
On the Quantum Query Complexity of Local Search in Two and Three
Dimensions

Xiaoming Sun
Center for Advanced Study

Tsinghua University, Beijing, China
xiaomings@tsinghua.edu.cn

Andrew C. Yao∗

Center for Advanced Study
Tsinghua University, Beijing, China

andrewcyao@tsinghua.edu.cn

Abstract

The quantum query complexity of searching for local op-
tima has been a subject of much interest in the recent liter-
ature. For the d-dimensional grid graphs, the complexity
has been determined asymptotically for all fixed d ≥ 5, but
the lower dimensional cases present special difficulties, and
considerable gaps exist in our knowledge. In the present pa-
per we present near-optimal lower bounds, showing that the
quantum query complexity for the 2-dimensional grid [n]2

is Ω(n1/2−δ), and that for the 3-dimensional grid [n]3 is
Ω(n1−δ), for any fixed δ > 0.

A general lower bound approach for this problem,
initiated by Aaronson [1](based on Ambainis’ adversary
method [3] for quantum lower bounds), uses random walks
with low collision probabilities. This approach encounters
obstacles in deriving tight lower bounds in low dimensions
due to the lack of degrees of freedom in such spaces. We
solve this problem by the novel construction and analysis
of random walks with non-uniform step lengths. The proof
employs in a nontrivial way sophisticated results of Sárközy
and Szemerédi [14], Bose and Chowla [5], and Halász [9]
from combinatorial number theory, as well as less familiar
probability tools like Esseen’s Inequality.

1. Introduction

For any function f(x1, x2, · · · , xn), the decision tree
complexity is the minimum number of queries “xi =?”
needed for any algorithm to determine the value of f . There
are various flavors of this complexity, such as deterministic,
non-deterministic, randomized, and randomized with error.
The decision tree complexity, as well as related subjects
such as property testing, has been a rich and active area of
research for many years in theoretical computer science.

∗This work was supported in part by the National Natural Science
Foundation of China Grant 60553001

In the last decade, an extension of decision tree com-
plexities to quantum computation, called quantum query
complexity, has been extensively studied, starting with Ben-
nett et al [4](which showed Grover’s search was optimal).
In particular, the complexity of local search has received
much attention. In Turing complexity, the complexity class
PLS (polynomial local search) was introduced by John-
son, Papadimitriou and Yannakakis [11] and was the sub-
ject of much study. In the context of query complexity, the
problem of local search can be stated as follows: an inte-
ger valued function f is defined on the vertex set V of a
known undirected graph G = (V, E). A local minimum
v ∈ V , defined as one vertex satisfying f(v) ≤ f(w) for all
{w, v} ∈ E, is to be determined with a series of queries of
the form f(u) =?. The complexity for a graph is the min-
imum number of queries required. Depending on the class
of algorithms allowed, we denote the complexities respec-
tively as DLS(G) (deterministic), RLS(G) (randomized
with two-sided error ε), and QLS(G) (quantum with two-
sided error ε).

In 1983, Aldous [2] showed that, for any N -vertex graph
G of maximum degree ∆, RLS(G) = O(

√
N∆). For

the Boolean hypercube this result implies RLS(Bn) =
O(n1/22n/2), and Aldous also showed a lower bound
RLS(Bn) = Ω(2n/2−o(n)) using a sophisticated random
walk analysis. In 1989, Llewellyn, Tovey and Trick [12]
showed for the boolean hypercube, D(Bn) = Ω(2n/

√
n).

In 2003, Aaronson [1] showed QLS(G) =
O(N1/3∆1/6) for general N -vertex graphs. He also
developed a strategy for obtaining quantum lower bounds
through random walk construction, using the quantum ad-
versary method of Ambainis [3]. Interestingly, his approach
also led to a new lower bound method for the randomized
complexity, giving in particular a simplified and improved
bound (over Aldous’) RLS(Bn) = Ω(2n/2/n2). Santha
and Szegedy [13] showed that DLS(G) and QLS(G) are
polynomially related for all general graphs G.

In this paper we are mainly interested in the quantum
complexity for d-dimensional grid graphs [n]d (fixed d).

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

We summarize the state of knowledge first: up to log fac-
tors, the randomized complexity is tight for d > 2, i.e.,
RLS([n]d) = Θ(nd/2), and the quantum complexity is
tight for d > 4, i.e., QLS([n]d) = Θ(nd/3). For low di-
mensions, again up to log factors,

Ω(n2/3) ≤ RLS([n]2) ≤ O(n),
Ω(n2/5) ≤ QLS([n]2) ≤ O(n1/2),

Ω(n3/4) ≤ QLS([n]3) ≤ O(n),
Ω(n6/5) ≤ QLS([n]4) ≤ O(n4/3).

In this paper, we give nearly optimal lower bounds for
the d = 2, 3 cases, proving the following main theorems.
The gap in quantum complexity between the upper and
lower bounds in the d = 4 case remains an open question.

Theorem 1 RLS([n]2) = Ω(n1−δ), QLS([n]2) =
Ω(n1/2−δ), for any constant δ > 0.

Theorem 2 QLS([n]3) = Ω(n1−δ), for any constant δ >
0.

More detailed history for low dimensions: Aldous’
result implies RLS([n]d) = O(nd/2). Aaronson [1]
showed RLS([n]d) = Ω(nd/2−1/ logn), QLS([n]d) =
O(nd/3), and QLS([n]d) = Ω(nd/4−1/2/

√
log n). Re-

cently, Zhang [17] improved the lower bounds, so that up to
log factors, the randomized complexity is tight for d > 2,
i.e., RLS([n]d) = Θ(nd/2), and the quantum complexity is
tight for d > 4, i.e., QLS([n]d) = Θ(nd/3).

For 2-dimensional grid [n]2, Santha and Szegedy [13]
show that QLS([n]2) = Ω(n1/4). Zhang [17] showed
RLS([n]2) = O(n2/3), Ω(n2/5) ≤ QLS([n]2) ≤
O(n1/2(log log n)3/2). Verhoeven [15] showed
QLS([n]2) = O(

√
n log log n). For 3 and 4 dimen-

sional grids, Zhang [17] showed RLS([n]3) = Ω(n3/2√
log n

),

QLS([n]3) = Ω(n3/4), and RLS([n]4) = Ω(n2),
QLS([n]4) = Ω(n6/5).

Other related works: Using the path technique Chen and
Deng [6] show a Ω(nd−1) deterministic lower bound for
find a fixed point in grid [n]d. Friedl et al [8] proved Ω(

√
n)

and Ω(4
√

n) lower bound for random and quantum query
complexity of 2D-Sperner Problem by using a 2-d mono-
tone path.

In Section 2, quantum lower bound tools from the lit-
erature are summarized, together with needed results from
number theory and probability theory. In Section 3 top-level
view of the approach to the proofs is given. A fairly com-
plete proof for Theorem 1 (the d = 2 case) is given in Sec-
tions 4 and 5, with some details left out for the Appendix.
The proof of Theorem 2 (the d = 3 case) requires additional
twists; an outline of the proof is given in Sections 6 and 7.

2 Preliminaries

Lemma 1 gives a general lower bound based on the
weighted adversary approach first developed by Ambai-
nis [3]. This form is from Zhang [16]:

Lemma 1 [3, 16] Let F : S → {0, 1}m be a partial func-
tion. Let w : S2 → [0,∞) and w′ : S2 × [N] → [0,∞) be
weight assignments satisfying the following conditions:

1. w(x, y) = w(y, x) for every x, y, and w(x, y) = 0
whenever F (x) = F (y);

2. w′(x, y, i) = 0 whenever xi = yi or F (x) = F (y),
and w′(x, y, i)w′(y, x, i) ≥ w(x, y)2 for all x, y, i
with xi �= yi.

Then

Q(F) = Ω

(
min

x,y,i:xi �=yi
w(x,y)>0

√
wt(x)wt(y)
v(x, i)v(y, i)

)

where wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w′(x, y, i)
for all x ∈ S and i ∈ [N].

For the lower bound of randomized query complexity,
we use the method invented by Aaronson [1]:

Lemma 2 [1] Let F : S → {0, 1}m be a partial func-
tion. Let w : S × S → [0,∞) be a function satisfying
(1) w(x, y) = w(y, x), and (2) w(x, y) = 0 whenever
F (x) = F (y). Let wt(x) =

∑
y w(x, y) and v(x, i) =∑

y:yi �=xi
w(x, y), then

R(F) = Ω

(
min
x,y,i:

xi �=yi,w(x,y)>0

max
{

wt(x)
v(x, i)

,
wt(y)
v(y, i)

})

To prove Theorem 1 we need use the following two in-
equalities proved by Sárközy and Szemerédi [14] and Es-
seen [7]:

Lemma 3 [14] Let 0 < a1 < a2 < · · · < an be a sequence
of real numbers. Denote by fn(t) the number of solutions
of
∑n

i=1 εiai = t, εi = 0 or 1. For any δ > 0, there exists a
constant n0(δ) such that, for all n > n0(δ),

max
0≤t<∞

fn(t) < (1 + δ)
8

π1/2

2n

n3/2

Remark 1 We will use Lemma 3 with the following form:
Let 0 < a1 < a2 < · · · < an be a sequence of real num-
bers, then

max
y∈Z

Pr
ε1,...,εn∈{±1}

(ε1a1 + · · · + εnan = y) ≤ cn−3/2,

where c is a positive absolute constant.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Lemma 4 [7] Let X1, . . . , Xn be independent random
variables such that E(Xk) = 0, E[X2

k] = σ2
k, and

E[|Xk|3] < +∞, k = 1, . . . , n. Let Bn =
∑n

k=1 σ2
k ,

Ln = B
−3/2
n

∑n
k=1 E[|Xk|3], then

sup
x

∣∣∣∣Pr
{∑n

k=1 Xk√
Bn

< x

}
− Φ(x)

∣∣∣∣ ≤ cLn

where c is a positive absolute constant, and Φ(x) =
1√
2π

∫ x

−∞ e−t2/2dt.

To prove Theorem 2 we need the following two results
of Halász (Theorem 2 and Theorem 3 of [9]):

Lemma 5 Let vk(k = 1, . . . , n) be n vectors in R
2. Sup-

pose that ‖vk − vk′‖ ≥ 1(∀k �= k′), and there exists a
constant δ > 0 such that for any ‖e‖ = 1 one can select at
least δn vectors vk with |〈vk, e〉| ≥ 1, then

max
y∈Z2

Pr
ε1,...,εn∈{±1}

(ε1v1 + · · · + εnvn = y) ≤ c(δ)n−2,

where c(δ) depends only on δ.

Remark 2 Halász gave an upper bound n−1−d/2 for gen-
eral space R

d, we just set d = 2 here.

Lemma 6 Let vk(k = 1, . . . , n) be n vectors in R
2. Sup-

pose from among the 2h−1nh vectors b = vk1 ± · · · ± vkh

(1 ≤ ki ≤ n) one can select at least δnh vectors, each two
having a distance ‖b− b′‖ ≥ 1. And also for any ‖e‖ = 1
one can select at least δn vectors vk with |〈vk, e〉| ≥ 1,
then

max
y∈Z2

Pr
ε1,...,εn∈{±1}

(ε1v1 + · · · + εnvn = y) ≤ c(δ, h)n−h,

where c(δ) depends only on δ and h.

Remark 3 Lemma 6 used here is a weak version of
Halász’s original result (Theorem 3 in [9]). In his paper
the space is R

d, and in his statement of Theorem 3, h equals
d. But through the proof this is not necessary, at least not
necessary for our weak version here.

We also need some tools from number theory for both
Theorem 1 and Theorem 2.

Definition 1 [10] A positive integer sequence B =
b1b2 · · · bn is called a Bh-sequence if all the sums

bi1 + bi2 + . . . + bih

are distinct, where 1 ≤ i1 ≤ · · · ≤ ih ≤ n.

For example 1, 2, . . . , n is a B1-sequence. It is clear that
a Bh-sequence(h > 1) is also a B1-sequence, so bi �= bj

(i �= j). The following result is due to Bose and Chowla [5]:

Lemma 7 {1, 2, . . . , m} contains a Bh-sequence B of size
|B| = m1/h(1 + o(1)).

3 Top Level View of the Proof

In proving lower bounds, it is a standard technique to
relate the local search problem to some related search prob-
lem about finding paths. We relate the local search on grid
graphs to a certain path problem on pyramid graphs.

Let G = (V, E) be a directed acyclic graph. Given
a source v0 and an unknown path P starting at v0 and
ending in a sink, we would like to locate the endpoint
of P by making queries of the form “Is xi ∈ P ”. Let
D(G), R(G), Q(G) be respectively the deterministic deci-
sion tree complexity, the randomized decision tree com-
plexity (with error ≤ ε = 1/3), and the quantum query
complexity (with error ≤ ε = 1/3).

Let Pd,n = (Vd,n, Ed,n) denote the d-dimensional pyra-
mid graph, where Vd,n is the set of lattice points {x ∈ N

d
0 :∑d

j=1 xj ≤ n}, and Ed,n is the set of all (x, x′), where
x, x′ ∈ Vd,n and x′ = x + ek for some k ∈ {1, 2, · · · , d}.
Here N0 = N ∪ {0}, ek = (0, . . . , 0, 1, 0, . . . , 0) is the k-th
unit vector in Z

d. A pyramid path is a path in Pd,n starting
at the source node (0, . . . , 0) and ending in a sink node at
the bottom (the hyperplane {x :

∑d
i=1 xi = n}).

The following Proposition allows us to reduce the proof
of Theorems 1 and 2 to the proof of lower bounds to the
complexity of the corresponding path problems in pyramid
graphs. The proof is standard.

Proposition 1 RLS([n]d) ≥ R(Pd,n), QLS([n]d) ≥
Q(Pd,n).

Proof. Suppose we have an instance for the Pyramid Path
problem: a path P = p0 . . . pn ∈ Pd,n, we construct a
Local Search problem in [n]d: We define function fP in the
same way as [1]:

fP(p) =
{

n − ‖p‖1, if p ∈ P
n + ‖p‖1, if p /∈ P

It is clear that pn is the unique local minimum of fP.
If a local search algorithm A queries a point p, we just

ask the Pyramid oracle the same query and return n− ‖p‖1

or n + ‖p‖1 to A according to the oracle’s answers. �
We will prove Theorem 1 in two steps. First, for any

sequence of integers A = a1, a2, · · · , an, we define a cer-
tain random walk which in turn gives rise to an assign-
ment of weights in the quantum adversary method. Proposi-
tion 2 below gives lower bounds to R(P2,N) and Q(P2,N)
in terms of a parameter ρ (which is determined by the se-
quence A). Proposition 3 shows that, using results from
combinatorial number theory, we can construct a sequence
A such that ρ is small which then implies strong lower
bounds via Proposition 2.

Similarly, the proof of Theorem 2 is in two steps. Propo-
sition 4 show that any sequence of two-dimensional vec-
tors gives rise to a lower bound to R(P3,N) and Q(P3,N).

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Proposition 5 then shows that, with the help of certain re-
sults in number theory, there exist sequences giving rise
to strong lower bounds that almost match known upper
bounds.

Proposition 2 Let a1, . . . , an be a positive integer se-
quence (no need to be distinct). Let N =

∑n
i=1 ai. Define

µi,j = max
y∈Z

Pr
εi,...,εj∈{±1}

(εiai + εi+1ai+1 + · · ·+ εjaj = y)

(1 ≤ i ≤ j ≤ n), ρj =
∑j

i=1 µi,j (j = 1, . . . , n), and
ρ = max1≤j≤n ρj . Then

R(P2,N) = Ω(
n

ρ
), Q(P2,N) = Ω(

√
n

ρ
).

For example a1 = . . . = an = 1: ρj = Θ(
√

j), ρ =
Θ(

√
n). R(P2,n) = Ω(

√
n), Q(P2,n) = Ω(4

√
n).

Proposition 3 Given any constant δ > 0, for any sufficient
large n ∈ N, there exists a positive integer sequence A =
a1, a2, . . . , an, such that

∑
j aj = O(n1+δ) and ρ = O(1),

where the constants in O(∗) depend only on δ, and ρ is
defined in the same way as in Proposition 2.

Combining Proposition 1, Proposition 2 and Proposition 3,
we obtain Theorem 1.

Proposition 4 Let v1, . . . ,vn be a sequence of vectors in
N

2 (no need to be distinct). Let N =
∑n

i=1 ‖vi‖1. Define

µi,j = sup
y∈Z2

Pr
εi,...,εj∈{±1}

(εivi+εi+1vi+1+· · ·+εjvj = y)

(1 ≤ i ≤ j ≤ n), λj =
∑j

i=1

√
µi,j (j = 1, . . . , n), and

λ = max1≤j≤n λj . Then Q(P3,N) = Ω(n
λ).

Proposition 5 Given any constant δ > 0, for any suffi-
cient large n ∈ N, there exists a vector sequence V =
v1,v2, . . . ,vn ∈ N

2, such that∑
j

‖vj‖1 = O(n1+δ) and λ = O(log n),

where the constants in O(∗) depend only on δ, and λ is
defined in the same way as in Proposition 4.

Combining Proposition 1, Proposition 4 and Proposition 5,
we obtain Theorem 2.

4 Proof of Proposition 2

Consider the following n-step random walk in Z
2: Y0 =

(0, 0), Yk = Yk−1 + (ak, 0) with probability 1
2 , and Yk =

Yk−1 + (0, ak) with probability 1
2 , k = 1, . . . , n. It is clear

that ‖Yk‖1 =
∑k

j=1 aj , k = 1, . . . , n, especially Yn is on
the bottom plane of the pyramid P2,N . Using the definition
of µi,j we can prove

Lemma 8 For any y ∈ Z
2, 0 ≤ i < j ≤ n,

Pr(Yj − Yi = y) ≤ µi+1,j .

Due to page limitation we do not give the proof here.
Consider all the 2n paths P = p0p1 · · · pn ∈ P2,N which

are generated by the random walk: pk = pk−1 + (ak, 0) or
pk = pk−1+(0, ak). We use the adversary methods to prove
that in order to separate these 2n paths, Ω(n

ρ) randomized

queries or Ω(
√

n
ρ) quantum queries are needed.

For any two paths P = p0 . . . pn and P′ = p′0 . . . p′n,
define |P ∧ P′| = k if p0 = p′0, . . . , pk = p′k and pk+1 �=
p′k+1. For any point x ∈ V2,N \ (0, 0), define |x|∗ = {k ∈
N :
∑k−1

i=1 ai < ‖x‖1 ≤ ∑k
i=1 ai}, i.e. pk−1pk is the only

possible line segment of the path that point x belongs to.
Now we let

w(P,P′) =

{
0 if pn = p′n,

1
2n−|P∧P′| otherwise.

for both the random and the quantum case. For the
quantum case, let w′(P,P′, x) = w′(P′,P, x) =
w(P,P′) if P(x) �= P′(x), otherwise w′(P,P′, x) =
w′(P′,P, x) = 0. From the definition it is clear that
w′(P,P′, x)w′(P′,P, x) ≥ w(P,P′)2.

We first give lower bound for wt(P):

wt(P) =
∑
P′

w(P,P′) =
n−1∑
k=0

∑
P′:pn �=p′

n
|P′∧P|=k

1
2n−k

=
n−1∑
k=0

1
2n−k

(
2(n−k−1) −

∑
P′:pn=p′

n
|P′∧P|=k

1
)

=
n

2
−

n−1∑
k=0

1
2(n−k)

∑
P′:pn=p′

n
|P′∧P|=k

1. (1)

We know

1
2n−k

∑
P′:pn=p′

n
|P′∧P|=k

1 ≤ Pr(Yn − Yk = pn − pk),

and from Lemma 8 Pr(Yn−Yk = pn−pk) ≤ µk+1,n, thus

n−1∑
k=0

1
2n−k

∑
P′:pn=p′

n
|P′∧P|=k

1 ≤
n−1∑
k=0

µk+1,n = ρn ≤ ρ. (2)

Combine inequality (1) with (2),

wt(P) ≥ n

2
− ρ. (3)

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Next we derive upper bounds to v(P, x) and v(P′, x),
when P(x) �= P′(x) and w(P,P′) > 0. Without loss of
generality, we can assume P(x) = 1, P′(x) = 0. We triv-
ially bound v(P, x) by wt(P):

v(P, x) =
∑
P′′

w′(P,P′′, x) ≤
∑
P′′

w(P,P′′) = wt(P). (4)

Now we need to bound v(P′, x):

v(P′, x) =
∑
P′′

w′(P′,P′′, x) =
∑

P′′:P′′(x)=1,

p′′
n �=p′

n

1
2n−|P′∧P′′|

=
|x|∗−1∑
k=0

1
2n−k

∑
P′′:|P′′∧P′|=k,

P′′(x)=1,p′′
n �=p′

n

1

≤
|x|∗−1∑
k=0

1
2n−k

∑
P′′:|P′′∧P′|=k,

P′′(x)=1

1. (5)

Suppose P′′ = p′′0 . . . p′′m. Since P′′(x) = 1, i.e. path
P′′ contains point x. We know p′′|x|∗ = p′′|x|∗−1 + (a|x|∗ , 0)
or p′′|x|∗ = p′′|x|∗−1+(0, a|x|∗), according to the construction
of the path, p′′|x|∗ has at most two different possible choices.
Therefore,

1
2n−k

∑
P′′:|P′′∧P′|=k,

P′′(x)=1

1 ≤ 2 max
y∈V2,N

Pr(Y|x|∗ −Yk = y− p′′k).

(6)
From Lemma 8,

max
y∈V2,N

Pr(Y|x|∗ − Yk = y − p′′k) ≤ µk+1,|x|∗ , (7)

Combine inequalities (5),(6),(7),

v(P′, x) ≤
|x|∗−1∑
k=0

2µk+1,|x|∗ = 2ρ|x|∗ ≤ 2ρ. (8)

Finally combine inequalities (3),(4) and (8),

R(P2,N) = Ω
(

max
{

wt(P)
v(P, x)

,
wt(P′)
v(P′, x)

})

= Ω
(

max
{

wt(P)
wt(P)

,
n
2 − ρ

2ρ

})
= Ω(

n

ρ
),

Q(P2,N) = Ω

(√
wt(P)wt(P′)

v(P, x)v(P′, x)

)

= Ω

(√
wt(P) · (n

2 − ρ)
wt(P) · 2ρ

)
= Ω(

√
n

ρ
).

�

5 Proof of Proposition 3

To simplify our representation, for a vector sequence
W = w1, . . . ,wt ∈ Z

d, we define

µ(W) = max
y∈Zd

Pr
ε1,...,εt∈{±1}

(ε1w1 + · · · + εtwt = y),

so in Proposition 3 our µi,j = µ(ai, ai+1, . . . , aj), and in
Proposition 5 µi,j = µ(vi,vi+1, . . . ,vj) (1 ≤ i ≤ j ≤ n).

Fact 1 If W ′ is a subsequence of W (no need to be consec-
utive), then µ(W) ≤ µ(W ′).

Proof of Proposition 3: Pick a large integer h0 such that
1

2h0+1 < δ. We recursively construct sequence A.
For any finite sequence A of integers, let N(A) denote

the sum of all the integers in the sequence. Let A(1) =
1, 2, . . . , m, then N(A(1)) = O(m2), and µi,j = µ(i, i +
1, . . . , j), from Lemma 3 µ(i, . . . , j) ≤ O(1

(j−i+1)3/2),

thus ρj(A(1)) ≤ ∑j
i=1 O(1

(j−i+1)3/2) = O(1) (j =
1, . . . , m).

Suppose we have already constructed A(k) =
a1, . . . , amk

, such that N(A(k)) = O(mdk

k), and ∀1 ≤
j ≤ mk, ρj(A(k)) = O(1). We have d1 = 2. We
will construct a new sequence A(k+1) with length m(k+1)

(m(k+1) > mk), s.t. N(A(k+1)) = O(mdk+1

(k+1)), where

1 + 1
2h0+1 < dk+1 < dk, {dj} ↓ 1 + 1

2h0+1 , and also

ρj(A(k+1)) = O(1) for j = 1, . . . , m(k+1).
We construct A(k+1) from A(k). Let

s = m
dk

h0+1

k , t = m
(h0+ 1

2)dk
h0+1 −1

k .

Since dk > 1 + 1
2h0+1 , t is well defined.

From Lemma 7 we know that there exists a Bh0-
sequence in {1, . . . , csh0} with size s, c is some constant.
Let b′1, . . . , b

′
s be the Bh0 sequence, let bj = b′j + csh0 , j =

1, . . . , s, then b1, . . . , bs is also a Bh0 sequence, and for
1 ≤ j ≤ s, csh0 < bj ≤ 2csh0 . Construct

A(k+1) = A(k), b1, · · · bs;
...

...
...

A(k), b1, · · · bs.


 t times

here (A(k), b1, . . . , bs) repeats t times. Write the sequence
b1, . . . , bs by B. The following is true:

Lemma 9 µ(B) = µ(b1, . . . , bs) ≤ O(s−h0− 1
2).

We leave the proof of Lemma 9 to the Appendix.
Now we show that sequence A(k+1) is better than A(k):

m(k+1) = |A(k+1)| = t(mk + s) = Θ(m
(h0+1

2)dk
h0+1

k),

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

(since s = o(mk)), and

N(A(k+1)) = t(N(A(k)) +
s∑

j=1

bj)

≤ t(O(mdk

k) + s · 2csh0)

= O(m
(2h0+3

2)dk
h0+1 −1

k).

Thus

dk+1 =
(2h0+

3
2)dk

h0+1 − 1
(h0+

1
2)dk

h0+1

=
(4h0 + 3)dk − 2(h0 + 1)

(2h0 + 1)dk
.

Therefore,

d(k+1) − (1 + 1
2h0+1)

dk − (1 + 1
2h0+1)

=
1
dk

. (9)

Since d1 = 2 > 1 + 1
2h0+1 , so {dj} ↓ 1 + 1

2h0+1 < 1 + δ.

We need to show A(k+1) satisfy ρj(A(k+1)) = O(1)
(j = 1, . . . , m(k+1)). Write j = q(mk + s) + r, where
q ∈ N ∪ {0} and 0 < r ≤ mk + s. There are two cases,
either j is in A(k) part or j is in B part:

Case 1: 1 ≤ r ≤ mk, i.e. j is in A(k) part, from the
construction of A(k+1),

ρj(A
(k+1)) =

�
i≤j−r−s

µi,j(A
(k+1))

+

j−r�
i=j−r−s+1

µi,j(A
(k+1)) +

j�
i=j−r+1

µi,j(A
(k+1))

=
�

i≤j−r−s

µi,j(A
(k+1)) +

s�
i=1

µi,s+r(B,A(k))

+
r�

i=1

µi,r(A
(k)).

The last additive term is nothing but ρr(A(k)), we already
know ρr(A(k)) = O(1). By Fact 1

µi,s+r(B, A(k)) ≤ µi,s(B, A(k)) = µ(bi, . . . , bs),

and from Lemma 3 µ(bi, . . . , bs) ≤ O(1
(s−i+1)3/2), there-

fore the second additive term satisfies

s∑
i=1

µi,s+r(B, A(k)) ≤
s∑

i=1

O(
1

(s − i + 1)3/2
) = O(1).

It remains to upper bound the first term∑
i≤j−r−s µi,j(A(k+1)). Since i ≤ j − r − s, by

Fact 1 we have

µi,j(A(k+1)) ≤ µj−r−s+1,j(A(k+1)) = µ(B, A(k)) ≤ µ(B).

From lemma 9 µ(B) = µ(b1, . . . , bs) ≤ O(s−h0− 1
2). Thus∑

i≤j−r−s

µi,j(A(k+1)) ≤ (j − r − s)O(s−h0− 1
2)

≤ m(k+1)O(s−h0− 1
2) = O(1).

Therefore in case 1 ρj(A(k+1)) = O(1) for each j =
1, . . . , m(k+1).

Case 2: mk + 1 ≤ r ≤ mk + s, i.e. j is in B part. Let
r1 = r − mk, then

ρj(A
(k+1)) =

�
i≤j−mk−s

µi,j(A
(k+1)) +

j−r�
i=j−mk−s+1

µi,j(A
(k+1))

+

j−r1�
i=j−r+1

µi,j(A
(k+1)) +

j�
i=j−r1+1

µi,j(A
(k+1))

=
�

i≤j−m−s

µi,j(A
(k+1))

+
s�

i=r1+1

µ(bi, . . . , bs, A
(k), b1, . . . , br1)

+

mk�
i=1

µi,mk+r1(A
(k), b1, . . . , br1) +

r1�
i=1

µ(bi, . . . , br1).

First we use Fact 1 on the third term,

mk∑
i=1

µi,mk+r1(A
(k), b1, . . . , br1) ≤

mk∑
i=1

µi,mk
(A(k))

= ρmk
(A(k)) = O(1).

Next we use Lemma 3 and Fact 1 to upper bound the second
and fourth term,

s∑
i=r1+1

µ(bi, . . . , bs, A
(k), b1, . . . , br1)

≤
s∑

i=r1+1

µ(bi, . . . , bs, b1, . . . , br1)

≤
s∑

i=r1+1

O(
1

(r1 + s − i + 1)3/2
) = O(1),

r1∑
i=1

µ(bi, . . . , br1) ≤
r1∑

i=1

O(
1

(r1 − i + 1)3/2
) = O(1).

For the first term, since i < j −mk − s, µi,j(A(k+1)) ≤
µ(B) = O(s−h0− 1

2), so∑
i≤j−m−u

µi,j(A(k+1)) ≤ jO(s−h0− 1
2)

≤ m(k+1)O(s−h0− 1
2) = O(1).

This finishes the proof of case 2.

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Since d1 = 2, dk+1 = (4h0+
3
2)dk−2(h0+1)

(2h0+1)dk
, from Eq. (9)

dk+1 → 1 + 1
2h0+1 < 1 + δ, and after constant steps (more

precisely log(1+1/(2h0+1))

(
1− 1

2h0+1

δ− 1
2h0+1

)
steps), we can get a

sequence A satisfy both conditions. �

6. Proof of Proposition 4(Sketch)

Most part of the proof is the same as Proposition 2, ex-
cept we have a 3-d random path, and also we need to define
unequal w′(P,P′, x) and w′(P′,P, x), in order to derive
better quantum lower bound.

Consider the following n-step random walk in Z
3: Y0 =

(0, 0, 0), Yk = Yk−1 +(vk, 0) with probability 1
2 , and Yk =

Yk−1 + (0, 0, ‖vk‖1) with probability 1
2 , k = 1, . . . , n. It is

clear that ‖Yk‖1 =
∑k

j=1 ‖vj‖1, (k = 1, . . . , n), especially
Yn is on the bottom plane of the pyramid P3,N .

Lemma 10 For any y ∈ Z
3, 0 ≤ i < j ≤ n,

Pr(Yj − Yi = y) ≤ µi+1,j .

Consider all the 2n paths P = p0p1 · · · pn ∈ P3,N which
are generated by the random walk: pk = pk−1 + (vk, 0)
or pk = pk−1 + (0, 0, ‖vk‖1). To make the path more
precisely, if pk = pk−1 + (x1, x2, x3), the path first goes
x1 steps along x-axis, then x2 steps along y-axis, then x3

steps along z-axis. We use the quantum adversary method
to prove that in order to separate these 2n paths, Ω(n

λ) quan-
tum queries are needed.

For any two paths P = p0 . . . pn and P′ = p′0 . . . p′n,
define |P ∧ P′| = k if p0 = p′0, . . . , pk = p′k and pk+1 �=
p′k+1. For any point x ∈ V3,N \(0, 0, 0), define |x|∗ = {k ∈
N :
∑k−1

i=1 ‖vi‖1 < ‖x‖1 ≤ ∑k
i=1 ‖vi‖1}, i.e. pk−1pk is

the only possible segment of the path that point x belongs
to. Now we let

w(P,P′) =

{
0 if pn = p′n,

1
2n−|P∧P′| otherwise.

and let

w′(P,P′, x) =
√

µ|P∧P′|+1,|x|∗
2n−|P∧P′| ,

if P(x) = 1,P′(x) = 0, pn �= p′n;

w′(P,P′, x) =
1

2n−|P∧P′|√µ|P∧P′|+1,|x|∗
,

if P(x) = 0,P′(x) = 1, pn �= p′n; w′(P,P′, x) =
0 otherwise. Notice that if P(x) �= P′(x), then it
must be |P ∧ P′| < |x|∗, so the notation µ|P∧P′|+1,|x|∗
is well defined. From the definition it is clear that
w′(P,P′, x)w′(P′,P, x) ≥ w(P,P′)2.

We first give lower bound for wt(x):

wt(P) =
∑
P′

w(P,P′) =
n−1∑
k=0

∑
P′:pn �=p′

n
|P′∧P|=k

1
2n−k

=
n−1∑
k=0

1
2n−k

(
2(n−k−1) −

∑
P′:pn=p′

n
|P′∧P|=k

1
)

=
n

2
−

n−1∑
k=0

1
2(n−k)

∑
P′:pn=p′

n
|P′∧P|=k

1. (10)

We know

1
2n−k

∑
P′:pn=p′

n
|P′∧P|=k

1 ≤ Pr(Yn − Yk = pn − pk),

and from Lemma 10 Pr(Yn − Yk = pn − pk) ≤ µk+1,n ≤√
µk+1,n (the last “≤” is due to µk+1,n ≤ 1). Thus

n−1∑
k=0

1
2n−k

∑
P′:pn=p′

n
|P′∧P|=k

1 ≤
n−1∑
k=0

√
µk+1,n = λn ≤ λ. (11)

Combine inequality (10) with (11),

wt(P) ≥ n

2
− λ. (12)

Next we derive an upper bound to v(P, x)v(P′, x) when
P(x) �= P′(x) and w(P,P′) > 0. Without loss of general-
ity, we assume P(x) = 1 and P′(x) = 0. Then

v(P, x) =
∑
P′′

w′(P,P′′, x) =
∑

P′′:P′′(x)=0,

p′′
n �=pn

√
µ|P∧P′′|+1,|x|∗
2n−|P∧P′′|

=
|x|∗−1∑
k=0

∑
P′′:|P∧P′′|=k,

P′′(x)=0,p′′
n �=pn

√
µk+1,|x|∗
2n−k

=
|x|∗−1∑
k=0

√
µk+1,|x|∗
2n−k

∑
P′′:|P∧P′′ |=k,

P′′(x)=0,p′′
n �=pn

1.

We trivially bound the number of path P ′′ such that |P∧
P′′| = k,P′′(x) = 0 and p′′n �= pn by 2n−k, so

v(P, x) ≤
|x|∗−1∑
k=0

√
µk+1,|x|∗
2n−k

· 2n−k

≤
|x|∗−1∑
k=0

√
µk+1,|x|∗ = λ|x|∗ ≤ λ. (13)

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Now it turns to bound v(P′, x):

v(P′, x) =
∑
P′′

w′(P′,P′′, x)

=
∑

P′′:P′′(x)=1,

p′′
n �=p′

n

1
2n−|P′∧P′′|√µ|P′∧P′′|+1,|x|∗

=
|x|∗−1∑
k=0

1
2n−k√µk+1,|x|∗

∑
P′′:|P′′∧P′|=k,

P′′(x)=1,p′′
n �=p′

n

1

≤
|x|∗−1∑
k=0

1
2n−k√µk+1,|x|∗

∑
P′′:|P′′∧P′|=k,

P′′(x)=1

1. (14)

Suppose P′′ = p′′0 . . . p′′n. Since P′′(x) = 1, i.e. path
P′′ contains point x, we know p′′|x|∗ = p′′|x|∗−1 + (v|x|∗ , 0)
or p′′|x|∗ = p′′|x|∗−1 + (0, ‖v|x|∗‖1), according to the con-
struction of the path, p′′|x|∗ has at most two different choices.
Therefore,

1
2n−k

∑
P′′:|P′′∧P′|=k,

P′′(x)=1

1 ≤ 2 max
y∈V3,N

Pr(Y|x|∗ − Yk = y − p′′k).

(15)
From Lemma 10,

max
y∈V3,N

Pr(Y|x|∗ − Yk = y − p′′k) ≤ µk+1,|x|∗ , (16)

Combine inequality (14),(15),(16),

v(P′, x) ≤
|x|∗−1∑
k=0

2µk+1,|x|∗√
µk+1,|x|∗

= 2λ|x|∗ ≤ 2λ. (17)

Combine inequality (12),(13) and (17),

Q(P3,N) = Ω

(√
wt(P)wt(P′)

v(P, x)v(P′, x)

)

= Ω

(√
(n

2 − λ) · (n
2 − λ)

λ · 2λ

)
= Ω(

n

λ
).

�

7. Proof of Proposition 5(Sketch)

Pick a fixed integer h0 > 3 such that 2
h0

< δ. We recur-
sively construct our vector sequence V .

Similarly as the proof of Proposition 3, for any vector
sequence W we will use N(W) to denote the sum of 1-
norm of the vectors in the sequence.

(1) Let V (1) = {(1, m), (2, m − 1), . . . , (m, 1)}. Then
the length of sequence V (1) is m, and N(V (1)) = m(m +
1) = O(m2).

It is clear that vectors {(i, m + 1 − i), (i + 1, m −
i), . . . , (j, m + 1− j)} satisfy the conditions ‖vk −vk′‖ ≥
1(k �= k′), and also it is easy to check if j − i ≥ 6, then for
any ‖e‖ = 1 we can select at least (j − i + 1)/2 vectors vk

from {(i, m + 1 − i), (i + 1, m − i), . . . , (j, m + 1 − j)}
with |〈vk, e〉| ≥ 1, so from Lemma 5

µ{(i, m + 1 − i), . . . , (j, m + 1 − j)} ≤ c1(j − i + 1)−2.

We can pick another constant c2 > c1 to handle the case
when j − i < 6, thus

µi,j(V
(1)) = µ{(i, m+1−i), . . . , (j, m+1−j)} ≤ c2(j−i+1)−2,

thus λj(V (1)) =
∑j

i=1

√
µi,j(V (1)) ≤ ∑j

i=1

√
c2

(j−i+1) =
O(log j) ≤ O(log m).

(2) Suppose we have already constructed sequence
V (k) = v1v2 · · ·vmk

such that N(V (k)) = O(mdk

k)
(dk > 1+ 2

h0
), and ∀ 1 ≤ j ≤ mk, λj(V (k)) = O(log mk).

We have d1 = 2. We try to construct a sequence V (k+1)

with length m(k+1) (m(k+1) > mk), s.t. N(V (k+1)) =
O(mdk+1

(k+1)), where 1+ 2
h0

< dk+1 < dk, {dj} ↓ 1+ 2
h0

, and

also λj(V (k+1)) = O(log m(k+1)) (j = 1, . . . , m(k+1)).
Let

s = m
dk

h0+2

k , t = m
h0

h0+2 dk−1

k ,

since dk > 1 + 2
h0

, t is well defined.
From Lemma 7 we know there is a Bh0-sequence in

{1, . . . , c3s
h0} with size s, here c3 is a constant. Suppose

b1, b2 . . . , bs be the Bh0-sequence. Now we append V (k)

by all the vectors (3bi1 , 3bi2) (i1 �= i2) with certain order,
and then repeat the sequence t times, more precisely

V (k+1) =V (k), (3b1, 3b2), (3b2, 3b1), · · · (3bs, 3bs−1);
...

...
...

V (k), (3b1, 3b2), (3b2, 3b1), · · · (3bs, 3bs−1).

���
�� t

here vector (3bi1 , 3bi2) (i1 < i2) is followed by the vector
(3bi2 , 3bi1). Let W = (3b1, 3b2), · · · , (3bs, 3bs−1). We
claim that

Lemma 11 Suppose w1, . . . ,wl be a consecutive subse-
quence of W , then µ(w1, . . . ,wl) ≤ O(l−2).

Lemma 12 µ(W) ≤ O(|W |−h0) = O(s−2h0).

Lemma 11 can be proved using Lemma 5 and Lemma 12
can be proved using Lemma 6. Due to page limitation we
will give more details in a full version paper.

Lemma 11 and Lemma 12 can be considered as the 3-d
version of Lemma 3 and Lemma 9. It will be used to upper
bound λj(V (k+1)).

The total length of the sequence V (k+1) is m(k+1) =
t(mk + |W |) = t(mk + s(s − 1)) = Θ(tmk) =

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

Θ(m
h0

h0+2 dk

k). The third ”=” is due to s(s − 1) < s2 =

m
2dk

h0+2

k ≤ m
4

h0+2

k = o(mk), since h0 > 3. And

N(V (k+1)) = t(N(V (k)) + N(W))

= t(O(mdk

k) +
s∑

i�=j

(3bi + 3bj))

≤ t(O(mdk

k) + s2 · 6c3s
h0)

= t(O(mdk

k) + 6c3m
dk)

= O(tmdk

k) = O(m
2h0+2
h0+2 dk−1

k).

Therefore

d(k+1) =
2h0+2
h0+2 dk − 1

h0
h0+2dk

=
(2h0 + 2)dk − (h0 + 2)

h0dk
,

which implies

d(k+1) − (1 + 2
h0

)

dk − (1 + 2
h0

)
=

1
dk

. (18)

We know d1 = 2 > 1 + 2
h0

, so {dj} ↓ (1 + 2
h0

).
The rest thing is to show sequence V (k+1) satisfies

λj(V (k+1)) = O(log m(k+1)) for j = 1, . . . , m(k+1). The
idea is similar to the proof in Proposition 3. Instead of
Lemma 3 and Lemma 9, we use Lemma 11 and Lemma 12
here. Because of space limitation we omit the proof of this
part.

From Eq. (18) we know dk → 1 + 2
h0

< 1 + δ, so

after constant steps (more precisely log(1+2/h0)

(
1−2/h0
δ−2/h0

)
steps) we will obtain a vector sequence V which satisfies
the conditions in Proposition 5. �

References

[1] S. Aaronson. Lower bounds for local search by quan-
tum arguments, Proc. of 36th STOC, pp. 465-474,
2004.

[2] D. Aldous. Minimization algorithms and random walk
on the d-Cube, Annals of Probability 11(2), pp. 403-
413, 1983.

[3] A. Ambainis. Polynomial degree vs. quantum query
complexity, Proc. of 44th FOCS, pp. 230-239, 2003.

[4] C. Bennett, E. Bernstein, G. Brassard, and U. Vazi-
rani. Strengths and weaknesses of quantum computa-
tion, SIAM journal on Computing 26, pp. 1510-1523,
1997.

[5] R. C. Bose and S. Chowla, Theorems in the additive
theory of numbers, Comment. Math. Helv. 37 (1962–
63), 141–147.

[6] Xi Chen and Xiaotie Deng. On algorithms for discrete
and approximate brouwer fixed points, Proc. of 37th
STOC, pp. 323-330, 2005.

[7] C. G. Esseen. Fourier analysis of distribution func-
tions, Acta Mathematica 77, pp. 1-125, 1945.

[8] K. Friedl, G. Ivanyos, M. Santha and Y. Verhoeven.
On the black-box Complexity of Sperner’s Lemma,
15th FCT, pp. 245-257, 2005.

[9] G. Halász. Estimates for the concentration function of
combinatorial number theory and probability, Period-
ica Mathematica Hungarica Vol. 8 (3–4), (1977) 197-
211.

[10] H. Halberstam and K. F. Roth. Sequences, Oxford,
1966.

[11] D. Johnson, C. Papadimitriou, M. Yannakakis. How
Easy is Local Search? Journal of Computer System
Sciences 37(1) 79-100, 1988.

[12] D. Llewellyn, C. Tovey, and M. Trick. Local optimiza-
tion on graphs, Discrete Applied Mathematics 23:157-
178, 1989. Erratum: 46: 93-94, 1993.

[13] M. Santha and M. Szegedy. Quantum and classical
query complexities of local search are polynomially
related, Proc. of 36th STOC, pp. 494-501, 2004.

[14] A. Sárközy and E. Szemerédi. Über ein Problem von
Erdös und Moser, Acta Arithmetica 11, 1965, 205-
208.

[15] Y. Verhoeven. Enhanced algorithms for local search,
Information Processing Letters 97, 171-176, 2006.

[16] Shengyu Zhang. On the power of Ambainis’s lower
bounds, In Proc. of 31st ICALP, LNCS 3142, pp.
1238-1250, 2004.

[17] Shengyu Zhang. New upper and lower bounds for ran-
domized and quantum Local Search, Proc. of 38th
STOC 2006.

Appendix: Proof of Lemma 9

Proof of Lemma 9: Define s independent random variable
Xj : Pr(Xj = bj) = Pr(Xj = −bj) = 1

2 . Let M = csh0 ,
then M < bj ≤ 2M (j = 1, . . . , s). The inequality we
need to prove is

Pr(X1 + . . . + Xs = y) ≤ O(
1

sh0
√

s
) (19)

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

We prove it by the following two steps:

Pr(y − 4h0M ≤ X1 + . . . + Xs ≤ y + 4h0M) ≤ O(
1√
s
),

(20)
and

Pr(X1 + . . . + Xs = y) ≤ O(
1

sh0
)

·Pr(y − 4h0M ≤ X1 + . . . + Xs ≤ y + 4h0M)(21)

Proof of Inequality (20): Since M < bj ≤ 2M ,
Σ2 =

∑s
j=1 E[X2

j] =
∑s

j=1 b2
j = Θ(sM2), and Σ3 =∑s

j=1 E[|Xj |3] =
∑s

j=1 b3
j = Θ(sM3). From Esseen’s

inequality we have∣∣∣∣Pr(
X1 + . . . + Xs√

Σ2

< y) − Φ(y)
∣∣∣∣ ≤ c

Σ3

Σ3/2
2

= O(
1√
s
).

By picking two different y: y1 = y√
Σ2

− c1√
s

and y2 =
y√
Σ2

+ c1√
s

in the Inequality and adding up the two inequal-
ities, we get∣∣∣Pr(

X1 + . . . + Xs√
Σ2

<
y√
Σ2

+
c1√
s
)

−Pr(
X1 + . . . + Xs√

Σ2

<
y√
Σ2

− c1√
s
)
∣∣∣

≤ O(
1√
s
) +
∣∣∣Φ(

z√
Σ2

+
c1√
s
) − Φ(

z√
Σ2

− c1√
s
)
∣∣∣

= O(
1√
s
),

here c1 is a constant to be fixed later. Thus

Pr(y−c1

√
Σ2√
s

≤ X1+. . .+Xs < y+c1

√
Σ2√
s

) ≤ O(
1√
s
).

Since Σ2 = Θ(sM2), we can choose a suitable c1 such that
c1

√
Σ2√
s

> 4h0M (notice h0 is a constant). Hence

Pr(y − 4h0M ≤ X1 + . . . + Xs ≤ y + 4h0M) ≤ O(
1√
s
).

Proof of Inequality (21): For any h0-element subset
{i1, . . . , ih0} ⊂ {1, . . . , s}, we have

Pr(
s∑

j=1

Xj = y)

=
∑

ε1,...,εh0
∈{±1}

Pr(
s∑

j=1

Xj = y, xi1 = ε1bi1 , . . . , xih0
= εhbih0

)

=
∑

ε1,...,εh0
∈{±1}

Pr


 ∑

1≤j≤s,
j �=i1,...,ih0

Xj = y −
h0∑

j=1

εjbij


 · 1

2h0
.

The last ”=” is due to Pr(Xj = bj) = Pr(Xj = −bj) =
1/2. Now change εjbij to −εjbij ,

Pr(
s∑

j=1

Xj = y) =
∑

ε1,...,εh0
∈{±1}

Pr(
∑

1≤j≤s,
j �=i1,...,ih0

Xj = y −
h0∑

j=1

εjbij)

·Pr(xi1 = −ε1bi1 , . . . , xih0
= −εh0bih0

)

≤
∑

ε1,...,εh0
∈{±1}

Pr(
s∑

j=1

Xj = y − 2
h0∑

j=1

εjbij).

Therefore

Pr (

s�
j=1

Xj = y)

≤ 1�
s

h0

� �
i1<···<ih0

�
� �

ε1,...,εh0∈{±1}
Pr(

s�
j=1

Xj = y − 2

h0�
j=1

εjbij)

	

≤ O(
1

sh0
)
�

ε1,...,εh0
∈{±1}

�
� �

i1<···<ih0

Pr

�
s�

j=1

Xj = y − 2

h0�
j=1

εjbij

�	

(22)

For a fixed (ε1, . . . , εh0) ∈ {±1}h0 , all the
(

s
h0

)
value


h0∑

j=1

εjbij : 1 ≤ i1 < · · · < ih0 ≤ s




are distinct, otherwise we will have two h0-subset with
same sum, contradiction to Bh0 -sequence. Therefore z −
2
∑h0

j=1 εjbij are all distinct. But we know M < bj ≤ 2M ,
so

y − 4h0M ≤ y − 2
h0∑

j=1

εjbij ≤ y + 4h0M.

Thus

∑
i1<···<ih0

Pr


 s∑

j=1

Xj = y − 2
h0∑

j=1

εjbij




≤Pr


y − 4h0M ≤

s∑
j=1

Xj ≤ y + 4h0M


(23)

Combine Eq. (22), Eq. (23)

Pr


 s∑

j=1

Xj = y




≤ O

(
1

sh0

) ∑
ε1,...,εh0
∈{±1}

Pr(y − 4h0M ≤
s∑

j=1

Xj ≤ y + 4h0M)

= O

(
2h0

sh0

)
Pr(y − 4h0M ≤

s∑
j=1

Xj ≤ y + 4h0M).

�

Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS'06)
0-7695-2720-5/06 $20.00 © 2006

Authorized licensed use limited to: Tsinghua University Library. Downloaded on June 25,2010 at 02:10:43 UTC from IEEE Xplore. Restrictions apply.

