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Detecting multipartite entanglement structure with minimal
resources
You Zhou 1, Qi Zhao1, Xiao Yuan 2 and Xiongfeng Ma 1*

Recently, there are tremendous developments on the number of controllable qubits in several quantum computing systems. For
these implementations, it is crucial to determine the entanglement structure of the prepared multipartite quantum state as a basis
for further information processing tasks. In reality, evaluation of a multipartite state is in general a very challenging task owing to
the exponential increase of the Hilbert space with respect to the number of system components. In this work, we propose a
systematic method using very few local measurements to detect multipartite entanglement structures based on the graph state—
one of the most important classes of quantum states for quantum information processing. Thanks to the close connection between
the Schmidt coefficient and quantum entropy in graph states, we develop a family of efficient witness operators to detect the
entanglement between subsystems under any partitions and hence the entanglement intactness. We show that the number of
local measurements equals to the chromatic number of the underlying graph, which is a constant number, independent of the
number of qubits. In reality, the optimization problem involved in the witnesses can be challenging with large system size. For
several widely used graph states, such as 1-D and 2-D cluster states and the Greenberger–Horne–Zeilinger state, by taking
advantage of the area law of entanglement entropy, we derive analytical solutions for the witnesses, which only employ two local
measurements. Our method offers a standard tool for entanglement-structure detection to benchmark multipartite quantum
systems.
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INTRODUCTION
Entanglement is an essential resource for many quantum
information tasks,1 such as quantum teleportation,2 quantum
cryptography,3,4 nonlocality test,5 quantum computing,6 quantum
simulation,7 and quantum metrology.8,9 Tremendous efforts have
been devoted to the realization of multipartite entanglement in
various systems,10–20 which provide the foundation for small- and
medium-scale quantum information processing in near future and
will eventually pave the way to universal quantum computing. In
order to build up a quantum computing device, it is crucial to first
witness multipartite entanglement. So far, genuine multipartite
entanglement has been demonstrated and witnessed in experi-
ment with a small amount of qubits in different realizations, such
as 14-ion-trap-qubit,10 12-superconducting-qubit,14 and 12-
photon-qubit systems.17

In practical quantum hardware, the unavoidable coupling to the
environment undermines the fidelity between the prepared state
and the target one. Taking the Greenberger–Horne–Zeilinger (GHZ)
state for example, the state-of-the-art 10-superconducting-qubit13

and the 12-photon17 preparations only achieve the fidelity of 66.8%
and 57.2%, respectively, which just exceed the threshold 50% for the
certification of genuine entanglement. As the system size becomes
larger, see for instance, Google’s a 72-qubit chip (https://www.
sciencenews.org/article/google-moves-toward-quantum-supremacy-
72-qubit-computer) and IonQ’s a 79-qubit system (https://
physicsworld.com/a/ion-based-commercial-quantum-computer-is-a-
first/), it is an experimental challenge to create genuine multipartite
entanglement. Nonetheless, even without global genuine entangle-
ment as the target state possesses, the experimental prepared state
might still have fewer-body entanglement within a subsystem and/
or among distinct subsystems.21–23 The study of lower-order

entanglement, which can be characterized by the detailed
entanglement structures,24–26 is important for quantum hardware
development, because it might reveal the information on unwanted
couplings to the environment and acts as a benchmark of the
underlying system. Moreover, the certified lower-order entangle-
ment among several subsystems could be still useful for some
quantum information tasks.
Considering an N-partite quantum system and its partition

into m subsystems (m ≤ N), the entanglement structure indi-
cates how the subsystems are entangled with each other. Each
subsystem corresponds to a subset of the whole quantum
system. For instance, we can choose each subsystem to be each
party (i.e., m= N), and then the entanglement structure
indicates the entanglement between the N parties. In some
specific systems, such as distributed quantum computing,27

quantum networks28 or atoms in a lattice, the geometric
configuration can naturally determine the system partition (see
Fig. 1 for an illustration). In other cases, one might not need to
specify the partition in the beginning. By going through all
possible partitions, one can investigate higher level entangle-
ment structures, such as entanglement intactness (non-separ-
ability),23,26 which quantifies how many pieces in the N-partite
state are separated.
Multipartite entanglement-structure detection is generally a

challenging task. Naively, one can perform state tomography on
the system. As the system size increases, tomography becomes
infeasible due to the exponential increase of the Hilbert space.
Entanglement witness,29–31 on the other hand, provides an
elegant solution to multipartite entanglement detection. In
literature, various witness operators have been proposed to
detect different types of quantum states, generally requiring a
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polynomial number of measurements with respect to the system
size.32,33 Interestingly, a constant number of local measurement
settings are shown to be sufficient to detect genuine entangle-
ment for stabilizer states.34,35 Compared with genuine entangle-
ment, multipartite entanglement structure still lacks a systematic
exploration, due to the rich and complex structures of N-partite
system. Recently, positive results have been achieved for
detecting entanglement structures of GHZ-like states with two
measurement settings26 and the entanglement of a specific 1-D
cluster state of the 16-qubit superconducting quantum processor
ibmqx5 machine from the IBM cloud.36 Unfortunately, it remains
an open problem of efficient entanglement-structure detection of
general multipartite quantum states.
In this work, we propose a systematic method to witness the

entanglement structure based on graph states. Note that the
graph state37,38 is one of the most important classes of
multipartite states for quantum information processing, such as
measurement-based quantum computing,39,40 quantum routing
and quantum networks,28 quantum error correction,41 and Bell
nonlocality test.42 It is also related to the symmetry-protected
topological order in condensed matter physics.43 Typical graph
states include cluster states, GHZ state, and the states involved in
the encoding process of the 5-qubit Steane code and the
concatenated [7,1,3]-CSS-code.38

The main idea of our entanglement-structure detection method
runs as follows. First, with the close connection between the
maximal Schmidt coefficient and quantum entropy, we upper-
bound the fidelity of fully- and biseparable states. These bounds
are directly related to the entanglement entropy of the underlying
graph state with respect to certain bipartition. Then, inspired by
the genuine entanglement detection method,34 we lower-bound
the fidelity between the unknown prepared state and the target
graph state, with local measurements corresponding to the
stabilizer operators of the graph state. Finally, by comparing
theses fidelity bounds, we can witness the entanglement
structures, such as the (genuine multipartite) entanglement
between any subsystem partitions, and hence the entanglement
intactness.

Our detection method for entanglement structures based on
graph states is presented in Theorems 1 and 2, which only
involves k local measurements. Here, k is the chromatic number of
the corresponding graph, typically, a small constant independent
of the number of qubits. For several common graph states, 1-D
and 2-D cluster states and the GHZ state, we construct witnesses
with only k= 2 local measurement settings, and derive analytical
solutions to the optimization problem. These results are shown in
Corollaries 1–4. The proofs of propositions and theorems are left in
Methods, and the proofs of Corollaries 1–4 are presented in
Supplementary Methods 1–4.

RESULTS
Definitions of multipartite entanglement structure
Let us start with the definitions of multipartite entanglement
structure. Considering an N-qubit quantum system in a Hilbert
space H ¼ H�N

2 , one can partition the whole system into m
nonempty disjoint subsystems Ai, i.e., fNg � f1; 2; ¼ ;Ng ¼Sm

i¼1 Ai with H ¼ �m
i¼1 HAi . Denote this partition to be Pm ¼

fAig and omit the index m when it is clear from the context.
Similar to definitions of regular separable states, here, we define
fully- and biseparable states with respect to a specific partition Pm
as follows.

Definition 1. An N-qubit pure state, Ψfj i 2 H, is P-fully separable,
iff it can be written as

Ψfj i ¼ �m
i¼1

ΦAij i: (1)

An N-qubit mixed state ρf is P-fully separable, iff it can be
decomposed into a convex mixture of P-fully separable pure
states

ρf ¼
X
i

pi Ψ
i
f

�� �
Ψi
f

� ��; (2)

with pi ≥ 0, ∀i and
P

i pi ¼ 1.

Denote the set of P-fully separable states to be SPf . Thus, if one
can confirm that a state ρ =2 SPf , the state ρ should possess
entanglement between the subsystems {Ai}. Such kind of
entanglement could be weak though, since it only requires at
least two subsystems to be entangled. For instance, the state
Ψj i ¼ ΨA1A2j i �Qm

i¼3 ΨAij i is called entangled nevertheless only
with entanglement between A1 and A2. It is interesting to study
the states where all the subsystems are genuinely entangled with
each other. Below, we define this genuine entangled state via
P-bi-separable states.

Definition 2. An N-qubit pure state, Ψsj i 2 H, is P-bi-separable, iff
there exists a subsystem bipartition fA;Ag, where A ¼ Si Ai ,
A ¼ fNg=A ≠ ;, the state can be written as,

Ψbj i ¼ ΦAj i � ΦA

�� �
: (3)

An N-qubit mixed state ρb is P-bi-separable, iff it can be
decomposed into a convex mixture of P-bi-separable pure states,

ρb ¼
X
i

pi Ψ
i
b

�� �
Ψi
b

� ��; (4)

with pi ≥ 0, ∀i and
P

i pi ¼ 1, and each state Ψi
b

�� �
can have

different bipartitions.

Denote the set of bi-separable states to be SPb . It is not hard to
see that SPf � SPb .

Definition 3. A state ρ possesses P-genuine entanglement iff
ρ =2 SPb .

Fig. 1 A distributed quantum computing scenario. Three remote
(small) quantum processors, owned by Alice, Bob, and Charlie, are
connected by quantum links. Each of them possesses a few of qubits
and performs quantum operations. In this case, the partition of the
whole quantum system is determined by the locations of these
processors. In order to perform global quantum operations
involving multiple processors, entanglement among the processors
are generally required. Thus, it is essential to benchmark the
entanglement structure on this network
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The three entanglement-structure definitions of P-fully separ-
able, P-bi-separable, and P-genuinely entangled states can be
viewed as generalized versions of regular fully separable, bi-
separable, and genuinely entangled states, respectively. In fact,
when m= N, these pairs of definitions are the same.
Following the conventional definitions, a pure state |Ψm〉 is m-

separable if there exists a partition Pm, the state can be written in
the form of Eq. (1). The m-separable state set, Sm, contains all the
convex mixtures of the m-separable pure states,
ρm ¼Pi pi Ψ

i
m

�� �
Ψi
m

� ��, where the partition for each term Ψi
m

�� �
needs not to be same. It is not hard to see that Sm+1⊂ Sm.
Meanwhile, define the entanglement intactness of a state ρ to be
m, iff ρ∉ Sm+1 and ρ∈ Sm. Thus, as ρ∉ Sm+1, the intactness is at
most m, i.e., the non-separability can serve as an upper bound of
the intactness. When the entanglement intactness is 1, the state is
genuinely entangled; and when the intactness is N, the state is
fully separable. See Fig. 2 for the relationships among these
definitions.

By definitions, one can see that if a state is Pm-fully separable, it
must be m-separable. Of course, an m-separable state might not
be Pm-fully separable, for example, if the partition is not properly
chosen. In experiment, it is important to identify the partition
under which the system is fully separated. With the partition
information, one can quickly identify the links where entangle-
ment is broken. Moreover, for some systems, such as distributed
quantum computing, multiple quantum processor, and quantum
network, natural partition exists due to the system geometric
configuration. Therefore, it is practically interesting to study
entanglement structure under partitions.

Entanglement-structure detection method
Let us first recap the basics of graph states and the stabilizer
formalism.37,38 In a graph, denoted by G= (V, E), there are a vertex
set V= {N} and a edge set E⊂ [V]2. Two vertexes i, j are called
neighbors if there is an edge (i, j) connecting them. The set of
neighbors of the vertex i is denoted as Ni. A graph state is defined
on a graph G, where the vertexes represent the qubits initialized in
the state of þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

and the edges represent a
Controlled-Z (C-Z) operation, CZfi;jg ¼ 0j ii 0h j � Ij þ 1j ii 1h j � Zj ,
between the two neighbor qubits. Then the graph state can be
written as,

Gj i ¼
Y
ði;jÞ2E

CZfi;jg þj i�N: (5)

Denote the Pauli operators on qubit i to be Xi, Yi, Zi. An N-partite
graph state can also be uniquely determined by N independent
stabilizers,

Si ¼ Xi �
j2Ni

Zj ; (6)

which commute with each other and Si|G〉= |G〉, ∀i. That is, the
graph state is the unique eigenstate with eigenvalue of +1 for all
the N stabilizers. Here, Si contains identity operators for all the
qubits that do not appear in Eq. (6). As a result, a graph state can
be written as a product of stabilizer projectors,

Gj i Gh j ¼
YN
i¼1

Si þ I
2

: (7)

The fidelity between ρ and a graph state |G〉 can be obtained from
measuring all possible products of stabilizers. However, as there
are exponential terms in Eq. (7), this process is generally inefficient
for large systems. Hereafter, we consider the connected graph,
since its corresponding graph state is genuinely entangled.
Now, we propose a systematic method to detect entanglement

structures based on graph states. First, we give fidelity bounds
between separable states and graph states as the following
proposition.

Proposition 1. Given a graph state |G〉 and a partition P ¼ fAig,
the fidelity between |G〉 and any P-fully separable state is upper
bounded by

Tr Gj i Gh jρfð Þ � min
fA;Ag

2�SðρAÞ; (8)

and the fidelity between |G〉 and any P-bi-separable state is upper
bounded by

Trð Gj i Gh jρbÞ � max
fA;Ag

2�SðρAÞ; (9)

where fA;Ag is a bipartition of {Ai}, and S(ρA)=−Tr[ρA log2 ρA] is
the von Neumann entropy of the reduced density matrix
ρA ¼ TrAð Gj i Gh jÞ.

The bound in Eq. (9) is tight, i.e., there always exists a P-bi-
separable state to saturate it. The bound in Eq. (8) may not be

Fig. 2 Venn diagrams to illustrate relationships of several separable
sets. a To illustrate the separability definitions based on a given
partition, we consider a tripartition P3 ¼ fA1;A2;A3g here. The
P-fully separable state set SPf is at the center, contained in three bi-
separable sets with different bipartitions. The P-bi-separable state
set SPb is the convex hull of these three sets. A state possesses
P-genuine entanglement if it is outside of SPb . Note that this
becomes the case of three-qubit entanglement when each party Ai
contains one qubit.22 b Separability hierarchy of N-qubit state with
Sm+1⊂ Sm and 2 ≤m ≤ N. The m-separable state set Sm is the convex
hull of separable states with different m-partitions. Thus SPm

f � Sm,
and one can investigate Sm by considering all SPm

f . A state possesses
genuine multipartite entanglement (GME) if it is outside of S2, and is
(fully) N-separable if it is in SN
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tight for some partition P ¼ fAig and some graph state |G〉. In
addition, we remark that to extend Theorem 1 from the graph
state to a general state |Ψ〉, one should substitute the entropy in
the bounds of Eqs. (8) and (9) with the min-entropy S∞(ρA)=
−logλ1 with λ1 the largest eigenvalue of ρA ¼ TrAð Ψj i Ψh jÞ.
Next, we propose an efficient method to lower-bound the

fidelity between an unknown prepared state and the target graph
state. A graph is k-colorable if one can divide the vertex set into k
disjoint subsets

S
Vl ¼ V such that any two vertexes in the same

subset are not connected. The smallest number k is called the
chromatic number of the graph. (Note that the colorability is a
property of the graph (not the state), one may reduce the number
of measurement settings by local Clifford operations.38) We define
the stabilizer projector of each subset Vl as

Pl ¼
Y
i2Vl

Si þ I
2

; (10)

where Si is the stabilizer of |G〉 in subset Vl. The expectation value
of each Pl can be obtained by one local measurement setting
�i2Vl Xi �j2V=Vl Zj . Then, we can propose a fidelity evaluation
scheme with k local measurement settings, as the following
proposition.

Proposition 2. For a graph state Gj i Gh j and the projectors Pl defined
in Eq. (10), the following inequality holds,

Gj i Gh j �
Xk
l¼1

Pl � ðk � 1ÞI; (11)

where A ≥ B indicates that (A− B) is positive semidefinite.

Note that Proposition 2 with k= 2 case has also been studied in
literature.34 Combining Propositions 1 and 2, we propose
entanglement-structure witnesses with k local measurement
settings, as presented in the following theorem.

Theorem 1. Given a partition P ¼ fAig, the operator WP
f can

witness non-P-fully separability (entanglement),

WP
f ¼ k � 1þ min

fA;Ag
2�SðρAÞ

 !
I�

Xk
l¼1

Pl ; (12)

with hWP
f i � 0 for all P-fully separable states; and the operator WP

b
can witness P-genuine entanglement,

WP
b ¼ k � 1þmax

fA;Ag
2�SðρAÞ

 !
I�

Xk
l¼1

Pl; (13)

with hWP
b i � 0 for all P-bi-separable states, where fA; Ag is a

bipartition of {Ai}, ρA ¼ TrAð Gj i Gh jÞ, and the projectors Pl is defined
in Eq. (10).

The proposed entanglement-structure witnesses have several
favorable features. First, given an underlying graph state, the
implementation of the witnesses is the same for different
partitions. This feature allows us to study different entanglement
structures in one experiment. Note that the witness operators in
Eqs. (12) and (13) can be divided into two parts: The measurement
results of Pl obtained from the experiment rely on the prepared
unknown state and are independent of the partition; The bounds,
1þmin ðmaxÞfA;Ag2�SðρAÞ , on the other hand, rely on the partition
and are independent of the experiment. Hence, in the data
postprocessing of the measurement results of Pl, we can study
various entanglement structures for different partitions by
calculating the corresponding bounds analytically or numerically.
Second, besides investigating the entanglement structure

among all the subsystems, one can also employ the same
experimental setting to study that of a subset of the subsystems,

by performing different data postprocessing. For example,
suppose the graph G is partitioned into three parts, say A1, A2,
and A3, and only the entanglement between subsystems A1 and
A2 is of interest. One can construct new witness operators with
projectors P0l , by replacing all the Pauli operators on the qubits in
A3 in Eq. (10) to identities. Such measurement results can be
obtained by processing the measurement results of the original Pl.
Then the entanglement between A1 and A2 can be detected via
Theorem 1 with projectors P0l and the corresponding bounds of
the graph state GA1A2j i. Details are discussed in Supplementary
Note 1.
Third, when each subsystem Ai contains only one qubit, that is,

m= N, the witnesses in Theorem 1 become the conventional
ones. It turns out that Eq. (13) is the same for all the graph states
under the N-partition PN , as shown in the following corollary. Note
that, a special case of the corollary, the genuine entanglement
witness for the GHZ and 1-D cluster states, has been studied in
literature.34

Corollary 1. The operator WPN
b can witness genuine multipartite

entanglement,

WPN
b ¼ k � 1

2

� �
I�

Xk
l¼1

Pl; (14)

with hWPN
b i � 0 for all bi-separable states, where Pl is defined in Eq.

(10) for any graph state.

Fourth, the witness in Eq. (12) can be naturally extended to
identify non-m-separability, by investigating all possible partitions
Pm with fixedm. In fact, according to the definition ofm-separable
states and Eq. (8), the fidelity between any m-separable state ρm
and the graph state |G〉 can be upper bounded by
maxPmminfA;Ag2

�SðρAÞ , where the maximization is over all possible
partitions with m subsystems. As a result, we have the following
theorem on the non-m-separability.

Theorem 2. The operator Wm can witness non-m-separability,

Wm ¼ k � 1þmax
Pm

min
fA;Ag

2�SðρAÞ
 !

I�
Xk
l¼1

Pl ; (15)

with 〈Wm〉 ≥ 0 for all m-separable states, where the maximization
takes over all possible partitions Pm with m subsystems, the
minimization takes over all bipartition of Pm, ρA ¼ TrAð Gj i Gh jÞ, and
the projector Pl is defined in Eq. (10).

The robustness analysis of the witnesses proposed in Theorems
1 and 2 under the white noise is presented in Methods. It shows
that our entanglement-structure witnesses are quite robust to
noise. Moreover, the optimization problems in Theorems 1 and 2
are generally hard, since there are exponentially many different
possible partitions. Surprisingly, for several widely used types of
graph states, such as 1-D, 2-D cluster states, and the GHZ state, we
find the analytical solutions to the optimization problem, as
shown in the following section.

Applications to several typical graph states
In this section, we apply the general entanglement detection
method proposed above to several typical graph states, 1-D, 2-D
cluster states, and the GHZ state. Note that for these states the
corresponding graphs are all 2-colorable. Thus, we can realize the
witnesses with only two local measurement settings. For clearness,
the vertexes in the subsets V1 and V2 are associated with red and
blue colors respectively, as shown in Fig. 3. We write the stabilizer

Y. Zhou et al.
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projectors defined in Eq. (10) for the two subsets as,

P1 ¼
Q
red i

SiþI
2 ;

P2 ¼
Q
blue i

SiþI
2 :

(16)

The more general case with k-chromatic graph states is presented
in Supplementary Note 1.
We start with a 1-D cluster state |C1〉 with stabilizer projectors in

the form of Eq. (16). Consider an example of tripartition
P3 ¼ fA1;A2;A3g, as shown in Fig. 3a, there are three ways to
divide the three subsystems into two sets, i.e., fA;Ag= {A1, A2A3},
{A2, A1A3}, {A3, A1A2}. It is not hard to see that the corresponding
entanglement entropies are SðρA1Þ ¼ SðρA3Þ ¼ 1 and SðρA2Þ ¼ 2.
Note that in the calculation, each broken edge will contribute 1 to
the entropy, which is a manifest of the area law of entanglement
entropy.44 According to Theorem 1, the operators to witness
P3-entanglement structure are given by,

WP3
f ;C1

¼ 5
4 I� ðP1 þ P2Þ;

WP3
b;C1

¼ 3
2 I� ðP1 þ P2Þ;

(17)

where the two projectors P1 and P2 are defined in Eq. (16) with the
graph of Fig. 3a.
Next, we take an example of 2-D cluster state |C2〉 defined in a

5 × 5 lattice and consider a tripartition, as shown in Fig. 3b. Similar
to the 1-D cluster state case with the area law, the corresponding
entanglement entropies are SðρA1Þ ¼ SðρA3Þ ¼ 5 and SðρA2Þ ¼ 4.
According to Theorem 1, the operators to witness P3-entangle-
ment structure are given by,

WP3
f ;C2

¼ 33
32 I� ðP1 þ P2Þ;

WP3
b;C2

¼ 17
16 I� ðP1 þ P2Þ;

(18)

where the two projectors P1 and P2 are defined in Eq. (16) with the
graph of Fig. 3b. Similar analysis works for other partitions and
other graph states.
Now, we consider the case where each subsystem Ai contains

exactly one qubit, PN . Then, witnesses in Eq. (12) become the
conventional ones, as shown in the following Corollary.

Corollary 2. The operator WPN
f ;C can witness non-fully separability

(entanglement),

WPN
f ;C ¼ ð1þ 2�

N
2b cÞI� ðP1 þ P2Þ; (19)

with hWPN
f ;C i � 0 for all fully separable states, where the two

projectors P1 and P2 are defined in Eq. (16) with the stabilizers of
any 1-D or 2-D cluster state.

Here, we only show the cases of 1-D and 2-D cluster states. We
conjecture that the witness holds for any (such as 3-D) cluster
states. For a general graph state, on the other hand, the corollary
does not hold. In fact, we have a counter example of the GHZ state
shown in Fig. 3c. It is not hard to see that for any GHZ state, the
entanglement entropy is given by,

SðρGHZA Þ ¼ 1; 8fA; Ag: (20)

Then, Eqs. (12) and (13) yield the same witnesses. That is, the
witness constructed by Theorem 1 for the GHZ state can only tell
genuine entanglement or not.
Following Theorem 2, one can fix the number of the subsystems

m and investigate all possible partitions to detect the non-m-
separability. The optimization problem can be solved analytically
for the 1-D and 2-D cluster states, as shown in Corollary 3 and 4,
respectively.

Corollary 3. The operator Wm;C1 can witness non-m-separability,

Wm;C1 ¼ ð1þ 2�
m
2b cÞI� ðP1 þ P2Þ; (21)

with hWm;C1i � 0 for all m-separable states, where the two projectors
P1 and P2 are defined in Eq. (16) with the stabilizers of a 1-D cluster
state.

In particular, when m= 2 and m= N, Wm;C1 becomes the
entanglement witnesses in Eqs. (14) and (19), respectively.

Corollary 4. The operator Wm;C2 can witness non-m-separability for
N ≥m(m− 1)/2,

Wm;C2 ¼ 1þ 2
� �1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ðm�1Þ

p
2

l m !
I� ðP1 þ P2Þ; (22)

with hWm;C2i � 0 for all m-separable states, where the two projectors
P1 and P2 are defined in Eq. (16) with the stabilizers of a 2-D cluster
state.

We remark that the witnesses constructed in Corollaries 1, 2,
and 3 are tight. Take the witness Wm;C1 in Corollary 3 as an
example. There exists an m-separable state ρm that saturates
TrðρmWm;C1Þ ¼ 0. In addition, as m ≤ 5, the witness Wm;C2 in
Corollary 4 is also tight. Detailed discussions are presented in
Supplementary Methods 1–4.

DISCUSSION
In this work, we propose a systematic method to construct
efficient witnesses to detect entanglement structures based on
graph states. Our method offers a standard tool for entanglement-
structure detection and multipartite quantum system benchmark-
ing. The entanglement-structure definitions and the associated
witness method may further help to detect novel quantum
phases, by investigating the entanglement properties of the
ground states of related Hamiltonians.43

The witnesses proposed in this work can be directly generalized
to stabilizer states,6,45 which are equivalent to graph states up to
local Clifford operations.38 It is interesting to extend the method
to more general multipartite quantum states, such as the hyper-
graph state46 and the tensor network state.47 Meanwhile, the
generalization to the neural network state48 is also intriguing,
since this kind of ansatz is able to represent broader quantum
states with a volume law of entanglement entropy,49 and is a
fundamental block for potential artificial intelligence applications.
In addition, one may utilize the proposed witness method to
detect other multipartite entanglement properties, such as the
entanglement depth and width,50,51 as m-separability in this work.
Moreover, one can also consider the self-testing scenario, such as
(measurement-) device-independent settings,52–54 which can help

Fig. 3 Graphs of the a 1-D cluster state |C1〉, b 2-D cluster state |C2〉,
and c GHZ state |GHZ〉. Note that the graph state form of the GHZ
state is equivalent to its canonical form, ð 0j i�Nþ 1j i�NÞ= ffiffiffi

2
p

, up to
local unitary operations
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to manifest the entanglement structures with less assumptions on
the devices. Furthermore, translating the proposed entanglement
witnesses into a probabilistic scheme is also interesting.55,56

METHODS
Proof of Proposition 1
Proof. First, let us prove the P-bi-separable state case in Eq. (9). Since the
P-bi-separable state set SPb is convex, one only needs to consider the
fidelity |〈Ψb|G〉|

2 of the pure state |Ψb〉 defined in Eq. (3). It is known that
the maximal value of the fidelity equals to the largest Schmidt coefficient
of |G〉 with regard to the bipartition fA; Ag,57 i.e.,

max
Ψbj i

j Ψbh jGij2 ¼ λ1; (23)

with the Schmidt decomposition Gj i ¼Pd
i¼1

ffiffiffiffi
λi

p
Φij iA Φ0

i

�� �
A and λ1 ≥ λ2 ≥

⋯ ≥ λd. For general graph state |G〉, the spectrum of any reduced density
matrix ρA is flat, i.e., λ1= λ2=⋯λd, with d being the rank of ρA.

58 As a result,
one has

SðρAÞ ¼ log2 d;

λi ¼ 1
d ¼ 2�SðρAÞ:

(24)

To get an upper bound, one should maximize 2�SðρAÞ on all possible
subsystem bipartitions and then get Eq. (9).
Second, we prove the P-fully separable state case in Eq. (8). Similarly, we

only need to upper-bound the fidelity of the pure state |Ψf〉 defined in Eq.
(1), due to the convexity property of the P-fully separable state set SPf .
From the proof of Eq. (9) above, we know that the fidelity of the P-bi-
separable state satisfies the bound |〈Ψb|G〉|

2 ≤ 2�S ρAð Þ , given a subsystem
bipartition fA; Ag. It is not hard to see that these bounds all hold for |Ψf〉,
since SPf � SPb . Thus, one can obtain the finest bound via minimizing over
all possible bipartitions and finally get Eq. (8).
The entanglement entropy S(ρA) equals the rank of the adjacency matrix

of the underlying bipartite graph, which can be efficiently calculated.
Details are discussed in Supplementary Note 1. While the optimization
problems can be computationally hard due to the exponential number of
possible bipartitions, one can solve it properly as the number of the
subsystems m is not too large. In addition, we can always have an upper
bound on the minimization by only considering specific partitions.
Analytical calculation of the optimization is possible for graph states with
certain symmetries, such as the 1-D and 2-D cluster states and the
GHZ state.

Proof of Proposition 2
Proof. As shown in Main Text, a graph state |G〉 can be written in the
following form

Gj i Gh j ¼
YN
i¼1

Si þ I
2

¼
Yk
l¼1

Pl : (25)

Accordingly, Eq. (11) in Proposition 2 becomes,

Yk
l¼1

Pl þ ðk � 1ÞI
" #

�
Xk
l¼1

Pl � 0: (26)

Note that the projectors Pl commute with each other, thus we can prove
Eq. (26) for all subspaces which are determined by the eigenvalues of all
Pl. For the subspace where the eigenvalues of all Pl are 1, the inequality
(1+ k− 1)− k ≥ 0 holds. For the subspace where only one of Pl takes value
of 0, the inequality (0+ k− 1)− (k− 1) ≥ 0 holds. Moreover, for the
subspace in which there are more than one Pl taking 0, the inequality also
holds. As a result, we finish the proof.

Proofs of Theorems 1 and 2
Proof of Theorem 1
Proof. The proof is to combine Propositions 1 and 2. Here we only show

the proof of Eq. (12), and one can prove Eq. (13) in a similar way. To be
specific, one needs to show that any P-fully separable state satisfies
hWP

f i � 0, that is,

Tr
Pk
l¼1

Plρf

� 	
� Tr ðk � 1ÞIþ Gj i Gh j½ �ρff g

� ðk � 1Þ þminfA;Ag 2
�SðρAÞ:

(27)

Here the first and the second inequalities are right on account of
Propositions 2 and 1, respectively.
Proof of Theorem 2
Proof. With Eq. (8) one can bound the fidelity from any P-fully

separable state to a graph state |G〉. The m-separable state set Sm
contains all the state ρm which can be written as the convex mixture of
pure m-separable state, ρm ¼Pi pi Ψ

i
m

�� �
Ψi
m

� ��, where the partition for
each constitute Ψi

m

�� �
needs not to be the same. Hence one can bound

the fidelity from ρm to a graph state |G〉 by investigating all possible
partitions, i.e.,

Trð Gj i Gj iρmÞ � max
Pm

min
fA;Ag

2�SðρAÞ; (28)

where the maximization takes over all possible partitions Pm with m
subsystems, the minimization takes over all bipartition of Pm . Then like
in Eq. (27), by combing Eqs. (11) and (28) we finish the proof.
The optimization problem in Theorem 2 over the partitions is generally

hard, since there are about mN/m! possible ways to partition N qubits into
m subsystems. For example, when N is large (say, in the order of 70 qubits),
the number of different partitions is exponentially large even with a small
separability number m. Surprisingly, for several widely used types of graph
states, such as 1-D, 2-D cluster states, and the GHZ state, we find the
analytical solutions to the optimization problem, as shown in Corollaries in
main text.

Robustness of entanglement-structure witnesses
In this section, we discuss the robustness of the proposed witnesses in
Theorems 1 and 2. In practical experiments, the prepared state ρ deviates
from the target graph state |G〉 due to some nonnegligible noise. Here we
utilize the following white noise model to quantify the robustness of the
witnesses.

ρ ¼ ð1� pnoiseÞ Gj i Gh j þ pnoise
I
2N

; (29)

which is a mixture of the original state |G〉 and the maximally mixed state
with coefficient pnoise. We will find the largest plimit, such that the witness
can detect the corresponding entanglement structure when pnoise < plimit.
Thus plimit reflects the robustness of the witness.
Let us first consider the entanglement witnessWP

f in Eq. (12) of Theorem
1. For clearness, we denote Cmin ¼ minfA;Ag 2

�SðρAÞ . Insert the state of Eq.
(29) into the witness, one gets,

TrðWP
f ρÞ ¼ Tr k � 1þ Cminð ÞI�Pk

l¼1
Pl


 ��
´ pnoise I

2N þ ð1� pnoiseÞ Gj i Gh j� 
�
¼ pnoise k � 1þ Cmin � 2�N

Pk
l¼1

2N�nl

� �
þð1� pnoiseÞðk � 1þ Cmin � kÞ

¼ pnoise k �Pk
l¼1

2�nl

� �
þ ðCmin � 1Þ;

(30)

where nl= |Vl| is the qubit number in each vertex set with different
color, and in the second equality we employ the facts that TrðPlÞ ¼ 2N�nl

and Tr(Pl|G〉〈G|)= 1. Let the above expectation value less than zero, one
has

pnoise<
1� Cmin

k �Pk
l¼1 2

�nl
: (31)

Similarly, for the P-genuine entanglement witness and the non-m-
separability witness in Eqs. (13) and (15), we have,

pnoise<
1�Cmax

k�
Pk

l¼1
2�nl

pnoise<
1�Cm

k�
Pk

l¼1
2�nl

;
(32)

where we denote the optimizations maxfA;Ag 2
�SðρAÞ and

maxPm minfA;Ag 2
�SðρAÞ as Cmax and Cm, respectively.

Moreover, it is not hard to see that all the coefficients Cmin, Cmax, and Cm
are not larger than 0.5. Thus, for any entanglement-structure witness, one
has

plimit � 0:5

k �Pk
l¼1 2

�nl
>

1
2k

: (33)
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As a result, our entanglement-structure witness is quite robust to noise,
since the largest noise tolerance plimit is just related to the chromatic
number of the graph.
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