTMΩ un-
der the constraint ΩTγΩ = ±π/4. We can introduce
a Lagrange multiplier and consider the optimization of
f(Ω, λ) = ΩTMΩ− λ(ΩTγΩ∓ π/4) as

MΩ− λγΩ = 0, ΩTγΩ = ±π/4. (13)

This is a generalized eigenvalue problem. We can solve
its eigenvalue with the smallest absolute value and the
corresponding eigenvector, which, after suitable normal-
ization, gives us the optimal Ω.

Let us now briefly discuss how this gate scheme can
be generalized to a general 3D ion crystal, which will be
expanded in more details in the following sections. One
straightforward generalization is that we shall replace the
transverse normal modes in Eq. (2) by all the normal
modes in the 3D crystal, since the motions in different
directions are coupled together. However, there are more
differences between the 1D and the 3D cases. For the
linear configuration, the trap can be designed such that
the ions align on the null of the radiofrequency (RF) field
without micromotion. The ions thus stay at their equi-
librium positions and the small perturbation can be well
approximated by the normal modes in a harmonic pseu-
dopotential. On the other hand, in a 3D ion crystal it
is generally not possible to suppress the micromotion of
all the ions. Then the equilibrium solution is not a static
configuration of the ions, but a finite oscillation at the
RF frequency for all the ions. Such an oscillation can
be absorbed into ϕj in Eq. (1) as a time-dependent mo-
tional phase for each ion. Moreover, when the amplitudes
of these equilibrium trajectories are comparable to the
width of the laser beams, the Rabi frequency Ωj will also
be time-dependent. Finally, the normal mode expansions
in Eq. (2) will generally also include the micromotion at
the RF frequency, which need to be considered in the
evaluation of αk

j [Eq. (6)] and Θij [Eq. (7)].

III. EQUILIBRIUM TRAJECTORIES AND

NORMAL MODES UNDER MICROMOTION

As is mentioned above, to design the entangling gate,
first we need to solve the equilibrium trajectories of the
ions and the collective normal modes for small deviation
away from them. Important works on this topic have
been performed in Refs. [42, 43] which are most suitable
for a few ions to the lowest orders of the micromotion.
In this section, we briefly review these results and gen-
eralize them to an efficient numerical algorithm that can
work for hundreds of ions and to the arbitrary orders of
micromotion.
For convenience, we define the length unit L0 =

(e2/4πǫ0mω2
rf)

1/3 and the time unit T0 = 2/ωrf . Then
we can consider the dimensionless equation of motion
(EOM) of N ions

R̈iσ +
∑

ρ

(Aσρ − 2Qσρ cos 2t)Riρ

− 4
∑

j 6=i

Riσ −Rjσ
[

∑

ρ(Riρ −Rjρ)2
]

3
2

= 0, (14)

where i, j = 1, 2, · · · , N corresponds to each ion and
σ, ρ = x, y, z for the three spatial directions. The first
two terms correspond to the well-known Mathieu equa-
tion for a single ion in an RF trap, while the third term
describes the Coulomb interaction between different ions
with the motions in different directions coupled together.
In the previous works (e.g. Refs. [8, 42]), it is usually as-
sumed for convenience that the principal axes of the DC
and the RF fields coincide, so that A and Q matrices are
diagonal in the same frame. Since this assumption may
not hold for some trap design, here we choose to work
with the more general case.

A. Periodic Equilibrium Solutions

The potential in Eq. (14) has a period of π in the di-
mensionless form, it is thus reasonable to expect a solu-
tion with π period as well [42], that is, a micromotion at
the RF frequency. To find such a stable periodic solution,
we can start from some random initial configuration,
time-evolve the system under a weak damping term [a

−γṘiσ term on the right-hand-side of Eq. (14)], and grad-
ually turn down the damping until the system reaches a
stable solution. Similar to the case of a static potential,
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there can be multiple stable solutions to Eq. (14). Note
that the process of gradually reducing the damping term
closely mimic the cooling stage of the ions in a real trap.
Thus we expect the solution found in this way to reflect
the one obtained in the experiment with high probability.

This method works well for a small number of ions,
but difficulty appears as the ion number increases: to ap-
proach the desired solution, we need to reduce the damp-
ing term γ, which in turn slows down the convergence and
requires smaller step sizes in the time-evolution to sup-
press the numerical errors. This motivates us to consider
the solution to Eq. (14) directly without the damping
term.

Following Ref. [42], we expand the equilibrium solution
with the period of π into a Fourier series

Rπ
jσ(t) =

+∞
∑

n=−∞

B2n,jσe
i2nt. (15)

Note that due to the time-reversal symmetry of Eq. (14),
we have B2n,jσ = B−2n,jσ = B∗

2n,jσ. Therefore all the
expansion coefficients are real.

Since Rπ
iσ(t) has a period of π, so does any function of

the coordinates. Therefore the Coulomb interaction term
in Eq. (14) can also be expanded into a Fourier series

Dπ
iσ(t) ≡4

∑

j 6=i

Rπ
iσ(t)−Rπ

jσ(t)
{

∑

ρ

[

Rπ
iρ(t)−Rπ

jρ(t)
]2
}3/2

=

+∞
∑

n=−∞

D2n,iσe
i2nt. (16)

On the other hand, from the definition, we also have [42]

Dπ
iσ(t) = 4

∑

j

Gπ
ij(t)R

π
jσ(t), (17)

where

Gπ
ij(t) ≡δij

∑

k 6=i

1
{

∑

ρ

[

Rπ
iρ(t)−Rπ

kρ(t)
]2
}3/2

− (1− δij)
1

{

∑

ρ

[

Rπ
iρ(t)−Rπ

jρ(t)
]2
}3/2

=

+∞
∑

n=−∞

G2n,ije
i2nt. (18)

These expansions are used in Ref. [42] to analyze the
properties of the micromotion assuming small Mathieu
parameters (elements of A and Q matrices). Here we
generalize these equations to find the numerical solutions.

Plugging these expansions into Eq. (14) with a suitable
division of the Coulomb interaction term into the above

two alternative forms, we get a recurrence relation

∑

ρ

[

(Aσρ − 4n2δσρ)B2n,iρ −Qσρ(B2n−2,iρ +B2n+2,iρ)
]

+ 4α
∑

m,j

G2n−2m,ijB2m,jσ = (1 + α)D2n,iσ , (19)

where the index m runs over all the orders of Fourier se-
ries, while the α-dependent terms on the two sides cancel
each other for a periodic solution.
For a desired accuracy of the solution, suppose we can

truncate at some finite order of the Fourier series. Then
Eq. (19) is a system of linear equations for {B2n,iσ} and
can be solved iteratively: we can use the old solution
of {B2n,iσ} to calculate {D2n,iσ} and {G2n,iσ} and then
find the new solution of {B2n,iσ}. The simplest case is
to set α = 0. Unfortunately, numerically we find that
in this case the solution is unstable: if we start from an
approximate solution, it will deviate further and further
away after iterations. The reason is that for the leading
order term B0,iσ, we have n = 0 and thus its coefficient
is a small parameter. When computing the new solu-
tion from the old one, we take the inverse of these small
parameters and therefore the error gets enlarged.
The above analysis suggests that we need large α for

the iterative method to converge. Numerically we find
that α ≥ 1 leads to convergence around the periodic solu-
tion, if we start from the approximate solution we found
with a weak damping term. Note that if in B2n,iσ we
truncate at n = ±M , then in G2n,ij we need to truncate
at n = ±2M .

B. Normal Modes

Having solved the equilibrium trajectories {Rπ
iσ(t)} of

the ions, now we consider small perturbation around
them and decompose them into collective normal modes.
Let us first derive the equation of motion for a small de-
viation. Following Ref. [42], we define a matrix function
K(t) whose elements are

Kiσ,jτ (t)

=











































−3
(Rπ

iσ−Rπ
jσ)(R

π
iτ−Rπ

jτ )

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]

5/2 (i 6= j, σ 6= τ)

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]−3(Rπ

iσ−Rπ
jσ)

2

[
∑

ρ(R
π
iρ−Rπ

jρ)
2]5/2

(i 6= j, σ = τ)

3
∑

k 6=i

(Rπ
iσ−Rπ

kσ)(R
π
iτ−Rπ

kτ )

[
∑

ρ(R
π
iρ−Rπ

kρ)
2]

5/2 (i = j, σ 6= τ)

−∑
k 6=i

[
∑

ρ(R
π
iρ−Rπ

kρ)
2]−3(Rπ

iσ−Rπ
kσ)

2

[
∑

ρ(R
π
iρ−Rπ

kρ)
2]5/2

(i = j, σ = τ)

(20)

as the time-dependent Hessian matrix of the Coulomb in-
teraction. In the above equation, the t dependence of Rπ

iσ

is omitted for simplicity. Now we have the linear EOM
for small perturbation riσ around the periodic crystal so-
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lution:

r̈iσ +
∑

ρ

(Aσρ − 2Qσρ cos 2t)riρ + 4
∑

jρ

Kiσ,jρ(t)rjρ = 0.

(21)
Because K(t) also has a period of π, we can expand it

as

K(t) = K0 − 2K2 cos 2t− 2K4 cos 4t− · · · (22)

If we absorb K0 and K2 into the definition of A and Q
matrices and neglect the higher order terms (we will later
describe how the higher order terms can be included),
Eq. (21) can be written in the vector form (the vectorial
Mathieu equation)

r̈ + (A− 2Q cos 2t)r = 0, (23)

where r is a 3N by 1 column vector.
Consider a normal mode at the dimensionless fre-

quency β (modulated by micromotion at the RF fre-
quency). Following Ref. [42], such a solution can be ex-
panded as

r =

+∞
∑

n=−∞

C2n

[

cei(2n+β)t + c∗e−i(2n+β)t
]

. (24)

Here the real 3N by 1 vector C2n is the generalized mode
vector and c is a complex amplitude. Now our task is to
determine all the mode frequencies β’s. An imaginary β
means instability, while all β’s being real corresponds to
oscillatory behavior.
We defineR2n ≡ A−(2n+β)2I, where I is the identity

matrix. Plugging these expressions into Eq. (23), we get
a recurrence relation

QC2n−2 = R2nC2n −QC2n+2. (25)

Further applying the infinite continued matrix inversion
method [43], the normal mode frequencies are finally de-
termined by

det [P 2(β) −QP 1(β)Q] = 0, (26)

with C0 the eigenvector of P 2 − QP 1Q corresponding
to the eigenvalue of zero, while

P 1(β) ≡ {R2 −Q[R4 −Q(R6 − · · · )−1Q]−1Q}−1 (27)

and

P 2(β) ≡ R0 −Q[R−2 −Q(R−4 − · · · )−1Q]−1Q (28)

are two matrices dependent on β and can be evaluated
by truncating at some large value of |n|.
Note that det(P 2 −QP 1Q) is just a numerical func-

tion of β. Therefore, to solve all the normal modes, in
principle we only need to find all the roots of this function
numerically, as done in Refs. [42, 43]. However, for large
ion number N , the separation between these 3N roots
is small and it is difficult to solve all of them without
any a priori knowledge about their distribution. More-
over, some of the β’s may be imaginary for an instable
crystal solution, which makes the numerical search even
harder. Also note that when writing down Eq. (23), we
have neglected higher order terms in Eq. (22). The effect
of the K4 term is considered in Ref. [43], but the method
is difficult to generalize to higher order terms. Now we
describe a new method that can be efficiently applied to
a large number of ions and can include arbitrarily high
order terms.
In general, we can rewrite Eq. (21) as

r̈ + (A− 2Q cos 2t− 2Q4 cos 4t− · · · )r = 0 (29)

with Q2n = 4K2n (n ≥ 2) from the Fourier expansion
of K(t) [Eq. (22)]. Again we have absorbed K0 and K2

into the definition of A and Q.
Using the expansion of Eq. (24), we get a general re-

currence relation

R2nC2n =Q(C2n−2 +C2n+2) +Q4(C2n−4 +C2n+4)

+Q6(C2n−6 +C2n+6) + · · · (30)

where again R2n ≡ A− (2n+ β)2I.
If we truncate these equations at the order of ±n, we

can assemble them into a matrix form





















R−2n −Q −Q4 · · · 0 0 0
−Q R−2n+2 −Q · · · 0 0 0
−Q4 −Q R−2n+4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · R2n−4 −Q −Q4

0 0 0 · · · −Q R2n−2 −Q

0 0 0 · · · −Q4 −Q R2n









































C−2n

C−2n+2

C−2n+4

...
C2n−4

C2n−2

C2n





















= 0, (31)

where Q2n’s can be truncated at some different order m,
which is not shown explicitly in the above equation. Note
that the diagonal blocks {R2n} of this matrix depend on

β. Again a normal mode frequency β is a root of the
determinant of this matrix, and the mode vector is given
by the corresponding eigenvector with the eigenvalue of
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zero.
The direct search of β suffers the same numerical dif-

ficulty as mentioned before. Instead, we observe that if
we have an approximate mode frequency β, the above
matrix should have an eigenvalue close to zero. There-
fore, we start from an approximate solution and solve
the eigenvalue ∆ closest to zero. Note that the diag-
onal blocks of this matrix R2n = A − (2n + β)2I =
A − (4n2 + 4nβ)I − β2I have a common −β2I term
in the diagonal, which can be combined with the small

nonzero eigenvalue ∆. That is, we update β by
√

β2 +∆
and then repeat the above process. The iterations will
quickly converge such that ∆ → 0. In the case of degen-
eracy of, say, two normal modes, we can similarly look
for the two eigenvalues with the smallest absolute values
and the corresponding eigenvectors, and use the desired
one for the next iteration.
To efficiently apply the above method, it is desirable

to have a complete set of approximate normal modes to
start with. Therefore here we describe a simple approxi-
mate solution based on Eq. (26). Consider small elements
of the A and Q matrices [after absorbing K0 and K2 as
in Eq. (23)], and we expect the mode frequencies β also
to be small. Now we consider the following expansion for
n 6= 0:

R−1
2n =

[

A− (2n+ β)2
]−1

=
(

A− 4n2 − 4nβ − β2
)−1

≈− 1

4n2

(

1− β

n
− β2 −A

4n2
+

β2

n2

)

, (32)

where we have omitted the identity matrix I for simplic-
ity. We also have

P 1 ≈
[

R2 −QR−1
4 Q

]−1 ≈ R−1
2 +R−1

2 QR−1
4 QR−1

2 ,

(33)

and

P 2 ≈R0 −Q
[

R−2 −QR−1
−4Q

]−1
Q

≈R0 −QR−1
−2Q−QR−1

−2QR−1
−4QR−1

−2Q. (34)

Therefore

T ≡P 2 −QP 1Q

≈A+
1

2
Q2 +

1

8
QAQ+

1

128
Q4 − β2

(

1− 3

8
Q2

)

.

(35)

Because C0 satisfies TC0 = 0, all the normal modes
are now given by a generalized eigenvalue problem

(

A+
1

2
Q2 +

1

8
QAQ+

1

128
Q4

)

C0 =

β2

(

1− 3

8
Q2

)

C0. (36)

To describe the normal modes to the same order of ap-
proximation we include oscillations at the multiples of

the RF frequency, which are given by

C±2 =
(

R±2 −QR−1
±4Q

)−1
QC0 ≈ −1

4
(1∓ β)QC0,

(37)

C±4 =R−1
±4QC±2 ≈ 1

64

(

1∓ 3

2
β

)

Q2C0. (38)

Finally, we want to mention that we have been con-
sidering quadrupole traps in the above derivations (rep-
resented by the A and Q matrices). By exploring sym-
metries in the trap design, octupole or even higher-order
multipole traps can be achieved, which have been used to
trap large ion crystals [49]. These trapping forces oscil-
lating at the multiples of the RF frequency can be treated
in a similar way as the nonlinear Coulomb interaction in
the above expressions and therefore our method is still
applicable.

C. Quantization of normal modes

Having solved all the 3N normal mode frequencies βk

and the mode vectors C
(k)
2n , finally we want to quantize

them to design the entangling gate. In this part we re-
cover the dimensions of the variables. In analogue to the
quantum harmonic oscillators, we can decompose the po-
sition and momentum operators of the N ions as [8]

r̂(t) =
∑

k

√

~

2mωk

[

âku
(k)∗(t) + â†ku

(k)(t)
]

, (39)

and

p̂(t) =
∑

k

√

~m

2ωk

[

âku̇
(k)∗(t) + â†ku̇

(k)(t)
]

, (40)

where

u(k)(t) =

+∞
∑

n=−∞

C
(k)
2n ei(nωrf+ωk)t (41)

is a solution to Eq. (21) we get in Sec. III B with the
time dimension recovered. ωk = βkωrf/2 is the frequency

of the k-th mode and âk and â†k are the annihilation and
creation operators. What remains to be determined is the

normalization of C
(k)
2n , which is fixed by the commutation

relations [r̂iσ(0), p̂jρ(0)] = i~δijδσρ and [âk, â
†
l ] = δkl.

According to Ref. [43], we need

∑

n

(2n+ βk)C
(k)T
2n

∑

m

C
(l)
2m = βkδkl. (42)

Actually, the orthogonal condition is already satisfied
from our solution in Sec. III B; here we just need

∑

n(2n+

βk)C
(k)T
2n

∑

m C
(k)
2m = βk (k = 1, 2, · · · , 3N) for normal-

ization.
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IV. GATE SCHEME IN 3D

Having solved the equilibrium trajectories and the nor-
mal modes of the ions, now we can consider the gate
design. Recall that, without micromotion, the optimiza-
tion of the entangling gate is achieved by minimizing the
residual entanglement to the phonon modes [Eq. (6)]

αk
j (τ) = − i

~
ηk

∫ τ

0

bkjχj(t)e
iωktdt, (43)

while maintaining the desired two-qubit phase Θij =
±π/4 [Eq. (7)]

Θij =
1

~2

∑

k

η2k · Im
{

∫ τ

0

dt1

∫ t1

0

dt2e
iωk(t1−t2)

×
[

bki b
k∗
j χi(t1)χj(t2) + bkj b

k∗
i χj(t1)χi(t2)

]

}

,

(44)

where we have considered the possibility of a complex
mode vector bkj for reasons that will become clear later,
and

χj(t) ≡ ~Ωj(t) sin (µt+ ϕj) (45)

describes the driving field felt by the ion j.
In Sec. II we consider piecewise-constant Ωj(t). The

advantage is that the time integrations above can be per-
formed analytically on each segment. Then the optimiza-
tion becomes a generalized eigenvalue problem [Eq. (13)],
which can be solved efficiently. Note that, strictly speak-
ing, an analytical expression for the time integral is not
necessary in the above process. Given a gate time τ and
the number of segments nseg, we can also evaluate the
integral numerically. However, for the highly oscillatory
functions we are considering, such a numerical integra-
tion requires very high accuracy and is usually slow. In
comparison, if we can derive an analytical expression for
the integral, its evaluation becomes much faster, which
allows efficient optimization of the gate design. This un-
derstanding is important for efficient gate design in the
general case.

A. Effects of micromotion

Now we consider the effects of the micromotion on the
gate design. As briefly discussed in Sec. II, it appears in
the following three aspects.
Time-Dependent Motional Phase. As we have shown

in Sec. III A, the equilibrium trajectories of the ions are
oscillating at the RF frequency. In Eq. (1), it appears as
a (classical) oscillating phase in the form of ∆k · Rj(t)
where Rj(t) = [Rπ

jx(t), R
π
jy(t), R

π
jz(t)]

T is the equilib-
rium trajectory of the ion j. We can absorb it into the

motional phase ϕj for each ion in Eq. (45) with a period
of 2π/ωrf . Hence we have the Fourier expansion

ϕj(t) =

∞
∑

l=0

ϕ
(l)
j cos lωrft, (46)

where the superscript l represents the l-th order of ex-
pansion. Note that by definition ϕj(t) follows the same
time-reversal symmetry as Rπ

jσ(t), so in the Fourier series
only the cosine terms survive. Also, ϕj(t)’s depend not
only on the amplitude of the micromotion, but also on
its angle with the direction of ∆k.
Time-Dependent Complex Normal Modes. The mi-

cromotion also leads to high-frequency modulation on
each normal mode, as shown in Sec. III B. From Eq. (2)
and Eq. (39) we observe that bkj e

iωkt is now replaced by

u(k)(t), that is,

bkj →
+∞
∑

n=−∞

m ·C(k)
2n,je

inωrf t (47)

where m is a unit vector along the direction of ∆k and

C
(k)
2n,j = [C

(k)
2n,jx, C

(k)
2n,jy , C

(k)
2n,jz ]

T . This gives a time-

dependent multiplicative factor in the integration in αk
j

[Eq. (43)] and Θij [Eq. (44)], but because it is a trigono-
metric function, an analytical expression is still easy to
obtain. Also note that our expression for Θij in Sec. II
[Eq. (7)] is derived for a real mode vector. For the com-
plex mode vector here, Eq. (44) should be used instead.
Time-Dependent Modulation of Laser Intensity. If the

micromotion has a component perpendicular to the di-
rection of the laser beam, it will also lead to a varia-
tion in the laser intensity felt by the ion during the gate.
This become important if the amplitude of the micromo-
tion is greater than or comparable to the width of the
laser beam. Mathematically it is described by a time-
dependent effective Rabi frequency Ωj(t) in Eq. (45) os-
cillating at the RF frequency. Given the spatial power
distribution of the driving laser and the equilibrium tra-
jectories of the ions, these terms can be computed and
again can be expanded into a Fourier series. Therefore
again they are multiplicative trigonometric functions and
can be treated in the same way as the time-dependent
normal modes. We will not consider this effect below
for simplicity, which corresponds to a small micromotion
amplitude compared with the width of the driving laser
beam for individual addressing, or a beam that follows
the equilibrium micromotion of the ions.

B. Series Expansion for Evaluating Highly

Oscillatory Functions

As mentioned above, to efficiently design the gate, we
want analytical expressions for Eq. (43) and Eq. (44) with
piecewise constant Ωj(t) on arbitrary intervals.
The last two effects of micromotion we described are

not difficult to treat because for them the integrand is
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still the product of trigonometric functions, and there-
fore simple analytical expressions exist. On the other
hand, the first effect of a time-dependent motional phase,
even if only expanded to the first order, will give us some-
thing like cos(ϕ(1) cosωrft) whose analytical integral on a
general time interval is not known. Without such an an-
alytical expression, we will have to numerically integrate
highly oscillating functions, which significantly increases
the computational cost.
As hinted by Ref. [50], this problem can be solved by

a series expansion of the motional phase. For each ex-
pansion term we can still derive an analytical expression,
while the overall error can be systematically suppressed
by considering higher order terms. At the essence of our
algorithm is the following formula [51]

exp(iϕ cosωt) = J0(ϕ) + 2

∞
∑

n=1

inJn(ϕ) cos(nωt). (48)

Note that for 0 < ϕ ≪
√
n+ 1, we have

Jn(ϕ) ∼
1

n!

(ϕ

2

)n

, (49)

thus the high-order terms vanish quickly as n increases,
and we can expect a fast convergence.

C. Residual Spin-Phonon Coupling

For the αk
j terms [Eq. (43)], we want to derive an an-

alytical expression for the integral

∫

dt

+∞
∑

n=−∞

C
(k)
2n,jσe

inωrf t sin

(

µt+

∞
∑

l=0

ϕ
(l)
j cos lωrft

)

eiωkt,

(50)

Because C
(k)
2n decreases quickly with |n| (for small Math-

ieu q parameters, that is, elements of the Q matrix), we
can truncate the summation over n at small ±ncut.
Note that we can regard nωrf+ωk as a new variable ω in

the above expression. Then once we derive an analytical
expression as a function of ω, we immediately get the
results for all the orders of n by plugging in the value of
nωrf + ωk. Therefore we only need to consider

∫

dt sin

(

µt+
∞
∑

l=0

ϕ
(l)
j cos lωrft

)

eiωt

=
1

2i

∫

dt

[

ei(µt+ϕ
(0)
j )

∞
∏

l=1

eiϕ
(l)
j cos lωrf t − c.c.

]

eiωt. (51)

We can now expand exp(iϕ
(l)
j cos lωrft) into cosine

functions using Eq. (48). Suppose the ϕ
(1)
j , ϕ

(2)
j , · · ·

terms are expanded to the order of n1, n2, · · · , respec-
tively. Then one term of the integral becomes

∫

dtei(µt+ϕ
(0)
j )eiωt cos(n1ωrft) cos(2n2ωrft) · · · (52)

with the coefficient
∏

l 2i
nlJnl

(ϕ
(l)
j ) (for a term with nl =

0 the coefficient is smaller by one half). Then we sum over
all possible {n1, n2, · · · } to get the total integral. The
other half of Eq. (51) for the complex conjugate can be

computed similarly. We just need to replace µ and ϕ
(0)
j

in Eq. (52) by −µ and −ϕ
(0)
j , and to take the complex

conjugate of the corresponding coefficients.

It seems that the number of terms to be evaluated is
exponentially large, so that even if we have analytical ex-
pressions for Eq. (52) and the evaluation of a single term
is fast, the overall time cost is still high. Fortunately, in
the small q regime typical for current ion trap quantum
computing experiments, the micromotion amplitude de-

creases quickly with the order of expansion, so that ϕ
(l)
j

will be close to zero for large l. For such terms, we have

exp(iϕ
(l)
j cos lωrft) ≈ 1, so that discarding them has neg-

ligible effects on the integrand of Eq. (51). Therefore we
can truncate at l ≤ L for some small L in Eq. (52). Even

for the remaining ϕ
(l)
j terms, the corresponding coeffi-

cients Jnl
(ϕ

(l)
j ) quickly vanish for large nl, so the number

of terms we need to evaluate is small. Note that all the
truncations described above can be performed according
to a chosen error tolerance, say, 10−8, and the accuracy
can be systematically improved by including higher order
terms.

What remains is to evaluate Eq. (52) for up to L cosine
functions. For a given L, an analytical expression for this
integral is possible, but it can be complicated even for
moderate L and in particular can be difficult for coding.
Therefore we further split each cosine function into two
exponential functions using cosx = (eix + e−ix)/2. In
this way, Eq. (52) finally turns into at most 2L integrals
of exponential functions, whose analytical expressions are
simple. Since the truncation L is typically small and we
do not need to split for the l-th term if nl = 0, this
algorithm gives a good balance between the time cost of
programming and that of running.

D. Two-Qubit Rotation Angle

For the Θij terms [Eq. (44)], we want to derive an
analytical expression for

∫

dt1

∫

dt2e
iωk(t1−t2)

+∞
∑

n,m=−∞

C
(k)
2n,iρe

inωrf t1C
(k)
2m,jσe

−imωrf t2

× sin

(

µt1 +

∞
∑

l1=0

ϕ
(l1)
i cos l1ωrft1

)

× sin

(

µt2 +

∞
∑

l2=0

ϕ
(l2)
j cos l2ωrft2

)

(53)

for one term in Eq. (44), and the other term can be ob-
tained by exchanging i and j.



9

Recall that in Eq. (11), we need two types of integral
limits
∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ qτ/nseg

(q−1)τ/nseg

dt2 and

∫ pτ/nseg

(p−1)τ/nseg

dt1

∫ t1

(p−1)τ/nseg

dt2.

(54)
For the first type, the integrations over t1 and t2 are
separable and are exactly what we have solved for the αk

j

terms. The remaining problem is just the second type.
Following the derivations for the αk

j terms, we define
new variables ω1 = ωk + nωrf and ω2 = ωk +mωrf , split
the sine function into two exponential functions, and ex-

pand exp(±iϕ
(l)
j cos lωrft) using Eq. (48). Now we want

an analytical expression for
∫

dt1

∫

dt2e
±i(µt1+ϕ

(0)
i )e±i(µt2+ϕ

(0)
j )eiω1t1e−iω2t2

×
L1
∏

l1=1

cos(l1nl1ωrft1)

L2
∏

l2=1

cos(l2ml2ωrft2). (55)

Again we truncate at large values of L1, L2 and nl1 ,
ml2 in the expansions and express the cosine functions
as the sum of two exponential functions, then analytical
formulae for the remaining integrals are simple.

V. NUMERICAL RESULTS

Finally, we show a numerical example for the whole
process from solving the dynamics of the ions to the
gate design. Consider 100 171Yb+ ions in a trap with
trapping parameters a = (−0.015, −0.015, 0.03) and
q = (0.3, −0.3, 0) (which correspond to diagonal A and
Q matrices), and an RF frequency ωrf = 2π × 50MHz.
The equilibrium trajectories are plotted in Fig. 1 using
the numerical methods of Sec. III A. As we can see, in
general the ions have large micromotion amplitudes com-
parable to their separations.
Using the methods described in Sec. III B, we solve all

the collective normal modes of the ion crystal under mi-
cromotion. Instead of presenting all the 300 modes, in
Fig. 2 we plot the response of a particular ion along a par-
ticular direction, when two normal modes, the lowest one
at β1 = 0.001340 and the highest one at β300 = 0.3032,
are selectively excited. In both cases, we see perfect
agreement between the prediction of the normal mode
expansion (red curves) and the direct numerical results
from molecular dynamics (MD) simulation (blue curves),
such that their difference (green dashed lines) stay at zero
during the simulated time periods. Note that the full MD
simulation results correspond to the periodic equilibrium
trajectories plus the normal mode expansions, hence the
good agreement in Fig. 2 indicates that both our numer-
ical methods in Sec. III A and in Sec. III B are of high
accuracy.
Next we consider the entangling gate between two ions

colored in red (labelled as 3 and 4) in Fig. 1. Simi-
lar to Ref. [47], we consider counter-propagating Raman

2
1

3

4

FIG. 1. Equilibrium trajectories of 100 ions in a trap with a =
(−0.015, −0.015, 0.03) and q = (0.3, −0.3, 0). The length

dimension is L0 = (e2/4πǫ0mω2
rf)

1/3 = 0.20µm. The two
ions colored in blue (labelled by 1) and in green (labelled by
2) are used in Fig. 2 to compare the solved normal modes with
direct molecular dynamics simulation. The two ions colored
in red (labelled by 3 and 4) are used in Fig. 3 for entangling
gates.
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(b)

(a)

FIG. 2. Comparison between the computed normal modes
and the numerical results from molecular dynamics simula-
tion. The 100-ion crystal we consider is shown in Fig. 1.
The length unit is L0 = 0.20µm and each dimensionless RF
period π corresponds to 0.02µs. (a) Evolution of the x co-
ordinate of ion 1 (colored in blue in Fig. 1) over 1000 RF
periods for a weak excitation of 0.01 in the lowest mode with
β1 = 0.001340. (b) Evolution of the y coordinate of ion 2
(colored in green in Fig. 1) over 1000 RF periods for a weak
excitation of 0.01 in the highest mode with β300 = 0.3032. In
both plots, the blue curve is from direct molecular dynam-
ics simulation using a fourth order symplectic integrator (see,
e.g., Ref. [52]), 1000 steps per RF period and double precision,
the red curve is computed from the normal mode expansions,
and the green dashed line is their difference. The blue and
the red curves almost coincide with each other and can hardly
be distinguished in these plots, which suggests that our com-
puted normal modes are accurate for a wide range of spectra
over two orders of magnitude. The equilibrium trajectories
Rπ

iσ(t) oscillating at an amplitude of the order O(1) is already
subtracted from these curves to highlight the small deviation
[Eq. (21)].
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FIG. 3. (a) Optimal gate infidelity δF for a scan of the laser
detuning µ over the whole spectrum of the normal modes of
the crystal. Note that this is a coarse scan and the resolution
is not enough to show all the structures of the curve. We
then zoom in into a region with potential high fidelity. The
calculation is performed for a truncation of L = 5 for the
equilibrium trajectories and ncut = 5 for the high-frequency
modulation of the normal modes. (b) A zoomed-in scan for
a small range of frequencies at the high-frequency end. (We
avoid using the low-frequency end, which may be sensitive
to the soft modes, even though it seems to have higher the-
oretical fidelity.) The blue solid curve is optimized for ions’
motions truncated at L = 5 and ncut = 5. The red dashed
curve is what we would have gotten using the same optimized
laser sequence if we truncated at L = 1 and ncut = 1, while
the upper green curve is that for L = 0 and ncut = 0, that is,
without considering micromotion.

laser beams with a wavelength around λ = 355 nm in
the x direction, and we assume Doppler temperature
kBT = ~Γ/2 where Γ = 2π × 20MHz is the sponta-
neous emission rate of the 171Yb+ ions. Note that in
real experiments we may need the two Raman beams
to be at an angle to selectively address individual ions
at their intersection. For convenience, we set the static

motional phase ϕ
(0)
j to zero, which can be realized by

suitable phase shift on the path of the laser beams, and

only consider the oscillating motional phase ϕ
(l)
j (l ≥ 1)

due to the micromotion. Suppose we use nseg = 15 seg-
ments for a total gate time τ = 300µs. The optimal gate
infidelity is shown in Fig. 3 as we scan the laser detuning
µ. Due to the increased computational cost under mi-
cromotion and the large range of µ to be scanned over,
first we perform a coarse scan in Fig. 3(a) and then a
finer scan in the region with potential high gate fidelity
in Fig. 3(b). It seems that higher fidelity is possible in
the low-frequency end, but here we purposely avoid this
region, which may strongly drive the low-frequency soft
modes and break down the approximations in the gate
scheme. Here we have not yet optimized over gate time
τ and segment number nseg, but as we can see, a high
gate fidelity of 99.9% can already be achieved. In Fig. 4
we further show the optimized Rabi frequency Ω(t) at the
detuning µ = 2π×7.3124MHz [labelled by a black square
in Fig. 3(b)]. Note that we have |Ω(t)| < µ so that strong
excitation of the phonon modes can be avoided [47].

In Fig. 3 we assume that the gate starts right at the
beginning of an RF period [t = 0 in Eq. (14)]. If the laser
sequence is not locked to the RF signal, or if the time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Segments

0

0.5

1

1.5

2

2.5

FIG. 4. The optimized laser pulse sequence Ω(t) for τ =
300µs, nseg = 15, µ = 2π × 7.3124MHz.
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FIG. 5. Gate infidelity δF versus the starting point t0 of the
gate during an RF period, using the optimized gate parame-
ters in Fig. 4.

resolution is not high enough, the starting point of the
gate can locate anywhere in an RF period, which can be a
source of error. In Fig. 5 we plot the gate infidelity versus
the initial time t0 using the optimized gate parameters in
Fig. 4. As expected, the gate infidelity varies with t0 and
returns to the original value after one RF period. The
variation is not significant and on average we still have a
fidelity of 99.88%.

In Fig. 3(b) we also show a comparison for different
truncations of the micromotion. The blue solid curve is
computed for a high-order expansion (truncated at L = 5
for the equilibrium trajectories and ncut = 5 for the high-
frequency modulation of the normal modes), while the
red dashed curve is to apply the same optimized gate se-
quence on a hypothetical ion crystal truncated at L = 1
and ncut = 1. The high-order calculation is about 50
times slower than the lower-order one, with small but
noticeable difference in the gate fidelity. We expect the
difference to increase for larger crystals and larger mi-
cromotion, for which the high-order computation will be
necessary. On the other hand, if we apply the same gate
sequence on a hypothetical ion crystal with L = 0 and
ncut = 0, that is, without considering micromotion, then
the gate infidelity can differ by two orders of magnitude,
as shown by the upper green curve. This clearly reveals
the nonnegligible effects of micromotion on the gate per-
formance.
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FIG. 6. Optimal gate infidelity δF for a scan of the laser
detuning µ in the same range as Fig. 3(b) for nseg = 15 (blue
solid curve), nseg = 30 (red dashed curve) and nseg = 100
(green dots). For nseg = 100 we only scan around the two
regions with the highest fidelity to save the computational
resource.

As we can see from Fig. 1, in this example, the mi-
cromotion along the z direction is much smaller than
those in other directions, so we could have gotten much
faster convergence had we applied the laser beams in the
z direction. This simplification can be used for practical
gate design, while here we just want large micromotion
to demonstrate our algorithm. Note that the time cost of
the algorithm increases linearly with the number of ions
(number of normal modes) and linearly with the number
of segments (because the bottleneck of the algorithm is
the p = q double integral of the two-qubit rotation angle).
Also, the scan of the gate parameters can be performed in
parallel, and we can first perform a low-order calculation
to help locate the parameter regions with potential high
gate fidelity. Therefore even though the design of the
gate with micromotion is much slower than that without
micromotion, we can still expect it to work for hundreds
of ions and hundreds of pulse segments.

VI. DISCUSSION AND CONCLUSION

In this work we mainly focus on the effects of micromo-
tion on the gate design and we obtain a theoretical gate
fidelity of about 99.9% in Fig. 3. This fidelity is mainly
limited by the use of small segment number nseg = 15 to
suppress the residual entanglement to all the 3N = 300
phonon modes, which also exists in earlier works without
considering the micromotion [47]. In Fig. 6 we further
increase the segment number and observe that the gate
infidelity can be reduced to 2 × 10−5 using nseg = 100
segments. To save some computational resources, for
nseg = 100 we scan the detuning µ in a more restricted
region which is expected to give high gate fidelity from
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FIG. 7. (a) Pulse sequence of nseg = 100 segments at
τ = 300µs and µ = 2π × 7.3374MHz computed using the
method described in Appendix B. (b) Gate infidelity under
the detuning drift δµ of ±2π × 1 kHz. (c) Gate infidelity un-
der the gate time drift δτ of ±0.1µs. Small fluctuation may
be caused by the high-frequency micromotion. (d) Gate infi-
delity under the fluctuation of Ω(t) on each segment. Here we
assume that each segment is scaled independently by a factor
following a Gaussian distribution N(1, σ2) with σ up to 1%.
Each data point is averaged over 1000 random samples and
the positive and the negative parts are symmetric.

a coarse scan using low-order truncations. With enough
control degrees of freedom, the intrinsic gate design error
can be made arbitrarily small compared with the other
experimental errors.

The robustness against parameter drifts and noise can
be studied in the same way as in previous works [47].
Here we would like to mention that the numerical algo-
rithms we describe in this work are not restricted to the
specific method for gate design in Sec. II, and can be
easily generalized to take certain robustness conditions
against parameter drifts into consideration. For exam-
ple, in Ref. [53] it has been shown that the robustness of
the residual spin-phonon entanglement [Eq. (43)] against
drift in trap frequency ωk can be enforced by requiring
the pulse sequence to be symmetric and the time integral
of αk

j (t) over the whole gate sequence to vanish. We can
approximately incorporate this criteria into the gate de-
sign without increasing the complexity of the algorithm
(see details in Appendix B). Similarly, we can enforce the
robustness of the two-qubit rotation angle [Eq. (44)]. By
replacing the optimization conditions with these robust-
ness requirements, we get the pulse sequence presented
in Fig. 7(a) using nseg = 100 segments. It can achieve a
fidelity above 99.9% for 2π× 0.7 kHz drift in laser detun-
ing, 0.1µs shift in gate time and 1% random fluctuation
of the laser amplitude on each segment. We note that
these results are comparable to those in Ref. [47] with-
out considering micromotion effects.
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To sum up, we have presented a scheme to design en-
tangling gates between two ions in a general ion crys-
tal. The effect of micromotion can be mathematically
described as a time-dependent phase of the driving laser,
a high-frequency modulation of the laser intensity, and
time-dependent mode vectors of ions’ collective motional
modes. To generalize the gate scheme from a 1D ion
chain, first we solve the equilibrium trajectories of the
ions for given trapping parameters and then determine
the collective normal modes up to arbitrary orders of
micromotion. The time integral of the highly oscilla-
tory functions appearing in the gate design is efficiently
treated by a series expansion, whose error can be system-
atically suppressed by including higher and higher order
terms. Numerical examples are also provided to show the
functioning of our algorithm. Our work lays the founda-
tion for direct quantum computing on a large 2D or 3D
ion crystal, and can also help to improve the high-fidelity
gate design in 1D ion chain when the transverse micro-
motion is important.
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Appendix A: Algorithms

In this appendix we briefly summarize the algorithms
used in this work.

1. Periodic equilibrium solutions

To solve the periodic equilibrium solutions satisfying
Eq. (14), we take two steps. First we find an approximate
solution by introducing a weak damping and then we
iteratively improve the accuracy.

Algorithm 1 Approximate periodic equilibrium solu-
tions
1: Choose accuracy target ǫ and initial damping rate γ.

Start from random initial positions Riσ.
2: Simulate time-evolution under Eq. (14) plus a damping

force −γṘiσ for N1 RF periods. Get final positions R′
iσ.

3: If ‖Riσ −R′
iσ‖ ≥ ǫ, set Riσ ← R′

iσ and repeat step 2.
4: Simulate time-evolution under Eq. (14) without damping

force for N2 RF periods. Get final positions R′′
iσ.

5: If ‖Riσ −R′′
iσ‖ ≥ ǫ, reduce γ and repeat steps 2-4.

Algorithm 2 Iteratively approaching periodic equilib-
rium solutions
Input: Approximate periodic solution Riσ(t)
1: Choose truncation order L, accuracy target ǫ and param-

eter α ≥ 1.
2: Compute Fourier series D2n,iσ up to orders ±L using

Eq. (16) and G2n,ij up to orders ±2L using Eq. (18).
3: Solve B2n,iσ up to orders ±L using Eq. (19).
4: Solve new periodic solution R′

iσ(t) using Eq. (15).
5: If ‖Riσ(t) −R′

iσ(t)‖ ≥ ǫ, set Riσ(t) ← R′
iσ(t) and repeat

steps 2-4.

2. Normal modes

To solve all the normal modes satisfying Eq. (23) or
more generally Eq. (29), we expand the solution into the
form of Eq. (24).

Algorithm 3 Compute normal modes

1: Choose the accuracy target ǫ.
2: Compute approximate mode frequencies βk and mode

vectors C
(k)
0 using Eq. (36). Compute C

(k)
±2 using Eq. (37)

and C
(k)
±4 using Eq. (38). Use them to construct the ap-

proximate vectorial solution C(k) in Eq. (31).
3: For each mode k, use βk to compute the matrix in

Eq. (31). Compute its eigenvector C(k)′ with the corre-

sponding eigenvalue ∆ closest to zero, using C(k) as the
initial solution.

4: Compute β′
k =

√

β2
k +∆.

5: If |βk − β′
k| ≥ ǫ, set βk ← β′

k and C(k) ← C(k)′. Repeat
steps 3-4.

6: Repeat steps 3-5 for all the modes.

In the case of degeneracy or near degeneracy of n
modes, we can resolve them by solving n eigenvalues
closest to zero in step 3. Then we order them as
∆1 ≤ ∆2 ≤ · · · ≤ ∆n with corresponding eigenvectors

C(k1), C(k2), · · · , C(kn). For the i-th mode, we need to

keep using ∆i and C(ki) in the iterations from steps 3-5.

Finally, we can verify that the solved normal modes
satisfy the orthonormal condition of Eq. (42).

3. Gate design

To design the entangling gate, we need to evaluate
integrals in Eq. (43) and Eq. (44) with χj(t) given by
Eq. (45), ϕj(t) given by Eq. (46), bkj replaced by Eq. (47),
and Ωj(t) being constant on each segment. Actually, for
the specific method of amplitude modulation with piece-
wise constant Ωj(t), we only need to integrate Eq. (43)
and Eq. (44) for unit Ωj(t) on each segment to obtain

the row vector Ak
j in Eq. (10) and the matrix γ ′(p, q)

in Eq. (11). Then the remaining part of the gate design
follows that in Ref. [47] as we review in Sec. II.
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Now for each element in the row vector Ak
j , we have

Ak
j (n) = −iηk

∑

σ

mσ × Eq. (50), (A1)

where mσ is the σ = x, y, z component of the unit
vector m of the direction of the Raman laser beams
∆k and the time integral in Eq. (50) is on the interval
[(n − 1)τ/nseg, nτ/nseg]. Our evaluation of Eq. (50) is
based on the following two functions through depth-first
search.

1: function single integral(t1, t2, µ, ω, ωrf , L, {ϕ(l)},
{nk(l)}, k, c0) ⊲ Evaluation of Eq. (51)

2: Preset precision ǫ and cutoff nmax

3: if |c0| < ǫ then return 0
4: end if

5: if k > L then return [c0×prod cos(t1, t2, µ, ω, ωrf ,
L, {nk(l)}, 1)−c∗0×prod cos(t1, t2, µ, ω, ωrf , L, {nk(l)},
1)]/2i

6: else

7: nk(k)← 0
8: v ←single integral(t1, t2, µ, ω, ωrf , L, {ϕ(l)},
{nk(l)}, k + 1, c0 × J0(ϕ(k)))

9: for n← 1, nmax do

10: c← 2inJn(ϕ(k))
11: if n > |ϕ(k)| and |c0 × c| < ǫ then break

12: end if

13: nk(k)← n
14: v ← v+single integral(t1, t2, µ, ω, ωrf , L,
{ϕ(l)}, {nk(l)}, k + 1, c0 × c)

15: end for

16: return v
17: end if

18: end function

1: function prod cos(t1, t2, µ, ω, ωrf , L, {nk(l)}, k) ⊲
Evaluation of Eq. (52)

2: if k > L then return [ei(µ+ω)t2−ei(µ+ω)t1 ]/[i(µ+ω)]
3: end if

4: if nk(k) = 0 then return prod cos(t1, t2, µ, ω, ωrf ,
L, {nk(l)}, k + 1)

5: else

6: return 1
2
prod cos(t1, t2, µ, ω−k×nk(k)×ωrf , ωrf ,

L, {nk(l)}, k+1)+ 1
2
prod cos(t1, t2, µ, ω+k×nk(k)×ωrf ,

ωrf , L, {nk(l)}, k + 1)
7: end if

8: end function

The evaluation of Eq. (50) is now given by

Algorithm 4 Evaluation of Eq. (50) for ion j, mode k
and spatial direction σ on the time interval [t1, t2]

1: Preset precision ǫ and cutoff nmax

2: v ← 0
3: {nk(l)} ← 0
4: for n← 0,±1, · · · ,±nmax do

5: c0 ←
√

∑

k |C
(k)
2n,jσ|

2

6: if |c0| < ǫ then break

7: end if

8: v ← v+C
(k)
2n,jσ/c0×single integral(t1, t2, µ, ωk +nωrf ,

ωrf , L, {ϕ(l)}, {nk(l)}, 1, c0)
9: end for

For the (p, q) element of the matrix γ′, we have

γ′(p, q) =
∑

kρσ

η2kmρmσ × Im [Eq. (53) + ExchijEq. (53)] ,

(A2)
where Exchij means exchanging the indices i and j in
the following expression. For p > q, the double integral
in Eq. (53) becomes separable and reduces to

Eq. (53)ip,jq = Eq. (50)ip × Eq. (50)
∗
jq, (A3)

where the subscript ip means the terms related to the ion
i is integrated over the segment p and similarly for the
subscript jq. The superscript “∗” represents the standard
complex conjugate.

To evaluate Eq. (53) for p = q, again we use depth-first
search by defining the following functions.
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1: function double integral(t1, t2, µ, ω1, ω2, ωrf , L,
{ϕ1(l)}, {ϕ2(l)}, {nk1(l)}, {nk2(l)}, k, c1, c2)

2: Preset precision ǫ and cutoff nmax

3: if |c1c2| < ǫ then return 0
4: end if

5: if k > L then return

[c1c2×prod cos plus(t1, t2, µ, ω1, ω2, ωrf , L, {nk1(l)},
{nk2(l)}, 1)−c1c

∗
2×prod cos minus(t1, t2, µ, ω1, ω2, ωrf ,

L, {nk1(l)}, {nk2(l)}, 1)−c
∗
1c2×prod cos minus(t1, t2,

−µ, ω1, ω2, ωrf , L, {nk1(l)}, {nk2(l)}, 1)
+c∗1c

∗
2×prod cos plus(t1, t2, −µ, ω1, ω2, ωrf , L, {nk1(l)},

{nk2(l)}, 1)]/(−4)

6: else

7: v ← 0
8: for n1 ← 0, nmax do

9: if n1 = 0 then

10: c′1 ← J0(ϕ1(k))
11: else

12: c′1 ← 2in1Jn1(ϕ1(k))
13: end if

14: if n1 > |ϕ1(k)| and |c1c2c
′
1| < ǫ then break

15: end if

16: nk1(k)← n1

17: for n2 ← 0, nmax do

18: if n2 = 0 then

19: c′2 ← J0(ϕ2(k))
20: else

21: c′2 ← 2in2Jn2 (ϕ2(k))
22: end if

23: if n2 > |ϕ2(k)| and |c1c2c
′
1c

′
2| < ǫ then

break

24: end if

25: nk2(k)← n2

26: v ← v+double integral(t1, t2, µ, ω1, ω2, ωrf ,
L, {ϕ1(l)}, {ϕ2(l)}, {nk1(l)}, {nk2(l)}, k + 1, c1c

′
1, c2c

′
2)

27: end for

28: end for

29: return v
30: end if

31: end function

1: function prod cos plus(t1, t2, µ, ω1, ω2, ωrf , L,
{nk1(l)}, {nk2(l)}, k) ⊲ Evaluation of Eq. (55)

2: if k > L then return integral plus(t1, t2, µ, ω1, ω2)
3: end if

4: if nk1(k) = 0 and nk2(k) = 0 then

5: return prod cos plus(t1, t2, µ, ω1, ω2, ωrf , L,
{nk1(l)}, {nk2(l)}, k + 1)

6: end if

7: if nk1(k) = 0 then return
1
2
prod cos plus(t1, t2, µ, ω1, ω2− k×nk2(k)×ωrf , ωrf , L,

{nk1(l)}, {nk2(l)}, k + 1)+ 1
2
prod cos plus(t1, t2, µ, ω1,

ω2 + k × nk2(k)× ωrf , ωrf , L, {nk1(l)}, {nk2(l)}, k + 1)

8: end if

9: if nk2(k) = 0 then return
1
2
prod cos plus(t1, t2, µ, ω1 − k × nk1(k)× ωrf , ω2, ωrf ,

L, {nk1(l)}, {nk2(l)}, k + 1)+ 1
2
prod cos plus(t1, t2, µ,

ω1 + k × nk1(k)× ωrf , ω2, ωrf , L, {nk1(l)}, {nk2(l)},
k + 1)

10: end if

11: return
1
4
prod cos plus(t1, t2, µ, ω1 − k × nk1(k)× ωrf ,

ω2 − k × nk2(k)× ωrf , ωrf , L, {nk1(l)}, {nk2(l)}, k + 1)
+ 1

4
prod cos plus(t1, t2, µ, ω1 + k × nk1(k)× ωrf ,

ω2 − k × nk2(k)× ωrf , ωrf , L, {nk1(l)}, {nk2(l)}, k + 1)
+ 1

4
prod cos plus(t1, t2, µ, ω1 − k × nk1(k)× ωrf ,

ω2 + k × nk2(k)× ωrf , ωrf , L, {nk1(l)}, {nk2(l)}, k + 1)
+ 1

4
prod cos plus(t1, t2, µ, ω1 + k × nk1(k)× ωrf ,

ω2 + k × nk2(k)× ωrf , ωrf , L, {nk1(l)}, {nk2(l)}, k + 1)

12: end function

In the above functions, “integral plus” is an analytical
expression for

∫ t2

t1

dt

∫ t

t1

dt′eiµteiµt
′

eiω1te−iω2t
′

. (A4)

The function “prod cos minus” is defined by making suit-
able substitution for “prod cos plus” and similarly we de-
fine “integral minus” as an analytical expression for

∫ t2

t1

dt

∫ t

t1

dt′eiµte−iµt′eiω1te−iω2t
′

. (A5)

These analytical expressions can be computed easily and
here we do not present the detailed expressions for sim-
plicity.

Finally we can evaluate Eq. (53) for p = q as
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Algorithm 5 Evaluation of Eq. (53) for ions i and j,
mode k and spatial directions ρ and σ on the time interval
[t1, t2]

1: Preset precision ǫ and cutoff nmax

2: v ← 0
3: {nk1(l)} ← 0, {nk2(l)} ← 0
4: for n1 ← 0,±1, · · · ,±nmax do

5: for n2 ← 0,±1, · · · ,±nmax do

6: c1 ←
√

∑

k |C
(k)
2n1,iρ

|2

7: c2 ←
√

∑

k |C
(k)
2n2,jσ

|2

8: if |c1c2| < ǫ then break

9: end if

10: v ← v + C
(k)
2n1,iρ

C
(k)
2n2,jσ

/(c1c2)×double integral(t1,
t2, µ, ωk + n1ωrf , ωk + n2ωrf , ωrf , L, {ϕ1(l)}, {ϕ2(l)},
{nk1(l)}, {nk2(l)}, 1, c1, c2)

11: end for

12: end for

Appendix B: Robustness against trap frequency drift

It has been shown in Ref. [53] that robustness of
the residual spin-phonon entanglement αk

j (τ) against the
trap frequency drift ωk can be achieved by requiring
∫ τ

0 αk
j (t)dt = 0. One can easily check that this con-

dition still holds with the existence of micromotion for
Eq. (43). Similarly one can check that the robustness
of the two-qubit phase Θij(τ) is ensured by taking the
real part rather than the imaginary part in Eq. (44)
(this comes from the partial derivative with respect to
ωk which gives us a factor of i) and then requiring the
time integral to vanish. Evaluating these integrals are
again numerically intense. Fortunately, for the numerical
algorithms described in the main text and summarized
in Appendix A, we already get the desired integral on
each segment. From these results, not only can we ob-
tain αk

j (τ) and Θij(τ) but also their values at the time

points nτ/nseg (n = 0, 1, · · · , nseg) (for Θij(τ) we need
to keep the complex values before taking the imaginary
part), from which we can approximate the their time in-
tegral.
Specifically, after computing the row vector

Ak
j ≡ [Ak

j (1), A
k
j (2), · · · , Ak

j (nseg)] (B1)

as described in Appendix A, we can construct a new row
vector

Ã
k

j ≡ [nsegA
k
j (1), (nseg − 1)Ak

j (2), · · · , Ak
j (nseg)], (B2)

such that Ã
k

jΩ is proportional to the approximate time

integral of αk
j (t). Similarly, after evaluating all the el-

ements γ′(p, q) of the γ′ matrix (we denote the ma-
trix before taking the imaginary part by Γ′ such that
Im[Γ′] = γ ′), we can define a new matrix γ̃′ whose (p, q)
element is (nseg − p + 1)Re[Γ′(p, q)] (1 ≤ q ≤ p ≤ nseg).

Then ΩT γ̃′Ω is proportional to the desired time inte-
gral for the robustness of Θij(τ). For the small segment
number considered in this work, we are not able to set
all these expressions to zeros. Instead, we replace the
optimization condition by minimizing

ΩTM̃
′
Ω+ (ΩT γ̃ ′Ω)2 (B3)

under the constraint ΩTγ′Ω = ±π/4, where M̃
′ ≡

∑

jk Ã
k†

j Ã
k

j (2n̄k + 1). We further require the pulse se-

quence to be symmetric [53], namely Ω(n) = Ω(nseg −
n + 1). This gives us the pulse sequence presented in
Fig. 7 in the main text. Note that now the cost function
is nonlinear and we can no longer solve it as an eigen-
value problem. However, this cost function is still simple
enough with the Jacobian and the Hessian matrix com-
putable, thus the time cost to find an optimal gate design
is still negligible compared with the cost for numerical in-
tegration.
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T. Rosenband, et al., Nature 422, 412 (2003).

[23] T. Monz, P. Schindler, J. T. Barreiro,
M. Chwalla, D. Nigg, W. A. Coish, M. Har-
lander, W. Hänsel, M. Hennrich, and R. Blatt,
Phys. Rev. Lett. 106, 130506 (2011).

[24] T. Choi, S. Debnath, T. A. Manning, C. Fig-
gatt, Z.-X. Gong, L.-M. Duan, and C. Monroe,
Phys. Rev. Lett. 112, 190502 (2014).

[25] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol,
and D. M. Lucas, Phys. Rev. Lett. 117, 060504 (2016).

[26] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl,
P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, and
R. Blatt, Science 351, 1068 (2016).

[27] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam,
N. Grzesiak, J.-S. Chen, N. Pisenti, M. Chmielewski,
C. Collins, et al., Nature Communications 10, 1 (2019).

[28] D. J. Wineland, C. Monroe, W. M. Itano,
D. Leibfried, B. E. King, and D. M. Meekhof,
Journal of Research of the National Institute of Standards and Technology 103, 259 (1998).

[29] R. J. Hughes, D. F. V. James, E. H. Knill, R. Laflamme,
and A. G. Petschek, Phys. Rev. Lett. 77, 3240 (1996).

[30] R. Clark, Proceedings of the 1st International Conference

on Experimental Implementation of Quantum Computa-

tion: Sydney, Australia, 16-19 January 2001 (Rinton
Press, 2001).

[31] D. Kielpinski, C. Monroe, and D. J. Wineland,
Nature 417, 709 (2002).

[32] L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Mon-
roe, Quantum Info. Comput. 4, 165– (2004).

[33] L.-M. Duan and C. Monroe,
Rev. Mod. Phys. 82, 1209 (2010).

[34] C. Monroe, R. Raussendorf, A. Ruthven, K. R.
Brown, P. Maunz, L.-M. Duan, and J. Kim,

Phys. Rev. A 89, 022317 (2014).
[35] A. Mortensen, E. Nielsen, T. Matthey, and M. Drewsen,

Phys. Rev. Lett. 96, 103001 (2006).
[36] B. Szymanski, R. Dubessy, B. Dubost,

S. Guibal, J.-P. Likforman, and L. Guidoni,
Applied Physics Letters 100, 171110 (2012).

[37] C. Shen and L.-M. Duan,
Phys. Rev. A 90, 022332 (2014).

[38] S.-T. Wang, C. Shen, and L.-M. Duan,
Scientific reports 5, 8555 (2015).

[39] A. Bermudez, P. Schindler, T. Monz, R. Blatt, and
M. Müller, New Journal of Physics 19, 113038 (2017).

[40] P. Richerme, Phys. Rev. A 94, 032320 (2016).
[41] Q. A. Turchette, C. S. Wood, B. E. King, C. J. My-

att, D. Leibfried, W. M. Itano, C. Monroe, and D. J.
Wineland, Phys. Rev. Lett. 81, 3631 (1998).

[42] H. Landa, M. Drewsen, B. Reznik, and A. Retzker,
New Journal of Physics 14, 093023 (2012).

[43] H. Landa, M. Drewsen, B. Reznik, and A. Retzker,
Journal of Physics A: Mathematical and Theoretical 45, 455305 (2012).

[44] H. Kaufmann, S. Ulm, G. Jacob, U. Poschinger,
H. Landa, A. Retzker, M. B. Plenio, and F. Schmidt-
Kaler, Phys. Rev. Lett. 109, 263003 (2012).

[45] K. Arnold, E. Hajiyev, E. Paez, C. H. Lee, M. D. Barrett,
and J. Bollinger, Phys. Rev. A 92, 032108 (2015).

[46] H. Landa, A. Retzker, T. Schaetz, and B. Reznik,
Phys. Rev. Lett. 113, 053001 (2014).

[47] Y. Wu, S.-T. Wang, and L.-M. Duan,
Phys. Rev. A 97, 062325 (2018).

[48] P. J. Lee, K.-A. Brickman, L. Deslauriers,
P. C. Haljan, L.-M. Duan, and C. Monroe,
Journal of Optics B: Quantum and Semiclassical Optics 7, S371 (2005).

[49] K. Okada, T. Takayanagi, M. Wada, S. Ohtani, and
H. A. Schuessler, Phys. Rev. A 80, 043405 (2009).

[50] M. Condon, A. Deaño, and A. Iserles,
ESAIM: M2AN 43, 785 (2009).

[51] G. B. Arfken, H.-J. Weber, and F. E. Harris, Mathemat-

ical methods for physicists: a comprehensive guide, 7th
ed. (Elsevier, 2013).

[52] J. Thijssen, Computational Physics , 2nd ed. (Cambridge
University Press, 2007).

[53] P. H. Leung, K. A. Landsman, C. Figgatt,
N. M. Linke, C. Monroe, and K. R. Brown,
Phys. Rev. Lett. 120, 020501 (2018).

http://dx.doi.org/10.1103/PhysRevLett.97.050505
http://dx.doi.org/10.1209/epl/i2005-10424-4
http://dx.doi.org/10.1103/PhysRevLett.114.120502
http://dx.doi.org/10.1103/PhysRevA.98.032318
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/ 10.1103/PhysRevLett.112.190502
http://dx.doi.org/ 10.1103/PhysRevLett.117.060504
http://dx.doi.org/10.1126/science.aad9480
http://dx.doi.org/10.6028/jres.103.019
http://dx.doi.org/10.1103/PhysRevLett.77.3240
https://doi.org/10.1038/nature00784
http://dx.doi.org/10.1103/RevModPhys.82.1209
http://dx.doi.org/10.1103/PhysRevA.89.022317
http://dx.doi.org/10.1103/PhysRevLett.96.103001
http://dx.doi.org/ 10.1063/1.4705153
http://dx.doi.org/10.1103/PhysRevA.90.022332
https://doi.org/10.1038/srep08555
http://dx.doi.org/ 10.1088/1367-2630/aa86eb
http://dx.doi.org/10.1103/PhysRevA.94.032320
http://dx.doi.org/ 10.1103/PhysRevLett.81.3631
http://stacks.iop.org/1367-2630/14/i=9/a=093023
http://stacks.iop.org/1751-8121/45/i=45/a=455305
http://dx.doi.org/ 10.1103/PhysRevLett.109.263003
http://dx.doi.org/10.1103/PhysRevA.92.032108
http://dx.doi.org/10.1103/PhysRevLett.113.053001
http://dx.doi.org/10.1103/PhysRevA.97.062325
http://stacks.iop.org/1464-4266/7/i=10/a=025
http://dx.doi.org/ 10.1103/PhysRevA.80.043405
http://dx.doi.org/10.1051/m2an/2009024
http://dx.doi.org/10.1017/CBO9781139171397
http://dx.doi.org/ 10.1103/PhysRevLett.120.020501

