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a b s t r a c t

Turán (1984) [11] initiated the study of the sensitivity complexity of graph properties.
He conjectured that for any non-trivial graph properties on n vertices, the sensitivity
complexity is at least n−1. He proved an ⌊

n
4 ⌋ lower bound for sensitivity in his paper: Turán

(1984) [11]. Wegener (1985) [12] proved this conjecture for allmonotone graph properties.
In this paper we improve Turán’s lower bound to 6

17n(≈ 0.35n). We hope that this will
shed some light on the proof of Turán’s conjecture.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Sensitivity complexity s(f ) was first introduced by Cook, Dwork and Reischuk [4,5] (under the name critical complexity)
for studying the time complexity of CRAW-PRAMs. They showed that logb s(f ) is a lower bound for the time needed by a
PRAM to compute a function f (where b = (5+

√
21)/2 ≈ 4.79). Simon [10] has shown that the sensitivity complexity of a

non-degenerate n-variable Boolean function is at least Ω(log n). Turán [11] investigated the sensitivity complexity of graph
properties (see the definition in Section 2). He proved that for any non-trivial graph properties on n vertices, the sensitivity
is at least ⌊

n
4⌋ (the number of variables of graph properties is

n
2


). In [11], Turán also gave an example (the ‘‘contained an

isolated vertex" property) which has sensitivity complexity n − 1. He further conjectured that n − 1 might be the right
lower bound. Wegener [12] proved this conjecture for all monotone graph properties. In this paper we improve Turán’s
lower bound for general graph properties. Here is the main theorem of our paper.

Theorem 1. For any non-trivial graph property f on n vertices, s(f ) ≥
6
17n.

Wegener’s proof relied heavily on the fact that the property is monotone. Our proof strategy is roughly like this: we show
that for any two graphs G and H , there always exists a sequence of graphs G0, G1, . . . ,Gt , where G0 = G, Gt = H , such that
for any 0 ≤ i ≤ t − 1, Gi+1 is a graph obtained by adding or deleting one edge from graph Gi; more importantly, there are
at least αn isomorphism ways of adding or deleting this edge. Therefore, if there exists some i with f (Gi+1) ≠ f (Gi), then
s(f ) ≥ αn. So if s(f ) < αn, then for any two graphs G and H , f (G) = f (H), which contradicts the non-trivial condition of f .
We can show that α is at least 6

17 in this paper.

Related work:
Sensitivity complexity is closely related to decision tree complexity and other complexity measures of Boolean functions.

Here we only list some results related to the sensitivity complexity. For more results we refer readers to the excellent
survey [1] by Buhrman and de Wolf.
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Nisan [8] generalized the concept of sensitivity complexity to block sensitivity complexity and demonstrated that the time
complexity of CREW-PRAM is actually equal to (up to a constant factor) the logarithmof the block sensitivity. He also showed
that block sensitivity, certificate complexity, and decision tree complexity are polynomially related. Nisan and Szegedy [9]
further showed that the degree complexity is also polynomially related to the block sensitivity. But very little is known about
sensitivity complexity except the basic fact that it is a lower bound of block sensitivity. It is conjectured that the sensitivity
complexity is also polynomially related to all four of the complexitymeasuresmentioned above. Gotsman and Linial [6] have
shown that the sensitivity versus degree problem is equivalent to an induced subgraphs problem on the Boolean hypercube
studied by Fan Chung et al. [3]. The best known upper bound on the block sensitivity in terms of the sensitivity complexity is
still exponential (by Kenyon and Kutin [7]). In his paper [11], Turán also conjectured that for a general class of functions, the
weakly symmetric functions, the sensitivity complexity has a similar lower bound. Chakraborty [2] disproved this conjecture
by giving a cyclically invariant function with sensitivity O(N1/3) (N is the number of variables). It is also open whether
Ω(N1/3) is a lower bound for the sensitivity complexity of all weakly symmetric functions, or even all cyclically invariant
functions.

The rest of the paper is organized as follows: in Section 2 we introduce the definitions and some notation, in Section 3
we prove two structural lemmas which will be used in the proof of the main theorem, and then we prove our main result
in Section 4.

2. Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. For an input x ∈ {0, 1}n, xi denotes the input obtained by flipping the ith
bit of x.

Definition 2. The sensitivity complexity of f on input x is defined as s(f , x) = |{i : f (x) ≠ f (xi)}|. The sensitivity of the
function f is defined as s(f ) = maxx s(f , x).

Definition 3. A Boolean function f is symmetric if for every input x = x1 . . . xn and every permutation π ∈ Sn,
f (x1, . . . , xn) = f (π(x1), . . . , π(xn)).

For a symmetric function, we have the following lower bound on the sensitivity complexity:

Lemma 4 (Turán [11]). For every non-trivial symmetric function f : {0, 1}n → {0, 1}, s(f ) > n
2 .

A generalization of the symmetric function is the weakly symmetric function.

Definition 5. A Boolean function f is called weakly symmetric (or transitive-invariant) if there exists a transitive group1

Γ ≤ Sn such that for all σ ∈ Γ and every input x = x1 . . . xn,

f (x1, . . . , xn) = f (σ (x1), . . . , σ (xn)).

In this paper, we are interested in a special class of weakly symmetric functions: graph properties — Boolean functions
which are independent of the labeling of the vertices of a graph. For example, connectivity, being Hamiltonian, being
triangle-free etc are graph properties. Here is the formal definition.

Definition 6. A Boolean function f : {0, 1}(
n
2) → {0, 1} is called a graph property if for every input x = (x(1,2), . . . , x(n−1,n))

and every permutation π ∈ Sn,

f (x(1,2), . . . , x(n−1,n)) = f (x(π(1),π(2)), . . . , x(π(n−1),π(n))).

For graph G = (V , E), we use I(G) to represent the set of isolated vertices in G. Let Vd(G) = {v ∈ V (G)| deg(v) = d} and
V≥d(G) = {v ∈ V (G)| deg(v) ≥ d}. We also use the notation I, Vd, V≥d if the graph G referred to is clear from the context.

3. Two structural lemmas

We need the following two lemmas for proving the main theorem.

Lemma 7. Given graph property f and graph G, if V1(G) ≠ ∅, then either s(f ) ≥ |I(G)| + 1 or, for any vertex v ∈ V1(G) and w
adjacent to v, f (G) = f (G − (v, w)).

Proof. Consider graph G′
= G − (w, v) and suppose I(G) = {u1, . . . , u|I|}; we have

G′
+ (w, ui) ∼= G′

+ (w, v), i = 1, . . . , |I|,

and hence f (G′
+ (w, ui)) = f (G′

+ (w, v)). So if f (G′) ≠ f (G′
+ (w, v)), then f (G′) ≠ f (G′

+ (w, ui)) (i = 1, . . . , |I|).
Therefore, s(f ,G′) ≥ |I(G)| + 1. Otherwise, f (G′) = f (G′

+ (w, v)), i.e. f (G − (w, v)) = f (G). �

1 A group Γ ≤ Sn is transitive if for every i < j, there exists σ ∈ Γ such that σ(i) = j.
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Fig. 1. (a) Function g2(x1, . . . , xt ). (b) Function h(x0, x1, . . . , xt ).

The following lemma was used implicitly in Turan’s proof [11].

Lemma 8. Given graph property f and graph G, if E(G) ≠ ∅, then either s(f ) ≥ |I(G)|/2 or, for all e ∈ E(G), f (G) = f (G − e).

Proof. Suppose s(f ) < |I(G)|/2; we will deduce that for all e ∈ E(G), f (G) = f (G − e).
Pick any edge (u, v) from E(G). Suppose that in graph G, deg(u) = d and vertex u is adjacent to vertices {v1, v2, . . . , vd},

where v1 = v. Suppose I(G) = {u1, . . . , ut}, where t = |I(G)|.
Consider the t-variable Boolean function g2 : {0, 1}t → {0, 1},

g2(x1, . . . , xt) = f (G + x1(v2, u1) + x2(v2, u2) + · · · + xt(v2, ut)),

i.e. we add edge (v2, ui) to graph G iff xi = 1 (i = 1, . . . , t); see Fig. 1(a). Since u1, . . . , ut are isolated vertices in G, it is easy
to see that g2 is a symmetric function. By Lemma 4, either s(g2) > t/2 or g2 is a constant function. But g2 is a restriction
of function f , so s(g2) ≤ s(f ), and thus s(g2) < |I(G)|/2 = t/2; therefore, g2 is a constant on every input. In particular,
g2(1, . . . , 1) = g2(0, . . . , 0), i.e. f (G +

∑t
i=1(v2, ui)) = f (G). Define G2 = G +

∑t
i=1(v2, ui). Consider another Boolean

function g3 : {0, 1}t → {0, 1},

g3(x1, . . . , xt) = f (G2 + x1(v3, u1) + x2(v3, u2) + · · · + xt(v3, ut)).

Similarly, g3 is a symmetric function, so from Lemma 4 s(g3) > t/2 or g3 is a constant function. But s(g3) ≤ s(f ) < t/2, so
g3 is constant, and f (G2) = f (G3), where G3 = G2 +

∑t
i=1(v3, ui). Continuing this procedure, we can show that

f (G) = f (G2) = · · · = f (Gd),

where Gi = Gi−1 +
∑t

j=1(vi, uj) (i = 3, . . . , d).
Now let us consider the graph H = Gd − (u, v1). Define the (t + 1)-variable function h : {0, 1}t+1

→ {0, 1},

h(x0, x1, . . . , xt) = f (H + x0(v1, u) + x1(v1, u1) + · · · + xt(v1, ut)).

See Fig. 1(b). Again h is a symmetric function; using Lemma 4, s(h) > (t + 1)/2 or h is a constant function. Since
s(h) ≤ s(f ) < t/2, h is a constant. In particular, h(0, 0, . . . , 0) = h(1, 0, . . . , 0), i.e. f (H) = f (H + (v1, u)) = f (Gd).

Next we will delete all the edges between {u1, . . . , ut} and {v2, . . . , vd} from H by reversing the adding edge procedure
of G → G2 → · · · → Gd. More precisely, define H1 = H; for i = 2, . . . , d, define

Hi = Hi−1 − (vi, u1) − (vi, u2) − · · · − (vi, ut),

and

hi(y1, . . . , yt) = f (Hi + y1(vi, u1) + y2(vi, u2) + · · · + yt(vi, ut)).

By Lemma 4 and the fact s(f ) < t/2 we can show that all the functions h2, . . . , hd are constant, which implies f (H) =

f (H2) = · · · = f (Hd). But if we compare graph G and graph Hd, it is easy to see that Hd = G − (u, v1). Therefore,
f (G) = f (Hd) = f (G − (u, v)). �

4. Proof of the main theorem

Without loss of generality we assume that for the empty graph K̄n, f (K̄n) = 0. Since f is a non-trivial property, theremust
exist a graph G such that f (G) = 1. Let us consider graphs in f −1(1) = {G|f (G) = 1} with the minimum number of edges.
Definem = min{|E(G)| : f (G) = 1}.

We claim that if m ≥
6
17n, then s(f ) ≥

6
17n. Let G be a graph in f −1(1) and |E(G)| = m ≥

6
17n. Since G has the

minimum number of edges, deleting any edges from Gwill change the value of f (G), i.e. ∀e ∈ E(G), f (G− e) = 0. Therefore,
s(f ,G) ≥ |E(G)| = m ≥

6
17n. Thus s(f ) ≥

6
17n.
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In the following we assume m < 6
17n. Again let G be a graph in f −1(1) with |E(G)| = m. Let us consider the isolated

vertices set I; as−
v∈V

deg(v) = 2|E(G)| = 2m < 2 ×
6
17

n =
12
17

n,

we have

|I| = n − |V≥1| ≥ n −

−
v∈V≥1

deg(v) = n −

−
v∈V

deg(v) ≥
5
17

n.

According to whether or not there exists a degree-1 vertex, we separate the proof into two parts:

Case 1: V1 ≠ ∅, i.e. there exists v ∈ V (G) with deg(v) = 1. We further consider two subcases here:
(a) There exist v1 and v2 ∈ V1 such that (v1, v2) ∈ E(G).
Let G′

= G − (v1, v2). Since G has the minimum number of edges, f (G′) = 0. Suppose I(G) = {u1, . . . , u|I|}; since in
graph G, deg(v1) = deg(v2) = 1, then for any 1 ≤ i1 < i2 ≤ |I|,

G′
+ (ui1 , ui2)

∼= G′
+ (v1, v2) = G.

Thus

f (G′
+ (ui1 , ui2)) = f (G) = 1.

Similarly, we have

f (G′
+ (ui, v1)) = f (G′

+ (ui, v2)) = f (G) = 1, (for all 1 ≤ i ≤ |I|)

but f (G′) = 0; therefore,

s(f ,G′) ≥


|I| + 2

2


≥


⌈

5
17n⌉ + 2

2


≥

6
17

n.

(b) Consider any vertices v1 and v2 ∈ V1 with (v1, v2) /∈ E(G). We will show that |I(G)| ≥
8
17n in this case.

−
v∈V

deg(v) = 2|E(G)| = 2m < 2 ×
6
17

n =
12
17

n,

i.e., −
v∈V1

deg(v) +

−
v∈V≥2

deg(v) <
12
17

n. (1)

Since no two vertices in V1 are adjacent, i.e., all the vertices in V1 are adjacent to vertices in V≥2, we hence have−
v∈V1

deg(v) ≤

−
v∈V≥2

deg(v). (2)

Combining Eqs. (1) and (2), we have
∑

v∈V1
deg(v) < 6

17n, i.e. |V1| < 6
17n.

If |V≥2| ≤
3
17n, then |I| = n − |V1| − |V≥2| > n −

6
17n −

3
17n =

8
17n. Otherwise suppose that |V≥2| > 3

17n; from Eq. (1),

|V1| + 2|V≥2| ≤

−
v∈V1

deg(v) +

−
v∈V≥2

deg(v) <
12
17

n.

Hence |V1| + |V≥2| < 12
17n − |V≥2| < 9

17n. Therefore, |I| = n − |V1| − |V≥2| > n −
9
17n =

8
17n.

Since V1 ≠ ∅, by Lemma 7 either s(f ) ≥ |I(G)| + 1 > 8
17n or there exists an edge e ∈ G with f (G − e) = f (G). But we

know that G has the minimum number of edges, so f (G − e) ≠ f (G); thus s(f ) ≥
8
17n. This finishes the proof of Case 1.

Case 2: V1 = ∅, i.e. ∀v ∈ V − I , deg(v) ≥ 2. In this case,

|I| = n − |V≥1| = n − |V≥2| ≥ n −
1
2

−
v

deg(v) = n − m ≥
11
17

n.

(a) There exist v and w ∈ V2 such that (v, w) ∈ E(G).
Since deg(v) = deg(w) = 2, suppose that besides vertex w, vertex v is also adjacent to vertex x; similarly suppose that

vertex w is also adjacent to vertex y (x and y could be the same vertex). Pick 2r different isolated vertices {v1, . . . , vr} and
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Fig. 2. Graph G2r and H = G2r − (v, w).

{w1, . . . , wr} from I(G), where r =


6
17n

( 1117n ≥ 2


6
17n

for n ≥ 4). DefineG0 = G,Gi = Gi−1+(x, vi) for i = 1, . . . , r ,

and Gi = Gi−1 + (y, wi−r) for i = r + 1, . . . , 2r . If for some i ∈ {1, 2, . . . , 2r}, f (Gi) ≠ f (Gi−1), then by Lemma 7,

s(f ) ≥ |I(Gi)| + 1 = I(G) − i + 1 ≥
11
17

n − 2


6
17

n + 1 ≥
6
17

n (for n ≥ 9).

So let us assume that f (G) = f (G1) = · · · = f (G2r).
Now consider the graph H = G2r − (v, w) (see Fig. 2). In graph H , deg(v) = deg(v1) = · · · = deg(vr) = 1 and they are

both adjacent to x; similarly deg(w) = deg(w1) = · · · = deg(wr) = 1 and they are both adjacent to y. Thus

H + (v, w) ∼= H + (vi, w) ∼= H + (v, wj) ∼= H + (vi, wj) (∀ i, j = 1, . . . , r).

Therefore, if f (H) ≠ f (H + (v, w))(i.e. f (G2r)), then

s(f ,H) ≥ (r + 1)2 =


6
17

n


+ 1

2

≥
6
17

n.

So we can assume that f (H) = f (G2r), which implies f (H) = f (G). Now we define another sequence of graphs H0 = H ,
Hi = Hi−1 − (y, wi) for i = 1, . . . , r , and Hi = Hi−1 − (x, vi−r) for i = r + 1, . . . , 2r . By an argument similar to the previous
one for G0, . . . ,G2r , we can show that either s(f ) ≥

6
17n or f (H) = · · · = f (H2r). So we have f (G) = f (H) = f (H2r). But if

we compare graphs G and H2r , we can see that H2r = G − (v, w), which contradicts the minimality of G.

(b) ∀v1, v2 ∈ V2, (v1, v2) /∈ E(G). We claim that in this case |I| ≥
12
17n.

2|V2| +

−
v∈V≥3

deg(v) =

−
v∈V

deg(v) = 2|E(G)| = 2m <
12
17

n. (3)

Since no two vertices in V2 are adjacent, all the vertices in V2 are adjacent to vertices in V≥3 (V1 = ∅); hence−
v∈V2

deg(v) = 2|V2| ≤

−
v∈V≥3

deg(v). (4)

From Eq. (4) +5× (3), we have

12|V2| + 5
−

v∈V≥3

deg(v) ≤

−
v∈V≥3

deg(v) +
60
17

n,

i.e. 3|V2| +
∑

v∈V≥3
deg(v) ≤

15
17n, which implies

3|V2| + 3|V3| ≤ 3|V2| +

−
v∈V≥3

deg(v) ≤
15
17

n.

So |V2| + |V3| ≤
5
17n; therefore, |I| = n − |V2| − |V3| ≥

12
17n.

By Lemma 8, either s(f ) ≥ |I(G)|/2 ≥
6
17n or for all e ∈ G, f (G − e) = f (G). But we know that G has the minimum

number of edges, so f (G − e) ≠ f (G); thus s(f ) ≥
6
17n. This ends the whole proof. �
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