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ABSTRACT 
Traditional boosting algorithms for the ranking problems usually 
employ the pairwise approach and convert the document rating 
preference into a binary-value label, like RankBoost. However, 
such a pairwise approach ignores the information about the 
magnitude of preference in the learning process. In this paper, we 
present the directed distance function (DDF) as a substitute for 
binary labels in pairwise approach to preserve the magnitude of 
preference and propose a new boosting algorithm called 
MPBoost, which applies GentleBoost optimization and directly 
incorporates DDF into the exponential loss function. We give the 
boundedness property of MPBoost through theoretic analysis. 
Experimental results demonstrate that MPBoost not only leads to 
better NDCG accuracy as compared to state-of-the-art ranking 
solutions in both public and commercial datasets, but also has 
good properties of avoiding the overfitting problem in the task of 
learning ranking functions.  

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6[Artificial Intelligence]: Learning 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Directed distance function (DDF), magnitude-preserving,  
pairwise-preference 

1. INTRODUCTION 
Boosting [9, 10] is one of the state-of-the-art algorithms in 
machine learning.  Based on boosting, many algorithms have been 
proposed to solve supervised learning tasks, including [10] for 
classification, [24] for facial recognition and [12] for spam 
filtering. All of these have theoretically and empirically 
demonstrated that boosting algorithm and its variants have 
excellent advantages in terms of convergence of loss function, 
low generalization error, little restriction on the form of weak 
learners, etc. 
As an interesting and significant application, boosting is also 
successfully employed in the learning to rank problem for Web 
search, where a set of queries Q, and a set of documents Dq for 
each query q Q∈  are given. For each document of a given query, 
there is also a rating ri to encode the relevance level of this 
document. Current popular strategy to apply boosting for ranking, 
like RankBoost [7, 8], is to regard the pairwise preference 
information as the binary classification data, which belongs to the 
pairwise approach for learning to rank [11]. Specifically, if 
document x1 is rated higher than another document x2 with respect 
to the same given query q, (x1, x2) is labeled as a positive instance. 
Otherwise, (x1, x2) is labeled as a negative instance. However, this 
kind of pairwise transformation from ranking to classification 
neglects the scale or magnitude of the difference between rating 
pairs, like the magnitude value of r1-r2. As a matter of fact, far 
richer representations can be achieved if the magnitude of rating 
differences can be considered in boosting algorithm. Therefore, 
designing a new boosting algorithm for ranking with 
consideration of the magnitude of difference between rating pairs 
is very desirable.   
Some attempts have been made to address similar issues. In the 
RankBoost algorithm [7, 8], the magnitude issue is mentioned in 
the introduction of the feedback function Φ , but later the 
theoretical and empirical analysis focus on the case where 
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1,0,1Φ = − , which is under the binary-label model. [21] 
leveraged multiple hyperplanes to preserve the magnitude of 
rating differences on the basis of the RankSVM algorithm [13, 17] 
and demonstrated the importance of preference magnitude. More 
recently, [4] analyzed the stability bounds of magnitude-
preserving loss functions for generalization error and proposed 
two magnitude-preserving ranking algorithms, MPRank and 
SVRank, with reports of the improvement on mis-ordering loss. 
In this paper, we observe that it is fairly straightforward to apply 
the preference magnitude into the exponential loss function of 
boosting to improve the accuracy of ranking. To preserve the 
magnitude of rating differences, we propose directed distance 
function (DDF) as the substitute for binary labels in the pairwise 
approach to ranking. The exact form of DDF can vary with 
different representations, under only two basic requirements. 
Thus, we present three kinds of DDFs and list the appropriate 
scope of usage. Then, on the basis of DDF, we propose a novel 
ranking algorithm, MPBoost, based on GentleBoost [10]. It 
directly leverages the exponential loss function with DDF as the 
substitute for binary labels, which makes this algorithm suitable 
for magnitude-preserving ranking. We also prove a theorem about 
its effectiveness on the training set. Experimental results on two 
public and one commercial datasets all illustrate that MPBoost 
with DDF can significantly outperform traditional pairwise 
ranking algorithms as well as the state-of-the-art ranking methods 
like ListNet. Also, the experiment demonstrates that the 
application of DDF can lead MPBoost to avoid the overfitting 
problem. 
The rest of the paper is organized as follows: In Section 2, we 
firstly review some related works. In Section 3, we present the 
concept of magnitude-preserving labels: directed distance 
function (DDF), with three exemplary functions. In Section 4, we 
propose the MPBoost algorithm, which applies exponential loss 
functions with DDF. We report the experiment results in Section 
5 and conclude the paper in Section 6. 

2. RELATED WORKS 
2.1 Learning to Rank 
Learning to rank is a popular topic in both machine learning and 
information retrieval research. One of the main approaches to 
ranking problem is referred to as the pairwise approach.  In the 
pairwise approach, the learning to rank task is transformed into a 
binary classification task based on document pairs (whether the 
first document or the second should be ranked first given a 
query). [13, 17] proposed using the SVM techniques to build the 
classification model, which is referred to as RankSVM. [7, 8] 
proposed performing the task in a similar way but via the 
AdaBoost algorithm. [1] also adopted the approach and developed 
a method called RankNet, which leverages the cross entropy as 
the loss function and gradient descent as the algorithm to train a 
neural network model. 

Recently, the concept of magnitude-preserving ranking was 
introduced in [4, 21]. [21] leveraged multiple hyperplanes to 
preserve the magnitude of rating differences on the basis of the 
RankSVM and proposed a method called “Multiple Hyperplane 
Ranker” (MHR). In [4], the authors analyzed the stability bounds 
of magnitude-preserving loss functions for generalization error. 
Based on the results, they proposed two algorithms, MPRank and 
SVRank and reported empirical results which showed 
improvements on mis-ordering loss. However, the loss functions 

in [4] are regularization-based, and the σ - admissibility 
requirement of cost function limits the forms of functions to some 
extent. For example, exponential cost functions can hardly meet 
the requirement with a small constant σ .  

2.2 Boosting 
AdaBoost [9] is a state-of-the-art classification algorithm which 
stage-wise combines a number of weak learners and generates a 
strong hypothesis.  [10, 22] analyzed the theoretical advantage of 
the boosting algorithm from the aspect of margin and VC-
dimension. [20] presents the abstraction for different versions of 
boosting algorithms. In real application, GentleBoost [10] is a 
variation of boosting algorithm which employs the Newton step to 
minimize the exponential loss function. It has been shown in [10] 
that GentleBoost has similar performance to AdaBoost, and often 
outperforms the latter especially when stability is an issue. 

3. MAGNITUDE PRESERVING LABELS 
Since our work is under the pairwise ranking approach, we will 
first walk through the basic concepts in the pairwise learning to 
rank. Next, we will propose the directed distance function to 
preserve the magnitude of rating difference and illustrate three 
examples. 

3.1 The Pairwise Approach for Ranking 
The pairwise approach for ranking is defined as follows in [3]. A 
ranking dataset includes a set of queries q Q∈ , and a set of 
documents for each query i qx D∈ .  The associated relevance 

rating of document ix for query q is represented as qir . The 
relevance ratings are discrete and ordered, with values such as 
{Probably Relevant, Possibly Relevant, Not Relevant}. 
Furthermore, there exists a total ordering > between various 
relevance levels, e.g. Probably Relevant > Possibly Relevant >  
Not Relevant. In this paper, we assume that numerical ratings 
values are available because ranking performance measurements 
often take ratings as a component in calculation. Also, for the 
learning tasks, documents are represented by a vector of feature 
weights obtained by some query-document function Φ . For 
instance, the document

ix for the query q is represented as 

,1 ,( , ) ( , )i qi qi qi dq x x x xΦ = = ……, . 

The goal of the learning to rank procedure in the pairwise 
framework is to introduce a score function ( )s •  over the 
document space such that:  

 ( ) ( )qi qj qi qjr r s x s x⇒ >>  (1) 

i.e. if document qix  is preferred over qjx , the score value for qix  

should be larger than qjx . This clarifies the relationship between 

the pairwise-preference learning and the binary classification: a 
classifier can be introduced to maintain the given preference 
relations on the left of inequality (1). 
Thus, for pairwise approach, we define a preference set 
containing document pairs for each query q : 

{(( , ), ) | }q qi qj qij qi qjS x x y r r= ≠ , where the binary label qijy  
satisfies: 

 
1,

1,
qi qj

qij
qj qi

r r
y

r r
⎧⎪= ⎨−⎪⎩

>

>
 (2) 
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3.2 Directed Distance Function (DDF) 
Although the binary label defined in (2) is suitable for leveraging 
well-studied classification tools, this transformation from ranking 
to classification also loses considerable amount of information. 
For example, mis-ranking two documents with ratings 5 and 1 
should receive more “punishment” than mis-ranking two 
documents with ratings 5 and 4, because the former will cause 
larger decrease in ranking measurements like NDCG [16]. In this 
sense, the binary label constructed by (2) only reflects the desired 
order of two documents, omitting the useful information hidden in 
the magnitude of rating differences. 
On the other hand, far richer representations can be achieved if 
the magnitude of rating differences is considered. Therefore, we 
need to modify the traditional definition of labels in (2) to 
preserve the magnitude information. 
Specifically, we define the label to be the directed distance from a 
rating to another: ( , )a bdist r r , which depicts the impetus of 
placing a document with rating ra before another document with 
rating rb.  
As shown in Figure 1, although the concrete values of directed 
distances can vary, the magnitude of rating differences should be 
preserved, as well as the advantage of placing high-rated 
documents in front. 
Now, we formally present the requirements (3) and (4) on the 
concept of directed distance function (DDF): ( , )dist • • , which 
will be used as an extension of tradition binary labels (2) in the 
subsequent analysis: 

 sgn( ( , )) sgn( )i j i jdist r r r r= −          (3)  

where 
1          x>0,

sgn( ) 0          x=0,
1        x<0

x
⎧
⎪= ⎨
⎪−⎩

 

 | | | ' ' | | ( , ) | | ( ', ') |i j i j i j i jr r r r dist r r dist r r− > − ⇒ >      (4) 

Then, DDF is directly applied as the substitute for binary labels 
and the modified preference set is (5), which will be leveraged 
into the exponential loss function in our boosting approach for 
learning to rank. 

 ' {(( , ), ( , )) | }q qi qj qi qj qi qjS x x dist r r r r= ≠  (5) 

Compared to σ -admissibility presented in Definition 2 of [4], the 
basic requirements on DDF allow many more candidate functions 
in real application. For instance, we will propose three possible 
directed distance functions which have performed superiorly in 
the empirical analysis.  

3.2.1 Linear Directed Distance (LDD) 
An intuitive integration of preference magnitude into DDF is the 
linear function based on the difference of the preference 
difference. We call this function as Linear Directed Distance 
(LDD) and show its equation in formula (6). The coefficient α  is 
a positive constant for regularizing the scope of ( , )dist • • and is 
used to meet the requirements (3) and (4). 

 ( , ) ( )i j i jdist r r r rα= −   (6) 

LDD is an easy and simple function to consider the preference 
magnitude. But when the numerical difference between ratings is 

large, it’s very difficult to tune a good α value to map all rating 
differences into a proper interval. We will show these findings in            

 
Figure 1. Three ratings a b cr r r> > , where the directed 
distances ( , )c adist r r  and ( , )a bdist r r  are marked. The exact 
values of the distances can vary, but it should follow that: 
1. | ( , ) | | ( , ) |c a a bdist r r dist r r> , to preserve magnitude of rating 
differences. 

2. ( , ) 0c adist r r < and ( , ) 0a bdist r r > , to present the advantage 
of placing documents with higher ratings in front. 
 

 
Figure 2. Curves of LDD, LOGDD and LOGITDD under 
different values of rating differences. The parameters are 

0.2α = , 3λ =  and 0.5β = . 

 
the experiment. In this case, functions that can smooth large 
rating differences should help, as proposed in Section 3.2.2 and 
3.2.3. 

3.2.2 Logarithmic Directed Distance (LOGDD) 
Logarithmic Directed Distance function (7) takes the form of 
logarithms, in order to smooth the grading difference between 
ratings. Like LDD, LOGDD utilizes the positive parameter λ . 

            ( , ) sgn( )log(1 | |)i j i j i jdist r r r r r rλ= − + −  (7) 

Compared with LDD, LOGDD can be utilized when the rating 
values come from a large range or the grades of ratings are non-
uniform. It is also obvious to note that due to the logarithmic 
nature, the output range of LOGDD will eventually be smaller 
than that of LDD and be more suitable to apply in the exponential 

ar  

br  

cr  

( , )a bdist r r( , )c adist r r
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loss function. On the other hand, LOGDD is much smoother than 
LDD in term of the output value, as shown in Figure 2.  

3.2.3 Logistic Directed Distance (LOGITDD) 
Logistic Directed Distance function (8) leverages the well-studied 
logistic function. Like LDD and LOGDD, LOGITDD applies the 
positive parameter β . 

 | |

1( , ) sgn( )
1 i ji j i j r rdist r r r r

e β− −= −
+

 (8) 

Compared with LDD and LOGDD, the output range of 
LOGITDD is always in ( 1, 0.5] [0.5,1)− − ∪ , which makes 
LOGITDD be smoother than both the above functions. It follows 
that it’s easier to tune the related parameters when considering the 
preference magnitude. Also note that when applying LOGITDD, 
the only parameter β should be carefully chosen to make 
| ( , ) |i jdist r r  non-negligibly different for disparate values of 

| |i jr r− . For example, if the grading differences between ratings 

are usually large, a relatively small β  should be selected to avoid 
saturation and we will use validation dataset to tune this 
parameter in our experiments. 
In summary, the introduction of directed distance function is to 
substitute conventional binary-value labels and assign magnitude-
preserving property to the ranking algorithm like the one we will 
introduce in Section 4. 

4. MPBOOST ALGORITHM 
Following the introduction to DDF in Section 3, we will present a 
novel boosting algorithm, MPBoost. Specifically, we apply the 
GentleBoost approach [10] to define loss function and design 
optimization methods. 
For convenience, we combine the preference sets over all queries: 

'q
q

S S=U  and define the index set I over S : 

{( , ) | (( , ),dist( , )) S}i j i jI i j x x r r= ∈ . Note that for sake of 
simplicity, we will sometimes omit the query subscript in the 
following discussion, i.e. whenever ( , )i jx x is involved, we 

assume that the documents ix and jx  belong to the same query 

q , and qi qjr r≠ . Similarly, ( , )i jdist r r  means ( , )qi qjdist r r . 

Next, to leverage DDF in the MPBoost algorithm, we require that 
the condition 

 | ( , ) | 1i jdist r r ≈   (9) 

is satisfied, which can be attained via carefully setting the 
parameters within the applied directed distance functions, like α , 
λ  and β  in LDD, LOGDD and LOGITDD. This condition will 
be utilized in the following analysis.  
Now, the loss function MPBoost employs is as follows: 

 ( , )( ( ) ( ))( ) i j i jdist r r F x F x

I
J F e− −= ∑  (10) 

where the strong hypothesis ( )F x is a score function based on an 
additive model. In other words, F is initially set as 0. Then, in the 

ith round, ( ) ( ) ( )iF x F x f x← + , where ( )if x is called the weak

  

Algorithm 1 MPBoost algorithm for generating a ranking 
function. 

Input:  Query set Q  and 1{( , )} qn
qi qi ix r = , for each q Q∈ . 

Output: ranking function ( )F x  

1: Generate {(( , ), ( , )) | }qi qj qi qj qi qj
q

S x x dist r r r r= ≠U  

2: Generate index set {( , ) | (( , ),dist( , )) S}i j i jI i j x x r r= ∈  

3: Initialize (1) 1
| |ijw
I

= , for ( , )i j I∀ ∈   

4: for 1...t T= do 
5: Fit the weak ranker tf , such that: 

           
2

argmin ( )

argmin [ ( , ) ( ( ) ( ))]

t wse
f

ij i j i j
f I

f J f

w dist r r f x f x

=

= − −∑
 

6: Update: ( , )( ( ) ( ))( 1) ( ) /i j t i t jdist r r f x f xt t
ij ij tw w e Z− −+ ←  

where ( , )( ( ) ( ))( ) i j t i t jdist r r f x f xt
t ij

I
Z w e− −= ∑  

7: end for 

8: Output the final ranking function
1

( ) ( )
T

t
t

F x f x
=

= ∑  

 
learner in the ith round. Thus, when the MPBoost algorithm ends 

after m rounds, 
1

( ) ( )
m

i
i

F x f x
=

= ∑ . 

In order to minimize loss function, MPBoost needs to find the 
best weak learner in each round. For example, if the current 
hypothesis is F , and the next weak learner to be added is f , then 
the additive loss function should be: 

( , )[( ( ) ( )) ( ( ) ( ))]

( , )( ( ) ( ))

2 2

( , )( ( ) ( )) 2

( )

(1 ( , )( ( ) ( ))

( , ) [ ( ) ( )]
   )

2
1 1( [ ( , ) ( ( ) ( ))]
2 2

i j i i j j

i j i j

i j i j

dist r r F x f x F x f x

I
dist r r F x F x

i j i j
I

i j i j

dist r r F x F x
i j i j

J F f e

e dist r r f x f x

dist r r f x f x

e dist r r f x f x

− + − +

− −

− −

+ =

≈ − −

−
+

≈ − − +

∑

∑

( , )( ( ) ( )) 2

)

1 ([ ( , ) ( ( ) ( ))] 1))
2

i j i j

I

dist r r F x F x
i j i j

I
e dist r r f x f x− −= − − +

∑

∑  (11) 

where we apply second-order Taylor approximation and the 
condition (9). 

Thus, we can determine the best f to be added to F by 
minimizing ( )J F f+ , equivalent to minimizing a weighed 
squared loss: 

 2( ) [ ( , ) ( ( ) ( ))]wse ij i j i j
I

J f w dist r r f x f x= − −∑  (12)  

where ( , )( ( ) ( ))i j i jdist r r F x F x
ijw e− −= , the weight assigned to each 

document pair. 
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Now, we formally present our algorithm: MPBoost, which is 
based on GentleBoost [10], with changes in the loss function 
calculation and weight modification. In MPBoost, the initial 
weight of each document pair is uniform. During each iteration, a 
weak ranker is chosen to minimize (12). Then, the weights are 
updated with help of the normalizer tZ : 

 ( , )( ( ) ( ))( ) i j t i t jdist r r f x f xt
t ij

I
Z w e− −= ∑  (13) 

The final ranking function is the summation over all weak rankers. 
The procedure details of MPBoost are presented in Algorithm 1. 
Note that MPBoost bears some resemblance to RankBoost, which 
applies the optimization scheme of AdaBoost. In the RankBoost 
framework, a bound on the ranking loss is offered in Theorem 1 
[8]. Now, with the employment of GentleBoost approach and 
DDF, ( , )dist • • , MPBoost still inherits the bounded ranking loss 
property of RankBoost. We formalize this the following theorem. 
Theorem 1.  Assuming the notation of Algorithm 1, the 
normalized ranking loss (mis-ordering) of F is bounded: 

(1) (1)

{( , ) | } {( , ) | } 1

[[ ( ) ( )]] [[ ( ) ( )]]
i j i j

T

ij i j ij i j t
i j I r r i j I r r t

w F x F x w F x F x Z
∈ > ∈ < =

≤ + ≥ ≤∑ ∑ ∏  

where  [[ ]]π  is defined to be 1 if predicate π holds and 0 
otherwise. 
Proof: The proof is similar to the one for Theorem 1 in [8], but 
with the introduction of DDF. 

Note that [[ 0]] xx eα≥ ≤  and [[ 0]] xx e α−≤ ≤  hold for all 0α >  
and all real x . Furthermore, ( , )i jdist r r has the same sign as 

i jr r− . Thus, 

 

(1)

{( , ) | }

(1)

{( , ) | }

[ ( , )( ( ) ( ))](1)

{( , ) | }

[ ( , )]( ( ) ( ))(1)

{( , ) | }

[ ( ,(1)

[[ ( ) ( )]]

[[ ( ) ( )]]

   

i j

i j

i j i j

i j

i j i j

i j

i j

ij i j
i j I r r

ij i j
i j I r r

dist r r F x F x
ij

i j I r r

dist r r F x F x
ij

i j I r r

dist r r
ij

w F x F x

w F x F x

w e

w e

w e

∈ >

∈ <

− −

∈ >

− −

∈ <

−

≤ +

≥

≤ +

=

∑

∑

∑

∑
)( ( ) ( ))]

( 1)

1

1

i jF x F x

I
T

T
ij t

I t

T

t
t

w Z

Z

−

+

=

=

=

=

∑

∑ ∏

∏      (14)

        ■  

In view of the bound established in Theorem 1, we are guaranteed 
to produce a combined ranking with low ranking loss if on each 
round t we choose a weak ranker tf  to minimize tZ .  

Actually, minimizing  ( )wseJ f  (12) is exactly minimizing a 
second-order Taylor approximation of  tZ  (13), when (9) is 
satisfied: 

 

( , )( ( ) ( ))( )

( )

2
2

( ) 2

( ) 2

[1 ( , )( ( ) ( ))

( , )
       ( ( ) ( )) ]

2
1 1{ [ ( , ) ( ( ) ( ))] }
2 2

1 1[ ( , ) ( ( ) ( ))]
2

i j t i t jdist r r f x f xt
t ij

I
t

ij i j t i t j
I

i j
t i t j

t
ij i j i j

I

t
ij i j i j

I

Z w e

w dist r r f x f x

dist r r
f x f x

w dist r r f x f x

w dist r r f x f x

− −=

≈ − −

+ −

≈ − − +

= − − +

∑

∑

∑

∑ ( )

2
1 1( )
2 2

t
ij

I

wse

w

J f= +

∑

 (15) 

Therefore, in theory, the MPBoost algorithm can achieve low 
mis-ordering loss (16) via stage-wise gradient descent method. 
And it has been proved that minimizing the number of mis-
orderings is equivalent to maximizing a lower-bound on ranking 
performance metrics [6]. The empirical analysis in Section 5 also 
substantiates the result. 

{( , ) | } {( , ) | }
( ) [[ ( ) ( )]] [[ ( ) ( )]]

i j i j

i j i j
i j I r r i j I r r

MisOrder F F x F x F x F x
∈ > ∈ <

= ≤ + ≥∑ ∑  (16) 

5. EXPERIMENTAL RESULTS 
5.1 Data Collections 
We utilized three data sets in the experiments: OHSUMED [14], a 
benchmark data set for document retrieval downloadable from 
LETOR 3.0 [18, 19]; Web-1, a Russian web search dataset [15]; 
Web-2, an English web search dataset obtained from a popular 
search engine. 
OHSUMED [14] is a collection for information retrieval research. 
It is a subset of MEDLINE, a database on medical publications. 
OHSUMED contains a total of 348,556 records (out of over 7 
million) from 270 medical journals during the period of 1987-
1991. The fields of a record embrace title, abstract, MeSH 
indexing terms, author, source, and publication type. In 
OHSUMED, there are 106 queries, each with a number of 
associated documents. Also in the data set are a total of 16,140 
query-document pairs, each of which described by 45 features. In 
OHSUMED, relevance grades are from {0, 1, 2}. We conducted 
experiments on each of the 5 subfolders in OHSUMED, each 
containing training/validation/test data. 
Web-1 is the public training data from “Internet Mathematics 
2009” contest [15]. This dataset contains computed and 
normalized features of query-document pairs as well as relevance 
judgments made by Yandex search engine assessors. There are 
97,290 query-document pairs within a total of 9,124 queries. Each 
query-document pair is described by 245 features. All features are 
either binary value from {0, 1}, or continuous values from [0, 1]. 
In Web-1, relevance grades are continuous values from range [0, 
4], with higher values represents higher relevance. We used five- 
fold cross validation, with 3+1+1 splits between 
train/validation/test sets. 
Web-2 is from a commercial English search engine. There are 50, 
000 query-document pairs within a total of 467 queries. Each 
query-document pair is described by 1779 features. In Web-2, 
relevance grades are from {0, 1, 2, 3, 4}. Again, we used five-fold 
cross validation, with 3+1+1 splits between train/validation/test 
sets. 
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5.2 Performance Measures 
In the experiment, we apply the Normalized Discounted 
Cumulative Gain(NDCG) [16] as the performance measure. 
NDCG can handle multiple levels of relevance and it favors 
algorithms that give higher ranks to highly relevant documents 
than marginally relevant ones. Furthermore, lower ranking 
position is of less value to this metric since it has less chance to 
be examined by a user. In accordance with these principles, 
computing NDCG values follow the following four steps: 
1) Compute the gain of each document 
2) Discount the gain of each document by its ranking position in 
the list 
3) Cumulate these discounted gain of the list 
4) Normalize the discounted cumulative gain of the list 
Therefore, NDCG of a ranking list at position n is calculated as 
following: 
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log ( )

r j
n

r j
n

j

j
N n Z

j
j=

⎧ − =
⎪= −⎨

>⎪
⎩

∑  

where ( )r j is the rating of the jth document in the list, and the 
normalization constant nZ  is chosen so that the perfect ranking 
list receives a NDCG score of 1. The final NDCG score is the 
average over all queries. 
In addition, in the validation phase of our experiments, we set 
NDCG@5 as the criteria for selecting the best parameters. 

5.3 Experimental results on NDCG 
We present the ranking accuracy of MPBoost algorithm on the 
three datasets along with some state-of-art baseline ranking 
methods. Specifically, on OHSUMED dataset, we apply 
RankBoost [7, 8], ListNet [2] and AdaRank-NDCG [23] as the 
baseline methods. The measurement on these algorithms comes 
from [19]. Also, we make MPBoost with binary labels as another 
baseline method, which is represented by MPBoost.BINARY in 
the figures.  
Also in following figures, MPBoost.LDD, MPBoost.LOGDD and 
MPBoost.LOGITDD respectively represent the MPBoost 
algorithm with DDF in form (6), (7) and (8). These three versions 
of algorithms leverage the magnitude-preserving property. The 
parameters tuned in the experiments include α in (6), λ in (7), 
β in (8) and the number of boosting rounds T . Note that for 
MPBoost, the condition (9) should be considered during the 
tuning. And we use the validation set to tune these parameters 
independently.  
In the experiments, we leverage decision stumps as the weak 
ranker for the MPBoost algorithm. The definition and 
optimization process of decision stumps is presented in the 
appendix. 

5.3.1 Experiments on OHSUMED 
On OHSUMED, we conducted five-fold cross validation 
experiments using the data split provided in LETOR. Every 
ranking measurement was calculated as the mean over five 
folders. As shown in Figure 3, the three versions of magnitude-
preserving MPBoost algorithms outperform nearly all baselines in 

NDCG@1 to NDCG@10 by 1 point to 6 points gain.  Although  
MPBoost.LDD and MPBoost.LOGDD lag behind ListNet and 
AdaRank-NDCG by about 0.5% in NDCG@1, 
MPBoost.LOGITDD consistently achieves the best NDCG 
accuracy across NDCG@1 to NDCG@10. Furthermore, 
MPBoost.BINARY, which is the MPBoost algorithm with binary 
labels, outperforms RankBoost in all metrics except for 
NDCG@6 and NDCG@7. Thus, we leverage MPBoost.BINARY 
as the baseline in the following experiments. 

5.3.2 Experiments on Web-1 
We conducted experiments on Web-1 via five-fold cross-
validation, and the reported result is the average over five folders. 
As shown in Figure 4, the advantage of MPBoost with magnitude-
preserving loss functions is not as clear as that in OHSUMED. 
Still, an average of 0.16% and 0.13% NDCG advantage is gained 
by MPBoost.LOGDD and MPBoost.LOGITDD over 
MPBoost.BINARY. However, MPBoost.LDD lags behind 
MPBoost.BINARY by an average of 0.24% NDCG. 

5.3.3 Experiments on Web-2 
The experiment on Web-2 was also conducted via five-fold cross-
validation, and the reported result is an average over five folders. 
From Figure 5, we can see that MPBoost with magnitude-
preserving loss functions significantly outperform the version 
with binary labels by an average of 1.5% (MPBoost.LDD), 2.2% 
(MPBoost.LOGDD) and 1.8%(MPBoost.LOGITDD) and 
MPBoost.LOGITDD performs the best in NDCG@1 and 
NDCG@2, while MPBoost.LOGDD achieves the best in the rest 
positions. 

5.4 Discussion 
In this section, we will try to  present some analysis in light of the 
consistent and excellent experimental results generated from our 
MPBoost algorithm as compared to the state-of-the-art ranking 
algorithms.  
Firstly, the loss function (10) applied in MPBoost utilizes the 
concept of directed distance function over ratings, thus preserving 
the magnitude of rating differences even in classification. In the 
experiment on three datasets, all three versions of MPBoost with 
DDF outperform MPBoost with binary labels. Hence, it 
substantiates that magnitude-preserving labels can lead the 
algorithm to grasp the inherent pattern in document vectors and in 
general yield higher performance. 
Secondly, MPBoost pursued the ranking problem with quasi-
GentleBoost approach. In [10], GentleBoost has been empirically 
proved to perform better than AdaBoost, while RankBoost is 
constructed on the basis of AdaBoost. Thus, MPBoost.BINARY 
and the other three versions of MPBoost with magnitude-
preserving property consistently outperform RankBoost in 
OHSUMED dataset. 
It is interesting to observe that among the three versions of 
MPBoost applying LDD, LOGDD and LOGITDD, the logarithm-
based one achieved the best performance in two datasets; while 
the linear-based one fall behind the other two in all three datasets. 
We attribute the result to the ability to depict rating differences. 
The linear-based DDF, LDD, tends to output too large values for 
large rating grades, thus forcing the parameter α to take pretty 
small values (e.g. the best α in the 
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Figure 3.  Ranking accuracies on OHSUMED dataset 

 

 
Figure 4.  Ranking accuracies on Web-1 dataset 

 

Figure 5.  Ranking accuracies on Web-2 dataset. 

 
Figure 6. Average NDCG@5 on test set over 5 folds in Web-2 
Dataset. For MPBoost.LDD, MPBoost.LOGDD and 
MPBoost.LOGITDD, the parameters  α , λ and β  are set as 
the one achieving the best performance on validation set. 
 
Web-2 dataset was in average 0.062). The consequence is that the 
ability to differentiate smaller rating differences degrades. The 
logistic-based DDF, LOGITDD, has similar problems in that the 
overall output interval is ( 1, 0.5] [0.5,1)− − ∪  and the saturation 
problem appears quite often. On the contrary, LOGDD generates 
moderate range of output while preserving the original magnitude 
properly. 

5.5 Overfitting Issues 
In the boosting method, overfitting is a thorny issue that needs to 
be handled [5]. Specifically, while the empirical error will keep 
decreasing in the training phase, the performance on test set may 
degrade as the number of training rounds increases. In our 
experiments, we observe that MPBoost with binary label suffers 
from overfitting, while MPBoost with magnitude-preserving 
properties perform well as training goes on. 
To demonstrate, in the previous experiment on Web-2, we record 
the performance of the trained model on test set every 10 
iterations. Figure 6 shows the average NDCG@5 on test set over 
five folders in the Web-2 dataset. As shown in the figure, 
MPBoost.BINARY suffers from serious overfitting problem after 
peaking at around the 90th iteration. However, MPBoost.LDD, 
MPBoost.LOGDD and MPBoost.LOGITDD can achieve 
comparatively stable ranking accuracies as the number of training 
rounds increase and avoid the overfitting issue to some extent. 
We attribute this phenomenon to the incompleteness of traditional 
binary-label pairwise approach to ranking, combined with the 
distribution of different magnitude of ratings. On one hand, the 
calculation of metrics such as NDCG deals with the magnitude of 
ratings, not directly with the pairwise order. On the other hand, in 
the Web-2 dataset, the relevance ratings come from {0, 1, 2, 3, 4}, 
which give considerable impetus to place document with ratings 
like 3 and 4 in front. Thus, ignoring the magnitude of ratings and 
only retaining the relative order, binary labels lose a large amount 
of information during the transformation from ranking to 
classification. Thus, the trained model deviates from correctly 
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capturing the way to improve metrics like NDCG, and test data 
substantiates the incompleteness. 
On the contrary, the other three versions of magnitude-preserving 
MPBoost all apply loss functions with DDF. Thus, in the training 
phase, these three versions can learn a more suitable model to 
match the goal of ranking in the sense of improving NDCG. 
Hence, the performance on test set does not degrade after 
sufficient long time of training. 

6. CONCLUSION AND FUTURE WORK 
In this paper, we propose a new approach to magnitude-
preserving ranking: directed distance function (DDF). Compared 
to previous schemes [4], DDF imposes less restriction on the form 
of functions while retaining the magnitude of rating differences. 
We also present three kinds of directed distance functions: LDD, 
LOGDD and LOGITDD, which can be applied under different 
circumstances due to the output range. The parameters in these 
DDFs can be easily adapted to meet requirements of different 
ranking algorithms. 
Based on DDF, we propose a new boosting method for ranking 
problem: MPBoost.  MPBoost incorporates directed distance 
function with the exponential loss function and applies 
GentleBoost-like optimization. The ranking loss, or misordering, 
of MPBoost is still bounded, like RankBoost, which is based on 
AdaBoost. 
Experimental results with three datasets indicate that the 
MPBoost method, when combined with magnitude-preserving 
DDF, outperforms binary-label-based MPBoost and existing 
state-of-art approaches like RankBoost, ListNet and AdaRank-
NDCG. Furthermore, MPBoost with DDF tend to avoid 
overfitting in training. 
For future work, we plan to study the theoretical advantage in our 
method. We also intend to apply mixed directed distance for 
different pairs of ratings to more accurately depict the magnitude 
issue. 
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9. APPENDIX - THE WEAK RANKER: 
DECISION STUMPS 
The weak ranker based on decision stumps, ( )dr x , is defined as 
the following:  
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k is the serial number of the feature ( )dr x  selects. θ is the 
threshold for this feature. a and 0 are the only two possible 
values ( )dr x  can take. We choose 0 here because in pairwise 
approach, only the difference of the two values ( )dr x  can take 
matters. In other words, we only need ( ) ( )d i d jr x r x− in 
calculation. 

To find the best ( )dr x , we can iterate k . When k is determined, 
we only have to iterate ( 1)n +  values for θ : 

1, 2, ,- ,x ,x , ,xk k n k∞ …… .Thus, the only problem is to find the best 

a when k and θ are determined. Notice that both ( )d ir x and 
( )d jr x can possibly take two values, yielding 4 combinations. 

Therefore, we should split the sum into 4 cases. 
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Suppose the best a for specific k and θ is ,ka θ . We have: 

1 2

1 2

1 2

( ) 2 ( )
,

2
, ,

( ) 2 ( )

2
,

( ) 2 ( ) 2
,

( )

( ) ( ( , ) 0) ( ( , )

)

( ( , ) 0 0) ( ( , )

0 )

( ( , ) ) ( , )

( ,

t t
wse t ij i j k ij i j

A A

k k

t t
ij i j ij i j

B B

k

t t
ij i j k ij i j

A A

t
ij i j

J f w dist r r a w dist r r

a a

w dist r r w dist r r

a

w dist r r a w dist r r

w dist r r

θ

θ θ

θ

θ

= − + +

− +

+ − + +

− +

= − +

+

∑ ∑

∑ ∑

∑ ∑

1 2

2 ( ) 2
,) ( ( , ) )t

ij i j k
B B

w dist r r a θ+ +∑ ∑ (19) 

Consequently, in order to minimize ( )wse tJ f , we take the partial 
derivative and obtain the best ,ka θ : 
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Thus, after iterating through all possible k ’s and θ ’s, we can get 
the minimum ( )wse tJ f  and the corresponding best parameters. 
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