
Connectivity Oracles for Graphs Subject to Vertex Failures∗

Ran Duan
Tsinghua University

Seth Pettie
University of Michigan

Abstract

We introduce new data structures for answering
connectivity queries in graphs subject to batched
vertex failures. Our deterministic structure pro-
cesses a batch of d ≤ d? failed vertices in Õ(d3)
time and thereafter answers connectivity queries in
O(d) time. It occupies space O(d?m log n). We de-
velop a randomized Monte Carlo version of our data
structure with update time Õ(d2), query time O(d),
and space Õ(m) for any d?. This is the first connec-
tivity oracle for general graphs that can efficiently
deal with an unbounded number of vertex failures.

Our data structures are based on a new decompo-
sition theorem for an undirected graph G = (V,E),
which is of independent interest. It states that for
any terminal set U ⊆ V we can remove a set B of
|U |/(s − 2) vertices such that the remaining graph
contains a Steiner forest for U − B with maximum
degree s.

1 Introduction

The dynamic subgraph model [19, 21, 36, 39, 37, 42,
65] is a constrained dynamic graph model. Rather
than allow the graph to evolve in completely ar-
bitrary ways (via an unbounded sequence of edge
insertions and deletions), there is assumed to be a
fixed ideal graph G = (V,E) that can be prepro-
cessed in advance. The ideal graph is susceptible
only to the failure of edges/vertices and their sub-
sequent recovery, possibly with a bound d? on the
number of failures at one time. Queries naturally
answer questions about the current failure-free sub-
graph. This model is useful because it more accu-
rately represents the behavior of many real-world
networks: changes to the underlying topology are
relatively rare but transient failures very common.
More importantly, this model offers the algorithm
designer the freedom to explore exotic graph rep-

∗Supported by NSF CAREER grant CCF-0746673 and

NSF grants CCF-1217338, CNS-1318294, CCF-1514383,
CCF-1637546. R. Duan is supported by a China Youth 1000-

Talent grant.

resentations. Because preprocessing time is not the
most critical measure of efficiency, it may be desir-
able to build a specialized graph representation that
facilitates more efficient updates and queries.

Dynamic Subgraph Connectivity The dy-
namic subgraph model was introduced by Frigioni
and Italiano [42] who showed that when the ideal
graph is planar, vertex failures/recoveries and con-
nectivity queries could be handled in O(log3 n)
amortized time, after Õ(n) preprocessing. Their al-
gorithm even allowed the ideal graph to evolve via
edge updates, also in O(log3 n) amortized time, so
long as it remained planar. Dynamic subgraph con-
nectivity structures were later developed for gen-
eral graphs [8, 19, 21, 36]. Chan, Pǎtraşcu, and
Roditty [21] gave an O(m4/3)-space structure that
handles vertex failures/recoveries in Õ(m2/3) amor-
tized time and connectivity queries in O(m1/3)
time. Duan [36] developed a different O(m)-space
structure with the same amortized update and
query time as [21], and a new Õ(m)-space struc-
ture with worst case Õ(m4/5)-time updates and
O(m1/5) time queries. Very recently Baswana et
al. [8] showed how to maintain a DFS tree in the dy-
namic subgraph model with Õ(

√
mn) update time,

which supports O(1)-time connectivity queries.
Pǎtraşcu and Thorup [65] considered a situ-

ation where a batch of d edges fail simultane-
ously. They showed that an O(m)-space struc-
ture could be constructed that handles updates in
O(d log2 n log log n) time and subsequently answers
connectivity queries in O(log log n) time. Moreover,
they observed that the query time could not be
unilaterally improved, by a reduction to the pre-
decessor problem [64, 66]. One downside of the
Pǎtraşcu-Thorup structure is that it requires expo-
nential time to compute: it involves solving spars-
est cut Õ(n) times on various subgraphs. Using
a polynomial time O(

√
log n)-approximate spars-

est cut algorithm [4] instead increases the update

time to O(d log5/2 n log log n). Pǎtraşcu and Tho-
rup [65] were motivated by the absence of a fully dy-
namic connectivity data structure with poly(log n)

490 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

worst case update time.1 Kapron, King, and Moun-
tjoy [55] discovered a randomized dynamic connec-
tivity structure with O(c · poly(log n)) update time
that errs with probability n−c. Gibb, Kapron, King,
and Thorn [46] observed that this data structure
can function correctly, w.h.p., without actually stor-
ing the graph. This leads to a d-edge failure con-
nectivity oracle with update and query time similar
to [65], but using just Õ(n) space.

The analogous d-vertex failure connectivity
problem is inherently more complex. Whereas
removing d edges can only increase the number of
connected components by d, removing d vertices
can have an impact on the connectivity that is
completely disproportionate to d. When d = 1
we can use the block tree representation of bicon-
nected components to answer connectivity queries
in constant time; see [15] for data structural details.
When d = 2 we can use the SPQR tree [10, 15] of
each biconnected component to answer queries in
O(1) time. A data structure of Kanevsky et al. [54]
can answer queries in O(1) time when d = 3.
Similar ad hoc solutions can also be designed for
d-edge failure connectivity oracles, for constant
d ≤ 4 [35, 45, 68, 70]. However, scaling these
solutions up, even to an arbitrarily large constant
d, becomes prohibitively complex, even in the
simpler case of edge failures. In a λ-edge connected
graph, encoding all λ-edge cuts is simple with the
cactus [30] representation, but the simplicity is
lost when encoding both λ- and (λ + 1)-edge cuts.
See [32, 33, 34].

In previous work [39] we designed a d-edge fail-
ure oracle that reduces the problem to 2D orthog-
onal range reporting. Using the range reporting
structure of Chan, Larsen, and Pǎtraşcu [20] gives
a d-edge failure structure with O(d2 log log n) up-
date time, O(min{ log d

log logn ,
log logn

log log logn}) query time,

and O(m log log n) space, or a somewhat slower up-
date time with O(m) space. By itself, this struc-
ture compares favorably with the d-edge failure or-
acles of [65, 55] when d = O(log n). However, it
has additional properties that make it attractive for
use in d-vertex failure oracles. Specifically, if D is
the set of failed vertices, the update time is actu-
ally O

(
(
∑
v∈D degT (v))2 log log n

)
, where T is any

1There are dynamic connectivity structures with amor-

tized poly(logn) update time [50, 71, 51]. However, the

fastest worst-case update time is O(
√

n(log logn)2

logn
) [56, 40],

a small improvement over the long-standing O(
√
n) bound

of [41, 40].

spanning tree of the graph. In other words, the up-
date time is quadratic in the sum of the T -degrees,
independent of their degrees in G.

If G were guaranteed to have an O(1)-degree
spanning tree we would immediately have a satis-
factory d-vertex failure connectivity oracle with up-
date time Õ(d2) and query time Õ(1). Of course,
there is no such guarantee. Every bridge edge ap-
pears in every spanning tree T , so a vertex incident
to many bridges must have high T -degree. Since
bridges are easy to deal with this is not a very con-
vincing counterexample. One might hope that if G
had sufficient connectivity, a low-degree spanning
tree could be found. This is the approach taken by
Borradaile, Pettie, and Wulff-Nilsen’s [15] d-failure
connectivity oracles for planar graphs. Barnette’s
theorem [6] states that every triconnected planar
graph has a degree-3 spanning tree, which can be
found in linear time [28, 69]. However, the ana-
logues of Barnette’s theorem for general graphs are
too weak to be of any use. Czumaj and Stroth-
mann [28, 69] proved that a k-connected graph with
maximum degree ∆(G) ≤ k(∆T − 2) + 2 has a
degree-∆T spanning tree, which can be found in
polynomial time. If, however, the maximum degree
is at least ∆(G) ≥ k(∆T−1) it is NP-hard to decide
if there is a degree-∆T spanning tree. Thus, even if
we could force G to be k-connected for some large
constant k, it would not help to find a low-degree
spanning tree.

In [39] we developed a d?-vertex failure con-
nectivity oracle that offers a tradeoff between
update time and size. For any integer pa-
rameter c ≥ 1, the space of the data struc-

ture is O(d
1−2/c
? mn1/c−1/(c log(2d?)) log2 n) and the

time to process d ≤ d? vertex failures is
O(d2c+4 log2 n log log n). Thereafter connectivity
queries can be answered in O(d) time. The main
drawbacks of [39] are its conceptual complexity and
very poor tradeoff between space and update time.
Henzinger and Neumann [49] recently showed how
any d-vertex failure connectivity oracle could be
transformed to support fully dynamic updates in
the dynamic subgraph model, where vertices fail
and recover individually.

New Results In this paper we present dra-
matically better d-vertex failure connectivity ora-
cles that match or improve on [39] in every mea-
sure of efficiency except construction time. Using
space O(d?m log n), a batch D of d ≤ d? vertex
failures is processed in O(d3 log3 n) time such that
connectivity queries in G − D can be answered in

491 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

O(d) time.2 The construction time is O(mn log n).
Note that there is now no tradeoff between space
and update time. Clearly any pair of (d? + 1)-
connected vertices cannot be disconnected by d fail-
ures. By preprocessing the graph with the linear
time Nagamochi-Ibaraki algorithm [60], we can re-
place E(G) by an equivalent subgraph containing
m̄ = min{m, (d? + 1)n} edges. Thus, the factors
of m in the space and construction time can be re-
placed with m̄.

By incorporating graph sketching techniques
from [3, 55] we are able to reduce the update time
to O(d2 log5 n) and space to O(m log4 n), even for
d? = n. The cost of these savings is the possibility
of undetected false negatives: a connectivity query
may incorrectly report that two vertices are discon-
nected in G−D, with probability 1/ poly(n).

Our data structures are based on a new graph
decomposition theorem, which is obtained from a
recursive version of the Fürer-Raghavachari [43]
algorithm for approximating the minimum degree
spanning tree. The theorem states that for any
undirected graph G = (V,E), terminal set U ⊆ V ,
and integer s, there exists a set of |U |/(s − 2)
vertices B that can be removed, such that U − B
is spanned by a degree-s Steiner forest in the graph
G − B. We believe this decomposition theorem is
of independent interest.

Lower Bounds One question raised by [39] is
whether it is possible for a d-vertex failure oracle
to match the Õ(1) query time of existing d-edge
failure oracles [65, 39, 55]. There is now strong
circumstantial evidence that no such data struc-
ture exists with reasonable update time. In par-
ticular, if the Integer 3SUM Conjecture holds3 then
any d-vertex failure connectivity oracle with sub-
quadratic preprocessing and reasonable update time
must have Ω(d1/2−o(1)) query time [57]. Henzinger
et al. [48] showed that the OMv conjecture4 on the

2The notation G − D is short for the subgraph of G
induced by V (G)−D.

3The 3SUM problem is, given a set A of n numbers, to

determine if there exist a, b, c ∈ A for which a + b + c = 0.
There are now known to be O(n2/ poly(logn)) algorithms

for both integer inputs [5] and real inputs [47]. The

Integer 3SUM Conjecture asserts that the problem requires
Ω(n2−o(1)) time, even if A ⊂ {−n3, . . . , n3}.

4The OMv conjecture is that given a matrix M ∈
{0, 1}n×n to be preprocessed and n vectors v1, . . . , vn ∈
{0, 1}n presented online, the total cost of preprocessing and

computing the products {Mvi}1≤i≤n is Ω(n3−o(1)). Note
that fast matrix multiplication is not obviously helpful in
this context since Mvi must be reported before receiving
vi+1.

hardness of online matrix-vector multiplication im-
plies an Ω(d1−o(1)) query lower bound, even if any
polynomial preprocessing is allowed. Thus, beat-
ing O(d) query time would require refuting a plau-
sible conjecture. Of course, the plausibility of the
3SUM and OMv conjectures continue to be actively
scrutinized. Stronger forms of the 3SUM and OMv
conjectures have already been refuted; see [47, 59].

Related Work Much of the previous work in
the d-failure model has focussed on computing ap-
proximate shortest paths avoiding edge and vertex
failures. Demetrescu et al. [29] gave an exact short-
est path oracle for weighted directed graphs subject
to d = 1 failure. It occupies O(n2 log n) space and
answers queries in constant time. The construction
time for this oracle was later improved by Bernstein
and Karger [13]. An analogous result for d = 2 fail-
ures was presented by Duan and Pettie [38] (see
also [37]), which uses space O(n2 log3 n) and query
time O(log n). Approximate distance oracles for d
edge failures were given for general graphs [24], with
stretch that grows linearly in d.

These problems have also been studied on special
graph classes. Borradaile et al. [15] described
connectivity oracles for planar graphs subject to d-
edge failures or d-vertex failures. See Baswana et
al. [7] for exact distance oracles for planar graphs
avoiding d = 1 failure, and Abraham et al. [1, 2] for
approximate distance oracles for planar graphs and
graphs of bounded doubling dimension.

Parter and Peleg [62] considered the problem of
computing a subgraph that preserves shortest paths
from s sources after a single edge or vertex failure.
They proved that Θ(s1/2n3/2) edges are necessary
and sufficient, for every s. See also [14, 17, 18, 23,
31, 61, 63] for spanners (subgraphs) that preserve
approximate distances subject to edge or vertex
failures.

Very recently researchers have considered reach-
ability problems on directed graphs subject to ver-
tex failures. Choudhary [27] gave an optimal O(n)-
space, O(1)-query time reachability oracle for d = 2
failures. Baswana, Choudhary, and Roditty [9] con-
sidered the problem of finding a sparse subgraph
that preserves reachability from a single source, sub-
ject to d vertex failures. They proved that Θ(2dn)
edges are necessary and sufficient.

1.1 Organization In Section 2 we review the
Euler Tour structure of [39] for handling d edge fail-
ures. We begin Section 3 with a sketch of the Fürer-
Raghavachari algorithm FR-Tree, then describe our

492 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

d
-E

d
g
e
F
a
il
u
r
e
S
t
r
u
c
t
u
r
e
s
a
n
d

L
o
w
e
r
B
o
u
n
d
s

U
p

d
ate

Q
u

ery
S

p
a
ce

P
rep

ro
cessin

g

O
(d

log
2

lo
g

lo
g
n

)
O

(lo
g

lo
g
n

)
O

(m
)

ex
p

on
en

tial

P
ǎ
tra

şcu
&

T
h

o
ru

p
(200

7
)

O
(d

log
5
/
2

lo
g

lo
g
n

)
p

oly
n

om
ial

O
(d

p
o
ly

(lo
g
n

))
Ω

(lo
g

lo
g
n

)
a
n
y

an
y

D
u

a
n

&
P

ettie
(201

0
)

O
(d

2
log

lo
g
n

)
m

in {
O

(
lo

g
d

lo
g

lo
g
n

),
O

(m
lo

g
log

n
)

lin
ear

in
sp

ace
O

(d
2

log
ε
n

)
O

(
lo

g
lo

g
n

lo
g

lo
g

lo
g
n

) }
O

(m
)

K
a
p

ro
n

,
K

in
g

&
M

o
u

n
tjoy

(2
013

)
O

(d
log

3
n

lo
g
d
)

O
(lo

g
lo

g
n

),
O

(n
lo

g
2
n

)
n

ear
lin

ear
(R

an
d

.)
G

ib
b

,
K

a
p

ro
n

,
K

in
g,

T
h

orn
(20

1
5)

co
rrect

w
.h

.p
.

d
-V

e
r
t
e
x
F
a
il
u
r
e
S
t
r
u
c
t
u
r
e
s
a
n
d

L
o
w
e
r
B
o
u
n
d
s

U
p

d
ate

Q
u

ery
S

p
a
ce

P
rep

ro
cessin

g
d

=
1

:
B

lo
ck

tree;
see

[15
]

O
(1)

O
(1

)
O

(n
)

lin
ear

d
=

2
:

S
P

Q
R

tree;
see

[15
,

10
]

O
(1)

O
(1

)
O

(n
)

lin
ear

d
=

3
:

K
a
n

ev
sk

y
et

al.
[54

]
O

(1)
O

(1
)

O
(n

)
n

ear
lin

ear

D
u

a
n

&
P

ettie
(201

0
)

Õ
(d

2
c
+

4)
O

(d
)

Õ
(d

1−
2c

?
m̄
n

1c −
1

c
lo

g
(
2
d
?
))

lin
ear

in
sp

ace

H
en

zin
ger

et
a
l.

(2
014

)
O

(p
oly

(d
,lo

g
n

))
Ω

(d
1−
o
(1

))
a
n
y

O
(p

oly
(n

))
(assu

m
in

g
O

M
v

C
on

jectu
re)

O
((d
n

)
1−
ε)

K
o
p

elow
itz,

P
ettie

&
P

o
ra

t
(201

6
)

O
(p

oly
(d
,lo

g
n

))
Ω

(d
1
/
2−
o
(1

))
a
n
y

O
(m
n

1−
ε
p

oly
(d

))
(assu

m
in

g
3
S

U
M

C
o
n

jectu
re)

O
((d
n

)
1−
ε)

O
(d

3
log

3
n

)
O

(d
? m̄

log
n

)

N
e
w

O
(d

2(d
2

+
lo

g
ε
n

)
lo

g
2
n

)
O

(d
)

O
(m̄
n

log
n

)
(D

eterm
.)

O
(d

2(d
2

+
lo

g
lo

g
n

)
lo

g
2
n

)
O

(d
? m̄

log
n

log
log

n
)

O
(d

2
log

5
n

)
O

(d
),

co
rrect

w
.h

.p
.

O
(m

lo
g

4
n

)
O

(m
n

log
n

)
(R

an
d

.)

T
a
b

le
1:

T
h

e
low

er
b

ou
n

d
s

o
f

P
ǎ
tra

şcu
an

d
T

h
o
ru

p
a
re

u
n

co
n

d
itio

n
a
l

w
h

erea
s

th
e

low
er

b
o
u

n
d

s
o
f

K
o
p

elow
itz

et
al.

an
d

H
en

zin
ger

et
al.

rely
on

u
n

p
roven

co
n

jectu
res.

W
h

en
ever

d
?

is
availa

b
le

a
t

co
n

stru
ctio

n
tim

e
w

e
ca

n
rep

la
ce
m

(th
e

n
u

m
b

er
o
f

ed
ges)

w
ith

m̄
d
e
f

=
m

in{
m
,(d

?
+

1)n}.

493 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

decomposition algorithm Decomp. In Section 4 we
observe that by applying Decomp iteratively, we
naturally obtain a representation of the graph as
a low degree hierarchy. Section 4 describes how
to build a d-failure connectivity oracle, by supple-
menting the low degree hierarchy with suitable data
structures. The algorithms for deleting failed ver-
tices and answering connectivity queries are pre-
sented in Section 5. The basic algorithm for deleting
failed vertices takes Õ(d4) time using standard 2D
range reporting data structures. In Section 6 we
give three distinct ways to reduce this to Õ(d3) us-
ing more sophisticated range searching structures.
In Section 7 we present a randomized Monte Carlo
version of our data structure with update time
Õ(d2) and space Õ(m). We discuss open problems
in Section 8.

2 The Euler Tour Structure

In this section we describe the ET-structure for han-
dling connectivity queries avoiding multiple vertex
and edge failures. When handling only d edge fail-
ures, the performance of the ET-structure is in-
comparable to that of Pǎtraşcu and Thorup [65]
in nearly every respect.5 The strength of the ET-
structure is that if the graph can be covered by a
low-degree tree T , the time to delete a vertex is a
function of its degree in T ; incident edges not in T
are deleted implicitly. We prove Theorem 2.1 in the
remainder of this section.

Theorem 2.1. Let G = (V,E) be a graph, with
m = |E| and n = |V |, and let F = {T1, . . . , T|F|}
be a set of vertex disjoint trees in G. (F does
not necessarily span connected components of G.)
There is a data structure ET(G,F) that supports
the following operations. Suppose D is a set of
failed edges, of which d are tree edges in F and d′

are non-tree edges. Deleting D splits some subset
of the trees in F into at most 2d trees F ′ =
{T ′1, . . . , T ′2d}. In O(d2q + d′) time we can report
which pairs of trees in F ′ are connected by an edge

5The ET-structure is significantly faster in terms of con-

struction time (near-linear vs. a large polynomial or exponen-
tial time) though it uses slightly more space: O(m log logn)

vs. O(m). It handles d edge deletions exponentially faster for

bounded d (O(log logn) vs. Ω(log2 n log logn)) but is slower
as a function of d: O(d2 log logn) vs. O(d log2 n log logn)

time. The query time is the same for both structures, namely
O(log logn). Whereas the ET-structure naturally maintains
a certificate of connectivity (a spanning tree), the Pǎtraşcu-

Thorup structure requires modification and an additional
logarithmic factor in the update time to maintain a span-

ning tree.

in E−D. In O(min
{

log logn
log log logn ,

log d
log logn

}
) time we

can determine which tree in F ′ contains a given
vertex. Using space O(m log log n) the value of q
is O(log log n); using space O(m) the value of q is
O(logε n) for any fixed ε > 0.

Our data structure uses Chan, Larsen, and
Pǎtraşcu’s [20] structure for orthogonal range re-
porting on the integer grid [U]× [U]. They showed
that given a set ofN points, there is a data structure
with size O(N log logN) such that given x, y, w, z ∈
[U], the set of points in [x, y]×[w, z] can be reported
in O(log logU+k) time, where k is the number of re-
ported points. If the space is reduced to O(N) the
update time becomes O(logε U + k) for any fixed
ε > 0.

For a tree T , let Euler(T) be a list of its ver-
tices encountered during an Euler tour of T (an
undirected edge is treated as two directed edges),
where we only keep the first occurrence of each ver-
tex. One may easily verify that removing f edges
from T partitions it into f + 1 connected subtrees
and splits Euler(T) into at most 2f + 1 intervals,
where the vertices of a connected subtree are the
union of some subset of the intervals. To build
ET(G = (V,E),F) we build the following structure
for each pair of trees (T1, T2) ∈ F × F ; note that
T1 and T2 may be the same. Let m′ be the num-
ber of edges connecting T1 and T2. Let Euler(T1) =
(u1, . . . , u|T1|), Euler(T2) = (v1, . . . , v|T2|), and U =
max{|T1|, |T2|}. We define the point set P ⊆ [U]×
[U] to be P = {(i, j) | (ui, vj) ∈ E}. Suppose D
is a set of edge failures including d1 edges in T1, d2

in T2, and d′ non-tree edges. Removing D splits T1

and T2 into d1+d2+2 connected subtrees and parti-
tions Euler(T1) into a set I1 = {[xi, yi]}i of 2d1 + 1
intervals and Euler(T2) into a set I2 = {[wi, zi]}i
of 2d2 + 1 intervals. For each pair i, j we query
the 2D range reporting data structure for points in
[xi, yi] × [wj , zj] ∩ P . However, we stop the query
the moment it reports some point corresponding to
a non-failed edge, i.e., one in E−D. Since there are
(2d1 + 1) × (2d2 + 1) queries and each failed edge
in D can only be reported in one such query, the
total query time is O(d1d2q + d′), where q is either
log log n or logε n, depending on the space usage.
See Figure 1 for an illustration.

Assuming that m′ ≥ 1, the space for the data
structure restricted to T1 and T2 is O(m′ log logn)
or O(m′). In order to avoid spending any space on
pairs (T1, T2) with m′ = 0, we maintain a hash table
of tree-pairs with at least one edge between them.
Since each non-tree edge contributes to the space

494 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

u1

u2

u3u4

u5

u6 u7

u8

u9

u10

u11

u12

v1

v2

v3

v4v5

v6

v7 v8

v9

T1 T2

1 3 5 7 9 11
1

3

5

7

9

T2 :

T1 :

(A) (B)

Figure 1: (A) Here T1 and T2 are two trees and Euler(T1) = (u1, . . . , u12) and Euler(T2) = (v1, . . . , v9) are their
vertices, listed by their first appearance in some Euler tours of T1 and T2. (It does not matter which Euler tour
we pick.) There are six non-tree edges connecting T1 and T2, marked by dashed curves. If the edges (u2, u3) and
(v1, v2) are removed, T1 and T2 are split into four subtrees, say T ′1, T

′
2, T

′
3, T

′
4, and both Euler(T1) and Euler(T2) are

split into three intervals, namely X1 = (u1, u2), X2 = (u3, . . . , u7), X3 = (u8, . . . , u12), Y1 = (v1), Y2 = (v2, . . . , v7),
and Y3 = (v8, v9). Each tree T ′i is identified with some subset of the intervals: T ′1, . . . , T

′
4 are identified with

{X1, X3}, {X2}, {Y1, Y3}, and {Y2}. (B) The point (i, j) (marked by a diamond) is in our point set if (vi, uj) is
a non-tree edge. To determine if, for example, T ′1 and T ′4 are connected by an edge, we perform two 2D range queries,
X1×Y2 and X3×Y2, and keep at most one point (i.e., a non-tree edge) for each query. In general, removing d1 edges
from T1 and d2 edges from T2 necessitates (2d1 + 1)(2d2 + 1) 2D range queries to determine incidences between all
pairs of subtrees. In this example we require nine 2D range queries, indicated by boxes in the point set diagram.

of at most one tree pair (T1, T2), the overall space
for ET(G,F) is O(m log log n) or O(m). For the
last claim of the Theorem, observe that if a vertex
u lies in an original tree T1 ∈ F , we can determine
which tree in F ′ contains it by performing a pre-
decessor search over the left endpoints of intervals
in I1. This can be accomplished in the minimum of
O(log logn

log log logn) time [64] or O(log d
log logn) time [67] after

O(d2) preprocessing on a Θ(log n)-bit word-RAM.
Corollary 2.1 demonstrates how ET(G, ·) can be

used to answer connectivity queries avoiding edge
and vertex failures.

Corollary 2.1. Let T be any spanning tree of
G = (V,E). The data structure ET(G, {T}) oc-
cupies space O(m log log n) (or O(m)) and supports
the following operations. Given a set D ⊂ E of edge
failures, d of which are tree edges and d′ are non-
tree edges, D can be processed in O(d2 log log n+d′)
time (or O(d2 logε n + d′) time) so that connectiv-
ity queries in the graph (V,E−D) can be answered

in O(min
{

log logn
log log logn ,

log d
log logn

}
) time. If D ⊂ V

is a set of vertex failures, let d =
∑
v∈D degT (v)

be the sum of their T -degrees. The update time is
O(d2 log log n) (or O(d2 logε n)) and the query time

is O(min
{

log logn
log log logn ,

log d
log logn

}
).

Proof. Using ET(G, {T}) we split T into d+1 sub-
trees and Euler(T) into a set I of 2d+ 1 connected
intervals, in which each connected subtree is made
up of some subset of the intervals. Using O(d2) 2D
range queries, in O(d2 log log n+d′) time we find at
most one edge connecting each pair in I × I. (In
the case of vertex failures, no range queries are per-
formed for the intervals containing singleton ver-
tices in D.) In O(d2) time we find the connected
components of E−D or V −D and store with each
interval a representative vertex from its component.
To answer a query (u, v) we only need to determine
which subtree u and v are in, which involves two
predecessor queries over the left endpoints of inter-

vals in I. This takes O(min
{

log logn
log log logn ,

log d
log logn

}
)

time.

Corollary 2.1 motivates us to look for conditions
under which G contains a low degree spanning
forest, say with degree at most s. In the next section
we show that although G may not have a degree-
s spanning forest, there are O(n/s) critical nodes
that, if they were removed, would let the remaining
graph be spanned by a degree-s spanning forest.

495 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

3 A New Graph Decomposition Theorem

Let G = (V,E) be an undirected graph and U ⊆ V
be a set of terminals. We call a forest T ⊆ E a
Steiner forest for U if u, v ∈ U are connected in T
if and only if they are connected in G. Fürer and
Raghavachari [43] proved that the minimum degree
spanning forest (if U = V) and minimum degree
Steiner forest could be approximated to within 1 of
optimal in polynomial time.6

Theorem 3.1. (Fürer and Raghavachari [43])
Suppose G contains a Steiner forest for U with
maximum degree ∆∗. A Steiner forest T for U
with maximum degree ∆∗ + 1 can be computed in
O(|U |m log |U |) time.

Let FR-Tree(G,U) be the procedure that
computes T . Our decomposition theorem is not
concerned with ∆∗, but with other properties of
the forest T . In order to see how these properties
arise, we sketch how the FR-Tree(G,U) algorithm
works in the simpler case in which U = V . Let
∆(G′) denote the maximum degree in the graph G′.

The algorithm begins with any spanning forest
T0 and iteratively tries to improve T0, yielding
T1, T2, . . . , Tω, such that (i) ∆(Ti+1) ≤ ∆(Ti), and
(ii) the set of degree-∆(Ti) nodes in Ti+1 is a strict
subset of the degree-∆(Ti) nodes in Ti. The number
of improvements is clearly finite. Since any tree
contains fewer than n/(k− 1) nodes with degree at
least k, for k ≥ 2, the total number of improvements

is at most
∑∆(T0)
k=∆(Tω) n/(k − 1) = O(n log ∆(T0)

∆(Tω)) =

O(n log n).
The FR-Tree algorithm only searches for a par-

ticular class of improvements that can be found in
linear time, leading to an O(mn log n) time bound.
Let T0 be the current spanning tree. All ver-
tices with degree ∆(T0) and ∆(T0)− 1 are initially
marked bad and all others good. (In the diagrams
below white nodes have degree ∆(T0), gray nodes
have degree ∆(T0) − 1, and black nodes have de-
grees less than ∆(T0) − 1.) The simplest single-
swap improvement arises if there is a non-T0 edge
(u, v) such that u and v are good (black) and a
bad vertex x with degree ∆(T0) appears on the
unique cycle of T ∪ {(u, v)}. In this case we choose
any edge (x, y) incident to x on the cycle and set

6Fürer and Raghavachari [43] claimed a running time of

O(|U |mα(m,n) log |U |). The α(m,n) factor can be removed
using the incremental-tree set-union structure of Gabow and

Tarjan [44].

Figure 2: Swapping (u, v) for (x, y) yields a new tree
with at least one fewer node with degree ∆(T0).

T1 ← T0−{(x, y)} ∪ {(u, v)}, thereby eliminating a
degree-∆(T0) vertex (namely x, and perhaps even
y) but possibly increasing the number of degree-
(∆(T0)− 1) vertices (namely u and v).

In general the FR-Tree algorithm considers im-
provements composed of an arbitrarily large num-
ber of edge-swaps. While there exists an unscanned
edge (u, v) where both u and v are marked good,
it marks all bad vertices good on the fundamental
cycle of T0 ∪ {(u, v)}. Thus, a formerly-bad good
vertex is one whose degree can be reduced by 1 via a
sequence of edge-swaps that does not introduce any
degree-∆(T0) vertices. If a degree-∆(T0) vertex is
ever marked good, an improvement has been de-
tected and the sequence of swap edges that created
it can easily be reconstructed. See Figure 3. Every

Figure 3: A sequence of edge-swaps that reduces the
number of degree-∆(T0) vertices but may increase the
number of degree-(∆(T0)− 1) vertices.

time this procedure finds an improvement we obtain
a new spanning tree and begin a search for another
improvement from scratch. Let Tω be the spanning
tree for which this procedure fails to find an im-
provement. Let B be the set of vertices still marked
bad. By definition B includes all vertices with de-
gree ∆(Tω) in Tω and some subset of the vertices
with degree ∆(Tω)−1. Consider what happens to G
and Tω if we removed all B-vertices from the graph.
FR-Tree’s search for improvements guarantees that
Tω − B is a spanning forest of the graph G − B.

496 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Indeed, if there were an edge (u, v) connecting two
distinct trees of Tω − B then all B-vertices on the
fundamental cycle of Tω ∪{(u, v)} would have been
marked good and therefore u and v would not have
been in distinct trees of Tω − B after all. In gen-
eral, the output of FR-Tree(G,U) is the pair (Tω, B).
Theorem 3.2 summarizes the properties of the FR-
Tree algorithm that we actually use.

Theorem 3.2. ([43]) The FR-Tree(G,U) algo-
rithm returns a pair (T,B), where T is a Steiner
forest for U and B ⊂ V comprises all vertices with
T -degree ∆(T) and some subset of vertices with T -
degree ∆(T) − 1. If u, v ∈ U are disconnected in
T −B then they are also disconnected in G−B.

The degree ∆(T − B) is by definition at most
∆(T)−1, which may still be too large. Theorem 3.3
shows that by iteratively applying the FR-Tree
algorithm to the components of T−B we can reduce
the maximum degree to any desired bound s ≥ 3,
at the cost of increasing the set B of “bad” vertices.

Theorem 3.3. (The Decomposition Theo-
rem) Let U ⊆ V be a terminal set in a graph
G = (V,E) and s ≥ 3. There is an algorithm
Decomp(G,U, s) that returns a pair (T,B) such that
the following hold.

1. T is a Steiner forest for U and T − B is a
Steiner forest for U −B.

2. ∆(T −B) ≤ s.

3. |B| < |U |/(s− 2) and |B ∩ U | < |U |/(s− 1).

The running time of Decomp is O(|U |m log |U |).

In the remainder of this section we give the
Decomp(G,U, s) algorithm and prove Theorem 3.3.
An invocation of Decomp consists of the following
three steps.

Step 1. Let (T ′, B′) be the output of FR-
Tree(G,U). If ∆(T ′) ≤ s then we are done, and
return the pair (T ′, ∅).

Step 2. Partition the edge set of T ′ into minimal
trees {ti} such that the leaves of each ti are either
B′-nodes or leaves of T ′, and hence U -nodes. Let
B′[ti] be the B′ nodes in ti and V [ti] be the set
of all vertices in G − B′ reachable from vertices
in V (ti) − B′[ti]. (When U = V , V [ti] is exactly
V (ti)−B′[ti]; in general V [ti] may contain vertices
outside of V (T ′).) Let G[ti] be the graph whose
vertex set is V [ti] ∪ B′[ti] and whose edge set
includes all edges induced by V [ti] and, for each

u ∈ B′[ti], the unique T ′-edge connecting u to V (ti).
For each ti, obtain a pair (Ti, Bi) by recursively
calling Decomp(G[ti], (V [ti]∩U)∪B′[ti], s). Observe
that B′[ti] are included as terminals in the recursive
call, even if they are not members of U . See Figure 4
for an illustrative example.

Step 3. Return the pair (T,B) where

T =
⋃
i

Ti and B = B′ ∪
⋃
i

Bi.

We need to establish all the claims: that
T − B is, in fact, a Steiner forest of U − B with
maximum degree s, that B has the right cardi-
nality, and that the running time is O(|U |m log |U |).

If the algorithm halts at Step 1 then T ′ is, by
Theorem 3.2, a Steiner forest for U in G. Suppose
that the algorithm does not halt at Step 1 and let
P (u0, uk) be a path in T ′ between u0, uk ∈ U . Par-
tition it into subpaths P (u0, u1), . . . , P (uk−1, uk),
where u1, . . . , uk−1 are all the B′-nodes encountered
on the path. By construction, each P (ui, ui+1) is
completely contained in some tree ti and the end-
points of this path are terminals in the recursive
call to Decomp(G[ti], (V [ti] ∩ U) ∪ B′[ti], s), so, by
the inductive hypothesis, the tree Ti returned con-
tains a (possibly different) path between ui and
ui+1. By Theorem 3.2 again, the graphs {G[ti]}
intersect only at B′-nodes, which necessarily occur
as leaves in the {Ti} trees, so the edge-set T =

⋃
i Ti

returned is, in fact, a Steiner forest for U . By The-
orem 3.2, all nodes in B have T -degree at least s
and all nodes in T − B have T -degree at most s.
Moreover, if u, v ∈ U are disconnected in T − B
then they are disconnected in G − B. This fol-
lows from Theorem 3.2 if u and v are in differ-
ent trees ti, tj , and by induction on the output of
Decomp(G[ti], (V [ti]∩U)∪B′[ti], s) if u, v are both
in ti.

We now prove that B has the claimed cardinality,
using the property that all B-nodes have degree at
least s in T .

Lemma 3.1. Let T be any minimal Steiner tree for
U . The number of nodes in T with T -degree at

least s is at most g(|U |) = b |U |−2
s−2 c. The number

of U -nodes in T with T -degree at least s is at most

h(|U |) = b |U |−2
s−1 c.

Proof. Due to the minimality of T , all leaves are
necessarily U -nodes. Moreover, we can assume
without loss of generality that all internal nodes
have degree at least 3, by splicing out paths of

497 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Figure 4: Left: the output of FR-Tree. Square green nodes are terminals; pink diamonds are B′-nodes (and
may be terminals); thick edges are part of T ′; gray vertices are outside V (T ′). Right: detaching the edges
adjacent to B′ nodes creates ten subtrees; non-V (T ′) nodes are connected to at most one subtree; Decomp
is called recursively on each subgraph; B′-nodes have degree 1 in these recursive calls and are designated
terminals (square nodes).

degree-2 vertices. When |U | ≤ s − 1 we have
g(|U |) = 0 and when |U | ≤ s we have h(|U |) = 0.
The claimed bounds on g and h hold when there
is exactly one internal node. In general, choose
an internal node u adjacent to exactly one internal
node. If u is adjacent to at least s−1 leaves then it
contributes 1 to the g(|U |) tally; remove its incident
leaves and designate u a U -node. We preserve the
property that all leaves are U -nodes, and since the
net loss in the number of U -nodes is at least s− 2,
we have g(|U |) ≤ g(|U |−(s−2))+1. Observe that u
only contributes to the h(|U |) tally if it is already a
U -node. In this case we have a loss of s−1 U -nodes,
which implies that h(|U |) ≤ h(|U |−(s−1))+1. The
claimed bounds on g and h follow by induction on
|U |.

To analyze the running time we imagine that a
single global Steiner tree for U is being maintained,
which is the union of the current Steiner trees in
the deepest recursive calls. The initial tree provided
to a call to FR-Tree is therefore just a fragment of
the global Steiner tree, whose maximum degree is
some k ≥ s + 1. Each iteration of this call to FR-
Tree, except the last, finds an improvement, which

reduces the number of maximum-degree nodes in its
fragment by at least one. Say a k-improvement is
one that reduces the number of degree-k nodes. If
the current global Steiner tree has maximum degree
k, the total number of k-improvements that can be
found, in all recursive calls, is at most |U |/(k − 2).
The initial value of k is certainly at most |U |. Since
each improvement takes linear time, the total time

for all improvements is O(m)·
∑|U |
k=s+1 |U |/(k−2) =

O(|U |m log(|U |/s)).

4 The Low Degree Hierarchy

We can apply Theorem 3.3 iteratively to create a
low degree hierarchy. Fix s = 4 and generate a set
of pairs {(Ti, Bi)} as follows:

(T0, B0)← Decomp(G,V, 4),

(T1, B1)← Decomp(G,B0, 4),

· · ·
(Ti, Bi)← Decomp(G,Bi−1, 4),

· · ·
(Tp, ∅)← Decomp(G,Bp−1, 4).

498 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

In other words, the “bad” vertices for T0 form the
terminal set for T1 and in general, the bad vertices
for Ti−1 form the terminal set for Ti. We end, of
course, at the first Tp with degree at most s = 4,
so Bp = ∅. It follows from Theorem 3.3 that
|B0| < n/3 and in general, that |Bi| < |Bi−1|/2,
so p < log n− 1 levels suffice.

Define Ti to be the set of trees in the forest Ti−Bi
and T to be the set of all trees in T0, . . . , Tp, as if
each forest were on a disjoint vertex set. Theo-
rem 3.3 implies that Ti has two useful properties:
it has maximum degree 4, and it is a Steiner forest
for Bi−1 −Bi.

Definition 1. Suppose τi ∈ Ti and τi′ ∈ Ti′ , i ≤
i′. We say τi is a descendant of τi′ if a connected
component of G − Bi′ contains V (τi′) and at least
one vertex of V (τi).

Observe that if V (τi) ∩Bi′ = ∅ then τi can only
have one ancestor at level i′; if it had two distinct
ancestors then they would be connected by a path in
G−Bi′ , contradicting Theorem 3.3. Unfortunately,
it seems that V (τi) can intersect Bi′ , so in general
the ancestry relation between trees in T induces a
(p+ 1)-level dag, not a rooted tree. Algorithmically
it is much easier to deal with trees rather than dags.
For this reason we define a variant hierarchy that
is more structured, but loses some useful properties
of T .

Definition 2. Define Ci to be the set of connected
components of G−(Bi∪Bi+1∪· · ·∪Bp−1) containing
at least one Bi−1 (terminal) vertex. Suppose γi ∈ Ci
and γi′ ∈ Ci′ , where i ≤ i′. We say γi is a
descendant of γi′ , written γi � γi′ , if V (γi) ∩
V (γi′) 6= ∅.

Lemma 4.1 identifies the critical properties of
{Ci} used by our algorithm.

Lemma 4.1. Consider the hierarchy of components
{Ci}i∈[0,p].

1. Each γ ∈ Ci has at most one ancestor in Ci′ ,
for each i′ ∈ [i, p].

2. V (γ) ⊆ V (γ′) for each γ � γ′.

3. If (u, v) ∈ E and u ∈ V (γ), v ∈ V (γ′), then
γ � γ′ or γ′ ≺ γ.

4. If γ ∈ Ci, the terminals V (γ) ∩ Bi−1 are
contained in a single tree in Ti, denoted τ(γ).

Proof. For Part 1, note that any two distinct com-
ponents γ′, γ′′ ∈ Ci′ have V (γ′)∩ V (γ′′) = ∅. Since,
by construction, V (γ) ∩ (Bi′ ∪ · · · ∪ Bp−1) = ∅, γ
cannot share vertices with both γ′ and γ′′. We now
turn to Part 2. Suppose γ ∈ Ci, γ′ ∈ Ci′ with i < i′.
If γ and γ′ share one vertex then V (γ) ⊂ V (γ′) since
γ is connected and V (γ) ∩ (Bi′ ∪ · · · ∪ Bp−1) = ∅.
If Part 3 were false then γ and γ′ would be unre-
lated. Without loss of generality, suppose γ′ is at a
higher level than γ, and let γ′′ be the ancestor of γ
at the same level as γ′. Thus, γ′, γ′′ are two distinct
components in some Ci. Part 2 implies u ∈ V (γ′′),
meaning γ′ and γ′′ are joined by an edge (u, v), and
are therefore not distinct components in Ci. For
Part 4, consider a tree τ ∈ Ti = Ti − Bi. By The-
orem 3.3, τ spans the terminals (Bi−1-nodes) in a
connected component of G−Bi. A γ ∈ Ci represents
a connected component in G− (Bi ∪ · · · ∪Bp−1), so
if V (γ) intersects V (τ) at one terminal, every ter-
minal of V (γ) must be contained in V (τ).

Lemma 4.1(1) (unique ancestors) shows that the
ancestry relationship on C0, . . . , Cp can be succinctly
encoded as a forest of rooted trees. Let C be the
component hierarchy defined by the ≺ relation. The
nodes of C are in one-to-one correspondence with
the components of C0, . . . , Cp, where C0 form the
leaves of C. Slightly abusing notation, we shall say
“γ ∈ C” to mean that γ is a node in C or that γ is
a component in some Ci.

4.1 Stocking the Low Degree Hierarchy
Our goal is to supplement C and T with useful data
structures that allow us to reconnect the graph af-
ter a set of vertices fail. Recall that T is composed
of trees with maximum degree at most 4. If a single
tree τ ∈ T experiences the failure of some vertex
set D ⊂ V , we can find individual edges that recon-
nect the subtrees of τ −D using O(|D|2) 2D range
queries (Theorem 2.1). However, individual edges
are, in general, insufficient to reconnect the sub-
trees. There could be long paths that go through
vertices that appear in ancestors or descendants of
τ in T . In order to quickly detect the existence of
these paths we follow an idea from [21] and intro-
duce artificial edges that capture connectivity via
paths. We do not want to add too many artificial
edges, for two reasons. First, they take up space,
which we want to conserve, and second, after delet-
ing vertices from the graph the validity of many
artificial edges may be cast into doubt. Any invalid
artificial edges must be ignored when reestablishing
connectivity, so it is important that the algorithm

499 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

not encounter too many of these edges. Before say-
ing exactly how artificial edges are added we must
recall the concept of a d?-adjacancy list [39]. Recall
that d? is the maximum number of vertex failures.

Definition 3. ([39]) Let L = (v1, v2, . . . , vr) be
a list of vertices and d? ≥ 1 be an integer. The
d?-adjacency edges Λd?(L) connect all vertices at
distance at most d? + 1 in the list L:

Λd?(L) = {(vi, vj) | 1 ≤ i < j ≤ r and j−i ≤ d?+1}

Lemma 4.2. The following properties hold for any
vertex list L:

1. Λd?(L) contains fewer than (d? + 1)|L| edges.

2. If a set D of at most d? vertices are removed
from L then the subgraph of Λd?(L) induced by
L−D remains connected.

3. Suppose L is partitioned into consecutive sub-
lists L1 and L2. Then at most O(d2

?) edges
from Λd?(L) cross the partition (L1, L2).

Proof. Part (1) is trivial, as is (2), since each pair
of consecutive undeleted vertices is at distance at
most d?+1, and therefore adjacent. Part (3) is also
trivial: the number of edges connecting any prefix
and suffix of L is at most (d? + 1)(d? + 2)/2.

Fix a γi ∈ Ci and let γi+1, . . . , γp be its ancestors
in C. Recall that the terminals of γi are contained
in a single tree τ(γi) ∈ Ti. The mapping τ is not
necessarily injective: one tree in Ti could be the host
for many components in Ci. Define A(γi, γj) to be
a list of the terminals in V (γj) that are adjacent to
at least one vertex in V (γi), listed according to an
Euler tour Euler(τ(γj)). (Recall that the terminals
in V (γj) are the vertex set V (γj) ∩ (Bj−1 − (Bj ∪
· · · ∪ Bp−1)).) Let A(γi) be the concatenation of
A(γi, γi+1), . . . , A(γi, γp). We interpret elements of
A(γi) as the principal copies of vertices in T . If u is
a terminal in V (γj), its copy in τ(γj) is the principal
copy of u in T ; all other occurrences of u in T (at
levels other than j) are non-principal copies.

Definition 4. The multigraph H is on the vertex
set of T . The edge set of H includes all tree edges
in {Ti}i. For each (u, v) ∈ E, H contains an
original edge connecting the principal copies of u
and v. For each component γ ∈ C, H includes

Λ(γ)
def
= Λd?(A(γ)). Each edge in H is labeled with

its provenance: either original, tree edge, or the
name of a γ if it appears in Λ(γ). Note that H may
contain multiple edges with the same endpoints, but
with different provenances.

Lemma 4.3 exhibits the two salient properties of
Λ(γ): that it encodes useful connectivity informa-
tion and that it is economical to effectively destroy
Λ(γ) when it is no longer valid, often in time sub-
linear in |Λ(γ)|.

Lemma 4.3. ([39]) Consider a Λ(γi) ⊂ E(H).

1. Suppose d ≤ d? vertices fail, none of which
are in V (γi), and suppose u and v are in
components of ancestors of γi and are each
adjacent to at least one vertex in V (γi). Then
u and v remain connected in the original graph
and remain connected in H.

2. Suppose the proper ancestors of γi are
γi+1, . . . , γp and a total of f edges are removed
from τ(γi+1), . . . , τ(γp), breaking their Euler
tours into intervals I1, . . . , Ip−i+2f . Then at
most O(d2

?(p + f)) edges of Λ(γi) connect dis-
tinct intervals Ij , Ij′ .

Proof. For Part (1), the vertices u and v are con-
nected in the original graph because they are each
adjacent to vertices in V (γi) and, absent any fail-
ures, all vertices in V (γi) remain connected. By
Definition 4, u and v appear in Λ(γi) and, by
Lemma 4.2, Λ(γi) remains connected after the re-
moval of any d vertices. Turning to Part (2), re-
call from Definition 4 that A(γi) was the concatena-
tion of A(γi, γi+1), . . . , A(γi, γp) and each A(γi, γi′)
was ordered according to an Euler tour of τ(γi′) ∈
Ti′ . Removing f edges from τ(γi+1), . . . , τ(γp)
separates their Euler tours (and, hence, the lists
{A(γi, γi′)}i′) into at most 2f + p− i intervals. By
Lemma 4.2 at most (2f + p− i) ·O(d2

?) edges from
Λ(γi) connect distinct intervals. In other words, in
order to “logically” delete Λ(γi) it suffices to delete
O(d2

?(p + f)) edges from Λ(γi) since all remaining
edges do not add to the connectivity of the remain-
ing graph.

We apply Theorem 2.1 and generate an ET-
structure ET(H, T) for H. Lemma 4.4 bounds the
space for the overall data structure.

Lemma 4.4. Given a graph G with m edges, n ver-
tices, and a parameter d? ≥ 1, the d?-failure con-
nectivity oracle consists of C,ET(H, T), and var-
ious linear-space data structures supporting nav-
igation around C. The space required by the
oracle is O(d?m log n log log n) or O(d?m log n),
depending on the 2D range searching structure
used in ET(H, T), and its construction time is
O(mn log n).

500 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof. The number of vertices in H is at most
(p + 1)n, n per Ti. (This is a pessimistic bound.
We are unable to conceive of any graph G for which
this is achieved.) The number of tree edges in H
is less than (p + 1)n and the number of original
edges in H is m. Each original edge contributes a
vertex to at most p lists A(γ), and each member
of A(γ) contributes at most d? + 1 edges to Λ(γ).
The number of edges in H is therefore less than
m+(p+1)n+p(d?+1)m = O(d?m log n). By The-
orem 2.1, each edge in H contributes O(log log n) or
O(1) space to ET(H, T). Regarding construction
time, by Theorem 3.3 the time to compute (T0, B0)
isO(mn log n), and more generally, the time to com-
pute (Ti+1, Bi+1) is O(m|Bi| log |Bi|) time, where
|Bi| < n/(s− 2)i = n/2i decays geometrically with
i. Thus, the total time to compute T and C is
O(mn log n).

5 Recovery From Failures

In this section we describe how, given a set of d ≤ d?
failed vertices, the data structure can be updated
in time Õ(d2d2

?) such that connectivity queries can
be answered in O(d) time. Section 5.1 gives the
algorithm to delete failed vertices and Section 5.2
gives the query algorithm and proof of correctness.

5.1 Deleting Failed Vertices Let D ⊂ V be
the set of d failed vertices.

Step 1. Begin by marking any γ ∈ C affected
if V (γ) ∩ D 6= ∅, and mark the corresponding tree
τ(γ) ∈ T affected as well. For each affected τ(γ),
mark each D-node and its incident tree edges as
deleted. This breaks up τ(γ) into affected subtrees,
which must be reconnected, if possible.

Lemma 5.1. The number of affected trees is at
most d(p+1). The number of affected subtrees is at
most 4d(p+ 1).

Proof. By Lemma 4.1, any u ∈ D appears in at
most p+1 components of C. Since all failed vertices
have degree at most s = 4 in the T trees in which
they appear, there are at most 4d(p + 1) affected
subtrees.

Recall from the discussion above that if γ is
affected then V (γ) contains failed vertices and the
connectivity provided by Λ(γ) is presumed invalid.
By Lemma 4.3 we can logically delete Λ(γ) by
ignoring O(d2

?) edges for each of O(pd) breaks in the
list A(γ). Since there are at most O(pd) affected
(sub)trees, the number of edges that need to be

ignored is O((pd)2d2
?). Let H ′ denote the graph

H with these O((pd)2d2
?) edges removed.

Step 2. We now attempt to reconnect all
affected subtrees using valid edges in H ′. Let R be
a graph whose vertex set V (R) represent the O(pd)
affected subtrees such that (t1, t2) ∈ E(R) if t1 and
t2 are connected by an edge in H ′. Using the struc-
ture ET(H, T) (see Theorem 2.1) we populate the
edge set of R in time O(|V (R)|2q+ (pd)2d2

?), where
q = log log n or logε n, depending on the space of
the 2D range structure [20]. For each 2D range
query, we halt the enumeration of points/edges
as soon as an H ′-edge is reported. Recall that a
point/edge is tagged with its provenance, so we can
check in O(1) time whether it came from an affected
Λ(γ) and must be discarded. Since V (R) = O(pd)
and p < log n, the time to perform these queries
is O(d2(q + d2

?) log2 n). In O(|E(R)|) = O((pd)2)
time we determine the connected components of R.

This concludes the deletion algorithm. The run-
ning time is dominated by Step 2. By building
several copies of the data structure with exponen-
tially decaying values of d? we can guarantee that
d ≥ d?/2 in some copy of the data structure, so the
deletion time becomes O(d2(d2 + q) log2 n).

5.2 Answering a Connectivity Query To an-
swer a connectivity query between u and v we first
check to see if there is a path between them that
avoids affected trees, then consider paths that in-
tersect one or more affected trees.

Step 1. We first find the lowest-level compo-
nents in C containing u and v; let them be γ(u)
and γ(v). If γ(u) is unaffected, let γ1 be the most
ancestral unaffected ancestor of γ(u), and let γ2 be
defined in the same way for γ(v). If γ1 = γ2 then
V (γ1) contains u and v but no failed vertices. If
this is the case we declare u and v connected and
stop.

We can find γ1 and γ2 in O(log p) = O(log logn)
time using a binary search over the ancestors of
γ(u) and γ(v). Alternatively, we can find them in
time O(log d), independent of n, using relatively
simple data structures. Fix any postordering of
the nodes of C. Find the predecessor γpred and
successor γsucc of γ(u) among all components whose
terminal set contains a D-vertex. There are at
most d such nodes, so the cost to find them is
O(log d) via binary search. Let γlca

pred, γ
lca
succ be the

least common ancestors of γ(u) and γpred, γsucc,
respectively. Without loss of generality suppose

501 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

γlca
pred is closer to γ(u). Since V (γlca

pred)∩D 6= ∅, γlca
pred

is affected. If γlca
pred is at depth k from its root in

C, the node γ1 we are looking for is the ancestor of
γ(u) at depth k+1. Refer to [11, 12] for linear space
data structures for least common ancestor and level
ancestors.

Step 2. We now try to find vertices u′ and v′

in affected subtrees that are connected to u and
v respectively. If γ(u) is affected then u′ = u
clearly suffices, so we only need to consider the case
when γ(u) is unaffected and γ1 exists. Recall from
Definition 4 that A(γ1) is the list of terminals in
proper ancestors of γ1 that are adjacent to some
vertex in V (γ1). We scan A(γ1) looking for any
non-failed vertex u′ adjacent to V (γ1). Since V (γ1)
is unaffected, u is connected to u′, and since all of
γ1’s proper ancestors are affected, u′ must appear
in an affected subtree in T . Since there are at most
d failed vertices we must inspect at most d + 1
elements of A(γ1). This takes O(d) time to find
u′ and v′, if they exist. If one or both of u′ and v′

does not exist we declare u and v disconnected and
stop.

Step 3. We have the principal copies of u′ and

v′ in T . In O(min
{

log logn
log log logn ,

log d
log logn

}
) time we

find the affected subtrees t′1 and t′2 containing u′

and v′, respectively, via predecessor search [64, 67]
over the left endpoints of the Euler-tour intervals
that remain after deleting D and their incident tree
edges. Note that t′1 and t′2 are vertices in R, from
Step 2 of the deletion algorithm. We declare u and
v to be connected if and only if t′1 and t′2 are in the
same connected component of R. This takes O(1)
time.

The running time of this procedure is dominated
by the cost of finding u′ and v′.

Lemma 5.2. The query algorithm correctly deter-
mines whether u and v are connected in G−D, in
O(d) time.

Proof. If the query algorithm halts in Step 1 it
is because both u and v are in the unaffected
component γ1, and since V (γ1)∩D = ∅, all vertices
in γ1 are still connected. If the query algorithm
halts in Step 2 it is because u ∈ V (γ1), v 6∈ V (γ1),
and A(γ1)−D = ∅. Since A(γ1) contains all vertices
adjacent to γ1 there can be no path from u to v in
G−D.

At Step 3 we have discovered u′, v′ such that u is
connected to u′, which appears as a principal vertex
in an affected subtree t′1 and similarly for v, v′, and

t′2. Since t′1, t
′
2 are vertices in R, the correctness of

the query algorithm hinges on whether the graph
R correctly represents the connectivity between
affected subtrees.

We first argue that if t′1 and t′2 are connected
by a path in R then they are connected in G −D.
Each edge on this path is either an original edge or a
Λ(γ)-edge for some unaffected γ. All original edges
not incident to D are still valid and each Λ(γ) edge
can, when γ is unaffected, be replaced by a path in
G−D using intermediate nodes in V (γ).

We now argue that if P is a u′–v′ path in G−D,

P = (u′ = u0, u1, . . . , u|P | = v′),

then there exists a t′1–t′2 path in R. Partition
P = P1P2 . . . Pω into maximal subpaths (Pi =
(ua(i), . . . , ub(i))) such that V (Pi) is either

(i) contained in a single affected subtree, or

(ii) contained in V (γ) for some unaffected γ ∈ C.

Observe that because of the maximality criterion,
no two type-(ii) subpaths can be adjacent. Since
P1 and Pω contain u′ and v′, they must be type-
(i) subpaths. We want to show that all type-(i)
subpaths are connected in R by considering how
consecutive type-(i) subpaths could be connected
by valid edges in H ′. (Recall that H ′ is H after
deleting all Λ(γ) edges for affected γ ∈ C.) There
are two cases to consider.

Case 1. Suppose Pi and Pi+1 are type-(i) sub-
paths. Then (ub(i), ua(i+1)) is an original edge in
H ′, so it or some other edge will be discovered that
puts the affected subtrees of Pi and Pi+1 in the same
connected component in R.

Case 2. Suppose Pi and Pi+2 are type-(i) sub-
paths, but Pi+1 is a type-(ii) subpath. Let γ ∈ C
be the component for which V (Pi+1) ⊂ V (γ), so
ub(i), ua(i+2) 6∈ V (γ). It must be that ub(i), ua(i+2) ∈
A(γ), and since Λ(γ) remains connected after any
d vertex deletions, ub(i) and ua(i+2) are connected
by a path in Λ(γ) − D. All the Λ(γ) − D edges
straddling two affected subtrees are eligible to be
discovered when populating the edge-set of R, so
the affected subtrees of Pi and Pi+2 must be in the
same connected component in R.

6 Improving the Update Time

In this section we present not one, not two, but
three different methods to reduce the update time
from Õ(d2d2

?) to Õ(d3). Each of the three meth-
ods uses a different, more sophisticated orthogonal

502 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

range searching structure. In Section 6.1 we show
how Õ(d3) time can be achieved with a 2D col-
ored (aka categorical) range searching structure [58].
Section 6.2 uses a 2D range counting [22] data struc-
ture, and Section 6.3 uses a 3D range emptiness
data structure [20]. The method of Section 6.3 was
suggested to us by Shiri Chechik.

6.1 Method 1: Colored Range Searching
We use the following theorem from Larsen and van
Walderveen [58].

Theorem 6.1. ([58]) Given a multiset P ⊂ [U] ×
[U] of n points and coloring φ : P → N, there is a
data structure occupying space O(n log n) that an-
swers the following type of query. Given x, x′, y, y′,
report the color set Φ = {φ(p) | p ∈ P ∩ [x, y] ×
[x′, y′]}. The query time is O(log logU + |Φ|).

Assign each component γ ∈ C a distinct color
φ(γ) ∈ {1, . . . , |C|}. Recall that each edge in H
is tagged with its provenance. All original and
tree edges receive color zero and all Λ(γ) edges
receive color φ(γ). Each 2D range query now
returns a list of colors in the query rectangle. We
halt the search the moment it returns color 0 (an
original or tree edge), or the color of any unaffected
component. Since there are at most d(p+1) affected
components, each of the O((pd)2) 2D range queries
is halted after time O(log log n+ pd).

Using Method 1 the space of our d?-failure con-
nectivity oracle becomes O(d?m log2 n) and the up-
date time becomes O((pd)3) = O(d3 log3 n).

6.2 Method 2: 2D Range Counting We use
the following theorem of JaJa, Mortensen, and
Shi [52].

Theorem 6.2. ([52]) Given a multiset P ⊂ [U] ×
[U] of n points there is an O(n)-space data struc-
ture answering the following type of query in
O(log n/ log logn) time. Given x, x′, y, y′, report
the number k = |P ∩ [x, y]× [x′, y′]|.

Consider an affected component γi and recall
that its adjacency list A(γi) is the concatenation
of A(γi, γi+1), . . . , A(γi, γp), where γi+1, . . . , γp are
its ancestors in C. The 2D range queries that are
influenced by Λ(γi) involve two trees, say τ = τ(γj)
and τ ′ = τ(γj′) where i < j ≤ j′ ≤ p. Each
query is the product Q = I × I ′ of an interval
I ⊂ Euler(τ) and another I ′ ⊂ Euler(τ ′). Given the
indices of the first and last elements of A(γi, γj)∩ I
and A(γi, γj′) ∩ I ′, we can determine in O(1) time

how many Λ(γi) edges (points) appear in Q. Call
these affected points. For each affected component
γ and each query Q to be performed by the update
algorithm, we calculate the number of affected Λ(γ)
points in Q. This takes time O(pd · (pd)2) =
O(d3 log3 n).

Let kQ be the total number of affected points
in Q, over all affected γ. In O(log n/ log log n)
time we compute the number k of points in Q.
If k = kQ then there are no unaffected points in
Q, and if k > kQ we deduce that there is an
unaffected point (an valid edge reconnecting two
affected subtrees). The total time for all O((pd)2)
queries is therefore O(d2 log3 n/ log log n) time. The
bottleneck in this approach is computing the set
{kQ} of critical thresholds.

Using Method 2 the space of our d?-failure con-
nectivity oracle is O(d?m log n) and the update time
is O(d3 log3 n).

6.3 Method 3: 3D Range Emptiness We
use the following theorem of Chan, Larsen, and
Pǎtraşcu [20].

Theorem 6.3. ([20]) Given a set P ⊂ [U]× [U]×
[U] of n points there is an O(n log1+ε n)-space
data structure answering queries of the following
type in O(log logU) time. Given x, x′, x′′, y, y′, y′′,
determine if P ∩ [x, y]× [x′, y′]× [x′′, y′′] = ∅.

List the nodes in C as {γ1, . . . , γ|C|}. Suppose
that (u, v) is an original or tree edge in H and
tu, tv are the trees in T containing principal copies
of u and v, where u appears at position i in
Euler(tu) and v appears at position j of Euler(tv).
Rather than map (u, v) to the point (i, j) in the 2D
structure of ET(H, T) we map it to the 3D point
(i, j, 0). If (u, v) is an edge of Λ(γk) we map it to
the point (i, j, k).

Let (γk1 , γk2 , . . . , γkd(p+1)
) be the affected com-

ponents and Q be a 2D query performed by the
update algorithm. We are interested in knowing
whether there is a point whose first two coordinates
are in Q and whose third coordinate is not a
member of {k1, . . . , kd(p+1)}. Thus the 2D query Q
can be reduced to d(p + 1) 3D emptiness queries
Q × [0, k1), Q × (k1, k2), and so on. Each 3D
query is answered in O(log log n) time, so the total
update time is O(d3 log3 n log log n).

With the current state-of-the-art range searching
data structures [20, 22, 52, 58], Method 2 is always
strictly superior to Methods 1 and 3 in update time

503 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

or space or both. Method 2 also leaves the most
room for improvement since the bottleneck is not
range counting queries per se, but computing the
critical thresholds {kQ} for the queries.

7 Monte Carlo Connectivity Oracles

By introducing Monte Carlo randomization we are
able to simultaneously reduce both the update time
to Õ(d2) and the space to Õ(m), independent of
d?. The cost of this adaptation is the possibility of
false negatives, i.e., a connectivity query reporting
that u and v are disconnected in G−D when they
are, in fact, connected. Connectivity queries are
answered correctly with probability 1− 1/ poly(n).
Our approach is along the same lines as Kapron,
King, and Mountjoy [55, 46] and Ahn, Guha, and
McGregor [3], but requires new ideas specific to
handling vertex failures. Since Õ(d2) update time
is trivial when d ≥ d? = Ω(

√
m/poly(log n)), we

begin by computing T , C, and H with d? as the
maximum number of vertex deletions. The time
to construct T and C is O(mn log n), and the time
to construct H is linear in its size, O(d?m log n) =
o(m3/2) = o(mn).

Without loss of generality, we assume the ver-
tices of T are assigned IDs from {1, . . . , pn − 1}.
Let 〈u〉 be the log2(pn)-bit encoding of u’s ID. The
graphs we represent are multigraphs: multiple edges
may have the same endpoints but different prove-
nances. Suppose e = ((u, v), x) is an edge connect-
ing u and v with provence tag x and 〈u〉 < 〈v〉
(lexicographically). We encode e by the O(log n)-
bit string 〈e〉 = 〈u, v, x〉. The central observation
of [55, 46, 3] is that edges have two endpoints and
that 〈e〉 ⊕ 〈e〉 = 0. Here ⊕ is bit-wise XOR.

At construction time we generate O(log2 n) edge
sets Eα,β , α ∈ [c log n], β ∈ [log |E(H)|], where
Eα,β is obtained by sampling each edge in H
independently with probability 1/2β . Let Υ(u) be
a (c log n) × (log |E(H)|) sample matrix for edges
incident to u, where

Υ(u)(α, β) =
⊕

e=((u,v),x)∈Eα,β

〈e〉 .

Our data structure stores original and tree edges
explicitly, but not Λ(γ)-edges. Nonetheless, we
are able to verify whether a bit string 〈u, v, x〉
corresponds to an actual edge in H in O(1) time.
If x = γ, we confirm that u, v ∈ A(γ) and that
their positions in this list differ by at most d? +
1. Lemma 7.1 captures why the sample matrices
are useful for finding connecting edges between

subgraphs.

Lemma 7.1. ([3, 55]) Let S ⊂ V and Υ(S) =⊕
u∈S Υ(u) be the component-wise XOR of the

sample matrices of vertices in S. If any edges
in E(H) cross the cut (S, V − S) then for each
α, with constant probability some entry in the row
Υ(S)(α, ?) is the encoding of an edge crossing the
cut (S, V − S).

Proof. First observe that any edge with both end-
points in S is counted exactly twice or zero times
at each entry Υ(S)(α, β). Since 〈e〉 ⊕ 〈e〉 = 0,
Υ(S)(α, β) is the XOR of all edges in Eα,β crossing
the cut (S, V − S). Suppose the number of edges
crossing the cut is in the range (2β−1, 2β]. Then
with constant probability, only one cut-edge is sam-
pled for inclusion in Υ(S)(α, β). For each (α, β), we
can check in O(1) time whether Υ(S)(α, β) is the
encoding 〈e〉 of a single edge e ∈ E(H) crossing the
cut (S, V −S), or whether it is random garbage from
the XOR of multiple edge encodings.

Our goal is to use Lemma 7.1 to find edges
that reconnect the affected subtrees. However,
we need to ignore or subtract off (XOR) three
types of edges: those connecting affected subtrees
to some unaffected tree, those edges incident to
D, and those edges in Λ(γ) for some affected γ.
To this end we store the following interval-sum
data structures. Each can be implemented with
standard binary trees. Since all “logarithmic time”
operations on these trees are actually operating on
sample matrices, which take O(log2 n) space, the
query time for each of these structures is O(log3 n).

S[τ, τ ′]. Both τ, τ ′ are trees in T , and it may
be that τ = τ ′. For any vertex u ∈ V (τ),
let Υτ,τ ′

(u) be the sample matrix for E(H) ∩
({u}×V (τ ′)). Given an interval I of Euler(τ),
S[τ, τ ′] reports

⊕
u∈I Υτ,τ ′

(u).

S[v, τ]. Here v is the principal copy of v in
some τ ′ ∈ T , where τ and τ ′ could be identical.
Given any interval I of Euler(τ), S[v, τ] reports
the sample matrix Υτ,I(v) for the edge set
E(H) ∩ ({v} × I).

S[γ, τ]. Here τ ∈ T and γ ∈ C. Let Υγ(u)
be the sample matrix for Λ(γ)∩ ({u}×V (H)),
that is, all Λ(γ)-edges incident to u. Given
an interval I of Euler(τ), S[γ, τ] reports the
sample matrix

⊕
u∈I Υγ(u).

504 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Space Analysis. We only need to store S[τ, τ ′]
if the edge-set could be non-empty, i.e., if τ = τ(γ)
and τ ′ = τ(γ′) for some γ, γ′ ∈ C with γ � γ′ or
γ′ ≺ γ. The space is O(log2 n) times the number
of V (τ)-vertices with non-zero degree. Each original
edge contributes to at most one S[τ, τ ′] structure, so
these are easy to bound. Bounding the contribution
of Λ(γ)-type edges is less straightforward. Let Γ be
the set of strict ancestors of γ in C and τ(Γ) be
the corresponding trees in T . Clearly |Γ| ≤ p. The
list A(γ) includes principal vertices in potentially
all the trees in τ(Γ). Observe that for sufficiently
large d?, Λ(γ) becomes a clique on A(γ). Thus,
for any τ, τ ′ ∈ τ(Γ), potentially all A(γ)-vertices
in V (τ) will have non-zero degree and contribute
O(log2 n) space to S[τ, τ ′]. There are at most p
choices for τ ′ ∈ τ(Γ). Thus, each γ ∈ C contributes
O(|A(γ)| · p log2 n) space to all S[τ, τ ′] structures,
and since

∑
γ |A(γ)| ≤ pm, the total space is

O(mp2 log2 n) = O(m log4 n). By a similar analysis,
the space for S[v, τ] and S[γ, τ] are also upper
bounded by O(m log4 n).

Processing Vertex Failures. Step 1 of the
deletion algorithm is the same: we mark at most
d(p+ 1) components γ ∈ C affected, and mark tree
edges incident to D-vertices in τ(γ) ∈ T as deleted.
If f such edges are deleted, it breaks Euler(τ(γ))
into 2f + 1 intervals such that each affected subtree
in τ(γ) is made up of the union of a subset of the
intervals.

Let {t1, . . . , tO(dp)} be the initial set of affected
subtrees. In order to implement Step 2 of the
deletion algorithm we first obtain a sample matrix
Υ(ti) for each ti that includes H ′-edges incident to
V (ti), that is, it excludes deleted edges in V (ti)×D
and excludes artificial edges in Λ(γ) for an affected
γ. If ti was originally in τ ∈ T we start by asking
S[τ, τ] for a sample matrix Υτ,τ (ti) covering edges
in the subgraph induced by V (τ). For each affected
τ ′ 6= τ , we ask S[τ, τ ′] for a sample matrix Υτ,τ ′

(ti)
covering edges in V (τ) × V (τ ′). For each x ∈ D
we ask S[x, τ] for a sample matrix Υx,τ (ti) covering
the edge set {x} × V (ti). Finally, for each affected
γ ∈ C, we ask S[γ, τ] for Υγ(ti) covering Λ(γ). The
matrix Υ(ti) we want is now computed as

Υ(ti) ←
⊕
τ ′

Υτ,τ ′
(ti)⊕

⊕
x∈D

Υx,τ (ti)⊕
⊕
γ

Υγ(ti),

where the variables τ ′ and γ range over all affected
trees in T and affected components in C. The time
to construct one Υ(ti) is O(dp · log3 n), and total
time to construct all {Υ(ti)}i is O((dp)2 log3 n) =

O(d2 log5 n).
The second stage of the deletion algorithm is

to use the {Υ(ti)} structures to determine which
affected subtrees are in the same connected com-
ponent. We proceed as in Bor̊uvka’s MST al-
gorithm [16] and many parallel connectivity al-
gorithms that use the “hook and contract” tech-
nique [25, 26, 53]. In each round, each affected
subtree will pick an arbitrary edge joining it to a
different affected subtree. The affected subtrees
will be merged into larger affected subtrees, which
participate in the next round. Under error-free
conditions—which we do not have—this process will
halt after log2(O(dp)) rounds since each round re-
duces the number of non-isolated affected subtrees
by at least half.

The formal procedure is as follows. Let Ck =
{tk,1, tk,2, . . . , tk,|Ck|} be the affected trees after
k rounds, where C0 = {t0,1, . . . , t0,O(dp)}. We
maintain the invariant that after k rounds we have,
for each tk,l, a sample matrix of Υ(tk,l) of all H ′

edges incident to tk,l. In the (k + 1)th round,
loop over each tk,l ∈ Ck and scan the entries in
the (k + 1)th row of its sample matrix, Υ(tk,l)(k +
1, ?), looking for the encoding of an edge ek,l with
exactly one endpoint in V (tk,l). Let Ck+1 be
the components induced by the Ck trees and the
inter-tree edges {ek,l} just selected. Suppose the
constituent trees of tk+1,l′ ∈ Ck+1 are S ⊆ Ck.
The sample matrix for tk+1,l′ is easily computed as⊕

t∈S Υ(t). The total time to compute Ck+1 sample

matrices is just O((|Ck| − |Ck+1|) log2 n).
Observe that just before executing the (k + 1)th

round we have only examined the contents of rows
1 through k of the sample matrices. Thus, the
contents of the (k + 1)th row are not affected by
the measurements performed so far and we can ap-
ply Lemma 7.1. Lemma 7.1 implies that if tk,l
is not already isolated, then with constant prob-
ability we will find an edge with one endpoint in
V (tk,l) in Υ(tk,l)(k + 1, ?). Letting ‖Ck‖ be the
number of non-isolated components in Ck, we have
E[‖Ck+1‖] ≤ (1−ε)‖Ck‖ for some absolute constant
ε > 0. Thus, after c log n rounds E[‖Cc logn‖] ≤
(1− ε)c logn|C0| < n−Ω(c) and by Markov’s inequal-
ity, the probability that Cc logn has non-isolated
components (an error) is n−Ω(c).

Theorem 7.1. In O(mn log n) time we can con-
struct an O(m log4 n)-space data structure support-
ing the following operations. Given a set D ⊂ V
with |D| = d, we can process D in O(d2 log5 n) time
and thereafter answer pairwise connectivity queries

505 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

in the graph G−D, in O(d) time.

Remark 1. The time to delete D can be re-
duced to O(d2 log(d log n) log4 n) with probability
1−1/ poly(d log n). Observe that there are O(dp) =
O(d log n) affected subtrees, so O(log(dp)) rounds
of hook and contract suffice to coalesce the affected
subtrees into their connected components in G−D.
Thus, when forming sample matrices we can fo-
cus exclusively on the first O(log(dp)) rows: all
log2 n factors in the running time are replaced by
log n log(dp). If the first O(log(dp)) rows do not suf-
fice we can always generate the remaining O(log n)
rows afterward to obtain a negligible error bound.

Kapron et al. [55] stated that their d-edge failure
oracle has update time O(d log3 n log d). Our anal-
ysis above, together with the observation that it is
not necessary to explicitly store the graph [3, 46]
gives slightly improved bounds for d-edge failure
connectivity oracles.

Theorem 7.2. ([55, 3, 46]) Given an undirected
graph G = (V,E), a data structure with size
O(n log2 n) can be constructed in Õ(m) time sup-
porting the following operations. Any set D ⊂
E of d edges can be processed in O(d log2 n log d)
time with probability 1 − 1/poly(d) (or O(d log3 n)
time w.h.p.) such that thereafter, connectivity
queries in the graph (V,E −D) can be answered in
O(min{log log n, log d/ log log n}) time. Each con-
nectivity query is answered correctly with probability
1− 1/ poly(n).

8 Conclusions

In this paper we illustrated the power of a new
graph decomposition theorem by giving time- and
space-efficient connectivity oracles for graphs sub-
ject to vertex failures. Our data structures perform
well in all the major measures of efficiency (space,
update time, query time, and preprocessing time)
but leave many opportunities for improvement. We
highlight the most interesting open problems.

• The Fürer-Raghavachari [43] algorithm FR-
Tree for computing near-minimum degree span-
ning tree takes O(mn log n) time, which is the
sole bottleneck in our construction algorithm.
Is it possible to reduce the running time of
FR-Tree to Õ(m), or compute spanning trees
with similar decomposition properties in Õ(m)
time?

• The conditional lower bounds of [57, 48] show
that any connectivity oracle with reasonable

update time cannot have Õ(1) query time,
independent of d, but they do not preclude a
data structure having both query and update
time Õ(d). Is it possible to reduce the update
time below O(d2) without disturbing the space
or query time?

• Is it possible to reduce the space of our deter-
ministic connectivity oracle to Õ(m), indepen-
dent of d??

Acknowledgement. We would like to thank
Kasper Green Larsen and Peyman Afshani for help
with the navigating the range searching litera-
ture, Shiri Chechik for suggesting the reduction to
3D range searching in Section 6.3, and Veronika
Loitzenbauer for bringing [49] to our attention and
suggesting several improvements to the presenta-
tion.

References

[1] I. Abraham, S. Chechik, and C. Gavoille. Fully
dynamic approximate distance oracles for planar
graphs via forbidden-set distance labels. In Pro-
ceedings 44th ACM Symposium on Theory of Com-
puting (STOC), pages 1199–1218, 2012.

[2] I. Abraham, S. Chechik, C. Gavoille, and D. Pe-
leg. Forbidden-set distance labels for graphs of
bounded doubling dimension. ACM Trans. on Al-
gorithms, 12(2):22, 2016.

[3] K. J. Ahn, S. Guha, and A. McGregor. Analyzing
graph structure via linear measurements. In Pro-
ceedings of the 23rd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 459–
467, 2012.

[4] S. Arora, S. Rao, and U. V. Vazirani. Expander
flows, geometric embeddings and graph partition-
ing. J. ACM, 56(2), 2009.

[5] I. Baran, E. D. Demaine, and M. Pǎtraşcu. Sub-
quadratic algorithms for 3SUM. Algorithmica,
50(4):584–596, 2008.

[6] D. Barnette. Trees in polyhedral graphs. Cana-
dian Journal of Mathematics, 18:731–736, 1966.

[7] S. Basawna, U. Lath, and A. S. Mehta. Single
source distance oracle for planar digraphs avoiding
any failed node or link. In Proceedings 23rd
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 223–232, 2012.

[8] S. Baswana, S. R. Chaudhury, K. Choudhary, and
S. Khan. Dynamic DFS in undirected graphs:
breaking the o(m) barrier. In Proceedings 27th
Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 730–739, 2016.

506 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[9] S. Baswana, K. Choudhary, and L. Roditty. Fault
tolerant subgraph for single source reachability:
generic and optimal. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing
(STOC), pages 509–518, 2016.

[10] G. Di Battista and R. Tamassia. On-line mainte-
nance of triconnected components with spqr-trees.
Algorithmica, 15:302–318, 1996.

[11] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In Proceedings 4th Latin Amer-
ican Symp. on Theoretical Informatics (LATIN),
LNCS Vol. 1776, pages 88–94, 2000.

[12] M. A. Bender and M. Farach-Colton. The level an-
cestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004.

[13] A. Bernstein and D. Karger. A nearly optimal or-
acle for avoiding failed vertices and edges. In Pro-
ceedings 41st Annual ACM Symposium on Theory
of Computing (STOC), pages 101–110, 2009.

[14] D. Bilò, F. Grandoni, L. Gualà, S. Leucci, and
G. Proietti. Improved purely additive fault-
tolerant spanners. In Proceedings 23rd Annual
European Symposium on Algorithms (ESA), pages
167–178, 2015.

[15] G. Borradaile, S. Pettie, and C. Wulff-Nilsen.
Connectivity oracles for planar graphs. In
Proceedings 13th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT),
pages 316–327, 2012. Full version available at
arXiv:1204.4159.

[16] O. Bor̊uvka. O jistém problému minimálńım.
Práce Moravské Př́ırodovědecké Společnosti, 3:37–
58, 1926. In Czech.

[17] G. Braunschvig, S. Chechik, and D. Peleg. Fault
tolerant additive spanners. In Proceedings 38th
Int’l Workshop on Graph-Theoretic Concepts in
Computer Science (WG), pages 206–214, 2012.

[18] G. Braunschvig, S. Chechik, D. Peleg, and A. Seal-
fon. Fault tolerant additive and (µ, α)-spanners.
Theoretical Computer Science, 580:94–100, 2015.

[19] T. Chan. Dynamic subgraph connectivity with
geometric applications. SIAM J. Comput.,
36(3):681–694, 2006.

[20] T. M. Chan, K. G. Larsen, and M. Pǎtraşcu. Or-
thogonal range searching on the RAM, revisited.
In Proceedings 27th ACM Symposium on Compu-
tational Geometry (SoCG), pages 1–10, 2011.

[21] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dy-
namic connectivity: Connecting to networks and
geometry. SIAM J. Comput., 40(2):333–349, 2011.

[22] T. M. Chan and B. T. Wilkinson. Adaptive
and approximate orthogonal range counting. In
Proceedings 24th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 241–251,
2013.

[23] S. Chechik, M. Langberg, D. Peleg, and L. Roditty.
Fault tolerant spanners for general graphs. SIAM

J. Comput., 39(7):3403–3423, 2010.
[24] S. Chechik, M. Langberg, D. Peleg, and L. Roditty.

f -sensitivity distance oracles and routing schemes.
Algorithmica, 63(4):861–882, 2012.

[25] K. W. Chong, Y. Han, and T. W. Lam. Concur-
rent threads and optimal parallel minimum span-
ning trees algorithm. J. ACM, 48(2):297–323,
2001.

[26] K. W. Chong and T. W. Lam. Finding con-
nected components in O(logn log logn) time on
the EREW PRAM. J. Algor., 18(3):378–402,
1995.

[27] K. Choudhary. An optimal dual fault tolerant
reachability oracle. In Proceedings 43rd Int’l Col-
loq. on Automata, Languages, and Programming
(ICALP), 2016.

[28] A. Czumaj and W.-B. Strothmann. Bounded
degree spanning trees. In Proceedings 5th Annual
European Symposium on Algorithms (ESA), pages
104–117, 1997.

[29] C. Demetrescu, M. Thorup, R. A. Chowdhury,
and V. Ramachandran. Oracles for distances
avoiding a failed node or link. SIAM J. Comput.,
37(5):1299–1318, 2008.

[30] E. A. Dinic, A. V. Karzanov, and M. V.
Lomonosov. On the structure of the system of
minimum edge cuts in a graph. Studies in Discrete
Optimization, pages 290–306, 1976. (in Russian).

[31] M. Dinitz and R. Krauthgamer. Fault-tolerant
spanners: better and simpler. In Proceedings
30th ACM Symposium on Principles of Distributed
Computing (PODC), pages 169–178, 2011.

[32] Y. Dinitz and Z. Nutov. A 2-level cactus model
for the system of minimum and minimum+1 edge-
cuts in a graph and its incremental maintenance.
In Proceedings 27th ACM Symposium on Theory
of Computing (STOC), pages 509–518, 1995.

[33] Y. Dinitz and Z. Nutov. A 2-level cactus tree
model for the system of minimum and minimum+1
edge cuts of a graph and its incremental main-
tenance. Part I: the odd case. Unpublished
manuscript, 1999.

[34] Y. Dinitz and Z. Nutov. A 2-level cactus tree
model for the system of minimum and minimum+1
edge cuts of a graph and its incremental main-
tenance. Part II: the even case. Unpublished
manuscript, 1999.

[35] Y. Dinitz and J. Westbrook. Maintaining the
classes of 4-edge-connectivity in a graph on-line.
Algorithmica, 20(3):242–276, 1998.

[36] R. Duan. New data structures for subgraph con-
nectivity. In Proceedings 37th Int’l Colloquium on
Automata, Languages and Programming (ICALP),
pages 201–212, 2010.

[37] R. Duan. Algorithms and Dynamic Data Struc-
tures for Basic Graph Optimization Problems.
Ph.D. Dissertation, University of Michigan, 2011.

507 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[38] R. Duan and S. Pettie. Dual-failure distance
and connectivity oracles. In Proceedings 20th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 506–515, 2009.

[39] R. Duan and S. Pettie. Connectivity oracles for
failure prone graphs. In Proceedings 42nd ACM
Symposium on Theory of Computing, pages 465–
474, 2010.

[40] D. Eppstein, Z. Galil, G. Italiano, and A. Nis-
senzweig. Sparsification – a technique for speeding
up dynamic graph algorithms. J. ACM, 44(5):669–
696, 1997.

[41] G. Frederickson. Data structures for on-line up-
dating of minimum spanning trees, with applica-
tions. SIAM J. Comput., 14(4):781–798, 1985.

[42] D Frigioni and G. F. Italiano. Dynamically
switching vertices in planar graphs. Algorithmica,
28(1):76–103, 2000.

[43] M. Fürer and B. Raghavachari. Approximating
the minimum-degree steiner tree to within one of
optimal. J. Algor., 17(3):409–423, 1994.

[44] H. N. Gabow and R. E. Tarjan. A linear-time
algorithm for a special case of disjoint set union.
J. Comput. Syst. Sci., 30(2):209–221, 1985.

[45] Z. Galil and G. Italiano. Maintaining the 3-edge-
connected components of a graph on-line. SIAM
J. Comput., 22(1):11–28, 1993.

[46] D. Gibb, B. M. Kapron, V. King, and N. Thorn.
Dynamic graph connectivity with improved worst
case update time and sublinear space. CoRR,
abs/1509.06464, 2015.

[47] A. Grønlund and S. Pettie. Threesomes, degener-
ates, and love triangles. In Proceedings 55th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 621–630, 2014.

[48] M. Henzinger, S. Krinninger, D. Nanongkai, and
T. Saranurak. Unifying and strengthening hard-
ness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings
47th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 21–30, 2015.

[49] M. Henzinger and S. Neumann. Incremental and
fully dynamic subgraph connectivity for emer-
gency planning. In Proceedings 24th Annual Euro-
pean Symposium on Algorithms (ESA), pages 48:1-
48:11, 2016.

[50] J. Holm, K. de Lichtenberg, and M. Thorup.
Poly-logarithmic deterministic fully-dynamic algo-
rithms for connectivity, minimum spanning tree, 2-
edge, and biconnectivity. J. ACM, 48(4):723–760,
2001.

[51] S.-E. Huang, D. Huang, T. Kopelowitz, and
S. Pettie. Fully Dynamic Connectivity in
O(logn(log log n)2) Amortized Expected Time. In
Proceedings 28th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2017.

[52] J. JaJa, C. W. Mortensen, and Q. Shi. Space-

efficient and fast algorithms for multidimensional
dominance reporting and counting. In Proceedings
15th Int’l Symposium on Algorithms and Compu-
tation (ISAAC), pages 558–568, 2004.

[53] D. B. Johnson and P. Metaxas. Connected compo-
nents in O(log3/2 n) parallel time for the CREW
PRAM. J. Comput. Syst. Sci., 54(2):227–242,
1997.

[54] A. Kanevsky, R. Tamassia, G. Di Battista, and
J. Chen. On-line maintenance of the four-
connected components of a graph. In Proceedings
32nd IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 793–801, 1991.

[55] B. M. Kapron, V. King, and B. Mountjoy. Dy-
namic graph connectivity in polylogarithmic worst
case time. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1131–1142, 2013.

[56] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pet-
tie, and M. Thorup. Faster worst case deter-
ministic dynamic connectivity. In Proceedings
24th European Symposium on Algorithms (ESA),
pages 53:1–53:15, 2016.

[57] T. Kopelowitz, S. Pettie, and E. Porat. Higher
lower bounds from the 3SUM conjecture. In
Proceedings 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1272–1287,
2016.

[58] K. G. Larsen and F. van Walderveen. Near-
optimal range reporting structures for categori-
cal data. In Proceedings 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 265–276, 2013.

[59] K. G. Larsen and R. Williams. Faster online
matrix-vector multiplication. In Proceedings 28th
ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2017.

[60] H. Nagamochi and T. Ibaraki. A linear-time al-
gorithm for finding a sparse k-connected spanning
subgraph of a k-connected graph. Algorithmica,
7(5&6):583–596, 1992.

[61] M. Parter. Fault-tolerant logical network struc-
tures. Bulletin of the EATCS, 118, 2016.

[62] M. Parter and D. Peleg. Sparse fault-tolerant
BFS trees. In Proceedings 21st Annual European
Symposium on Algorithms (ESA), pages 779–790,
2013.

[63] M. Parter and D. Peleg. Fault tolerant approxi-
mate BFS structures. In Proceedings 25th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1073–1092, 2014.

[64] M. Pǎtraşcu and M. Thorup. Time-space trade-
offs for predecessor search. In Proceedings
38th ACM Symposium on Theory of Computing
(STOC), pages 232–240, 2006.

[65] M. Pǎtraşcu and M. Thorup. Planning for fast
connectivity updates. In Proceedings 48th IEEE

508 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Symposium on Foundations of Computer Science
(FOCS), pages 263–271, 2007.

[66] M. Patrascu and M. Thorup. Randomization does
not help searching predecessors. In Proceedings
18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 555–564, 2007.

[67] M. Patrascu and M. Thorup. Dynamic integer sets
with optimal rank, select, and predecessor search.
In Proceedings 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
166–175, 2014.

[68] J. A. La Poutré, J. van Leeuwen, and M. H. Over-
mars. Maintenance of 2- and 3-edge- connected
components of graphs I. Discrete Mathematics,
114(1–3):329–359, 1993.

[69] W.-B. Strothmann. Bounded Degree Spanning
Trees. Dissertation, Universität Paderborn, Heinz
Nixdorf Institut, Theoretische Informatik, 1997.

[70] J. Westbrook and R. E. Tarjan. Maintaining
bridge-connected and biconnected components on-
line. Algorithmica, 7(5&6):433–464, 1992.

[71] C. Wulff-Nilsen. Faster deterministic fully-
dynamic graph connectivity. In Proceedings of the
24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1757–1769, 2013.

509 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/1

0/
18

 to
 1

66
.1

11
.1

42
.8

8.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

