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Classifying different phases and the transitions between them is a major task in condensed matter physics.
Machine learning, which has achieved dramatic success recently in a broad range of artificial intelligence appli-
cations, may bring an unprecedented perspective for this challenging task. In this paper, we study the robustness
of this intriguing machine-learning approach to adversarial perturbations, with a focus on supervised learning
scenarios. We find that typical phase classifiers based on deep neural networks are extremely vulnerable to
adversarial examples: adding a tiny amount of carefully-crafted noises, which are imperceptible to human eyes
and ineffective to traditional methods, into the original legitimate data obtained from numerical simulations or
real experiments will cause the classifiers to make incorrect predictions at a notably high confidence level. Our
results reveal a novel vulnerability aspect in applying machine learning techniques to condensed matter physics,
which provides a valuable guidance for both theoretical and experimental future studies along this direction.

Machine learning is currently revolutionizing many techno-
logical areas of modern society, ranging from image/speech
recognition to content filtering on social networks and auto-
mated self-driving cars [1, 2]. Recently, its tools and tech-
niques have been adopted to tackle intricate quantum many-
body problems [3–14], where the exponential scaling of the
Hilbert space dimension poses a notorious challenge. In par-
ticular, a number of supervised and unsupervised learning
methods have been exploited to classify phases of matter and
identify phase transitions [6, 8, 15–24]. Following these ap-
proaches, notable proof-of-principle experiments with differ-
ent platforms [25–28], including electron spins in diamond
nitrogen-vacancy centers [25], doped CuO2 [28], and cold
atoms in optical lattices [26, 27], have also been carried out
subsequently, showing great potentials for unparalleled ad-
vantages of machine learning approaches compared to tradi-
tional means.

An important question of both theoretical and experimen-
tal relevance concerns the reliability of such machine-learning
approaches to condensed matter physics: are these approaches
robust to adversarial perturbations, which are deliberately
crafted in a way intended to fool the classifiers? In the realm
of adversarial machine learning [29–32], it has been shown
that machine learning models can be surprisingly vulnerable
to adversarial perturbations if the dimension of the data is
high enough [33]—one can often synthesize small, impercep-
tible perturbations of the input data to cause the model make
highly-confident but erroneous predictions. A prominent ad-
versarial example that clearly manifests such vulnerability of
classifiers based on deep neural networks was first observed
by Szegedy et al. [34], where adding a small adversarial per-
turbation, although unnoticeable to human eyes, will cause the
classifier to miscategorize a panda as a gibbon with confidence
larger than 99%. In this paper, we investigate the vulnerability
of machine learning approaches in the context of classifying
different phases of matter, with a focus on supervised learning
based on deep neural networks (see Fig. 1 for an illustration).

We find that typical phase classifiers based on deep neu-
ral networks are likewise extremely vulnerable to adversar-
ial perturbations. This is demonstrated through two concrete

⋮ ⋮ ⋮

⋮

+

=

"

query

qu
ery

ans
we
r

answer

Input images Artificial neural networks Predictions
clean

adversarial

FIG. 1. A schematic illustration for the vulnerability of machine
learning phases of matter. For a clean image, such as the time-of-
flight image obtained in a recent cold-atom experiment [26], a trained
neural network (i.e., the classifier) can successfully predict its corre-
sponding Chern number with nearly unit accuracy. However, if we
add a tiny adversarial perturbation (which is imperceptible to human
eyes) to the original image, the same classifier will misclassify the
resulted image into an incorrect category with nearly unit confidence
probability as well.

examples, which cover different phases of matter (including
both symmetry-breaking and symmetry-protected topological
phases) and different strategies (such as, fast gradient sign
method [35], momentum iterative method [36], and projected
gradient descent [35], etc.) to obtain the adversarial pertur-
bations. In addition, through adversarial training, we demon-
strate that the robustness of such classifiers to specific types
of adversarial perturbations can be significantly improved.
Our results shed new light on the fledgling field of machine-
learning applications in condensed matter physics, which may
provides a valuable guidance for both theoretical and experi-
mental future studies as the field matures.

To begin with, we first introduce the essential idea of
adversarial machine learning, with a focus on the super-
vised learning scenarios based on deep artificial neural net-
works. In supervised learning, the training data is labeled:
Dn = {(x(1), y(1)), · · · , (x(n), y(n))}, where x(i) denotes a
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data sample to be classified and y(i) is its corresponding la-
bel. The fundamental task of supervised learning is to learn
a model y = h(x; θ) (a classifier) that provide an accu-
rate mapping from the input x(i) to the output y(i), by op-
timizing over some set of model parameters θ: minθ Ln(θ),
where Ln(θ) = 1

n

∑n
i=1 L(h(x(i); θ), y(i)) is the averaged

loss function over the training data set. This minimization
problem is often solved by stochastic gradient descent on the
model parameters [37]. In contrast, to obtain adversarial ex-
amples, we consider our model parameters θ as fixed and in-
stead optimize over the input space. More specifically, we
search for a perturbation δ that can be added to the input sam-
ple x(i) to maximize the loss function:

max
δ∈∆

L(h(x(i) + δ; θ), y(i)), (1)

where we constrain δ to be from a class of appropriate small
perturbations ∆, so as to ensure that the adversarial perturba-
tion is not completely changing the input data. To solve the
maximization problem in Eq. (S1), a number of methods have
been proposed. Different methods have their pros and cons,
and the choice of which one to use is problem-specific.

In this paper, we employ some of these methods, such as
differential evolution algorithm (DEA) [38], fast gradient sign
method (FGSM) [35], momentum iterative method (MIM)
[36], and projected gradient descent (PGD) [35], etc., to ob-
tain adversarial examples in learning different phases of mat-
ter. To show more precisely how this works, we give two con-
crete examples in the following. The first one concerns learn-
ing the conventional paramagnetic/ferromagnetic phases with
a two-dimensional (2D) classical Ising model. The second ex-
ample involves learning topological phases with experimental
raw data generated by a solid-state quantum simulator. We
use different deep neural networks to build up classifiers for
different phases and show explicitly that these classifiers are
highly vulnerable to adversarial perturbations.

The ferromagnetic Ising model. —The first example we
consider involves the following ferromagnetic Ising model de-
fined on a 2D square lattice:

HIsing = −J
∑
〈ij〉

σzi σ
z
j ,

where the Ising variables σzi = ±1 and the coupling strength
J ≡ 1 is set to be the energy unit. This model features
a well-understood phase transition at the critical tempera-
ture Tc = 2/ ln(1 +

√
2) ≈ 2.366 [39], between a high-

temperature paramagnetic phase and a low-temperature fer-
romagnetic phase. The discrete Z2 spin inversion symmetry
is broken at temperatures below Tc and is recovered in the
paramagnetic phase above Tc.

In the context of machine learning phases of matter, dif-
ferent pioneering approaches, including these based on super-
vised learning [16], unsupervised learning [8], or a confusion
scheme combining both supervised and unsupervised learn-
ing [17], have been introduced to classify the ferromagnetic/-
paramagnetic phases hosted by the above 2D Ising model. In
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FIG. 2. (a) The average accuracy and loss versus the number of
epochs. (b) We use the differential evolution algorithm to obtain the
adversarial examples. This plot shows the classification probabilities
as a function of the iteration number. After around two iterations, the
network will begin to classify the samples incorrectly. (c) A legiti-
mate sample of the spin configuration in the ferromagnetic phase. (d)
An adversarial example obtained by the differential evolution algo-
rithm, which only differs with the original legitimate one by a single
pixel.

particular, Carrasquilla and Melko first explored a supervised
learning scheme based on a fully connected feed-forward neu-
ral network [16]. They used equilibrium spin configurations
sampled from Monte Carlo simulations to train the network
and demonstrated that after training it can correctly classify
new samples with notably high accuracy. Moreover, through
scanning the temperature the network can also locate the the
transition temperature Tc and extrapolate the critical expo-
nents that are crucial in the study of phase transitions.

An important question left unexplored is: how robust are
these introduced machine learning approaches to adversarial
perturbations? Here, we focus on the supervised learning ap-
proach and show that it is highly vulnerable to adversarial per-
turbations. We first use a fully-connected feed forward neural
network, implemented with TensorFlow [40], to serve as the
classifier and perform supervised learning to train it with le-
gitimate clean data generated by Monte Carlo simulations (see
the Supplemental Material [41] for details). Fig. 2(a) shows
both the accuracy and the loss as a function of epochs. After
training, the network can successfully classify data from a test
set with a high accuracy larger than 97% [41].

To obtain adversarial perturbations, we first consider a dis-
crete attack scenario in the black-box setting, where we as-
sume no prior information about the classifier’s internal struc-
tures and modify the input data in a discrete fashion by flip-
ping a few spins. We apply the differential evolution algo-
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rithm (which is a population based optimization algorithm for
solving complex multi-modal problems) [38] to the Monte
Carlo sampled spin configurations and obtain the correspond-
ing adversarial perturbations [41]. As an illustration, in Fig.
2(b) we randomly choose a sample in the ferromagnetic phase
and apply the differential evolution algorithm to the sample
iteratively. Fig. 2(b) shows the confidence probabilities of the
classifications of slightly modified samples into ferromagnetic
and paramagnetic phases, respectively. From this figure, it is
clear that at the beginning, the classifier can correctly classify
the sample as belonging to the ferromagnetic phase, but the
corresponding confidence probability decreases rapidly as the
iteration number increases. In contrast, the confidence prob-
ability for the sample to be classified into the paramagnetic
phase increases rapidly. After eight iterations, the sample is
incorrectly classified as belonging to the ferromagnetic phase
with a confidence larger than 88%. Strikingly, as shown in
Fig. 2(c-d), the final obtained adversarial sample differs from
the original legitimate sample only by a single pixel—flipping
a single spin will cause the classifier to misclassify the input
sample at a decisively high confidence level.

If we regard HIsing as a quantum Hamiltonian and allow the
input data to be continuously modified, one can also consider
a continuous attack scenario and obtain various adversarial ex-
amples by the FGSM, PGD and MIM methods, as discussed
in details in the Supplementary Materials [41]. Similarly, the
obtained adversarial examples only differs from the legitimate
ones by a tiny amount of crafted perturbations. It is worth-
while to mention that, unlike FGSM, PGD, and MIM, the
DEA method does not rely on the gradient information for op-
timizing and therefore does not require the objective function
to be differentiable or known beforehand [42]. It has the main
advantages of higher probability of finding global optima and
requiring less information from the target systems, thus may
have a wider range of applications compared to gradient based
methods. Here, we only focus on using the DEA method to
generate adversarial perturbations, but its applications to other
machine-learning-phases-of-matter scenarios are straightfor-
ward and we leave them for future studies.

Topological phases of matter. —We now turn to the case
of topological phases of matter. Unlike conventional phases
(such as the paramagnetic/ferromagnetic phases discussed
above), topological phases do not fit into the paradigm of sym-
metry breaking [43] and are described by nonlocal topological
invariants [44, 45], rather than local order parameters. This
makes topological phases harder to learn in general. Notably,
a number of different approaches, based on either supervised
[15, 23, 46] or unsupervised [22] learning paradigms, have
been proposed recently and some of them been demonstrated
in proof-of-principle experiments [25, 26].

The obtaining of adversarial examples might also be more
challenging, since the topological invariants capture only the
global properties of the systems and are insensitive to local
perturbations. Here, in this section we study the vulnerabil-
ity of machine-learning approaches to topological phases and
show that adversarial examples do exist in this case as well.
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FIG. 3. (a) The average accuracy and loss of the 3D convolutional
neural network to classify the topological phases. (b) We use the
momentum iterative method to obtain the adversarial examples. This
plot shows the classification probabilities as a function of the itera-
tion number. After around two iterations, the network begin to mis-
classify the samples. (c) A legitimate sample of the first component
of the input data (which is related to the density matrix in the momen-
tum space). Here, only slices corresponding to kz = π, 0,−4π/5
are displayed [41]. (d) An adversarial example obtained by the fast
gradient sign method, which only differs with the original legitimate
one shown in (c) by an tiny amount of noises that are imperceptible
to human eyes.

We consider a simple three-band model for 3D chiral topo-
logical insulators (TIs) [47, 48]:

HTI =
∑
k∈BZ

Ψ†kHkΨk,

where Ψ†k = (c†k,1, c
†
k,0, c

†
k,−1) with c†k,µ the fermion cre-

ation operator at momentum k = (kx, ky, kz) in the orbital
(spin) state µ = −1, 0, 1 and the summation is over the Bril-
louin zone (BZ); Hk = λ1 sin kx + λ2 sin ky + λ6 sin kz −
λ7(cos kx + cos ky + cos kz + h) denotes the single-particle
momentum-resolved Hamiltonian, with λ1,2,6,7 being four
traceless Gell-Mann matrices [47]. In real space, HTI rep-
resents free fermions hopping on nearest-neighbor sites in a
cubic lattice. It has a chiral symmetry SHkS

−1 = −Hk

specified by the unitary transformation S ≡ diag(1, 1,−1),
which protects a macroscopic zero-energy flat band that can
be topologically nontrivial depending on the parameter h. The
topological properties for each band can be characterized by a
topological invariant

χ(η) =
1

4π

∫
BZ
εµντA(η)

µ ∂kνA
(η)
τ d3k,
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where εµντ is the Levi-Civita symbol with µ, ν, τ ∈ {x, y, z},
and the Berry connection is A(η)

µ = 〈ψ(η)
k |∂kµ |ψ

(η)
k 〉 with

|ψ(η)
k 〉 denoting the Bloch state for the η band (here, η =

l,m, u denotes the lower, middle and upper band, respec-
tively). It is straightforward to obtain that χ(m)/π =
0, 1, and − 2 for |h| > 3, 1 < |h| < 3, and |h| < 1, re-
spectively.

Recently, an experiment has been carried out to simulate
HTI with the electron spins in a diamond nitrogen-vacancy
(NV) center and a demonstration of the supervised learning
approach to topological phases has been reported [25]. Using
the measured density matrices in the momentum space (which
can be obtained through quantum state tomography) as input
data, a trained 3D convolutional neural network (CNN) can
correctly identify distinct topological phases with exception-
ally high success probability, even when a large portion of the
experimentally generated raw data was dropped out or inac-
cessible. Here, we show that this approach is highly vulnera-
ble to adversarial perturbations—adding a small amount noise
to the measured density matrices will lead the trained CNN to
make completely incorrect predictions.

To illustrate how this works, we first train a 3D CNN with
numerically simulated data (for details, see [41]). Fig. 3(a)
shows the training accuracy and the loss with increasing iter-
ations. The training accuracy increases rapidly at the begin-
ning of the training process and then saturate at a high value
(≈ 99%). After the training, we fix the model parameters of
the CNN and utilize the FGSM, PGD and MIM methods to
generate adversarial perturbations (for details, see[41]). Fig.
3(b) shows the confidence probabilities of the classification
of a sample with χ(m) = 1 as functions of the MIM itera-
tions. From this figure, P (χ(m) = 1) decreases rapidly as
the iteration number increases and converges to a small value
(≈ 2%) after about eight iterations. Meanwhile, P (χ(m) = 2)
increases rapidly and converges to a large value (≈ 98%), in-
dicating a misclassification of the CNN—after about eight it-
erations, the sample originally from the category χ(m) = 1 is
misclassified to belong to the category χ(m) = 2 with a confi-
dence level ≈ 98%. In addition, as shown in Fig. 3(c-d), the
obtained adversarial sample looks like the same as the origi-
nal legitimate sample. They only differ by an tiny amount of
noise that is imperceptible to human eyes.

The above two examples clearly demonstrate the vulner-
ability of machine learning approaches to classify different
phases of matter. We mention that, although we have only
focused on these two examples, the existence of adversarial
perturbations is ubiquitous in learning various phases (inde-
pendent of the learning model and input data type) and the
methods used in the above examples can also be used to gen-
erate the desired adversarial perturbations for different phases.
From a more theoretical computer science perspective, the
vulnerability of the phase classifiers can be understood as a
consequence of the strong “No Free Lunch” theorem—there
exists an intrinsic tension between adversarial robustness and
generalization accuracy [49–51]. The data distributions in the

Epoch

0.6

0.8

1

A
cc

ur
ac

y

0

1

Lo
ssAcc. of leg. samples

Acc. of adv.samples
Total loss

2
Epoch

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

0

0.2

0.6

0.8

Lo
ssAcc. of leg. samples

Acc. of adv.samples
Total loss

84 6 10 2 84 6 10

(a) (b)

FIG. 4. Strengthening the robustness of phase classifiers (the 3D
CNN) by adversarial training [41]. (a) We first numerically gener-
ate adequate adversarial examples with the FGSM method, and then
retain the CNN with both the legitimate and crafted data. The blue
(red) line shows the test accuracy on legitimate (adversarial) data and
the “total loss” indicates the loss function for the total data set con-
taining both legitimate and adversarial data. (b) Similar adversarial
training for the defense of the PGD attack.

scenarios of learning phases of matter typically satisfy the
so-called W2 Talagrand transportation-cost inequality, thus
any phase classifier could be adversarially deceived with high
probability [52].

Adversarial training. —In the field of adversarial machine
learning, a number of countermeasures against adversarial ex-
amples have been developed [53, 54]. Training with adver-
sarial examples is one of these countermeasures to make the
classifiers more robust. Here, in order to study how it works
for machine learning phases of matter, we apply adversarial
training to the 3D CNN classifier used in classifying topolog-
ical phases. The essential idea is to first generate a substantial
amount of adversarial examples and then retrain the targeted
classifier with both the original data and the crafted data. Par-
tial of our results is plotted in Fig. 4. From this figure, it
is evident that after adversarial training, the test accuracy of
the classifier increases significantly (at the end of the training,
the test accuracies for both the legitimate and adversarial data
are larger than 98%), indicating that the retrained classifier is
immune to the adversarial examples generated by the corre-
sponding attacks.

It is worthwhile to mention that the adversarial training
method is useful only on adversarial examples which are
crafted on the original classifier, such as the FGSM and PGD
attacks discussed here. The defense may not work for black-
box attacks [55, 56], where an adversary generates malicious
examples on a locally trained substitute model. To deal with
the transferred black-box attack, one may explore the recently
proposed ensemble adversarial training method that retrain the
classifier with adversarial examples generated from multiple
sources [57]. We also note that one cannot expect a univer-
sal defense strategy that is able to make the phase classifiers
robust to all types of adversarial perturbations, as one method
that block a certain kind of attacks will inevitably leave an-
other vulnerability open to other types of attacks which exploit
the underlying defense mechanism.
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Discussion and conclusion.—Recently, Liu and Wittek
have studied the vulnerability of quantum classification from
a more theoretical perspective and demonstrated that a per-
turbation by an amount scaling inversely with the Hilbert di-
mension of the quantum system should be sufficient to cause a
misclassification [58], which is a fundamental feature of quan-
tum classifications in high-dimensional spaces due to the con-
centration of measure phenomenon [59]. Yet, in practice how
to find out all possible adversarial perturbations and show the
inverse scaling in learning phases of matter still remains un-
clear. In addition, we believe that there might be a deep con-
nection between the existence of adversarial perturbations in
deep learning and the phenomenon of orthogonality catastro-
phe in quantum many-body physics [60, 61], where adding an
arbitrarily weak local perturbation will make the finial ground
state orthogonal to the original one in the thermodynamic
limit. However, future investigations are required to firmly
establish this connection.

In summary, we have studied the robustness of machine
learning approaches in classifying different phases of mat-
ter. Our discussion is mainly focused on supervised learning
based on deep neural networks, but its generalization to other
types of learning models (such as unsupervised learning or
support vector machines) and other type of phases are pos-
sible and straightforward. Through two concrete examples,
we have demonstrated explicitly that typical phase classifiers
based on deep neural networks are extremely vulnerable to
adversarial examples. Adding a tiny amount of carefully-
crafted noises or even just changing a single pixel may cause
the classifier to make erroneous predictions at a surprisingly
high confidence level. In addition, through adversarial train-
ing, we have shown that the robustness of phase classifiers to
specific types of adversarial perturbations can be significantly
improved. Our results reveal a novel vulnerability aspect for
the growing field of machine learning phases of matter, which
would benefit future studies across condensed matter physics,
machine learning, and artificial intelligence.
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Supplementary Material for: Vulnerability of
Machine Learning Phases of Matter

I. METHODS FOR GENERATING ADVERSARIAL
PERTURBATIONS

In the main text, we have shown that the machine learning
approaches to phases of matter based on deep neural networks
are extremely vulnerable to adversarial examples: adding a
tiny amount of carefully-crafted perturbation, which are im-
perceptible to human eyes, into the original legitimate data
will cause the phase classifiers to make incorrect predictions
with a high confidence level. Here in this section, we give
more technical details on how to obtain the adversarial pertur-
bations.

As discussed in the main text, in supervised learning the
training data is labeled D = {(x(1), y(1)), · · · , (x(n), y(n))}
and the task of obtaining adversarial examples reduces to solv-
ing the following optimization problem:

max
δ∈∆

L(h(x(i) + δ; θ), y(i)). (S1)

In the adversarial machine learning literature, a number of
methods have been introduced to deal with the above opti-
mization problem. We consider two scenarios in this paper,
one is called discrete attack scenario, where the adversarial
perturbations are discrete and the original legitimate samples
are modified by discrete values; the other is called continuous
attack scenario, where the perturbations are continuous and
the original legitimate samples are modified continuously. For
the discrete attack scenario, we mainly apply the differential
evolution algorithm [42, 62], which is a population based op-
timization algorithm for solving complex multi-modal prob-
lems and has recently been used for generating one-pixel ad-
versarial perturbations to fool deep neural networks in im-
age recognition [38]. For the continuous attack scenario,
we use a number of attacking methods, including fast gradi-
ent sign method (FGSM) [33, 35], projected gradient descent
(PGD)[35] and momentum iterative method (MIM) [36].

For the case of the ferromagnetic Ising model, we apply
both the discrete and continuous attacks, whereas for the case
of topological phases of matter we apply only the continuous
attacks. We use cleverhans [? ] to implement FGSM, PGD,
and MIM for both the Ising and chiral topological insulator
cases. In each case, we produce the adversarial samples based
on the origin legitimate training set. We define the success ra-
tio as the proportion of adversarial samples that successfully
fool the classifier. In the following, we briefly sketch the es-
sential ideas for each attacking methods used in this paper.
For each method, we also provide a pseudocode to clearly il-
lustrate how it works.

Algorithm 1 The Differential Evolution Algorithm
Input A legitimate sample (~x, y).
Input The iteration number T , the population size n, the number

m of pixels to be changed, the mutual factor M .
Output An adversarial example ~x∗.

1: Set the position bound B to be the shape of ~x
2: Randomly generate perturbation Xi = (a, b, s)m with (a, b) ∈
B and s = 1− xab for i = 1, 2, . . . , n

3: for t = 1, 2, . . . , T do
4: Get adversarial sample ~x∗i by Xi
5: Feed ~x∗i to the model to get the confidence on each class.
6: Set Pi (the confidence probability for the wrong classifica-

tion category) as the evaluation threshold.
7: Generate children by X ′i = Xj +M(Xk − Xl) with ran-

domly chosen j, k, l.
8: Get adversarial sample ~x∗

′
i by X ′i , feed them to the model,

get P ′i .
9: for i = 1, 2, . . . , n do

10: if P ′i > Pi then
11: Xi=X ′i
12: end if
13: end for
14: end for
15: Find the Xp that has the highest confidence probability for the

wrong classification category, apply Xp to ~x to get ~x∗

16: return ~x∗

A. Differential evolution algorithm

Differential evolution is a population based optimization
algorithm and is arguably one of the most powerful stochas-
tic real-parameter optimization algorithms in solving complex
multi-modal optimization problems [42, 62]. It belongs to
the general class of evolutionary algorithms and the computa-
tional steps it takes are quite similar to these taken by a stan-
dard evolutionary algorithm. Yet, unlike traditional evolution-
ary algorithms, the differential evolution algorithm perturbs
the current generation population members with the scaled
differences of randomly chosen distinct population members.
More specifically, during each iteration we randomly generate
a new set of candidate solutions (called children) according to
the current population (parents), and then compare the chil-
dren with their corresponding parents, replacing the parents if
the children have higher fitness value.

We apply the differential evolution algorithm in the “black-
box” setting to generate adversarial examples for the ferro-
magnetic Ising model [38], where we assume no prior infor-
mation about the classifier’s internal structures and only dis-
crete changes of the samples could be made: we first gener-
ate some counterfeit samples by reversing a number of mag-
netic moments of the legitimate sample randomly. We denote
these samples as X1, X2, . . . , Xn, where n is the population
size. We then feed these samples into the classifier to obtain
the confidence probability for each configuration. Then we
produce new counterfeit samples, which are called children,
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Algorithm 2 Fast Gradient Sign Method
Input The trained model h, loss function L, the legitimate sample

(~x, y).
Input The perturbation bound ε, upper and lower bound xmin, xmax.
Output An adversarial example ~x∗.

1: Input ~x into F to get∇xL(θ, ~x, y)
2: for Every component i of ~x do
3: δi = ε · sign(∇xL(θ, ~x, y)i)
4: x∗i = xi + δi
5: if x∗i > xmax then
6: x∗i = xmax

7: end if
8: if x∗i < xmin then
9: x∗i = xmin

10: end if
11: end for
12: return ~x∗

based on prior samples:

X ′i = Xj +M(Xk −Xl), (S2)

where M is the mutual factor (larger M leads to larger search
radius but take longer time to converge). j, k, l are chosen
randomly from [n]. If these children have better performance
(i.e., higher confidence probability for the wrong classifica-
tion category), then we replace their corresponding parents
with these children. We repeat this procedure with several it-
erations until it converges and the desired adversarial samples
are obtained. For the particular Ising case considered in this
paper, we denote every children generation as a sequence of
(a, b, s)m, where (a, b) is the changed pixels’ positions, s is
the value after the reversing (which is restricted to be either 0
or 1 ), and m is the number of changed pixels (spins). A pseu-
docode representation of the differential evolution algorithm
is shown in Algorithm 1.

It is worthwhile to mention that the differential evolution
algorithm cannot guarantee that the optimal solution will be
obtained. It is possible that the algorithm may only yields
certain local minima. In our scenario, this means that the ad-
versarial examples we obtained may not be the most effective
ones to fool the classifier.

B. Fast gradient sign method

The fast gradient sign method is a simple one-step scheme
for solving Eq. (S1) and has been widely used in the adver-
sarial machine learning community [33, 35]. Before introduc-
ing this method, let us first introduce the fast gradient method
(FGM).

We work in a white-box attack setting, where full infor-
mation about the classifier is assumed. Our goal is to maxi-
mize the loss function for a particular input data ~x to generate
the adversarial sample ~x∗. Since we know all parameters of
the model, we can compute the fastest increasing direction on

Algorithm 3 Projected Gradient Descent Method
Input The trained model h, loss function L, the legitimate sample

(~x, y).
Input The perturbation bound ε, iteration number T , upper and

lower bound xmin, xmax.
Output An adversarial example ~x∗.

1: ~x0 = ~x
2: α = ε

T
3: for i = 1, . . . , T do
4: Input ~xi−1 into F to get∇xL(θ, ~xi−1, y)
5: for Every component j of ~xi−1 do
6: δj = α · sign(∇xL(θ, ~xi−1, y)i)
7: (xi)j = (xi−1)j + δj
8: if (xi)j > xmax then
9: (xi)j = πC((xi)j) = 2xmax − (xi)j

10: end if
11: if (xi)j < xmin then
12: (xi)j = πC((xi)j) = 2xmin − (xi)j
13: end if
14: end for
15: end for
16: return ~x∗ = ~xT

the position ~x, which is just the gradient of the loss function:
∇xL(θ, ~x, y). The FGM is a one-step attack which perturbs ~x
along the direction of the gradient with one particular stepsize:

δFGM = max
δ∈∆
〈∇xL(θ, ~x, y), δ〉. (S3)

The perturbation is constrained within lp-norm bound:
‖δ‖p ≤ ε.

If we take l∞-norm bound, we get a simple rule for obtain-
ing the adversarial perturbation via FGSM:

δFGSM = ε · sign(∇xL(θ, ~x, y)). (S4)

For different problems, there are other particular perturba-
tion bounds as well. One of the most useful bounds is the
rectangular-box-like bound, where each component of the ad-
versarial sample is bounded by some constant numbers xmin ≤
x ≤ xmax. For example, for the case of chiral topological in-
sulators studied in this paper, we require that every compo-
nent of ~x be bounded by [−1, 1]. If the adversarial sample has
components exceeding this bound, FGSM simply change the
value of this component to be the value of either xmin or xmax.
A pseudocode representation of the fast gradient sign method
is shown in Algorithm 2.

C. Projected gradient descent method

As shown in Eq. (S4), one may interpret the FGSM as a
simple one-step scheme for maximizing the inner part of the
saddle point formulation. With a small stepsize, FGSM may
perform well. But with a large stepsize, FGSM can perform
poorly since the gradient of the loss function may change sig-
nificantly during this step. To deal with this problem, a more
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Algorithm 4 Momentum Iterative Method
Input The trained model h, loss function L, the legitimate sample

(~x, y).
Input The perturbation bound ε, iteration number T , decay factor

µ, upper and lower bound xmin, xmax.
Output An adversarial example ~x∗.

1: ~x0 = ~x, a0 = 0
2: α = ε

T
3: for t = 1, . . . , T do
4: Input ~xi−1 into F to get∇xL(θ, ~xt−1, y)

5: at = µ · at−1 +
∇xL(θ,~xt−1,y)

||∇xL(θ,~xt−1,y)||
6: for Every component j of ~xt−1 do
7: δj = α · sign((at)j)
8: (xt)j = (xt−1)j + δj
9: if (xt)j > xmax then

10: (xt)j = πC((xt)j) = 2xmax − (xt)j
11: end if
12: if (xt)j < xmin then
13: (xt)j = πC((xt)j) = 2xmin − (xt)j
14: end if
15: end for
16: end for
17: return ~x∗ = ~xT

powerful method is its multi-step variant, which is called the
projected gradient descent method (PGD). The basic idea of
PGD is to use FGSM methods with multiple times (T ) and
perform projections iteratively to enforce that the perturbation
is within an appropriate region [35]. At each step, we check if
the proposed update has moved out of the region, and apply a
projection back if it does. So the rule for updating is

~xt+1 = πC(~xt + α · sign(∇xL(θ, ~xt, y))), (S5)

where α = ε
T is the stepsize and πC is the projection opera-

tion which projects those points out of the chosen appropriate
region [denoted as ∆ in Eq. (S1)] back. In our scenarios, the
permitted region we choose is the region that restricts every
component of ~x to be in [xmin, xmax], therefore, πC is sim-
ply the projection for each component into [xmin, xmax]. A
pseudocode representation for the projected gradient descent
method is shown in Algorithm 3.

D. Momentum iterative method

The FGSM assumes the sign of the gradient of loss func-
tion will not change around the data point and generates an
adversarial example by applying the sign of the gradient to a
legitimate example only once. However, in many practical ap-
plications the assumption may not hold when the distortion is
large, rendering the adversarial example generated by FGSM
“under-fits” the model. On the other hand, iterative FGSM
like PGD moves the counterfeit examples gradually in the di-
rection of the sign of the gradient in each iteration and hence
can easily drop into poor local extremums and “overfit” the
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FIG. S1. Machine learning ferromagnetic/paramagnetic phases of
the Ising model. (a) The classifier is a fully connected feed forward
neural network. It consists of one input layer with 900 neurons which
have one-to-one correspondence to the spins of the Ising model, one
hidden layer with 100 sigmoid neurons, and one output layer with
two softmax neurons outputting the probabilities of the paramagnetic
and ferromagnetic phases. (b) The training process. The classifier is
trained with numerically simulated data at 40 different temperatures
from T = 0 to T = 3.54. The training set contains 90000 samples,
each sample is a array with length 900. The validation set is of size
10000 and the test set is of size 10250. We use RMSprop optimizer
with batch size of 256 and learning rate of 10−3. The accuracy is the
correct classification percentage and the loss is the value of cross-
entropy.

model. To deal with such a dilemma, one can integrate mo-
mentum into the iterative FGSM so as to stabilize update di-
rections and escape from local extremums [36]. This is the
essential idea of the momentum iterative method.

For a T iterations attack with l∞-norm constraint ε, in every
iteration we calculate the gradient descent direction and add
the gradient descent direction in the last iteration with a decay
factor µ as the accelerated velocity:

at+1 = µ · at +
∇xtL(θ, xt, y)

||∇xtL(θ, xt, y)||
, (S6)

and the rule for updating is:

xt+1 = xt + α · sign(at+1), (S7)

where α = ε
T is the stepsize. A pseudocode representation

for the momentum iterative method is shown in Algorithm 4.
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FIG. S2. Performance of the differential evolution algorithm for the
case of ferromagnetic Ising model. In this figure, the population n
is set to be 100 and the mutual factor M set to be 30. The algo-
rithm stops and returns the adversarial samples when the confidence
probability converges with increasing number of iterations. (a) The
confidence probabilities for the ferromagnetic and paramagnetic cat-
egories versus the number of pixels that are allowed to be changed
(i.e., spins allowed to be flipped). We randomly choose a legitimate
sample (here the 5067th sample in the validation set) which is cor-
rectly classified by the neural network to belong to the ferromagnetic
phase with confidence 80%. (b) The legitimate sample from the fer-
romagnetic phase. Here, each small square corresponds to a spin and
black (white) color means the corresponding spin points down (up).
(c) An adversarial sample with one pixel changed. The classifier mis-
classifies this modified sample into the paramagnetic category with
confidence 52%. (d) An adversarial sample with five pixels changed.
The classifier misclassifies this modified sample into the paramag-
netic phase with confidence 90%.

II. MORE DETAILS ON THE TWO CONCRETE
EXAMPLES

In this section, we provide more technical details on the
neural network structures of the classifiers, the training pro-
cess, and the defense strategy. In addition, we provide more
numerical simulation results for both the examples of the Ising
and the chiral topological insulator.

A. The ferromagnetic Ising model

In the main text, we have shown that adding a tiny amount
of adversarial perturbation as small as a single pixel can lead
the classifier to misclassify a spin-configuration image from
the ferromagnetic phase into the paramagnetic category. In
this example, our phase classifier is a fully connected feed-

forward neural network, which is composed of an input layer
with 900 neurons, a hidden layer with 100 sigmoid neurons,
and an analogous output layer with two sigmoid neurons, as
shown in Fig. S1(a). The neural network is implemented with
TensorFlow [40]. The input data is the equilibrium spin con-
figurations sampled from Monte Carlo simulations, same as
in Ref. [? ]. We use 0 and 1 to represent whether the spin
is up or down. The lattice size is fixed to be 30 × 30, and
therefore the input data ~x are {0, 1} arrays with length 900.
The training and validation sets are both numerically gener-
ated with Monte Carlo simulations [16], and their sizes are
90000 and 10000, respectively. We use the RMSprop as the
optimizer with batch size of 256 and the learning rate is set to
be 10−3. In Fig. S1(b), we plot the results for the training pro-
cess. From this figure, it is clear that the accuracy increases
(the loss decreases) as the number of epochs increases, and
after 15 epochs the network can successfully classify samples
from the validation/test set with a high accuracy larger than
97%.

After the training process, we fix the parameters of the clas-
sifier and utilize different methods to generate adversarial ex-
amples. The first method we use is the differential evolution
algorithm, which is a discrete attack method. Fig.2 (b) in the
main text plots the classification probabilities for ferromag-
netic and paramagnetic phases as a function of the iteration
number. It is clear that this algorithm is very powerful and
after around two iterations, the classifier begins to misclassify
the samples. Fig. 2(c) of the main text gives an adversarial
example that only differs with the original legitimate one by a
single pixel. Intuitively, if we modify the original sample by
flipping more spins, the confidence probability for the classi-
fier to misclassify the modified sample will increase. This is
also verified in our numerical simulations and partial of our re-
sults are shown in Fig. S2. In Fig. S2(a), we randomly choose
a legitimate sample from the paramagnetic phase , which is
shown in Fig. S2(b). Without changing any pixel (flipping a
spin), the classifier will correctly identify the sample as from
the paramagnetic phase with a confidence level≈ 80%. How-
ever, this confidence probability will decrease rapidly as the
number of pixels that are allowed to change increases. This
is clearly demonstrated in S2(a). Fig. S2(c) and Fig. S2(d)
plot two adversarial examples with one and five pixels of the
original sample (Fig. S2(b)) changed, respectively. For this
particular legitimate sample, changing one pixel (five pixels)
will lead the classifier to misclassify it with confidence 52%
(90%). We note that in order to obtain Fig.2 (b) and Fig. 2 (c)
in the main text, the hyper parameters we used are the same
as these in Fig. S2.

As discussed in the main text, we may also regard HIsing
as a quantum Hamiltonian and the input data to be the local
magnetization, and thus we allow the input data to be contin-
uously modified. In this case, we can use different methods,
such as FGSM, PGD, and MIM discussed in section I, to gen-
erate adversarial examples. Partial of our results are shown in
Fig. S3. In Fig. S3(a), we randomly choose a sample from
the paramagnetic phase, which is plotted in Fig. S3(b). At
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FIG. S3. Performance of the momentum iterative method (MIM) for the case of Ising model. (a) The classification probabilities of the
ferromagnetic and paramagnetic phases as a function of the iteration number.It is clear that after around three iterations, the classifier will
begin to misclassify the samples, and after ten iterations the slightly modified samples will be identified as belongs to the ferromagnetic
category with confidence ≥ 90%. (b) A randomly chosen legitimate sample from the paramagnetic phase. (c) An adversarial example
obtained by MIM, which is slightly different from the original sample. Here, the perturbation is restricted to be within ‖δ‖∞ ≤ 0.1.

the beginning, the classifier can correctly identify this sample
as in the paramagnetic category with confidence ≥ 99%. We
then use MIM to modify the original sample and after around
three iterations, the classifier will begin to make incorrect pre-
dictions, and after ten iterations it will misclassify the sample
to be in the ferromagnetic phase with confidence≥ 90%. Fig.
S3(c) shows the corresponding adversarial example obtained
by MIM after ten iterations.

B. Topological phases of matter

For the example of topological phases of matter, the classi-
fier we consider is a 3D convolutional neural network (CNN),
as shown in Fig. S4 (a). It consists of two 3D convolution
layers, a 3D max pooling layer, a dropout layer with rate 0.4
to avoid overfitting, and a flattening layer connected with two
fully-connected layers with 0.55 dropout. The output layer is
a softmax layer outputting the probability for the three possi-
ble topological phases. We use the RMSprop as the optimizer
with batch size of 128. The loss function is chosen to be the
cross-entropy. The learning rate is set to be 10−3.

In our scenario, the input data are the density matrices on
a 10 × 10 × 10 momentum grid and we express each density
matrix ρ as [25]:

ρ =
1

3
(I +
√

3b · ~λ), (S8)

where ~λ is a vector consists of the eight Gell-Mann matrices, I
is the three-by-three identity matrix, and b = (b1, b2, · · · , b8)
with bi = 1

2

√
3tr(ρλi). Therefore, in this representation of the

density matrices each sample of the input data has the form
10 × 10 × 10 × 8, which can be regarded as 10 × 10 × 10

pixels image with 8 color channels. To train the network,
we numerically generate 5001 samples as the training set and
2001 samples as the validation set with parameter h varied
uniformly from −5 to 5. The training process is shown in
Fig. S4(b). The performance of the training process is shown
in Fig. S4(b). From this figure, the training accuracy for the
training set increases rapidly at the beginning and then satu-
rates at a high value (≈ 99%), whereas the loss for the train-
ing set decrease rapidly at the beginning and then saturate at
a small value (≈ 0.05). This indicates that the classifier per-
forms remarkably well on the legitimate samples.

After the training was done, we use three different methods,
namely FGSM, PGD, and MIM, to generate adversarial exam-
ples. We find that all these methods work notably well and can
generate adversarial examples with success ratio larger than
76% (i.e., for more than 76% of the legitimate samples, these
methods can successfully output the corresponding adversar-
ial examples) with the perturbation bounded by ||δ||∞ ≤ 0.2.
Partial of our results are plotted in Fig. 3 (b-d) in the main text.
In order to obtain Fig. 3(b), we randomly choose a sample
from the category with topological invariant λ(m)/π = 1. At
the beginning, the classifier can successfully identify this sam-
ple with almost unit confidence probability (≈ 99.5%). Here,
we use MIM to generate adversarial perturbations with restric-
tion ||δ||∞ ≤ 0.05. The classifier will begin to misclassify the
slightly modified sample to be in the category λ(m)/π = 0
after about three iterations. The confidence probability for the
misclassification approaches 98% after four iterations and be-
gins to saturate at this value. Fig.3(c) in the main text plots the
original legitimate sample chosen in Fig. 3(c) and Fig. 3(d)
plots its corresponding adversarial example obtained by MIM.
As discussed in Eq. (S8), each density matrix is represented
by a vector b of length eight. For easy visualization, in Fig.
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FIG. S4. Learning topological phases with a 3D convolutional neu-
ral network (CNN). (a) The structure of the CNN phase classifier.
(b) The training process. Here, the loss function is chosen to be the
cross-entropy. It is clear that after ten epochs, the classifier can suc-
cessfully identify the samples from both the training and validation
sets with accuracy ≈ 99%.

3(c-d) in the main text we plot only the first component of b,
namely b1, for each momentum point. We mention that one
can also use the experimental data obtained recently in Ref.
[25] with a solid-state simulator to generate adversarial exam-
ples. This is also observed in our our numerical simulations.

C. Adversarial training

In order to increase the robustness of the deep neural net-
works to adversarial perturbations, a number of methods have
been developed in the adversarial machine learning litera-
ture. The simplest and most straightforward one is adversarial
training [35]. Its essential idea is to first generate a substantial
amount of adversarial examples with certain attacking meth-
ods and then retrain the classifier with both the original legit-
imate data and the crafted data. After retraining, the classifier
will be more immune to the corresponding attacks and its ro-
bustness to the adversarial perturbations will be enhanced.

In the main text, Fig. 4 plots the results of the adversar-
ial training to defense the FGSM and PGD attacks for the 3D
CNN. In order to obtain this figure, we use 5001 legitimate
samples and their corresponding 5001 adversarial samples as
the training set for retraining the network. After every epoch
we calculate the accuracy of legitimate samples and adversar-
ial samples, respectively. The loss is calculated on both le-
gitimate and adversarial samples. We mention that the adver-
sarial samples used for training are different in every epoch.
In each epoch, we use the current model and legitimate sam-
ples to generate adversarial samples, using both legitimate and
adversarial samples to train the model, and then in the next
epoch, we generate new adversarial samples by the model
with updated parameters. From the figure, it is clear that the
accuracy for both the legitimate samples and adversarial sam-
ples increase as the number of epochs increase, and saturate
at notable values larger than 0.96. This demonstrates that the
retrained classifier is indeed much more robust to the adver-
sarial perturbations generated by the corresponding attacking
methods.
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