
A General Magnitude-Preserving Boosting Algorithm for
Search Ranking

Chenguang Zhu1,2 *, Weizhu Chen2, Zeyuan Allen Zhu2,3, Gang Wang2,
Dong Wang1,2, Zheng Chen2

1Institute for Theoretical
 Computer Science
Tsinghua University

Beijing, China, 100084

{zcg.cs60,
wd890415}@gmail.com

2Microsoft Research Asia
No. 49 Zhichun Road

Haidian District
Beijing, China, 100080

{v-chezhu, wzchen, v-zezhu,
gawa, v-dongmw,

zhengc}@microsoft.com

3Fundamental Science Class
Department of Physics

Tsinghua University
Beijing, China, 100084

zhuzeyuan@hotmail.com

ABSTRACT
Traditional boosting algorithms for the ranking problems usually
employ the pairwise approach and convert the document rating
preference into a binary-value label, like RankBoost. However,
such a pairwise approach ignores the information about the
magnitude of preference in the learning process. In this paper, we
present the directed distance function (DDF) as a substitute for
binary labels in pairwise approach to preserve the magnitude of
preference and propose a new boosting algorithm called
MPBoost, which applies GentleBoost optimization and directly
incorporates DDF into the exponential loss function. We give the
boundedness property of MPBoost through theoretic analysis.
Experimental results demonstrate that MPBoost not only leads to
better NDCG accuracy as compared to state-of-the-art ranking
solutions in both public and commercial datasets, but also has
good properties of avoiding the overfitting problem in the task of
learning ranking functions.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6[Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Directed distance function (DDF), magnitude-preserving,
pairwise-preference

1. INTRODUCTION
Boosting [9, 10] is one of the state-of-the-art algorithms in
machine learning. Based on boosting, many algorithms have been
proposed to solve supervised learning tasks, including [10] for
classification, [24] for facial recognition and [12] for spam
filtering. All of these have theoretically and empirically
demonstrated that boosting algorithm and its variants have
excellent advantages in terms of convergence of loss function,
low generalization error, little restriction on the form of weak
learners, etc.
As an interesting and significant application, boosting is also
successfully employed in the learning to rank problem for Web
search, where a set of queries Q, and a set of documents Dq for
each query q Q∈ are given. For each document of a given query,
there is also a rating ri to encode the relevance level of this
document. Current popular strategy to apply boosting for ranking,
like RankBoost [7, 8], is to regard the pairwise preference
information as the binary classification data, which belongs to the
pairwise approach for learning to rank [11]. Specifically, if
document x1 is rated higher than another document x2 with respect
to the same given query q, (x1, x2) is labeled as a positive instance.
Otherwise, (x1, x2) is labeled as a negative instance. However, this
kind of pairwise transformation from ranking to classification
neglects the scale or magnitude of the difference between rating
pairs, like the magnitude value of r1-r2. As a matter of fact, far
richer representations can be achieved if the magnitude of rating
differences can be considered in boosting algorithm. Therefore,
designing a new boosting algorithm for ranking with
consideration of the magnitude of difference between rating pairs
is very desirable.
Some attempts have been made to address similar issues. In the
RankBoost algorithm [7, 8], the magnitude issue is mentioned in
the introduction of the feedback function Φ , but later the
theoretical and empirical analysis focus on the case where

 *This work was done when the first author was visiting Microsoft

Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’09, November 2-6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11...$10.00.

817

1,0,1Φ = − , which is under the binary-label model. [21]
leveraged multiple hyperplanes to preserve the magnitude of
rating differences on the basis of the RankSVM algorithm [13, 17]
and demonstrated the importance of preference magnitude. More
recently, [4] analyzed the stability bounds of magnitude-
preserving loss functions for generalization error and proposed
two magnitude-preserving ranking algorithms, MPRank and
SVRank, with reports of the improvement on mis-ordering loss.
In this paper, we observe that it is fairly straightforward to apply
the preference magnitude into the exponential loss function of
boosting to improve the accuracy of ranking. To preserve the
magnitude of rating differences, we propose directed distance
function (DDF) as the substitute for binary labels in the pairwise
approach to ranking. The exact form of DDF can vary with
different representations, under only two basic requirements.
Thus, we present three kinds of DDFs and list the appropriate
scope of usage. Then, on the basis of DDF, we propose a novel
ranking algorithm, MPBoost, based on GentleBoost [10]. It
directly leverages the exponential loss function with DDF as the
substitute for binary labels, which makes this algorithm suitable
for magnitude-preserving ranking. We also prove a theorem about
its effectiveness on the training set. Experimental results on two
public and one commercial datasets all illustrate that MPBoost
with DDF can significantly outperform traditional pairwise
ranking algorithms as well as the state-of-the-art ranking methods
like ListNet. Also, the experiment demonstrates that the
application of DDF can lead MPBoost to avoid the overfitting
problem.
The rest of the paper is organized as follows: In Section 2, we
firstly review some related works. In Section 3, we present the
concept of magnitude-preserving labels: directed distance
function (DDF), with three exemplary functions. In Section 4, we
propose the MPBoost algorithm, which applies exponential loss
functions with DDF. We report the experiment results in Section
5 and conclude the paper in Section 6.

2. RELATED WORKS
2.1 Learning to Rank
Learning to rank is a popular topic in both machine learning and
information retrieval research. One of the main approaches to
ranking problem is referred to as the pairwise approach. In the
pairwise approach, the learning to rank task is transformed into a
binary classification task based on document pairs (whether the
first document or the second should be ranked first given a
query). [13, 17] proposed using the SVM techniques to build the
classification model, which is referred to as RankSVM. [7, 8]
proposed performing the task in a similar way but via the
AdaBoost algorithm. [1] also adopted the approach and developed
a method called RankNet, which leverages the cross entropy as
the loss function and gradient descent as the algorithm to train a
neural network model.

Recently, the concept of magnitude-preserving ranking was
introduced in [4, 21]. [21] leveraged multiple hyperplanes to
preserve the magnitude of rating differences on the basis of the
RankSVM and proposed a method called “Multiple Hyperplane
Ranker” (MHR). In [4], the authors analyzed the stability bounds
of magnitude-preserving loss functions for generalization error.
Based on the results, they proposed two algorithms, MPRank and
SVRank and reported empirical results which showed
improvements on mis-ordering loss. However, the loss functions

in [4] are regularization-based, and the σ - admissibility
requirement of cost function limits the forms of functions to some
extent. For example, exponential cost functions can hardly meet
the requirement with a small constant σ .

2.2 Boosting
AdaBoost [9] is a state-of-the-art classification algorithm which
stage-wise combines a number of weak learners and generates a
strong hypothesis. [10, 22] analyzed the theoretical advantage of
the boosting algorithm from the aspect of margin and VC-
dimension. [20] presents the abstraction for different versions of
boosting algorithms. In real application, GentleBoost [10] is a
variation of boosting algorithm which employs the Newton step to
minimize the exponential loss function. It has been shown in [10]
that GentleBoost has similar performance to AdaBoost, and often
outperforms the latter especially when stability is an issue.

3. MAGNITUDE PRESERVING LABELS
Since our work is under the pairwise ranking approach, we will
first walk through the basic concepts in the pairwise learning to
rank. Next, we will propose the directed distance function to
preserve the magnitude of rating difference and illustrate three
examples.

3.1 The Pairwise Approach for Ranking
The pairwise approach for ranking is defined as follows in [3]. A
ranking dataset includes a set of queries q Q∈ , and a set of
documents for each query i qx D∈ . The associated relevance

rating of document ix for query q is represented as qir . The
relevance ratings are discrete and ordered, with values such as
{Probably Relevant, Possibly Relevant, Not Relevant}.
Furthermore, there exists a total ordering > between various
relevance levels, e.g. Probably Relevant > Possibly Relevant >
Not Relevant. In this paper, we assume that numerical ratings
values are available because ranking performance measurements
often take ratings as a component in calculation. Also, for the
learning tasks, documents are represented by a vector of feature
weights obtained by some query-document function Φ . For
instance, the document

ix for the query q is represented as

,1 ,(,) (,)i qi qi qi dq x x x xΦ = = ……, .

The goal of the learning to rank procedure in the pairwise
framework is to introduce a score function ()s • over the
document space such that:

 () ()qi qj qi qjr r s x s x⇒ >> (1)

i.e. if document qix is preferred over qjx , the score value for qix

should be larger than qjx . This clarifies the relationship between

the pairwise-preference learning and the binary classification: a
classifier can be introduced to maintain the given preference
relations on the left of inequality (1).
Thus, for pairwise approach, we define a preference set
containing document pairs for each query q :

{((,),) | }q qi qj qij qi qjS x x y r r= ≠ , where the binary label qijy
satisfies:

1,

1,
qi qj

qij
qj qi

r r
y

r r
⎧⎪= ⎨−⎪⎩

>

>
 (2)

818

3.2 Directed Distance Function (DDF)
Although the binary label defined in (2) is suitable for leveraging
well-studied classification tools, this transformation from ranking
to classification also loses considerable amount of information.
For example, mis-ranking two documents with ratings 5 and 1
should receive more “punishment” than mis-ranking two
documents with ratings 5 and 4, because the former will cause
larger decrease in ranking measurements like NDCG [16]. In this
sense, the binary label constructed by (2) only reflects the desired
order of two documents, omitting the useful information hidden in
the magnitude of rating differences.
On the other hand, far richer representations can be achieved if
the magnitude of rating differences is considered. Therefore, we
need to modify the traditional definition of labels in (2) to
preserve the magnitude information.
Specifically, we define the label to be the directed distance from a
rating to another: (,)a bdist r r , which depicts the impetus of
placing a document with rating ra before another document with
rating rb.
As shown in Figure 1, although the concrete values of directed
distances can vary, the magnitude of rating differences should be
preserved, as well as the advantage of placing high-rated
documents in front.
Now, we formally present the requirements (3) and (4) on the
concept of directed distance function (DDF): (,)dist • • , which
will be used as an extension of tradition binary labels (2) in the
subsequent analysis:

 sgn((,)) sgn()i j i jdist r r r r= − (3)

where
1 x>0,

sgn() 0 x=0,
1 x<0

x
⎧
⎪= ⎨
⎪−⎩

 | | | ' ' | | (,) | | (', ') |i j i j i j i jr r r r dist r r dist r r− > − ⇒ > (4)

Then, DDF is directly applied as the substitute for binary labels
and the modified preference set is (5), which will be leveraged
into the exponential loss function in our boosting approach for
learning to rank.

 ' {((,), (,)) | }q qi qj qi qj qi qjS x x dist r r r r= ≠ (5)

Compared to σ -admissibility presented in Definition 2 of [4], the
basic requirements on DDF allow many more candidate functions
in real application. For instance, we will propose three possible
directed distance functions which have performed superiorly in
the empirical analysis.

3.2.1 Linear Directed Distance (LDD)
An intuitive integration of preference magnitude into DDF is the
linear function based on the difference of the preference
difference. We call this function as Linear Directed Distance
(LDD) and show its equation in formula (6). The coefficient α is
a positive constant for regularizing the scope of (,)dist • • and is
used to meet the requirements (3) and (4).

 (,) ()i j i jdist r r r rα= − (6)

LDD is an easy and simple function to consider the preference
magnitude. But when the numerical difference between ratings is

large, it’s very difficult to tune a good α value to map all rating
differences into a proper interval. We will show these findings in

Figure 1. Three ratings a b cr r r> > , where the directed
distances (,)c adist r r and (,)a bdist r r are marked. The exact
values of the distances can vary, but it should follow that:
1. | (,) | | (,) |c a a bdist r r dist r r> , to preserve magnitude of rating
differences.

2. (,) 0c adist r r < and (,) 0a bdist r r > , to present the advantage
of placing documents with higher ratings in front.

Figure 2. Curves of LDD, LOGDD and LOGITDD under
different values of rating differences. The parameters are

0.2α = , 3λ = and 0.5β = .

the experiment. In this case, functions that can smooth large
rating differences should help, as proposed in Section 3.2.2 and
3.2.3.

3.2.2 Logarithmic Directed Distance (LOGDD)
Logarithmic Directed Distance function (7) takes the form of
logarithms, in order to smooth the grading difference between
ratings. Like LDD, LOGDD utilizes the positive parameter λ .

 (,) sgn()log(1 | |)i j i j i jdist r r r r r rλ= − + − (7)

Compared with LDD, LOGDD can be utilized when the rating
values come from a large range or the grades of ratings are non-
uniform. It is also obvious to note that due to the logarithmic
nature, the output range of LOGDD will eventually be smaller
than that of LDD and be more suitable to apply in the exponential

ar

br

cr

(,)a bdist r r(,)c adist r r

819

loss function. On the other hand, LOGDD is much smoother than
LDD in term of the output value, as shown in Figure 2.

3.2.3 Logistic Directed Distance (LOGITDD)
Logistic Directed Distance function (8) leverages the well-studied
logistic function. Like LDD and LOGDD, LOGITDD applies the
positive parameter β .

 | |

1(,) sgn()
1 i ji j i j r rdist r r r r

e β− −= −
+

 (8)

Compared with LDD and LOGDD, the output range of
LOGITDD is always in (1, 0.5] [0.5,1)− − ∪ , which makes
LOGITDD be smoother than both the above functions. It follows
that it’s easier to tune the related parameters when considering the
preference magnitude. Also note that when applying LOGITDD,
the only parameter β should be carefully chosen to make
| (,) |i jdist r r non-negligibly different for disparate values of

| |i jr r− . For example, if the grading differences between ratings

are usually large, a relatively small β should be selected to avoid
saturation and we will use validation dataset to tune this
parameter in our experiments.
In summary, the introduction of directed distance function is to
substitute conventional binary-value labels and assign magnitude-
preserving property to the ranking algorithm like the one we will
introduce in Section 4.

4. MPBOOST ALGORITHM
Following the introduction to DDF in Section 3, we will present a
novel boosting algorithm, MPBoost. Specifically, we apply the
GentleBoost approach [10] to define loss function and design
optimization methods.
For convenience, we combine the preference sets over all queries:

'q
q

S S=U and define the index set I over S :

{(,) | ((,),dist(,)) S}i j i jI i j x x r r= ∈ . Note that for sake of
simplicity, we will sometimes omit the query subscript in the
following discussion, i.e. whenever (,)i jx x is involved, we

assume that the documents ix and jx belong to the same query

q , and qi qjr r≠ . Similarly, (,)i jdist r r means (,)qi qjdist r r .

Next, to leverage DDF in the MPBoost algorithm, we require that
the condition

 | (,) | 1i jdist r r ≈ (9)

is satisfied, which can be attained via carefully setting the
parameters within the applied directed distance functions, like α ,
λ and β in LDD, LOGDD and LOGITDD. This condition will
be utilized in the following analysis.
Now, the loss function MPBoost employs is as follows:

 (,)(() ())() i j i jdist r r F x F x

I
J F e− −= ∑ (10)

where the strong hypothesis ()F x is a score function based on an
additive model. In other words, F is initially set as 0. Then, in the

ith round, () () ()iF x F x f x← + , where ()if x is called the weak

Algorithm 1 MPBoost algorithm for generating a ranking
function.

Input: Query set Q and 1{(,)} qn
qi qi ix r = , for each q Q∈ .

Output: ranking function ()F x

1: Generate {((,), (,)) | }qi qj qi qj qi qj
q

S x x dist r r r r= ≠U

2: Generate index set {(,) | ((,),dist(,)) S}i j i jI i j x x r r= ∈

3: Initialize (1) 1
| |ijw
I

= , for (,)i j I∀ ∈

4: for 1...t T= do
5: Fit the weak ranker tf , such that:

2

argmin ()

argmin [(,) (() ())]

t wse
f

ij i j i j
f I

f J f

w dist r r f x f x

=

= − −∑

6: Update: (,)(() ())(1) () /i j t i t jdist r r f x f xt t
ij ij tw w e Z− −+ ←

where (,)(() ())() i j t i t jdist r r f x f xt
t ij

I
Z w e− −= ∑

7: end for

8: Output the final ranking function
1

() ()
T

t
t

F x f x
=

= ∑

learner in the ith round. Thus, when the MPBoost algorithm ends

after m rounds,
1

() ()
m

i
i

F x f x
=

= ∑ .

In order to minimize loss function, MPBoost needs to find the
best weak learner in each round. For example, if the current
hypothesis is F , and the next weak learner to be added is f , then
the additive loss function should be:

(,)[(() ()) (() ())]

(,)(() ())

2 2

(,)(() ()) 2

()

(1 (,)(() ())

(,) [() ()]
)

2
1 1([(,) (() ())]
2 2

i j i i j j

i j i j

i j i j

dist r r F x f x F x f x

I
dist r r F x F x

i j i j
I

i j i j

dist r r F x F x
i j i j

J F f e

e dist r r f x f x

dist r r f x f x

e dist r r f x f x

− + − +

− −

− −

+ =

≈ − −

−
+

≈ − − +

∑

∑

(,)(() ()) 2

)

1 ([(,) (() ())] 1))
2

i j i j

I

dist r r F x F x
i j i j

I
e dist r r f x f x− −= − − +

∑

∑ (11)

where we apply second-order Taylor approximation and the
condition (9).

Thus, we can determine the best f to be added to F by
minimizing ()J F f+ , equivalent to minimizing a weighed
squared loss:

 2() [(,) (() ())]wse ij i j i j
I

J f w dist r r f x f x= − −∑ (12)

where (,)(() ())i j i jdist r r F x F x
ijw e− −= , the weight assigned to each

document pair.

820

Now, we formally present our algorithm: MPBoost, which is
based on GentleBoost [10], with changes in the loss function
calculation and weight modification. In MPBoost, the initial
weight of each document pair is uniform. During each iteration, a
weak ranker is chosen to minimize (12). Then, the weights are
updated with help of the normalizer tZ :

 (,)(() ())() i j t i t jdist r r f x f xt
t ij

I
Z w e− −= ∑ (13)

The final ranking function is the summation over all weak rankers.
The procedure details of MPBoost are presented in Algorithm 1.
Note that MPBoost bears some resemblance to RankBoost, which
applies the optimization scheme of AdaBoost. In the RankBoost
framework, a bound on the ranking loss is offered in Theorem 1
[8]. Now, with the employment of GentleBoost approach and
DDF, (,)dist • • , MPBoost still inherits the bounded ranking loss
property of RankBoost. We formalize this the following theorem.
Theorem 1. Assuming the notation of Algorithm 1, the
normalized ranking loss (mis-ordering) of F is bounded:

(1) (1)

{(,) | } {(,) | } 1

[[() ()]] [[() ()]]
i j i j

T

ij i j ij i j t
i j I r r i j I r r t

w F x F x w F x F x Z
∈ > ∈ < =

≤ + ≥ ≤∑ ∑ ∏

where [[]]π is defined to be 1 if predicate π holds and 0
otherwise.
Proof: The proof is similar to the one for Theorem 1 in [8], but
with the introduction of DDF.

Note that [[0]] xx eα≥ ≤ and [[0]] xx e α−≤ ≤ hold for all 0α >
and all real x . Furthermore, (,)i jdist r r has the same sign as

i jr r− . Thus,

(1)

{(,) | }

(1)

{(,) | }

[(,)(() ())](1)

{(,) | }

[(,)](() ())(1)

{(,) | }

[(,(1)

[[() ()]]

[[() ()]]

i j

i j

i j i j

i j

i j i j

i j

i j

ij i j
i j I r r

ij i j
i j I r r

dist r r F x F x
ij

i j I r r

dist r r F x F x
ij

i j I r r

dist r r
ij

w F x F x

w F x F x

w e

w e

w e

∈ >

∈ <

− −

∈ >

− −

∈ <

−

≤ +

≥

≤ +

=

∑

∑

∑

∑
)(() ())]

(1)

1

1

i jF x F x

I
T

T
ij t

I t

T

t
t

w Z

Z

−

+

=

=

=

=

∑

∑ ∏

∏ (14)

 ■

In view of the bound established in Theorem 1, we are guaranteed
to produce a combined ranking with low ranking loss if on each
round t we choose a weak ranker tf to minimize tZ .

Actually, minimizing ()wseJ f (12) is exactly minimizing a
second-order Taylor approximation of tZ (13), when (9) is
satisfied:

(,)(() ())()

()

2
2

() 2

() 2

[1 (,)(() ())

(,)
 (() ())]

2
1 1{ [(,) (() ())] }
2 2

1 1[(,) (() ())]
2

i j t i t jdist r r f x f xt
t ij

I
t

ij i j t i t j
I

i j
t i t j

t
ij i j i j

I

t
ij i j i j

I

Z w e

w dist r r f x f x

dist r r
f x f x

w dist r r f x f x

w dist r r f x f x

− −=

≈ − −

+ −

≈ − − +

= − − +

∑

∑

∑

∑ ()

2
1 1()
2 2

t
ij

I

wse

w

J f= +

∑

 (15)

Therefore, in theory, the MPBoost algorithm can achieve low
mis-ordering loss (16) via stage-wise gradient descent method.
And it has been proved that minimizing the number of mis-
orderings is equivalent to maximizing a lower-bound on ranking
performance metrics [6]. The empirical analysis in Section 5 also
substantiates the result.

{(,) | } {(,) | }
() [[() ()]] [[() ()]]

i j i j

i j i j
i j I r r i j I r r

MisOrder F F x F x F x F x
∈ > ∈ <

= ≤ + ≥∑ ∑ (16)

5. EXPERIMENTAL RESULTS
5.1 Data Collections
We utilized three data sets in the experiments: OHSUMED [14], a
benchmark data set for document retrieval downloadable from
LETOR 3.0 [18, 19]; Web-1, a Russian web search dataset [15];
Web-2, an English web search dataset obtained from a popular
search engine.
OHSUMED [14] is a collection for information retrieval research.
It is a subset of MEDLINE, a database on medical publications.
OHSUMED contains a total of 348,556 records (out of over 7
million) from 270 medical journals during the period of 1987-
1991. The fields of a record embrace title, abstract, MeSH
indexing terms, author, source, and publication type. In
OHSUMED, there are 106 queries, each with a number of
associated documents. Also in the data set are a total of 16,140
query-document pairs, each of which described by 45 features. In
OHSUMED, relevance grades are from {0, 1, 2}. We conducted
experiments on each of the 5 subfolders in OHSUMED, each
containing training/validation/test data.
Web-1 is the public training data from “Internet Mathematics
2009” contest [15]. This dataset contains computed and
normalized features of query-document pairs as well as relevance
judgments made by Yandex search engine assessors. There are
97,290 query-document pairs within a total of 9,124 queries. Each
query-document pair is described by 245 features. All features are
either binary value from {0, 1}, or continuous values from [0, 1].
In Web-1, relevance grades are continuous values from range [0,
4], with higher values represents higher relevance. We used five-
fold cross validation, with 3+1+1 splits between
train/validation/test sets.
Web-2 is from a commercial English search engine. There are 50,
000 query-document pairs within a total of 467 queries. Each
query-document pair is described by 1779 features. In Web-2,
relevance grades are from {0, 1, 2, 3, 4}. Again, we used five-fold
cross validation, with 3+1+1 splits between train/validation/test
sets.

821

5.2 Performance Measures
In the experiment, we apply the Normalized Discounted
Cumulative Gain(NDCG) [16] as the performance measure.
NDCG can handle multiple levels of relevance and it favors
algorithms that give higher ranks to highly relevant documents
than marginally relevant ones. Furthermore, lower ranking
position is of less value to this metric since it has less chance to
be examined by a user. In accordance with these principles,
computing NDCG values follow the following four steps:
1) Compute the gain of each document
2) Discount the gain of each document by its ranking position in
the list
3) Cumulate these discounted gain of the list
4) Normalize the discounted cumulative gain of the list
Therefore, NDCG of a ranking list at position n is calculated as
following:

()

()

1
2

2 1, 1
() 2 1, 1

log ()

r j
n

r j
n

j

j
N n Z

j
j=

⎧ − =
⎪= −⎨

>⎪
⎩

∑

where ()r j is the rating of the jth document in the list, and the
normalization constant nZ is chosen so that the perfect ranking
list receives a NDCG score of 1. The final NDCG score is the
average over all queries.
In addition, in the validation phase of our experiments, we set
NDCG@5 as the criteria for selecting the best parameters.

5.3 Experimental results on NDCG
We present the ranking accuracy of MPBoost algorithm on the
three datasets along with some state-of-art baseline ranking
methods. Specifically, on OHSUMED dataset, we apply
RankBoost [7, 8], ListNet [2] and AdaRank-NDCG [23] as the
baseline methods. The measurement on these algorithms comes
from [19]. Also, we make MPBoost with binary labels as another
baseline method, which is represented by MPBoost.BINARY in
the figures.
Also in following figures, MPBoost.LDD, MPBoost.LOGDD and
MPBoost.LOGITDD respectively represent the MPBoost
algorithm with DDF in form (6), (7) and (8). These three versions
of algorithms leverage the magnitude-preserving property. The
parameters tuned in the experiments include α in (6), λ in (7),
β in (8) and the number of boosting rounds T . Note that for
MPBoost, the condition (9) should be considered during the
tuning. And we use the validation set to tune these parameters
independently.
In the experiments, we leverage decision stumps as the weak
ranker for the MPBoost algorithm. The definition and
optimization process of decision stumps is presented in the
appendix.

5.3.1 Experiments on OHSUMED
On OHSUMED, we conducted five-fold cross validation
experiments using the data split provided in LETOR. Every
ranking measurement was calculated as the mean over five
folders. As shown in Figure 3, the three versions of magnitude-
preserving MPBoost algorithms outperform nearly all baselines in

NDCG@1 to NDCG@10 by 1 point to 6 points gain. Although
MPBoost.LDD and MPBoost.LOGDD lag behind ListNet and
AdaRank-NDCG by about 0.5% in NDCG@1,
MPBoost.LOGITDD consistently achieves the best NDCG
accuracy across NDCG@1 to NDCG@10. Furthermore,
MPBoost.BINARY, which is the MPBoost algorithm with binary
labels, outperforms RankBoost in all metrics except for
NDCG@6 and NDCG@7. Thus, we leverage MPBoost.BINARY
as the baseline in the following experiments.

5.3.2 Experiments on Web-1
We conducted experiments on Web-1 via five-fold cross-
validation, and the reported result is the average over five folders.
As shown in Figure 4, the advantage of MPBoost with magnitude-
preserving loss functions is not as clear as that in OHSUMED.
Still, an average of 0.16% and 0.13% NDCG advantage is gained
by MPBoost.LOGDD and MPBoost.LOGITDD over
MPBoost.BINARY. However, MPBoost.LDD lags behind
MPBoost.BINARY by an average of 0.24% NDCG.

5.3.3 Experiments on Web-2
The experiment on Web-2 was also conducted via five-fold cross-
validation, and the reported result is an average over five folders.
From Figure 5, we can see that MPBoost with magnitude-
preserving loss functions significantly outperform the version
with binary labels by an average of 1.5% (MPBoost.LDD), 2.2%
(MPBoost.LOGDD) and 1.8%(MPBoost.LOGITDD) and
MPBoost.LOGITDD performs the best in NDCG@1 and
NDCG@2, while MPBoost.LOGDD achieves the best in the rest
positions.

5.4 Discussion
In this section, we will try to present some analysis in light of the
consistent and excellent experimental results generated from our
MPBoost algorithm as compared to the state-of-the-art ranking
algorithms.
Firstly, the loss function (10) applied in MPBoost utilizes the
concept of directed distance function over ratings, thus preserving
the magnitude of rating differences even in classification. In the
experiment on three datasets, all three versions of MPBoost with
DDF outperform MPBoost with binary labels. Hence, it
substantiates that magnitude-preserving labels can lead the
algorithm to grasp the inherent pattern in document vectors and in
general yield higher performance.
Secondly, MPBoost pursued the ranking problem with quasi-
GentleBoost approach. In [10], GentleBoost has been empirically
proved to perform better than AdaBoost, while RankBoost is
constructed on the basis of AdaBoost. Thus, MPBoost.BINARY
and the other three versions of MPBoost with magnitude-
preserving property consistently outperform RankBoost in
OHSUMED dataset.
It is interesting to observe that among the three versions of
MPBoost applying LDD, LOGDD and LOGITDD, the logarithm-
based one achieved the best performance in two datasets; while
the linear-based one fall behind the other two in all three datasets.
We attribute the result to the ability to depict rating differences.
The linear-based DDF, LDD, tends to output too large values for
large rating grades, thus forcing the parameter α to take pretty
small values (e.g. the best α in the

822

Figure 3. Ranking accuracies on OHSUMED dataset

Figure 4. Ranking accuracies on Web-1 dataset

Figure 5. Ranking accuracies on Web-2 dataset.

Figure 6. Average NDCG@5 on test set over 5 folds in Web-2
Dataset. For MPBoost.LDD, MPBoost.LOGDD and
MPBoost.LOGITDD, the parameters α , λ and β are set as
the one achieving the best performance on validation set.

Web-2 dataset was in average 0.062). The consequence is that the
ability to differentiate smaller rating differences degrades. The
logistic-based DDF, LOGITDD, has similar problems in that the
overall output interval is (1, 0.5] [0.5,1)− − ∪ and the saturation
problem appears quite often. On the contrary, LOGDD generates
moderate range of output while preserving the original magnitude
properly.

5.5 Overfitting Issues
In the boosting method, overfitting is a thorny issue that needs to
be handled [5]. Specifically, while the empirical error will keep
decreasing in the training phase, the performance on test set may
degrade as the number of training rounds increases. In our
experiments, we observe that MPBoost with binary label suffers
from overfitting, while MPBoost with magnitude-preserving
properties perform well as training goes on.
To demonstrate, in the previous experiment on Web-2, we record
the performance of the trained model on test set every 10
iterations. Figure 6 shows the average NDCG@5 on test set over
five folders in the Web-2 dataset. As shown in the figure,
MPBoost.BINARY suffers from serious overfitting problem after
peaking at around the 90th iteration. However, MPBoost.LDD,
MPBoost.LOGDD and MPBoost.LOGITDD can achieve
comparatively stable ranking accuracies as the number of training
rounds increase and avoid the overfitting issue to some extent.
We attribute this phenomenon to the incompleteness of traditional
binary-label pairwise approach to ranking, combined with the
distribution of different magnitude of ratings. On one hand, the
calculation of metrics such as NDCG deals with the magnitude of
ratings, not directly with the pairwise order. On the other hand, in
the Web-2 dataset, the relevance ratings come from {0, 1, 2, 3, 4},
which give considerable impetus to place document with ratings
like 3 and 4 in front. Thus, ignoring the magnitude of ratings and
only retaining the relative order, binary labels lose a large amount
of information during the transformation from ranking to
classification. Thus, the trained model deviates from correctly

823

capturing the way to improve metrics like NDCG, and test data
substantiates the incompleteness.
On the contrary, the other three versions of magnitude-preserving
MPBoost all apply loss functions with DDF. Thus, in the training
phase, these three versions can learn a more suitable model to
match the goal of ranking in the sense of improving NDCG.
Hence, the performance on test set does not degrade after
sufficient long time of training.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a new approach to magnitude-
preserving ranking: directed distance function (DDF). Compared
to previous schemes [4], DDF imposes less restriction on the form
of functions while retaining the magnitude of rating differences.
We also present three kinds of directed distance functions: LDD,
LOGDD and LOGITDD, which can be applied under different
circumstances due to the output range. The parameters in these
DDFs can be easily adapted to meet requirements of different
ranking algorithms.
Based on DDF, we propose a new boosting method for ranking
problem: MPBoost. MPBoost incorporates directed distance
function with the exponential loss function and applies
GentleBoost-like optimization. The ranking loss, or misordering,
of MPBoost is still bounded, like RankBoost, which is based on
AdaBoost.
Experimental results with three datasets indicate that the
MPBoost method, when combined with magnitude-preserving
DDF, outperforms binary-label-based MPBoost and existing
state-of-art approaches like RankBoost, ListNet and AdaRank-
NDCG. Furthermore, MPBoost with DDF tend to avoid
overfitting in training.
For future work, we plan to study the theoretical advantage in our
method. We also intend to apply mixed directed distance for
different pairs of ratings to more accurately depict the magnitude
issue.

7. ACKNOWLEDGEMENT
The work of Chenguang Zhu was supported in part by the
National Basic Research Program of China Grant 2007CB807900,
2007CB807901, the National Natural Science Foundation of
China Grant 60604033, 60553001, and the Hi-Tech research and
Development Program of China Grant 2006AA10Z216.We would
also express our sincere acknowledgement to Xiaohui Wu and
Teng Gao for their great help for our work.

8. REFERENCES
[1] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds,M.,

Hamilton, N., and Hullender, G. (2005). Learning to rank
using gradient descent. Proceedings of ICML 2005, 89–96.

[2] Cao, Z., Qin, T., Liu, T., Y., Tsai, M.-F., and Li, H. (2007).
Learning to Rank: From Pairwise Approach to Listwise
Approach. Proceedings of ICML 2007, 129-136.

[3] Carvalho, V. R., Elsas, J. L., Cohen, W. W., and Carbonell,
J. G. (2008). A Meta-Learning Approach for Robust Rank
Learning. SIGIR 2008 Workshop on Learning to Rank for
Information Retrieval (LR4IR 2008), 15-23.

[4] Cortes, C., Mohri, M., and Rastogi A. (2007). Magnitude-
Preserving Ranking Algorithms. Proceedings of ICML 2007,
169-176.

[5] Ditterich, T. G. (1999). An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine Learning,
40 (2) (1999).

[6] Elsas, J., Carvalho, V. R., and Carbonell, J. G. (2008). Fast
learning of document ranking functions with the committee
perceptron. Proceedings of ACM International Conference
on Web Search and Data Mining 2008.

[7] Freund, Y., Iyer, R., Schapire, R.E., and Singer Y.(1998). An
Efficient Boosting Algorithm for Combining Preferences.
Proceedings of ICML 1998.

[8] Freund, Y., Iyer, R., Schapire, R. E., and Singer Y.(2003).
An Efficient Boosting Algorithm for Combining Preferences.
Journal of Machine Learning Research 4 (2003) 933-969

[9] Freund Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of online learning and an application to
boosting. In Computational Learning Theory: Eurocolt ’95,
23–37.

[10] Friedman, J., Hastie, T. and Tibshirani, R.(2000) Additive
Logistic Regression: a Statistical View of Boosting. Annals
of Statistics 2000, Vol. 28.

[11] Fürnkranz, J., and Hüllermeier, E. (2003). Pairwise
Preference Learning and Ranking. Proceedings of ECML
2003 (pp. 145-156).

[12] He J. and Bo T. (2007). Asymmetric gradient boosting with
application to spam filtering. Proceedings of Fourth
Conference on Email and Anti-Spam CEAS, 2007.

[13] Herbrich, R., Graepel, T., and Obermayer, K. (1999).
Support vector learning for ordinal regression. Proceedings
of ICANN 1999, 97–102.

[14] Hersh, W. R., Buckley, C., Leone, T. J., and Hickam, D. H.
(1994). OHSUMED: An interactive retrieval evaluation and
new large test collection for research. Proceedings of SIGIR
1994, 192–201.

[15] Internet Mathematics Contest 2009 training data (Learning to
Rank) http://download.yandex.ru/imat2009/imat2009.tar.bz2
Accessed 20 May 2009

[16] Jarvelin, K., and Kekanainen, J. (2000). Ir evaluation
methods for retrieving highly relevant documents.
Proceedings of SIGIR 2000, 41–48.

[17] Joachims, T. (2002) Optimizing search engines using
clickthrough data. Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142.

[18] Liu, T. Y., Qin, T., Xu, J., Xiong, W. Y., and Li, H. (2007).
Letor: Benchmark dataset for research on learning to rank for
information retrieval. Proceedings of SIGIR 2007.

[19] Liu, T. Y., Zhang, R. C. (2008) Learning to Rank (LETOR)
http://research.microsoft.com/en-
us/um/beijing/projects/letor/index.html. Accessed 17 April
2009.

[20] Mason, L., Baxter, J., Bartlett, P. and Frean, M. (2000).
Boosting algorithms as Gradient Descent. Proceedings of
NIPS 12, 512–518.

[21] Qin, T., Liu, T. Y., Lai, W., Zhang, X. D., Wang, D. S., and
Li, H. Ranking with Multiple Hyperplanes. Proceedings of

824

the 30th Annual International ACM SIGIR Conference,
(2007), 279-286.

[22] Schapire, R. E., Freund Y., Bartlett, P. L., and Lee, W. S.
(1998) Boosting the margin: A new explanation for the
effectiveness of voting methods, The Annals of Statistics, J.
Machine Learning Research, vol. 26(5), 1651-1686.

[23] Xu, J. and Li, H. AdaRank: A Boosting Algorithm for
Information Retrieval. Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, (2007), 391-398.

[24] Yang, P., Shan, S., Gao, W., Li, S. and Zhang, D. (2004)
Face Recognition Using Ada-Boosted Gabor Features. IEEE
Int. conf. On Automatic Face and Gesture Recognition
(FG2004), 356-361.

9. APPENDIX - THE WEAK RANKER:
DECISION STUMPS
The weak ranker based on decision stumps, ()dr x , is defined as
the following:

 x

()
0 x

k
d

k

a
r x

θ
θ

>⎧
= ⎨ ≤⎩

 (17)

k is the serial number of the feature ()dr x selects. θ is the
threshold for this feature. a and 0 are the only two possible
values ()dr x can take. We choose 0 here because in pairwise
approach, only the difference of the two values ()dr x can take
matters. In other words, we only need () ()d i d jr x r x− in
calculation.

To find the best ()dr x , we can iterate k . When k is determined,
we only have to iterate (1)n + values for θ :

1, 2, ,- ,x ,x , ,xk k n k∞ …… .Thus, the only problem is to find the best

a when k and θ are determined. Notice that both ()d ir x and
()d jr x can possibly take two values, yielding 4 combinations.

Therefore, we should split the sum into 4 cases.

Define:

1 , ,

2 , ,

1 , ,

2 , ,

{(,) | , }
{(,) | , }

{(,) | , }
{(,) | , }

i k j k

i k j k

i k j k

i k j k

A i j I x x

A i j I x x

B i j I x x

B i j I x x

θ θ

θ θ

θ θ

θ θ

= ∈ > ≤

= ∈ > >

= ∈ ≤ ≤

= ∈ ≤ > (18)

Suppose the best a for specific k and θ is ,ka θ . We have:

1 2

1 2

1 2

() 2 ()
,

2
, ,

() 2 ()

2
,

() 2 () 2
,

()

() ((,) 0) ((,)

)

((,) 0 0) ((,)

0)

((,)) (,)

(,

t t
wse t ij i j k ij i j

A A

k k

t t
ij i j ij i j

B B

k

t t
ij i j k ij i j

A A

t
ij i j

J f w dist r r a w dist r r

a a

w dist r r w dist r r

a

w dist r r a w dist r r

w dist r r

θ

θ θ

θ

θ

= − + +

− +

+ − + +

− +

= − +

+

∑ ∑

∑ ∑

∑ ∑

1 2

2 () 2
,) ((,))t

ij i j k
B B

w dist r r a θ+ +∑ ∑ (19)

Consequently, in order to minimize ()wse tJ f , we take the partial
derivative and obtain the best ,ka θ :

 1 2

1 2

() ()

, () ()

(,) (,)t t
ij i j ij i j

A B
k t t

ij ij
A B

w dist r r w dist r r
a

w wθ

−
=

+

∑ ∑
∑ ∑

Thus, after iterating through all possible k ’s and θ ’s, we can get
the minimum ()wse tJ f and the corresponding best parameters.

Then, , ,

,

 x
()

0 x
t t t

t

k i k t
t

i k t

a
f x θ θ

θ

>⎧⎪= ⎨ ≤⎪⎩
.

825

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

