
New Results on Simple Stochastic Games�

Decheng Dai1 and Rong Ge2

1 Tsinghua University
ddc02@mails.tsinghua.edu.cn

2 Princeton University
rongge@cs.princeton.edu

Abstract. We study the problem of solving simple stochastic games,
and give both an interesting new algorithm and a hardness result. We
show a reduction from fine approximation of simple stochastic games to
coarse approximation of a polynomial sized game, which can be viewed
as an evidence showing the hardness to approximate the value of simple
stochastic games. We also present a randomized algorithm that runs in
Õ(

√|VR|!) time, where |VR| is the number of RANDOM vertices and Õ
ignores polynomial terms. This algorithm is the fastest known algorithm
when |VR| = ω(log n) and |VR| = o(

√
min |Vmin|, |Vmax|) and it works

for general (non-stopping) simple stochastic games.

1 Introduction

1.1 Simple Stochastic Games

Simple stochastic games are games played by two players on a graph, it is a
restricted version of general stochastic games introduced by Shapley [1]. In a
simple stochastic game, two players (MAX and MIN) move a pebble along di-
rected edges in a graph. The vertices in the graph can have one of the three
labels: MAX, MIN or RANDOM. If the pebble is on a vertex labeled MAX(or
MIN), then MAX(or MIN) player decides through which out going edge the peb-
ble should move; if the pebble is on a vertex labeled RANDOM, then the pebble
moves along a randomly chosen edge. The graph also has a special vertex called
the “1-sink”. The MAX player wins if and only if the pebble is moved to 1-sink.

SSGs have many interesting applications. In complexity theory, SSGs are used
in the analysis of space bounded computations with alternations and random-
ness [2]. In practice, SSGs are used to model reactive systems. In such systems,
RANDOM vertices are used to model stochastic environmental changes, MAX
vertices are used to model adversary or arbitrary behaviors, MIN vertices are
used to model choices of the system. The 1-sink vertex represents a failure. The
goal of the system is thus minimizing the probability of failure (reaching 1-sink
vertex).

� Supported by the National Natural Science Foundation of China Grant 60553001
and the National Basic Research Program of China Grant 2007CB807900,
2007CB807901.

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 1014–1023, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

New Results on Simple Stochastic Games 1015

Finding the optimal strategies for SSGs has been an interesting open problem
for a long time. A lot of algorithms have been purposed. Condon [2] proved the
decision version of SSG is in NP∩ coNP, and later in 1993, she showed several
iterative algorithms for SSG in [3], but all of these algorithms require exponential
time. She also suggested an approximation version of SSG problem, but there
are no polynomial time algorithms known. Our gap amplification result gives
an evidence on why the approximation problem is also difficult. Ludwig gave a
sub-exponential (Õ(2

√
n), Õ hides polynomial terms) time randomized algorithm

for SSGs in [4], which uses local search techniques. Somla [5] purposed a new
iterative algorithm in 2004 which might be better than previous algorithms,
however there’s no evidence that shows the algorithm runs in polynomial time.
Recently, Gimbert and Horn [6] presented a new non-iterative algorithm that
runs in time Õ(|VR!|). This highlights one of the main reasons the problem has
exponential complexity: the existence of random vertices.

1.2 Our Results

In this paper, we investigate the SSG problem in both hardness and algorithmic
aspects. On the hardness side, we show that a coarse approximation of SSGs is
as hard as a fine approximation. This is done by constructing a new game G′

from a game G, such that G′ has polynomial size and a coarse approximation
to G′ would give a fine approximation of game G. Viewed pessimistically this
can be an evidence that shows it is hard to even approximate SSGs; viewed
optimistically, this may give hope of deriving a good approximation algorithm
for SSGs.

At the algorithmic side, we present an algorithm based on the algorithm of
Gimbert and Horn [6]. They considered a set of strategies called f -strategies,
and showed at least one of f -strategies is optimal. However they were not able
to distinguish “good” f -strategies and “bad” f -strategies. By finding a way to
evaluate the “correctness” of f -strategies, we are able to apply local search algo-
rithms to find the optimal f -strategy, and reduce the running time to Õ(

√|VR|!).
Our algorithm is the fastest known randomized algorithm for solving SSGs when
|VR| = ω(log n) and |VR| = o(

√
min{|Vmax|, |Vmin|}).

In Sect.2 we give definitions for Simple Stochastic Games and strategies. Then
we describe the reduction from fine approximation to coarse approximation in
Sect.3. After that, we give a brief introduction to f -strategies and then present
our algorithm.

2 Basic Definitions

There are many variations of SSGs, we define the game formally as follows

Definition 1 (Simple Stochastic Games). A simple stochastic game is spec-
ified by a directed graph G =< V, E > and a starting vertex vstart ∈ V . Each
vertex v ∈ V has 2 outgoing edges and a label (MAX, MIN or RANDOM).

1016 D. Dai and R. Ge

Vmin, Vmax, VR are the sets of vertices with label MIN, MAX and RANDOM
respectively. There’s a special vertex v1 (the 1-sink) in the graph.

Initially the pebble is at vstart. If the pebble is at a MAX/MIN vertex, then
the corresponding player moves the pebble along one of the outgoing edges. If the
pebble is at a RANDOM vertex, then the pebble moves along a random outgoing
edge (both edges are chosen with probability 1/2). If the pebble reaches v1 then
MAX player wins, otherwise MIN player wins.

Solving SSGs means calculating the winning probabilities for the players if they
all follow optimal strategy. Informally, the strategy of a player decides which edge
should the pebble follow in the game. Although a strategy can decide the edge by
considering history or using random coins, it’s well known that positional optimal
strategies exist for simple stochastic games ([1,2]). A positional strategy makes
the decision only by the current position of the pebble. Formally, a positional
strategy for MAX player α is a function from Vmax to V , for any vertex v ∈ V ,
(v, α(v)) is an edge and it is the outgoing edge that the MAX player would
choose if the pebble is currently at vertex v. Similarly, a positional strategy for
MIN player β is a function from Vmin to V . From now on when we mention
strategy we mean positional strategy.We define the value of a vertex to be the
winning probability of the MAX player if initially the pebble is at this vertex,
and denote this by val(v), the value of the game is val(vstart). When it’s not
clear which game we are talking about, we use val[G](v) to specify the value of
v in game G.

In simple stochastic games, MIN player wins the game by forcing the pebble
to move infinitely many steps without reaching the 1-sink. Sometimes it’s easier
to consider the situation that the game has two sinks: a 0-sink and a 1-sink. The
game guarantees no matter what strategies the players use, with probability 1
the game will reach one of the sinks in finitely many steps. The goal of MAX
player is to reach the 1-sink and the goal of MIN player is to reach the 0-sink.
This variation of SSG is called stopping simple stochastic games (stopping-SSG).
Condon showed in [2] that any SSG can be converted to a stopping-SSG in
polynomial time while the change in the value of the game is exponentially
small.

3 Coarse Approximation Is as Hard as Fine
Approximation

Since no polynomial time algorithms has been discovered for exactly solving
SSGs, Condon[2] purposed the following “approximation” version of the problem.
Consider the following sets,

Lyes = {G : the value of G is at least
1
2

+ ε} ,

Lno = {G : the value of G is at most
1
2
− ε} .

New Results on Simple Stochastic Games 1017

An ε-gap SSG decision problem is to determine whether G is in Lyes or Lno

given it is in one of them.Intuitively it might seem for some large enough ε
this problem is easy to solve. However, we give a gap amplification reduction
showing that when enlarging ε from (1/ poly(n)) to (1/2 − e−nρ

) for any ρ < 1,
the problem does not become easier. This reduction is analogue to the hardness
amplification results for clique and chromatic number problem.

Theorem 1. For any fixed constant 0 < ρ < 1 and c > 0, if the (1/2 − e−nρ

)-
gap SSG decision problem is in P, then the (n−c)-gap SSG decision problem is
in P.

Proof. First we prove the theorem for stopping SSG.
Now let’s assume G = 〈V, E〉 is a stopping-SSG with n vertices. There are

3 special vertices in a stopping SSG: vstart, the starting vertex; v1, the 1-sink
vertex; v0, the 0-sink vertex. We construct another game G′ = 〈V ′, E′〉 of size
N (which is polynomial in n) such that,

– G′ has value larger than (1 − e−Nρ

) if G has value larger than (1/2 + n−c)
– G′ has value less than e−Nρ

if G has value less than (1/2 − n−c)

Let {G0, Gi,j |i ∈ {0, 1}, j ∈ {1, ..., K}} be 2K + 1 copies of G. We replace the
out-going edges for v0 and v1 in each of these games to connect them together
in the following way (their two outgoing edges will point to the same location,
so it doesn’t matter what label they have)

– Connect v0 in G0 to vstart in G0,1, connect v1 in G0 to vstart in G1,1.
– Connect v1 in G0,j(1 ≤ j ≤ K) to vstart in G0, connect v0 in G0,j(j < K)

to vstart in G0,j+1.
– Connect v0 in G1,j(1 ≤ j ≤ K) to vstart in G0, connect v1 in G1,j(j < K)

to vstart in G1,j+1.
– The starting vertex in G′ is vstart in G0, and the 0-sink vertex is v0 in G0,K

and the 1-sink vertex is v1 in G1,K .

In this constructed game G′, the MIN(MAX) player must win G0 and all
G0,j(G1,j) to win G′. Let p to be the value in G. By induction, it is easy to
prove the probability to reach v1 in G1,K is (pK)/(pK + (1 − p)K).

Let K = nd where d = (c + 1)/(1− ρ), then N = (2K + 1)n = O(nd+1) when
p ≤ 1/2 − n−c we have,

pK

pK + (1 − p)K
≤ (1

2 − n−c)K

(1
2 − n−c)K + (1

2 + n−c)K

≤ (1 − 2n−c)K ≤ e−nd−c

≤ e−Nρ

,

so the value of G′ is less than e−Nρ

in this case. Similarly, when p ≥ 1/2 + n−c,
we have the value of G′ is larger than 1 − e−Nρ

. That is,

val(G) ≤ 1
2
− n−c ⇒ val(G′) ≤ e−Nρ

,

val(G) ≥ 1
2

+ n−c ⇒ val(G′) ≥ 1 − e−Nρ

.

1018 D. Dai and R. Ge

Fig. 1. An example on constructing G′ from G, for K = 3. Every ellipse is a copy of
G. Three solid vertices are vstart,v0,v1. It is easy to check that the probability to reach
the v0 in G′ is exactly p3/(p3 + (1 − p)3), in which p = val[G](v0).

By applying the algorithm for (1/2− e−nρ

)-gap SSG decision problem on G′,
the algorithm would be able to distinguish between val(G) > 1/2 + n−c and
val(G) < 1/2 − n−c.

For general (possibly non-stopping) SSG, we use Condon’s reduction in [2]
that transforms a SSG G to a stopping SSG G′ whose value is arbitrarily
close to the value of G. The constructed stopping game G′ adopts all the ver-
tices of G and inserts cnm new vertices(m = |E| in G). For any vertex v,
|val[G](v)− val[G′](v)| ≤ 2(2−c)n. By combining these two constructions, we can
reduce solving the (n−c)-gap decision problem to (1/2− e−nρ

)-gap SSG decision
problem.

4 Fast Algorithm for SSGs with Few Random Vertices

An interesting case for solving simple stochastic games is when there are a few
random vertices. Gimbert and Horn[6] found an algorithm that runs in Õ(|VR|!)
time. Their algorithm is based on enumerating a special kind of strategies called
f -strategies. To avoid simple and time consuming enumerations, our algorithm
relies on the following Lemma:

Lemma 1 (Main Lemma). There’s a partial order in f-strategies such that
the following holds:

1. Any maximal f corresponds to a pair of optimal strategies.
2. Two f-strategies can be compared in polynomial time
3. If f is not maximal, then in polynomial time we can find g which is better

than f

The f -strategies are first introduced in [6], and they proved a theorem(Lemma
3 in this paper) on testing whether the f -strategy is optimal or not. The brute-
force idea is to enumerate all possible O(n!) f -strategies and use Lemma 3 to find

New Results on Simple Stochastic Games 1019

the optimal one. Our major contrubution is this Main Lemma, which reduces
the problem to a local maximal searching problem and thus enabled us to design
faster algorithms.

4.1 f-Strategies

In this section we’ll first briefly describe [6]’s ideas on what are f -strategies and
how to test their optimality; this is first introduced in [6] and we mention it again
for completeness. Then we show how the partial order in the Main Lemma is de-
fined and prove the Main Lemma. Finally we use existing randomized algorithms
for local search problems to improve the expected running time to Õ(

√|VR|!).
Let f = 〈r1, . . . , rm〉 (for simplicity let r0 = v1) be a permutation of the

random vertices, where m = |VR| is the the number of the random vertices. A
f -strategy is a pair of positional strategies associated to f .

Let Ri be the first i random vertices in the permutation f . The consuming set
Ci is a set of vertices from which player MAX has a strategy σf for moving the
pebble to Ri and at the same time avoid touching any other random vertices, no
matter what strategy player MIN chooses. Similarly, there’s also a strategy τf for
player MIN, such that no matter what player MAX does, vertices outside Ci can
never reach a vertex in Ri without touching other random vertices.Obviously
C0 ⊆ C1 ⊆ . . . ⊆ Cm. This pair of strategies (σf , τf) is called the f -strategy
regarding to the permutation f . For any permutation f , let valf (ri) be the prob-
ability for player MAX to win if the game starts at vertex ri, when players follow
the f -strategies (σf , τf). The following lemmas are first proved in [6].

Lemma 2 (f-strategy). Given any permutation f , the corresponding σf and
τf always exist and can be found in polynomial time.

Lemma 3. If f satisfies the Consistency and Progressive conditions, then the
f-strategy is an optimal strategy for the game.

Consistency: valf (r1) ≥ · · · ≥ valf (rm)
Progressive: For any random vertex ri (i > 0) with valf (ri) > 0, at least one

of its outgoing edges points to a vertex in Ci−1.
There always exists a permutation f that satisfy both conditions.

For constructing {Ci} in polynomial time and more discussions about the Con-
sistency and Progressive conditions, see [6].

4.2 The Partial Order for f-Strategies

A natural way to improve the algorithm by Gimbert and Horn would be smartly
updating f when it is not Consistent or not Progressive. However, it is hard to
tell which permutation better by simply looking at the values for vertices.

To estimate whether a particular ordering is good or not, we construct a new
SSG with respect to the ordering.

1020 D. Dai and R. Ge

Fig. 2. (a)The game G, Δ are MIN vertices, � are MAX vertices, © are RANDOM
vertices. (b)The graph Gf , in which f = 〈r1, r2, r3, v1〉. 4 MAX vertices are added. The
dashed lines are the original edges and the solid lines are the added edges.

Definition 2 (value measure H(f)). Let G be a SSG and f be an ordering of
random vertices, Gf is a new SSG. Gf has all the vertices and edges in G and
m new vertices u1, u2, ..., um, all of them are MAX vertices. The two outgoing
edges of ui go to ri and ri+1 (both outgoing edges of um go to rm). All edges of
the form (v, ri) in G are replaced by (v, ui) in Gr. Let H(f) �

∑m
i=1 val[Gf](ui).

Let HOPT =
∑m

i=1 val[G](ri). An example on how to compute H(f) is showed in
Fig 2. In G, the values are val(r1) = 0, val(r2) = 0.5, val(r3) = val(v1) = 1. In Gf ,
the values are val(r1) = val(r2) = val(r3) = val(v1) = 1. So H(f) = 4 > HOPT .

Lemma 4. For any permutation f , H(f) ≥ HOPT . When f is both Consistent
and Progressive, H(f) = HOPT

Proof. Consider a permutation f and its corresponding Gf , assume α, β is a pair
of optimal strategies for the original game G. Now we construct a strategy α′

for player MAX in Game Gf : α′(v) = α(v) for all v ∈ G; α′(ui) = ri for all
ui, 1 ≤ i ≤ m. When player MAX takes this strategy, it is easy to check β is
the also best response for player MIN in G′. So for every v ∈ G, val[Gα,β](v) =
val[Gf ,α′,β](v) and

∑m
i=1 val(ui) =

∑m
i=1 val[Gf ,α′,β](v) = HOPT . However, MAX

may have better strategies in Gf , so H(f) ≥ HOPT .
When f is Consistent and Progressive in G, we first prove that f is also

Consistent and Progressive in Gf . Let Ci be the consuming sets in G regarding
to f . By analyzing the structure of graph Gf , we have C′

i = Ci ∪ {u1, u2, ..., ui}
are consuming sets in Gf . Consider the strategies (α′, β) as defined in the former
case. Using the definition of f -strategy, it is easy to verify that (α′, β) are f -
strategy for Gf . So val[Gf](ri) = val[G](ri), which means f is still Consistent
and Progressive for Gf . Therefore H(f) = HOPT .

To compute the optimal strategy and values for Gf , we use the following Lemma.

Lemma 5. For any permutation f and the f-strategy (σ, τ) in G, there is an
optimal strategy (σ′, τ ′) for Gf such that for all v ∈ G, τ(v) = τ ′(v) and σ(v) =
σ′(v).

New Results on Simple Stochastic Games 1021

Proof. Let the permutation f = 〈r0, . . . rm〉 and the corresponding f -strategy
(σf , τf). Now we construct strategy for Gf satisfies the conditions.

Denote the consuming sets for f as {Ci}. Let g = (r0, rt1 , rt2 , ..., rtm) be a
permutation for Gf which is consistent and progressive (this ordering always
exists by Lemma 3). Since G and Gf have the same random vertices, f and g are
permutations over the same set. Denote the consuming sets for g as {C′

i}, we
have

⋃
i Ci =

⋃
i C′

i. By the construction of Gf , we have Ci = ∪i
j=1(Cj ∪ {uj})

and C′
i = ∪max t1,t2,...,ti

j=1 (Cj ∪{uj}).This is because in the f -strategy in G, player
MAX’s strategy ensures Ci can reach Ri while MIN strategy ensures that no
other vertices outside Ci can reach Ri.

Now the optimal strategies (σ′, τ ′) are defined as follows.

σ′(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ(v), if v ∈ G

rti , if v = uti and ti = max
j≤i

tj

uti+1, if v = uti and ti < max
j≤i

tj

(1)

Since the MIN vertices in Gf are the same with G, we simply let τ ′(v) = τ(v).
Then for any i, the strategy σ′ makes sure that no matter what strategy

the MIN player uses, C′
i always reach a vertex in {r0, r1, ..., rti}. Similarly, the

strategy τ ′ makes sure that no matter what strategy that the MAX player uses,
vertices outside C′

i can never reach a vertex in {r0, r1, ..., rti}. So (σ′, τ ′) is a
valid f -strategy for the permutation g. Since g is consistency and progressive,
(σ′, τ ′) is therefore optimal by Lemma 3.

By this lemma we can find the optimal strategy for MIN player in Gf in polyno-
mial time, because we know that the strategy for player MIN in f -strategy for G
is also an optimal strategy for MIN player in Gf . By using linear programming
we can find the optimal strategy for player MAX in polynomial time.

Definition 3 (progressiveness measure P(f)). For an permutation f =
〈r1, . . . rm〉, P (f) is the smallest i(i > 0) such that ri does not have an out-
going edge to Ci−1. If there’s no such i or val(ri) = 0 then P (r) = m + 1.

Denote the set of all permutations over the random vertices as Π . Searching
this space and output the consistent and progressive one takes Õ(m!) time. But
an partial order over Π may help us to find this ordering. We say f > g if (1)
H(f) < H(g) or (2) H(f) = H(g) and P (f) > P (g).

Any maximal element in (Π, >) corresponds to an permutation that is both
Consistent and Progressive. Therefore we have proved the first 2 parts of the
Main Lemma. To prove part 3 of the Main Lemma, we use the following lemma
as a tool to upperbound the H value.

Lemma 6. If function f : V → [0, 1] satisfy the following conditions, then
val(v) ≤ f(v) for every vertex v.

1022 D. Dai and R. Ge

1. For vertex v1, f(v1) = 1;
2. For vertex v ∈ VR, assume the two outgoing edges are (v, w1), (v, w2), f(v) ≥

(f(w1) + f(w2))/2;
3. For vertex v ∈ VMAX, assume the two outgoing edges are (v, w1), (v, w2),

f(v) ≥ max(f(w1), f(w2));
4. For vertex v ∈ VMIN, assume the two outgoing edges are (v, w1), (v, w2),

f(v) ≥ min(f(w1), f(w2)).

Due to the limit of space, we defer the proof to the full version of the paper.

Lemma 7. If an permutation f = 〈r1, . . . rm〉 is not maximal, then there exists
an element ri in f , by deleting ri and reinsert it in appropriate place we get a
new ordering g such that g > f .

Proof. If the ordering f is not consistent in Gf , then there exists some t such that
val[Gf](rt) < val[Gf](rt+1). Find a place q > t so that val[Gf](uq) < val[Gf](rt+1)
(if there’s no such place then let q = m + 1). Delete rt and reinsert it right
before q (if q = m + 1 then insert it at the tail). Define f(v) = val[Gf](v),
then for graph Gg f is a valid value function that satisfy the requirements of
Lemma 6. Therefore for any vertex v val[Gr](v) ≥ val[Gg](v). Particularly for
the current position of rt, the corresponding u vertex is uq in Gg, f(uq) >
max(f(uq+1), f(rt)), so even after reducing f(uq) to max(f(uq+1), f(rt)), f is
still valid. That is, H(g) < H(f), g > f .

If the ordering f is consistent but not progressive, then assume P (f) = t.
Define a graph among the random vertices and r0 as follows: if an original
outgoing edge of ri goes to a vertex v that is in Cj\Cj−1, then there’s an edge
from ri to rj . Use breadth first search to find t′ > t, such that the following
holds:

1. There’s an edge from rt′ to {r0, r1, ..., rt−1}.
2. There’s a path from rt to rt′ .
Note that such t′ must exist because otherwise following the f -strategy, start-

ing from rt, the pebble will never be able to reach r0, and therefore the value of
rt is 0, which contradict with the fact that P (r) �= m+1. Also, val(rt′) = val(rt),
because if the path from rt to rt′ is (w0, w1, ..., wk) (w0 = rt and wk = rt′), then
since val(wi) = (val(wi+1) + val(r∗))/2, both wi+1 and r∗ are ranked lower than
t, val(wi+1) ≤ val(rt), val(r∗) ≤ val(rt). But val(w0) = val(rt), by induction for
all i val(wi) = val(w0) = val(rt).

Now delete rt′ and insert it back before rt to get a new ordering g. Define
f(v) = val[Gf](v), then for graph Gg f is a valid value function that satisfy the
requirements of Lemma 6. Therefore for any vertex v val[Gf](v) ≥ val[Gg](v).
Either all values are equal, in this case H(f) = H(g) but P (g) > P (f) so g > f ;
or some values are different, in this case H(g) < H(f) so g > f .

Since there are only polynomially many ways to delete and reinsert an element,
a better ordering can always be found in polynomial time.

New Results on Simple Stochastic Games 1023

4.3 The Randomized Algorithm

Now we can use the existed randomized local minimum searching algorithm to
solve the simple stochastic game. The algorithm to solve the value of a simple
stochastic game G = (V, E):

1. Randomly choose
√|VR|! log(|VR|!) permutations, and let f0 be the maximal

permutation among them;
2. Starting from f0, repeatedly find better permutation until a maximal per-

mutation is found

By Lemma 7, we can always find a better permutations unless f is maxi-
mal, and there are only |VR|! permutations, the algorithm will eventually find a
maximal permutation and thus the optimal strategy.

The first step takes Õ(
√|VR|!) time, after that, each iteration of the loop will

take poly(|VR|) time, so the key is how many iterations step 2 needs.

Lemma 8. The probability that step 2 needs more than
√|VR|! steps is no more

than 1/(|VR|)!.
Proof. Consider any total ordering of the permutations that agrees with the
partial ordering we defined. The probability that none of the

√|VR|! largest ele-

ments are chosen is at most (1−√|VR|!/(|VR|!))
√

|VR|! log(|VR|!)
= e

− log(|VR|!) =
1/(|VR|)!.

Therefore, the expectation of number of iterations is at most
√|VR|!. The run-

ning time is Õ(
√|VR|!).

References

1. Shapley, L.: Stochastic games. In: Proceedings of the National Academy of Sciences
(1953)

2. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224 (1992)
3. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computa-

tional Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 13, pp. 51–73. American Mathematical Society, Providence
(1993)

4. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic game
problem. Inf. Comput. 117(1), 151–155 (1995)

5. Somla, R.: New algorithms for solving simple stochastic games. In: Proceedings of
the Workshop on Games in Design and Verification (GDV 2004). Electronic Notes
in Theoretical Computer Science, vol. 119, pp. 51–65. Elsevier, Amsterdam (2005)

6. Gimbert, H., Horn, F.: Solving simple stochastic games. In: Beckmann, A., Dimi-
tracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 206–209. Springer,
Heidelberg (2008)

	New Results on Simple Stochastic Games
	Introduction
	Simple Stochastic Games
	Our Results

	Basic Definitions
	Coarse Approximation Is as Hard as Fine Approximation
	Fast Algorithm for SSGs with Few Random Vertices
	f-Strategies
	The Partial Order for f-Strategies
	The Randomized Algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

