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Recent theoretical studies predict that structural disorder, serving as a bridge connecting a crys-
talline material to an amorphous material, can induce a topological insulator from a trivial phase.
However, to experimentally observe such a topological phase transition is very challenging due to the
difficulty in controlling structural disorder in a quantum material. Given experimental realization
of randomly positioned Rydberg atoms, such a system is naturally suited to studying structural
disorder induced topological phase transitions and topological amorphous phases. Motivated by the
development, we study topological phases in an experimentally accessible one-dimensional amor-
phous Rydberg atom chain with random atom configurations. In the single-particle level, we find
symmetry-protected topological amorphous insulators and a structural disorder induced topological
phase transition, indicating that Rydberg atoms provide an ideal platform to experimentally ob-
serve the phenomenon using state-of-the-art technologies. Furthermore, we predict the existence of a
gapless symmetry-protected topological phase of interacting bosons in the experimentally accessible
system. The resultant many-body topological amorphous phase is characterized by a Z2 invariant.

Although topological phases of matter are primar-
ily pursued in crystalline materials with translational
symmetry [1–6], recent studies showed that topological
phases for non-interacting quantum particles can also ex-
ist in two or three dimensional amorphous systems [7–26].
Such systems have randomly distributed lattice sites cor-
responding to a limiting case with maximum structural
disorder arising from atom position randomness. Re-
markably, it has been theoretically shown that such dis-
order can induce a topological phase transition in three
dimensions [27, 28], reminiscent of topological Anderson
insulators [29], a topological phase induced by onsite dis-
order. However, it is very challenging to experimentally
observe such a structural disorder induced topological
phase transition in a quantum material.

Besides fermionic systems, bosonic systems can sup-
port symmetry-protected topological (SPT) phases when
strong interactions between particles are considered. In
fact, based on topological properties of a quantum many-
body ground state, substantial progress has been made
toward classifying interacting bosonic SPT phases for
gapped systems [30–36]. Although the classification does
not necessarily require the existence of translational sym-
metry, it is not clear whether SPT phases for interacting
bosons can exist in amorphous systems.

Rydberg atoms have proven to be a powerful plat-
form for quantum simulation and quantum computation
due to their high controllability and huge dipolar in-
teractions [37–39]. A variety of quantum spin models
and topological models can be simulated in a Rydberg
atom platform [40–52], and several of these models have
been experimentally realized [53–58]. In particular, a
bosonic version of the Su-Schrieffer-Heeger (SSH) model
has recently been experimentally engineered with Ryd-
berg atoms, leading to an observation of SPT phases of
interacting bosons in regular lattices [58]. Meanwhile,
the development of experimental techniques enables ex-

perimentalists to trap Rydberg atoms individually in any
position in space using optical tweezers [59, 60]. In fact,
structural disorder has been realized in experiments by
trapping a cloud of randomly positioned atoms in an op-
tical trap [61, 62]. Such development makes Rydberg
atoms a natural platform to study topological phases in
amorphous lattices and structural disorder induced topo-
logical phase transitions.

Motivated by the development, we study the SPT
phases in a one-dimensional (1D) amorphous bosonic
model with long-range hopping based on the experimen-
tal setup. In the single-particle level, we show that the
topological phase can exist in amorphous lattices; the
topological properties are characterized by the polariza-
tion, the boundary charge and the local density of states
(LDOS). Remarkably, we also find the structural dis-
order induced topological phase transitions in the sys-
tem. In the many-body level with hard-core bosons at
half-filling, the topological property of a ground state is
characterized by a Z2 index, which is protected to be
quantized by time-reversal symmetry, particle-hole sym-
metry or another anti-unitary symmetry. Through nu-
merically calculating the ground state by exact diagonal-
ization (ED) and matrix product state (MPS) [63, 64],
we show that, in contrast to the single-particle case, the
ground state of interacting bosons exhibits a large inter-
mediate regime with the coexistence of topologically triv-
ial and nontrivial states. Yet, further delicate finite-size
analysis suggests the existence of topological amorphous
phases in the many-body case. In both the single-particle
and many-particle cases, we demonstrate how to exper-
imentally observe the topological phases using a global
microwave pulse in a realistic Rydberg platform.

Model Hamiltonian.— We start by considering a chain
of Rydberg atoms comprised of two sub-chains with 2N
atoms as shown in Fig. 1(a). For each atom, we consider
two Rydberg states: an s-level (e.g., |60S1/2,mJ = 1/2〉)
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and a p-level (e.g., |60P1/2,mJ = −1/2〉). Because of the
dipolar interaction between two atoms that couples these
states, we can use the following Hamiltonian to describe
the system,

Ĥ =

2N∑
i<j

Vij(b̂
†
i b̂j + b̂†j b̂i), (1)

where b̂†i (b̂i) creates (annihilates) a hard-core boson
at site i [see Fig. 1(b)], and b̂†i |0〉 (|0〉 is the vacuum
state where all atoms are in the s-level) denotes the
state where only the i-th atom is excited to the p-level.
Since an atom can only be excited to the p-level once,
it naturally realizes a hard-core boson with (b̂†j)

2 = 0.
The hopping amplitude due to the dipolar interaction is
Vij = d2(1− 3 cos2 θij)/R

3
ij which depends on the dipole

moment d of the Rydberg atom and the angle θij be-
tween the magnetic field B and the position vector Rij

from site i to j. We note that such a Hamiltonian has
been experimentally realized with 87Rb atoms [58].

We study the topological properties in a Rydberg
glass by randomly placing N unit cells in a 1D box
of size N ; each unit cell contains an atom in a sub-
chain A (labeled by odd numbers) and an atom in a
sub-chain B (labeled by even numbers) separated by
a vector R = (Rx, Ry, Rz) [see Fig. 1(a)]. The hop-
ping within all unit cells is given by J ′ = V2i−1,2i =
d2(R2

y−R2
x+2
√

2RxRz)/R
5 with i = 1, 2, · · · , N . Thanks

to the angular dependence for the dipolar interaction, we
can realize chiral (sub-lattice) symmetry by arranging the
atoms aligned along a direction so that its angle with re-
spect to the magnetic field is equal to the ‘magic angle’,
i.e., θm = arccos(1/

√
3), leading to vanishing hopping

along each sub-chain.
To investigate the effects of structural disorder on the

topological property, we randomly displace atoms from
their original regular positions according to z2i−1 → i−
1 + δzi and z2i → i − 1 + Rz + δzi with δzi uniformly
sampled in the interval [−W/2,W/2]. When W = N ,
the system becomes completely random.

In a Rydberg atom experiment, either one particle or
many particles [58] can be excited by applying a global
microwave field that couples the two Rydberg states [see
Fig. 1(d)]. Motivated by this flexibility, we will study the
topological properties in both single-particle and many-
particle cases in a Rydberg glass. In the following, we
set a0 = 1 and d2/a30 = 1 as the units of length and en-
ergy, respectively. Because of the disorder feature, all the
quantities are averaged over 200 or more random configu-
rations in numerical calculations. Configuration averaged
quantities are denoted by · · ·.

Single-Particle Case.— We now study the scenario
with only one excitation in the Rydberg atom chain. In
this case, the system is described by a single-particle
Hamiltonian HS with [HS]ij = Vij(1 − δij) (1 ≤
i, j ≤ 2N) under a basis β = {b̂†1|0〉, b̂

†
2|0〉, · · · , b̂

†
2N |0〉}.

FIG. 1. (Color online) (a) Schematics of our system consist-
ing of two sub-chains of Rydberg atoms with atoms 2i−1 and
2i forming a unit cell. Here R = (Rx, Ry, Rz) is the position
vector between two atoms in a unit cell. (b) Dipolar interac-
tions between two atoms lead to the hopping of an excitation
between these two atoms. For example, Vij b̂†j b̂i indicates the
hopping of an excitation from atom i to atom j. (c) The
magnetic field B lies in the (x, z) plane with the polar angle
θm = arccos(1/

√
3) such that the hopping between atoms in

a sub-chain vanishes. (d) Microwave fields coupling the two
Rydberg states with the Rabi frequency Ω and detuning ∆
for experimental observations of the topological phases.

Since there are no intrachain hopping at the magic an-
gle in the system, HS preserves chiral symmetry, i.e.,
ΠHSΠ−1 = −HS with the chiral symmetry operator
Π = diag{(−1)j−1}2Nj=1. HS thus belongs to the Z clas-
sification, and its topological property manifests in the
existence of zero-energy edge states [3].

To characterize the topology of the single-excitation
Rydberg chain, we calculate the polarization [65]

PS = [
1

2π
Im ln det(U†DU)− 1

2N

2N∑
i=1

xi] mod 1, (2)

where U = (|u1〉, |u2〉, · · · , |uN 〉) with |uj〉 (1 ≤ j ≤ N)
being eigenstates of the single-particle Hamiltonian HS

with negative energies under periodic boundary condi-
tions, and D = diag{e2πixj/N}2Nj=1 with xi being the po-
sition of atom i. With chiral symmetry, the polarization
PS is quantized to zero or 0.5 [66] and hence can be used
as a topological invariant to characterize the topological
property of our amorphous system.

In Fig. 2(a), we map out the phase diagram with re-
spect to Rx and Ry based on the polarization. Clearly,
we see a large regime with PS ≈ 0.5, showing the ex-
istence of topological amorphous phases in a Rydberg
glass. While the system is gapless in both trivial and
nontrivial phases due to the strong structural disorder in
an amorphous system, all states are localized [66].

To understand why topological phases can arise in a
Rydberg glass, we consider a simpler model with only
nearest-neighbor (NN) hopping and ask whether such a
system can host a topological phase in an amorphous
geometry. The simpler model allows us to analyze a lim-
iting case where the hopping within a unit cell vanishes
(J ′ = 0). Evidently, the first and the last sites are iso-



3

lated without coupling to other sites, giving rise to two
zero-energy edge modes. These modes occur even when
unit cells are randomly distributed. For the real Rydberg
system, since the interchain hopping amplitude decays al-
gebraically with respect to the separation as 1/R3

ij , we
expect that the NN hopping still dominates, and topolog-
ical phases can also appear in a random Rydberg chain.
In fact, we find that the long-range hopping significantly
enlarges the regime of topological phases as shown in
Fig. 2(a), where the phase boundaries for a Hamiltonian
with only NN hopping are also plotted.

To diagnose the topological property of the system,
we also compute the boundary charge defined as CS =∑N
i=1(ρi − 1/2) with ρi =

∑N
j=1 |[|uj〉]i|2 being the local

charge density at site i for all states |uj〉 with negative
energies. In the calculation, we add very small onsite
potential ∓δ to the initial and end sites in Hamiltonian
HS, respectively, to lift the degeneracy of edge states. In
Fig. 2(b), we plot the boundary charge as a function of
Rx with Ry = 1.6 for different system sizes, showing a
sharp increase of CS from zero to 0.5 near Rx = −1.56
and Rx = 0.58 in agreement with the phase diagram in
Fig. 2(a). To further identify that the observed amor-
phous phase is topological, we display the zero-energy
LDOS for states in the topological regime in Fig. 2(c),
exhibiting large values at two edges, in contrast to small
values for states in the trivial regime. It indicates that
edge states arise in the topological regime.

In Fig. 2(a), we also observe that there exist some pa-
rameter regions where an amorphous system is in a topo-
logically nontrivial phase while a regular system is in a
trivial phase, e.g., when Rx = −0.5 and Ry = 0. It
implies that structural disorder can drive a topological
phase transition. Indeed, we remarkably find that as the
disorder strength W increases, the system changes from
a topologically trivial phase to a nontrivial one around
W ≈ 0.23, as shown in Fig. 2(d) (see the Supplementary
Material for other types of structural disorder [66]).

We now show how to experimentally identify the topo-
logical phases. Similar to experimental measurements in
the regular case [58], a weak global microwave field is
applied to couple the two Rydberg levels for a period of
time, which can create an excitation when the microwave
detuning ∆ matches the energy of the excitation [66]. At
the end, we measure the atom occupancy distribution on
the p-level. Our numerical results demonstrate that in
the topological phases, the sites occupancy of the final
state exhibits bright peaks at the boundaries at the zero
detuning [see Fig. 2(e1) and (e3)], revealing the existence
of zero-energy edge modes. Such localized peaks do not
appear at the zero detuning in the trivial phases [see
Fig. 2(e2) and (e4)]. Figure 2(f1-f4) further displays the
occupancy distribution at zero detuning by postselect-
ing the results corresponding to a single excitation. It
illustrates that the excitation in the topological phases
mainly resides at edges, whereas in the trivial phases, it
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FIG. 2. (Color online) (a) Polarization PS versus Rx and Ry
for an amorphous lattice with size N = 200. The black and
red dotted lines show the phase boundaries of an amorphous
system with only NN hopping and a regular system with long-
range hopping, respectively. The cyan line highlights the pa-
rameter region where the intracell hopping vanishes (J ′ = 0).
(b) Boundary charges CS versus Rx for distinct system sizes
N when Ry = 1.6. (c) Zero energy LDOS for topologically
nontrivial (Rx = −0.9) and trivial (Rx = 0.9) phases when
Ry = 1.6 and N = 20. (d) Polarization PS versus the disor-
der strength W when Rx = −0.5 and Ry = 0. (e) Occupancy
of each site with respect to the microwave detuning ∆. (f)
Post-selection occupancy distribution when ∆ = 0. (e1,f1)
and (e3,f3) [(e2,f2) and (e4,f4)] correspond to the topological
(trivial) phase with Rx = −0.9 (Rx = 0.9) in (b) and W = 1
(W = 0) in (d), respectively. In (e-f), the system size N = 7.
In (a-f), Rz = 0.8.

is approximately uniformly distributed over all sites.
Many-Body Case.— Next, we study the topological

property of Hamiltonian (1) in the many-body level. This
Hamiltonian can also be written as an XY spin model
with long-range coupling, Ĥ =

∑2N
i<j Vij(σ

+
i σ
−
j + σ+

j σ
−
i )

with σ±j = (σxj ± iσ
y
j )/2 and σsj (s = x, y, z) being the

Pauli matrices at site j. The ground state of this spin
model corresponds to the ground state of the hard-core
bosonic Hamiltonian at half-filling.

If we consider Hamiltonian (1) with only NN hopping,
we can show that the Hamiltonian can support a topolog-
ical amorphous phase using a similar argument as that in
the single-particle case [66]. Such a Hamiltonian can also
be mapped to a free fermionic model [66] by the inverse
Jordan-Wigner transformation, b̂†i = [

∏i−1
j=1(1−2ĉ†j ĉj)]ĉ

†
i ,

where ĉ†i is a fermion creation operator at site i. How-
ever, with long-range hopping, we can no longer map Ĥ
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FIG. 3. (Color online) (a) Z2 invariant PM versus Rx and Ry
for an amorphous lattice with N = 8. For comparison, we
also plot the phase boundaries for hard-core bosons at half-
filling in a regular lattice as cyan dotted lines and the phase
boundary in the single-particle level for an amorphous lattice
with size N = 8 as a red dotted line. (b) PM versus Rx for
various system sizes when Ry = 1. (c) Microwave sweep with
the Rabi frequency Ω and detuning ∆ varying with time; ∆
ends at ∆f . (d) and (e) Bulk (black curves) and edge (blue
and dashed green curves) sites occupancy after a microwave
sweep with respect to the final detuning ∆f in a topological
phase with Rx = −0.33 and Ry = 1 and in a trivial phase
with Rx = 0.45 and Ry = 1, respectively. In (c-e), N = 7.
Here, Rz = 0.7.

to a free fermionic Hamiltonian [58, 66]. In this case,
the system becomes a true many-body system with in-
teractions. We will use the ED for N ≤ 10 and MPS
for N > 10 to calculate the ground state of the Rydberg
Hamiltonian (1).

To characterize the topological property of the many-
body system, we define a Z2 invariant as [68, 69]

PM =
1

2π
Im ln〈Ψ0|P̂M|Ψ0〉, (3)

where |Ψ0〉 is the many-body ground state of the hard-
core bosonic Hamiltonian for periodic boundaries, and
P̂M =

∏2N
j=1 e

−πiN xjσ
z
j is the twist operator [70]. Hamil-

tonian (1) respects the particle-hole symmetry, i.e.,
Ξ̂ĤΞ̂−1 = Ĥ with Ξ̂ =

∏2N
j=1 σ

x
j , the time-reversal

symmetry, i.e., T̂ ĤT̂−1 = Ĥ with T̂ =
∏2N
j=1 σ

y
j κ,

and an anti-unitary symmetry, i.e., ŜĤŜ−1 = Ĥ with
Ŝ =

∏2N
j=1 σ

x
j κ and κ being the complex conjugate oper-

ator. All these symmetries can protect the quantization
of the Z2 invariant for a many-body eigenstate |Φ〉 that is
not degenerate for periodic boundaries [71]. Indeed, our
numerical results show that the ground states obtained
by the ED have quantized values for PM for each sample.
For those calculated by the MPS, their PM are very close

to be quantized, which is reasonable given that the MPS
can only find approximate ground states.

From the phase diagram in Fig. 3(a), we see a long nar-
row region with PM close to 0.5, signaling the existence
of a topological amorphous phase for hard-core bosons
at half-filling. The figure also illustrates the existence of
a topologically trivial region with zero PM and a large
intermediate region with 0 < PM < 0.5 (due to the coex-
istence of trivial and nontrivial samples) between these
two phases. Compared with the single-particle case in
amorphous lattices and the many-body case in regular
lattices, whose phase boundaries are shown by dotted
lines, the parameter region with nonzero PM shrinks in
large parts. Interestingly, there exists a region around
Ry = 1.75 where the phase is trivial for a regular lat-
tice while the phase is in an intermediate region for an
amorphous lattice. We note that whether this indicates
that structural disorder can induce a topological phase
transition in the many-body case is still unclear due to
the system size limitation.

To further identify the existence of a topological phase
in the many-body case, we show PM versus Rx for dis-
tinct system sizes in Fig. 3(b). We see that there exists a
parameter region for −0.375 . Rx . −0.23 where PM is
approaching 0.5 as the system size N increases. One can
also find the finite-size analysis in the Supplementary Ma-
terial, which further illustrates that the regime is topo-
logically nontrivial. In other regions such as Rx > −0.23,
PM declines as N increases, suggesting a trivial phase. In
the region for −0.5 < Rx < −0.375, current numerical
results suggest that it is an intermediate region. But the
conclusion may change for larger system sizes. In addi-
tion, our numerical results suggest that all these phases
are gapless [66].

To experimentally observe the topological phase in the
many-body case, one can shine a global microwave ra-
diation with time-varying Rabi frequency and detuning
ending at ∆f [see Fig. 3(c)], similar to the experiment
in Ref. [58]. Now, −∆f plays the role of the chemical
potential for the Hamiltonian −Ĥ, which is topologically
equivalent to Ĥ [66]. We numerically simulate the full
time evolution, and the results show that in the topo-
logical amorphous phase, as −∆f changes from negative
to positive values across zero, the bulk sites occupancy
increases continuously without experiencing a plateau,
revealing the gapless property of the system. However,
the edge sites occupancy exhibits a sharp rise across zero
detuning, indicating the emergence of particles localized
at the edges. For comparison, we also present the results
in the trivial phase where the sharp rise is not observed.

In addition, in the topological phase, we find that the
invariant PM = 0.37 (0.35), density-density correlations
Cz inter =

∑N−1
i=1 Cz2i,2i+1/(N − 1) = −0.44 (−0.48) and

Cz intra =
∑N
i=1 C

z
2i−1,2i/N = −0.08 (−0.10), and the

string order parameter Czstring = (−1)N−1〈
∏2N−1
i=2 σzi 〉 =
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0.25 (0.65) for the prepared state after the sweep for
∆f = 0; the results are consistent with those of the
topological ground state displayed in the bracket. Here,
Czi,j = 〈σzi σzj 〉 − 〈σzi 〉〈σzj 〉. In the trivial phase, we ob-
tain PM = 0.005 (0.000), Cz inter = −0.21 (−0.22) and
Cz intra = −0.47 (−0.49), and Czstring = 0.0015 (0.0017).
All these quantities are experimentally accessible [58].

In summary, we have predicted the existence of topo-
logical amorphous phases in an experimentally acces-
sible Rydberg chain in both single-particle and many-
body levels. In the single-particle level, we also find a
structural disorder induced topological phase transition.
Our numerical simulations of the time evolution further
provide strong evidence that these interesting phenom-
ena can be experimentally observed using state-of-the-art
technologies.
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In the supplementary material, we will present the energy gap and the level-spacing ratio (LSR) for the single-particle
Hamiltonian in Section S-1, prove the quantization of the polarization protected by chiral symmetry in Section S-2,
show the results using other types of distributions for structural disorder in Section S-3, discuss the existence of
topological amorphous phases in the Hamiltonian with only nearest-neighbor (NN) hopping in the many-body level
in Section S-4, explain the many-body effects in the Hamiltonian with long-range hopping in Section S-5, prove the
quantization of a Z2 invariant for an arbitrary spin system in Section S-6, discuss the property of the ground states
in the many-body case at half-filling in Section S-7, present the finite size analysis, the energy gap, and the structural
disorder induced topological phase transition for the many-body Hamiltonian in Section S-8, and finally present the
details on numerical simulations of experimental observations of topological phases in Section S-9.

S-1. ENERGY GAP AND LSR IN THE SINGLE-PARTICLE CASE

In this section, we will show that the topological amorphous phases in the single-particle case are gapless and
localized. Specifically, we plot the energy gap around zero energy in Fig. S1(a), showing the gapless feature.

To characterize the localization property, we define the LSR for all states with negative energies containing NE
energy levels as

r =

[
1

NE − 2

NE−2∑
n=1

min{δn, δn+1}
max{δn, δn+1}

]
, (S1)

where δn = En+1−En is the energy difference between two consecutive energy levels En and En+1 (here we assort the
energy levels in ascending order), and [· · · ] denotes the average over different disorder realizations. For our system,
when the states are localized, r ≈ 0.386 corresponding to the Poisson statistics, and when the states are extended,

http://arxiv.org/abs/2101.11412
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FIG. S1. (Color online) (a) The sample averaged energy gap around zero energy and (b) the sample averaged LSR with respect
to Rx and Ry for the single-particle Hamiltonian HS. The LSR is calculated based on all negative energies. Here, Rz = 0.8,
the system size N = 200, and all quantities are averaged over 500 random configurations.

r ≈ 0.53 corresponding to the Gaussian orthogonal ensemble (GOE) [S1]. Our calculation shows that the LSR is close
to 0.386, indicating that all states are localized in the parameter region as shown in Fig. S1(b).

S-2. PROOF OF THE QUANTIZATION OF THE POLARIZATION PROTECTED BY CHIRAL
SYMMETRY

We now prove that the quantization of the polarization PS can be protected by chiral symmetry. We begin by
defining the polarization P u

S as

P u
S = [

1

2π
Im ln det(U†uDUu)− 1

2N

2N∑
i=1

xi] mod 1, (S2)

where Uu = ΠU is a 2N ×N matrix composed of all eigenstates of HS with positive energies. From

det(U†uDUu) = det(U†ΠDΠU) = det(U†DΠΠU) = det(U†DU), (S3)

where we have used ΠD = DΠ and Π2 = 12N , it can be easily confirmed that

PS = P u
S . (S4)

When all states are occupied, we can define the polarization as

P f
S =

[
1

2π
Im ln det(U†f DUf)−

1

N

2N∑
i=1

Xi

]
mod 1, (S5)

where Uf = (U Uu) is a 2N × 2N unitary matrix composed of all the eigenstates of HS. Since

det(U†f DUf) = det(DUfU
†
f ) = det(D) =

2N∏
α=1

e2πiXα/N , (S6)

we have

P f
S =

[
1

2π
Im ln(

2N∏
α=1

e2πiXα/N )− 1

N

2N∑
i=1

Xi

]
mod 1 = 0. (S7)

We can also prove that

P f
S = (PS + P u

S ) mod 1, (S8)
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FIG. S2. (Color online) Polarization PS as a function of the disorder strength W for three different types of structural disorder.
The disorder strength W is twice the standard deviation for the Gaussian distribution and is the full width at half maximum
for the Cauchy distribution. The system parameters are the same as those in Fig. 2(d) in the main text, namely, Rx = −0.5,
Ry = 0 and Rz = 0.8.

because

(P f
S − PS − P u

S ) mod 1

=

[
1

2π
Im ln det(U†f DUf)−

1

2π
Im ln det(U†DU)− 1

2π
Im ln det(U†uDUu)

]
mod 1

=

 1

2π
Im ln det

U†DU U†DUu

U†uDU U†uDUu

+
1

2π
Im ln det(U†D†U) +

1

2π
Im ln det(U†uD

†Uu)

 mod 1

=

 1

2π
Im ln det

U†DU U†DUu

U†uDU U†uDUu

+
1

2π
Im ln det

U†D†U U†D†Uu

0 U†uD
†Uu

 mod 1

=

 1

2π
Im ln det

U†DU U†DUu

U†uDU U†uDUu

U†D†U U†D†Uu

0 U†uD
†Uu

 mod 1

=

 1

2π
Im ln det

(U†DU)(U†DU)† 0

U†uDUU
†D†U U†uUu

 mod 1

=

[
1

2π
Im ln det((U†DU)(U†DU)†)

]
mod 1

=0,

(S9)

where we have used U†U = U†uUu = 1N , U†Uu = 0 and UU† + UuU
†
u = 12N . Based on Eqs. (S4,S7,S8), we conclude

that PS can only take discrete values of 0 or 0.5 due to the presence of chiral symmetry.

S-3. OTHER TYPES OF STRUCTURAL DISORDER

In the main text, we consider structural disorder from a uniform distribution. In this section, we consider other
types of distributions including the Gaussian distribution fG(δzi) = 2

W
√
2π
e−2(δzi)

2/W 2

with W/2 being the standard

deviation and the Cauchy distribution fC(δzi) = 2
πW ·

(W/2)2

(δzi)2+(W/2)2 with W being the full width at half maximum.
We find that the structural disorder induced topological phase transition occurs for all the three types of distributions
but at different disorder strength W , as shown in Fig. S2. The results imply that the phase transition is not restricted
to specific structural disorder distributions.
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S-4. TOPOLOGICAL AMORPHOUS PHASES IN THE HAMILTONIAN WITH THE
NEAREST-NEIGHBOR (NN) HOPPING IN THE MANY-BODY LEVEL

A. The existence of many-body topological amorphous phases

In the main text, we have argued that in the single-particle case, the NN Hamiltonian can host topological phases
in a random geometry, given the fact that there exists a parameter region where the hopping within a unit cell
vanishes so that two zero-energy edge states appear under open boundary conditions. In the many-body case, we
can still consider the scenario with vanishing hopping within a unit cell. In this case, even though the unit cells are
randomly distributed, the first and final sites do not couple to the other sites under open boundary conditions. As a
consequence, b̂1, b̂

†
1, b̂2N and b̂†2N do not exist in the NN Hamiltonian and thus they commute with the Hamiltonian.

This leads to four degenerate many-body ground states under open boundary conditions: |φ0〉, b̂†1|φ0〉, b̂
†
2N |φ0〉 and

b̂†1b̂
†
2N |φ0〉, revealing the topological property of the many-body system.

B. The relation between the free fermionic Hamiltonian and the hard-core bosonic Hamiltonian by the
Jordan-Wigner transformation

In this subsection, we will show that for a system with odd number of unit cells, the free fermionic Hamiltonian

ĤF =

2N−1∑
i=1

Vi,i+1(ĉ†i ĉi+1 +H.c.) + V1,2N ĉ
†
1ĉ2N + V1,2N ĉ

†
2N ĉ1 (S10)

with the NN hopping under periodic boundary conditions at half-filling can be transformed to the hard-core bosonic
model with the NN hopping by the Jordan-Wigner transformation,

ĉ†i = (

i−1∏
α=1

σzα) · b†i ,

ĉi = (

i−1∏
α=1

σzα) · b̂i.

(S11)

From the transformation, one can easily find that ĉ†i ĉi+1 = b̂†i b̂i+1 when i < 2N . For the hopping term from the initial
site to the end one or vice versa, we have

ĉ†1ĉ2N = b̂†1 · (
2N−1∏
α=1

σzα) · b̂2N = −b̂†1b̂2N · (
2N∏
α=1

σzα), (S12)

and

ĉ†2N ĉ1 = (

2N−1∏
α=1

σzα) · b̂†2N b̂1 = −b̂†2N b̂1 · (
2N∏
α=1

σzα). (S13)

We can always consider a basis consisting of Fock states with fixed total particle numbers since the total particle
number is conserved, that is, β = {|n1n2 · · ·n2N 〉} where |n1n2 · · ·n2N 〉 is a Fock state with nj hard-core bosons at
site j with j = 1, 2, · · · , 2N (nj can take the value of either 0 or 1). At half-filling,

∑2N
j=1 nj = N . We therefore have

(
∏2N
α=1 σ

z
α)|n1n2 · · ·n2N 〉 =

∏2N
α=1(1 − 2b̂†αb̂α)|n1n2 · · ·n2N 〉 = (−1)N |n1n2 · · ·n2N 〉, indicating that when N is odd

(i.e., there are odd number of unit cells), ĉ†1ĉ2N = b̂†1b̂2N and ĉ†2N ĉ1 = b̂†2N b̂1. We thus conclude that for a system with
odd number of unit cells, the free fermionic Hamiltonian with the NN hopping under periodic boundary conditions
at half-filling can be transformed to the hard-core bosonic model with the NN hopping, i.e.,

ĤF [ĉ†i , ĉi] = ĤB [b̂†i , b̂i], (S14)

where

ĤB =

2N−1∑
i=1

Vi,i+1(b̂†i b̂i+1 +H.c.) + V1,2N b̂
†
1b̂2N + V1,2N b̂

†
2N b̂1. (S15)
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C. The topological equivalence between the free fermionic Hamiltonian and the hard-core bosonic
Hamiltonian

We now show that for a system with odd number of unit cells, the Z2 index of the NN hard-core bosonic model
is equal to the polarization of a NN free fermionic model. Let |Φ0〉 be the many-body ground state of ĤF , which is
a Slater determinant of all the single-particle eigenstates of ĤF with negative energies. Since ĤB [b̂†i , b̂i] = ĤF [ĉ†i , ĉi],
|Φ0〉 is in fact also the many-body ground state of ĤB . We also note that the polarization PS defined in Eq. (2) in the
main text can also be written as PS = 1

2π Im ln〈Φ0|P̂S|Φ0〉 for a free fermionic model where P̂S = e
2πi
N

∑2N
j=1 xj(ĉ

†
j ĉj−

1
2 ).

By the Jordan-Wigner transformation, P̂S = P̂M, indicating that the Z2 index

PM =
1

2π
Im ln〈Φ0|P̂M|Φ0〉 =

1

2π
Im ln〈Φ0|P̂S|Φ0〉 = PS. (S16)

Therefore, ĤB and ĤF share the same topology. We have also numerically confirmed that the topological invariants
for ĤB and ĤF are indeed equal for all samples when there are odd number of unit cells. While the proof based on
the Jordan-Wigner transformation is restricted to a system with odd number of unit cells, the argument in subsection
A can be applied to both even and odd cases. All these results indicate the existence of many-body topological
amorphous phases in the NN hard-core bosonic Hamiltonian.

S-5. THE MANY-BODY HAMILTONIAN WITH LONG-RANGE INTERACTIONS

In this section, we show that with long-range hoppings, the hard-core bosonic model can be mapped into a fermionic
model with interactions (see also Ref. [S3]). For clarity, we consider a simpler Hamiltonian with up to next-next-
nearest-neighbor hopping,

Ĥ =
∑
i

(Vi,i+1b̂
†
i b̂i+1 + Vi,i+3b̂

†
i bi+3 +H.c.), (S17)

which can be mapped to a fermionic model via Jordan-Wigner transformation,

Ĥ =
∑
i

[
Vi,i+1ĉ

†
i ĉi+1 + Vi,i+3ĉ

†
i ĉi+3 + 2Vi,i+3ĉ

†
i (2n̂i+1n̂i+2 − n̂i+1 − n̂i+2)ĉi+3 +H.c.

]
, (S18)

with ĉ†i (ĉi) being a fermionic creation (annihilation) operator at site i and n̂i = ĉ†i ĉi being a particle number operator.
Without Vi,i+3, the Hamiltonian corresponds to a non-interacting fermionic model. However, in the presence of these
terms, the corresponding fermionic model contains interactions besides the non-interacting hopping terms, implying
that the system is a genuine interacting system.

S-6. QUANTIZATION OF THE Z2 INVARIANT FOR AN ARBITRARY SPIN SYSTEM

Ref. [S2] proves that the Z2 invariant for a spin-1 system is quantized due to time-reversal and spin-rotational
symmetries. We now generalize the results to an arbitrary spin system, showing that the time-reversal symmetry, the
spin-rotational symmetries and other two anti-unitary symmetries can protect the quantization of the Z2 invariant
defined as

PA =
1

2π
Im ln〈Ψ0|P̂A|Ψ0〉, (S19)

where |Ψ0〉 is the ground state and P̂A =
∏M
j=1 e

−2πixjSzj /L with Szj being a spin operator along z at site j, M being
the total number of spins and L being the length of the system.

Suppose that the many-body ground state |Ψ0〉 of a Hamiltonian Ĥ under periodic boundary condition is not
degenerate. When a system respects the time-reversal symmetry T̂A =

∏M
j=1 e

−iπSyj κ with T̂ 2
A = 1 for even M , we

have T̂A|Ψ0〉 = eiθ|Ψ0〉. We can thus derive

〈Ψ0|P̂A|Ψ0〉 = 〈T̂AΨ0|P̂A|T̂AΨ0〉 = 〈T̂AΨ0|T̂AP̂AΨ0〉 = 〈Ψ0|P̂A|Ψ0〉∗, (S20)
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where we have used the result that T̂AP̂AT̂−1A = P̂A. Since 〈Ψ0|P̂M|Ψ0〉 is real, PA for the state |Ψ0〉 can only take
discrete values of zero or 0.5 up to an integer.

We now consider two spin-rotational symmetries: R̂x =
∏M
j=1 e

−iπSxj and R̂y =
∏M
j=1 e

−iπSyj . Similarly, we have
R̂ν |Ψ0〉 = ±|Ψ0〉 (ν = x, y) since R̂2

ν = 1 for an even M . Note that for a half spin system, R̂x is also known as the
particle-hole symmetry. One can easily derive that R̂†νP̂MR̂ν = P̂†M (ν = x, y), which leads to

〈Ψ0|P̂A|Ψ0〉 = 〈R̂νΨ0|P̂A|R̂νΨ0〉 = 〈Ψ0|R̂†νP̂AR̂ν |Ψ0〉 = 〈Ψ0|P̂†A|Ψ0〉 = 〈Ψ0|P̂A|Ψ0〉∗. (S21)

Therefore, PA can only take discrete values of 0 or 0.5 up to an integer.
We can also consider other anti-unitary symmetries such as ŜA = R̂νκ with ν = x, y. We also can derive that

ŜAP̂AŜ−1A = P̂A, leading to

〈Ψ0|P̂A|Ψ0〉 = 〈ŜAΨ0|P̂A|ŜAΨ0〉 = 〈ŜAΨ0|ŜAP̂AΨ0〉 = 〈Ψ0|P̂A|Ψ0〉∗, (S22)

so that PA has to take discrete values of 0 or 0.5 up to an integer.
To sum up, for a system consisting of even number of arbitrary spins, the Z2 invariant is enforced to be quantized

by the time-reversal, spin-rotational and other anti-unitary symmetries.

S-7. DISCUSSION ON THE PROPERTY OF THE GROUND STATE IN THE MANY-BODY CASE AT
HALF-FILLING

Our spin model also respects a U(1) symmetry, i.e., [Ĥ, sz] with sz =
∑2N
j=1 σ

z
j /2 being the total spin operator

along z so that sz is a conserved quantity. If a many-body eigenstate |φ〉 of Ĥ has nonzero eigenvalues mz (mz 6= 0)
of sz, then Ŝ|φ〉 must be another eigenstate with the same energy as |φ〉 but opposite sz eigenvalue since {Ŝ, sz} = 0,
implying that |φ〉 is degenerate. Thus, a nondegenerate state, if it exists, must lie in the subspace with mz = 0. In
fact, such a condition corresponds to the constraint of half-filling for the hard-core bosonic model. It is a well-known
fact that, without magnetic fields, the ground state for the XY spin chain with only short-range coupling in regular
lattices has a zero total spin, and the state is not degenerate for periodic boundaries. These properties should remain
for the model including long-range couplings. As a result, PM can only take quantized values for the ground state and
thus can be used as a topological invariant. In the amorphous case, we expect that these properties remain unchanged.
Indeed, our numerical results show that the ground states obtained by the ED have mz = 0 and quantized values for
PM for each sample. For those calculated by the MPS, their PM are very close to be quantized, which is reasonable
given that the MPS can only find approximate ground states.

S-8. FINITE SIZE ANALYSIS, ENERGY GAP, AND STRUCTURAL DISORDER INDUCED
TOPOLOGICAL PHASE TRANSITION FOR THE MANY-BODY HAMILTONIAN

In this section, we plot 0.5 − PM as a function of the system size N in the logarithmic scale for Rx =
−0.25,−0.3,−0.325,−0.35 in the topological regime for the many-body Hamiltonian [see Fig. S3(a)]. It shows an
overall decrease of the value toward zero as the system size N increases, suggesting that PM approaches 0.5 in the
thermodynamic limit.

In Fig. S3(b), we give the plot of an energy gap between the ground state and the first excited state of the many-
body Hamiltonian for different system sizes. We see that the energy gap decreases as the system size N increases,
suggesting that the energy gap vanishes in the thermodynamic limit.

In Fig. S4(a), we plot the phase diagram in the (Rx, Ry) plane for a larger system with N = 14, illustrating the
existence of a region where a topologically trivial phase in a regular lattice becomes nontrivial in an amorphous lattice.
We further find that for a system parameter highlighted as a blue diagonal cross in Fig. S4(a), PM undergoes a sharp
change from 0 to a value near 0.5 as the structural disorder strength W increases [see Fig. S4(b)], providing strong
evidence of the existence of the structural disorder induced topological phase transition in the many-particle level.
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FIG. S3. (Color online) (a) 0.5−PM with respect to the system size N for different Rx in the logarithmic scale. (b) The sample
averaged energy gap of the many-body Hamiltonian with respect to Rx for different system sizes. The energy of the ground
state and the first excited state is calculated via exact diagonalization when N ≤ 10 and matrix product states when N > 10.
The average is performed over more than 200 samples. Here Ry = 1 and Rz = 0.7.
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FIG. S4. (Color online) (a) Z2 invariant PM versus Rx and Ry for an amorphous lattice. For comparison, we also plot the
phase boundaries for hard-core bosons at half-filling in a regular lattice as red dots. (b) PM versus disorder strength W in a
structurally disordered lattice when Rx = −1.2 and Ry = 2.7 [marked in (a) by a blue diagonal cross]. Here, Rz = 0.7 and the
system size N = 14.

S-9. NUMERICAL SIMULATIONS FOR EXPERIMENTAL OBSERVATIONS OF TOPOLOGICAL
PHASES

To experimentally identify the topological phases, we apply a global microwave field with the Rabi frequency Ω(t)
and detuning ∆(t) to couple the two Rydberg states, which is described by the Hamiltonian,

Ĥ(t) = Ĥ +
~Ω(t)

2

2N∑
i=1

(b̂†i + b̂i)− ~∆(t)

2N∑
i=1

b̂†i b̂i, (S23)

where Ĥ =
∑2N
i<j Vij(b̂

†
i b̂j + b̂†j b̂i) is the Rydberg Hamiltonian defined in Eq. (1) in the main text. Starting from an

empty state |0〉 with all atoms in the s-level, the state evolves as |ϕ(t)〉 = Û(t, 0)|0〉 where Û(t, t0) = T [e
−(i/~)

∫ t
t0
Ĥ(τ)dτ

]

TABLE I. The system parameters used in the simulation for Fig. 2(e1-e4) and (f1-f4) in the main text. Here d2/a30 is the energy
unit of the Rydberg Hamiltonian, Ω is the Rabi frequency of the microwave field, and tf is the evolution time.

Fig. 2: (e1,e2,f1) (f2) (e3,e4,f3) (f4)

d2/(a30h) 10 MHz 10 MHz 1 MHz 1 MHz

Ω/2π 0.1 MHz 0.3 MHz 0.1 MHz 0.2 MHz

tf 1.5 µs 1.5 µs 2 µs 2 µs
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with T [· · · ] being the time-ordering operator. We use the Krylov subspace method to calculate the time evolution
of the system. In the main text, we set the energy unit d2/a30 = 1 to simplify notations. Here in the simulation,
considering the realistic experimental parameters, we set d2/(a30h) to 1 MHz or 10 MHz.

A. The single-particle case

In the single-particle case, we shine a weak time-independent microwave radiation with the Rabi frequency Ω(t) = Ω
and detuning ∆(t) = ∆ for several microseconds to excite an excitation. Table I lists the energy unit d2/a30, the Rabi
frequency Ω and the evolution time tf used in the numerical simulation for Fig. 2(e1-e4) and (f1-f4) in the main text.
Note that in the trivial cases in Fig. 2(f2) and (f4), we take a relatively larger Rabi frequency in the time evolution
in order to perform the postselection at ∆ = 0; otherwise, there are only a few excitations, which can also be seen in
Fig. 2(e2) and (e4) in the main text.

B. The many-body case

To measure the topological phases in the many-body case, we first prepare the system in the empty state |0〉 and
then apply a global microwave pulse to couple the |60S1/2〉 and |60P1/2〉 levels with an initial microwave detuning
∆(t = 0) = 20 MHz. In the simulation, we set d2/(a30h) to 10 MHz, and |0〉 is approximately the highest energy
many-body state of the Hamiltonian Ĥ−~∆(t = 0)

∑2N
i=1 b̂

†
i b̂i. We then slowly tune Ω and ∆ according to the scheme

shown in Fig. 3(c) to approximately drive the state to the highest energy state of the Hamiltonian Ĥ−~∆f

∑2N
i=1 b̂

†
i b̂i,

or the ground state of the Hamiltonian −Ĥ + ~∆f

∑2N
i=1 b̂

†
i b̂i. Hence, −∆f plays the role of the chemical potential for

the Hamiltonian −Ĥ. At the end, we measure the atom occupancy at edges or in the bulk on the p-level for the final
state. If −Ĥ is in the topological phase, then the edge sites occupancy should exhibit a sharp rise due to the emergence
of particles mainly residing at the edges, when we vary −∆f across zero. This rise does not appear in the trivial
phase. Here, the edge sites occupancy is defined as the configuration averaged expectation value of b̂†1b̂1 or b̂†2N b̂2N ,
and the bulk sites occupancy is defined as the configuration averaged expectation value of

∑2N−1
j=2 b̂†j b̂j/(2N −2). The

characteristic signatures can therefore be utilized to diagnose whether a system −Ĥ and thus Ĥ is in a topological
phase. In fact, the ground state |Ψ0〉 of Ĥ at half filling is topological if and only if the ground state |Ψ′0〉 of −Ĥ is
topological. It is due to the fact that |Ψ′0〉 = Û |Ψ0〉 because ÛĤÛ† = −Ĥ with Û =

∏N
i=1 σ

z
2i, leading to

〈Ψ′0|P̂M|Ψ′0〉 = 〈Ψ0|Û†P̂MÛ |Ψ0〉 = 〈Ψ0|P̂M|Ψ0〉 (S24)

since [Û , P̂M] = 0.
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