
Algorithms on Minimizing the Maximum Sensor

Movement for Barrier Coverage of a Linear
Domain�

Danny Z. Chen1, Yan Gu2, Jian Li3, and Haitao Wang1,��

1 Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA

{dchen,hwang6}@nd.edu
2 Department of Computer Science and Technology

Tsinghua University, Beijing 100084, China
henryy321@gmail.com

3 Institute for Interdisciplinary Information Sciences (IIIS)
Tsinghua University, Beijing 100084, China

lijian83@mail.tsinghua.edu.cn

Abstract. In this paper, we study the problem of moving n sensors on a
line to form a barrier coverage of a specified segment of the line such that
the maximum moving distance of the sensors is minimized. Previously,
it was an open question whether this problem on sensors with arbitrary
sensing ranges is solvable in polynomial time. We settle this open ques-
tion positively by giving an O(n2 log n log log n) time algorithm. Further,
if all sensors have the same-size sensing range, we give an O(n log n) time
algorithm, which improves the previous best O(n2) time solution.

1 Introduction

A Wireless Sensor Network (WSN) uses a large number of sensors to monitor
some surrounding environmental phenomena [1]. Intrusion detection and border
surveillance constitute a major application category for WSNs. A main goal of
these applications is to detect intruders as they cross the boundary of a region
or domain. For example, research efforts were made to extend the scalability of
WSNs to the monitoring of international borders [10,11]. Unlike the traditional
full coverage [13,17,18] which requires an entire target region to be covered by
the sensors, the barrier coverage [2,3,7,8,11] only seeks to cover the perimeter
of the region to ensure that any intruders are detected as they cross the region
border. Since barrier coverage requires fewer sensors, it is often preferable to

� Chen and Wang’s research was supported in part by NSF under Grant CCF-0916606.
Li’s research was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61061130540, 61073174.

�� Corresponding author. This work was partially done while the author was visiting
at IIIS at Tsinghua University.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 177–188, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

178 D.Z. Chen et al.

full coverage. Because sensors have limited battery-supplied energy, it is desired
to minimize their movements. In this paper, we study a linear barrier coverage
problem where the barrier is for a (finite) line segment and the sensors are ini-
tially located on the line containing the barrier segment and allowed to move on
the line. As discussed in the previous work [7,8,15] and shown in this paper, bar-
rier coverage even for linear domains poses some challenging algorithmic issues.
Also, our solutions may be used in solving more general problems. For example,
if the barrier is sought for a simple polygon, then we may consider each of its
edges separately and apply our algorithms to each edge.

In our problem, each sensor has a sensing range (or range for short) and
we want to move the sensors to form a coverage for the barrier such that the
maximum sensor movement is minimized.

1.1 Problem Definitions, Previous Work, and Our Results

Denote by B = [0, L] the barrier that is a line segment from x = 0 to x = L > 0
on the x-axis. A set S = {s1, s2, . . . , sn} of n mobile sensors are initially on the
x-axis. Each sensor si ∈ S has a range ri > 0 and is located at the coordinate
xi. We assume x1 ≤ x2 ≤ · · · ≤ xn. If a sensor si is at the position x′, then we
say si covers the interval [x′ − ri, x

′ + ri], called the covering interval of si. Our
problem is to find a set of destinations on the x-axis, {y1, y2, . . . , yn}, for the
sensors (i.e., for each si ∈ S, move si from xi to yi) such that each point on the
barrier B is covered by at least one sensor and the maximum moving distance
of the sensors (i.e., max1≤i≤n{|xi − yi|}) is minimized. We call this problem the
barrier coverage on a line segment, denoted by BCLS. We assume 2·∑n

i=1 ri ≥ L
(otherwise, a barrier coverage for B is not possible).

The decision version of BCLS is defined as follows. Given a value λ ≥ 0,
determine whether there is a feasible solution in which the moving distance of
each sensor is at most λ. If the ranges of all sensors are the same (i.e., the ri’s
are all equal), then we call it the uniform case of BCLS. When the sensors have
arbitrary ranges, we call it the general case.

The BCLS problem has been studied before. The uniform case has been solved
in O(n2) time [7]. An O(n) time algorithm is also given in [7] for the decision
version of the uniform case. However, it has been open whether the general case
is solvable in polynomial time [7].

In this paper, we settle the open problem on the general BCLS by presenting
an O(n2 logn log logn) time algorithm. We also solve the decision version of the
general BCLS in O(n log n) time. For the uniform case, we derive an O(n log n)
time algorithm, improving the previous O(n2) time solution [7]; and further, if
all sensors are initially on B, our algorithm runs in O(n) time.

1.2 Related Work

A variation of the decision version of the general BCLS is shown to be NP-hard
[7]. Additional results were also given in [7] for the case 2 ·∑n

i=1 ri < L.

Algorithms on Minimizing the Maximum Sensor Movement 179

Mehrandish et al. [15] also considered the line segment barrier, but unlike the
BCLS problem, they intended to use the minimum number of sensors to form a
barrier coverage, which they proved to be NP-hard. But, if all sensors have the
same range, polynomial time algorithms were possible [15]. Another study of the
line segment barrier [8] aimed to minimize the sum of the moving distances of
all sensors; this problem is NP-hard [8], but is solvable in polynomial time when
all sensors have the same range [8]. In addition, Li et al. [12] considers the linear
coverage problem which aims to set an energy for each sensor to form a coverage
such that the cost of all sensors is minimized. There [12], the sensors are not
allowed to move, and the more energy a sensor has, the larger the covering range
of the sensor and the larger the cost of the sensor.

Bhattacharya et al. [2] studied a 2-D barrier coverage problem in which the
barrier is a circle and the sensors, initially located inside the circle, are moved to
the circle to form a coverage such that the maximum sensor movement is mini-
mized; the ranges of the sensors are not explicitly specified but the destinations
of the sensors are required to form a regular n-gon on the circle. Subsequent
improvements of the results in [2] have been made [4,16].

Some other barrier coverage problems have been studied. For example, Kumar
et al. [11] proposed algorithms for determining whether a region is barrier covered
after the sensors are deployed. They considered both the deterministic version
(the sensors are deployed deterministically) and the randomized version (the
sensors are deployed randomly), and aimed to determine a barrier coverage with
high probability. Chen et al. [3] introduced a local barrier coverage problem in
which individual sensors determine the barrier coverage locally.

2 An Overview of Our Approaches

Throughout the paper, for any problem we consider, let λ∗ denote the maximum
sensor movement in an optimal solution.

For the uniform BCLS, as shown in [7], a key property is that there always
exists an order preserving optimal solution, i.e., the order of the sensors in the
optimal solution is the same as that in the input. Based on this property, the
previousO(n2) time algorithm [7] coversB from left to right; in each step, it picks
the next sensor and re-balances the current maximum sensor movement. We take
a very different approach. With the order preserving property, we determine
a set Λ of candidate values for λ∗ with λ∗ ∈ Λ. Consequently, by using the
decision algorithm, we can find λ∗ in Λ. But, this approach may be inefficient
since |Λ| = Θ(n2). To reduce the running time, our strategy is not to compute
the set Λ explicitly. Instead, we compute an element in Λ whenever we need
it. A possible attempt would be to first find a sorted order for the elements of
Λ or (implicitly) sort the elements of Λ, and then obtain λ∗ by binary search.
However, it seems not easy to (implicitly) sort the elements of Λ. Instead, based
on several new observations, we manage to find a way to partition the elements
of Λ into n sorted lists, each list containing O(n) elements. Next, by using a
technique called binary search on sorted arrays [5], we are able to find λ∗ in Λ

180 D.Z. Chen et al.

in O(n log n) time. For the special case when all sensors are initially located on
B, a key observation we make is that λ∗ is precisely the maximum value of the
candidate set Λ. Although Λ = Θ(n2), based on new observations, its maximum
value can be computed in O(n) time. Due to the space limit, our algorithms for
the uniform BCLS are omitted and can be found in the full version of this paper.

For the general BCLS, as indicated in [7], the order preserving property no
longer holds. Consequently, our approach for the uniform case does not work.
The main difficulty of this case is that we do not know the order of the sensors
appeared in an optimal solution. Due to this difficulty, no polynomial time al-
gorithm was known before for the general BCLS. To solve this problem, we first
develop a greedy algorithm for the decision version of the general BCLS. After
O(n log n) time preprocessing, our decision algorithm takes O(n log logn) time
for any value λ. If λ ≥ λ∗, implying that there exists a feasible solution, then
our decision algorithm can determine the order of sensors in a feasible solution
for covering B. For the general BCLS, we seek to simulate the behavior of the
decision algorithm on λ = λ∗. Although we do not know the value λ∗, our algo-
rithm determines the same sensor order as it would be obtained by the decision
algorithm on the value λ = λ∗. To this end, each step of the algorithm uses
our decision algorithm as a decision procedure. The idea is somewhat similar
to parametric search [6,14], and here we “parameterize” our decision algorithm.
However, unlike the typical parametric search [6,14], our approach does not in-
volve any parallel scheme and is practical.

For ease of exposition, we assume that initially no two sensors are located at
the same position (i.e., xi �= xj for any i �= j), and the covering intervals of any
two different sensors do not share a common endpoint. Our algorithms can be
easily generalized to the general situation.

In the following, we discuss the decision version of the general BCLS in Section
3. In Section 4, we present our algorithm for the general BCLS, which we refer to
as the optimization version of the problem. Due to the space limit, some proofs
are omitted and can be found in the full version of this paper.

For each sensor si ∈ S, we call the right (resp., left) endpoint of the covering
interval of si the right (resp., left) extension of si. Each of the right and left
extensions of si is an extension of si. Denote by p(x′) the point on the x-axis
whose coordinate is x′, and denote by p+(x′) (resp., p−(x′)) a point to the right
(resp., left) of p(x′) and infinitely close to p(x′). The concept of p+(x′) and
p−(x′) is only used to explain the algorithms, and we never need to find such
a point. Note that we can easily determine whether λ∗ = 0, say, in O(n log n)
time. Henceforth, we assume λ∗ > 0.

3 The Decision Version of the General BCLS

Given any value λ, the decision version is to determine whether λ∗ ≤ λ. Below,
we first explore some properties of a feasible solution for λ.

By a sensor configuration, we refer to a specification of where each sensor
si ∈ S is located. By this definition, the input is a configuration in which each

Algorithms on Minimizing the Maximum Sensor Movement 181

sensor si is located at xi. The displacement of a sensor in a configuration C is
the distance between the position of the sensor in C and its original position in
the input. A configuration C is a feasible solution for the distance λ if the sensors
in C form a barrier coverage of B (i.e., the union of the covering intervals of the
sensors in C contains B) and the displacement of each sensor is at most λ. In a
feasible solution, a subset S′ ⊆ S is called a solution set if the sensors in S′ form
a barrier coverage; of course, S itself is also a solution set. A feasible solution
may have multiple solution sets. A sensor si in a solution set S′ is said to be
critical with respect to S′ if si covers a point on B that is not covered by any
other sensor in S′. If every sensor in S′ is critical, then S′ is called a critical set.

Given any value λ, if λ ≥ λ∗, then our decision algorithm will find a critical
set and determine the order in which the sensors of the critical set will appear
in a feasible solution for λ. Consider a critical set Sc. For each sensor s ∈ Sc, we
call the set of points on B that are covered by s but not covered by any other
sensor in Sc the exclusive coverage of s. The proof of Observation 1 is omitted.

Observation 1. The exclusive coverage of each sensor in a critical set Sc is a
continuous portion of the barrier B.

For a critical set Sc in a feasible solution SOL, we define the cover order of
the sensors in Sc as the order of these sensors in SOL such that their exclusive
coverages are from left to right.

Observation 2. The cover order of the sensors of a critical set Sc in a feasible
solution SOL is consistent with the left-to-right order of the positions of these
sensors in SOL. Further, the cover order is also consistent with the order of the
right (resp., left) extensions of these sensors in SOL.

Proof. Consider any two sensors si and sj in Sc with ranges ri and rj , respec-
tively. Without loss of generality, assume si is to the left of sj in the cover order,
i.e., the exclusive coverage of si is to the left of that of sj in SOL. Let yi and yj
be the positions of si and sj in SOL, respectively. To prove the observation, it
suffices to show yi < yj , yi + ri < yj + rj , and yi − ri < yj − rj .

Let p be a point in the exclusive coverage of sj . We also use p to denote its
coordinate on the x-axis. Then p is not covered by si, implying either p > yi+ ri
or p < yi−ri. But, the latter case cannot hold (otherwise, the exclusive coverage
of si would be to the right of that of sj). Since p is covered by sj , we have
p ≤ yj + rj. Therefore, yi+ ri < p ≤ yj+ rj . By using a symmetric argument, we
can also prove yi−ri < yj−rj (we omit the details). Clearly, the two inequalities
yi+ ri < yj + rj and yi− ri < yj − rj imply yi < yj . The observation thus holds.

An interval I of B is called a left-aligned interval if the left endpoint of I is at 0
(i.e., I is of the form [0, x′] or [0, x′)). A set of sensors is said to be in attached
positions if the union of their covering intervals is a continuous interval of the
x-axis whose length is equal to the sum of the lengths of these covering intervals.
In the sequel, we describe our algorithm.

182 D.Z. Chen et al.

Ri−1

s

L
x

j

Fig. 1. The set Si1 consists of the three
sensors whose covering intervals are shown,
and sg(i) is sj

Ri−1

sj

2λ
x

L

Fig. 2. The set Si2 consists of the three
sensors whose covering intervals are shown,
and sg(i) is sj if Si1 = ∅

3.1 The Algorithm Description

Initially, we move all sensors of S to the right by the distance λ, i.e., for each
1 ≤ i ≤ n, we move si to the position x′

i = xi + λ. Let C0 denote the resulting
configuration. Clearly, there is a feasible solution for λ if and only if we can
move the sensors in C0 to the left by at most 2λ to form a coverage of B. Thus,
henceforth we only need to consider moving the sensors to the left. Recall that
we have assumed that the extensions of any two distinct sensors are different;
hence in C0, the extensions of all sensors are also different.

Our algorithm takes a greedy approach. It seeks to find sensors to cover B
from left to right, in at most n steps. If λ ≥ λ∗, the algorithm will end up with
a critical set Sc of sensors along with the destinations for all these sensors.

In step i (initially, i = 1), using the configuration Ci−1 and based on certain
criteria, we find a sensor sg(i) and determine its destination yg(i), where g(i) is
the index of the sensor in S and yg(i) ∈ [x′

g(i) − 2λ, x′
g(i)]. We then move the

sensor sg(i) to yg(i) to obtain a new configuration Ci from Ci−1 (if yg(i) = x′
g(i),

Ci is simply Ci−1). Let Ri = yg(i) + rg(i) (i.e., the right extension of sg(i) in
Ci). Assume R0 = 0. Let Si = Si−1 ∪ {sg(i)} (S0 = ∅ initially). We will show
that the sensors in Si together cover the left-aligned interval [0, Ri]. If Ri ≥ L,
we have found a feasible solution with a critical set Sc = Si, and terminate the
algorithm. Otherwise, we proceed to step i + 1. Further, it is possible that a
desired sensor sg(i) cannot be found, in which case we terminate the algorithm
and report λ < λ∗. Below we give the details, and in particular, discuss how to
determine the sensor sg(i) in each step.

We first discuss a technical issue. Suppose there is a sensor st with its right
extension at 0 in C0. We claim st cannot be in a critical set of a feasible solution
if λ∗ ≤ λ. Indeed, assume to the contrary that st is in a critical set Sc. Then
p(0) is the only point on B that can be covered by st. Since L > 0, there must be
another sensor in Sc that also covers p(0) (otherwise, no sensor in Sc would cover
the point p+(0)). Hence, st is not critical with respect to Sc, a contradiction.

Initially, we have R0 = 0 and S0 = ∅. Consider the i-th step of the algorithm
with i ≥ 1. We determine the sensor sg(i), as follows. Define Si1 = {sj | x′

j−rj ≤
Ri−1 < x′

j + rj} (see Fig. 1), i.e., Si1 is the set of sensors covering the point
p+(Ri−1) in the configuration Ci−1. Note that any sensor in Si1 covers the point
p(Ri−1) in Ci−1. If Si1 �= ∅, we choose the sensor in Si1 with the largest right
extension as sg(i) and let yg(i) = x′

g(i). Otherwise, let Si2 be the set of sensors

whose left extensions are larger than Ri−1 and at most Ri−1 + 2λ. If Si2 = ∅,

Algorithms on Minimizing the Maximum Sensor Movement 183

we terminate the algorithm and report λ < λ∗. Otherwise, we choose the sensor
in Si2 with the smallest right extension as sg(i) (e.g., sj in Fig. 2), and let
yg(i) = Ri−1 + rg(i). If the algorithm is not terminated, we move sg(i) to yg(i)
and obtain a new configuration Ci. Let Si = Si−1 ∪ {sg(i)}. Let Ri be the right
extension of sg(i) in Ci. If Ri ≥ L, we have found a feasible solution Ci with the
critical set Si. Otherwise, we proceed to step i+ 1.

Since there are n sensors in S, the algorithm is terminated in at most n steps.

3.2 The Algorithm Correctness and Implementation

Based on our algorithm description, we have the following lemma.

Lemma 1. At the end of step i, suppose the algorithm produces the set Si and
the configuration Ci; then Si and Ci have the following properties. (a) The in-
terval on B covered by the sensors in Si is [0, Ri]. (b) For each 1 < j ≤ i, the
right extension of sg(j) is larger than that of sg(j−1). (c) For each 1 ≤ j ≤ i,
sg(j) is the only sensor in Si that covers the point p+(Rj−1) (with R0 = 0). (d)
For each sensor sg(j) ∈ Si with 1 ≤ j ≤ i, it is either from Sj1 or Sj2. If sg(j)
is from Sj1, then its position in Ci is the same as that in C0; otherwise, its left
extension is at Rj−1, and sg(j) and sg(j−1) are in attached positions if j > 1.

The proof of Lemma 1 is omitted. At its termination, our algorithm either reports
λ ≥ λ∗ or λ < λ∗. Suppose in step i, our algorithm reports λ ≥ λ∗. Then
according to the algorithm, it must be Ri ≥ L. By Lemma 1(a) and (c), Ci is a
feasible solution and Si is a critical set. Further, by Lemma 1(b) and Observation
2, the cover order of the sensors in Si is sg(1), sg(2), . . . , sg(i).

Next, we show that if the algorithm reports λ < λ∗, then there is no feasible
solution for λ. This is almost an immediate consequence of Lemma 2.

Lemma 2. Suppose S′
i is the set of sensors in the configuration Ci whose right

extensions are at most Ri. Then the interval [0, Ri] is the largest possible left-
aligned interval that can be covered by the sensors of S′

i such that the displace-
ment of each sensor in S′

i is at most λ.

To prove Lemma 2, the key is to prove the following. If C is a configuration for
the sensors of S′

i such that a left-aligned interval [0, x′] is covered by the sensors
of S′

i, then there always exists a configuration C∗ for S′
i in which the interval

[0, x′] is still covered by the sensors of S′
i and for each 1 ≤ j ≤ i, the position of

the sensor sg(j) in C∗ is yg(j), where g(j) and yg(j) are the values computed by
our algorithm. We omit the proof for this.

Suppose our algorithm reports λ < λ∗ in step i. Then according to the al-
gorithm, Ri−1 < L and both Si1 and Si2 are ∅. Let S′

i−1 be the set of sensors
whose right extensions are at most Ri−1 in Ci−1. Since both Si1 and Si2 are ∅,
no sensor in S \ S′

i−1 can cover any point to the left of the point p+(Ri−1) (and
including p+(Ri−1)). By Lemma 2, [0, Ri−1] is the largest left-aligned interval
that can be covered by the sensors of S′

i−1. Hence, the sensors in S cannot cover
the interval [0, p+(Ri−1)]. Due to Ri−1 < L, we have [0, p+(Ri−1)] ⊆ [0, L]; thus

184 D.Z. Chen et al.

the sensors of S cannot cover B = [0, L]. In other words, there is no feasible
solution for the distance λ. This establishes the correctness of our algorithm.

We briefly discuss the implementation of our algorithm. Our algorithm needs
to maintain two sets of sensors, Si1 and Si2. For this purpose, in the preprocess-
ing, we sort the 2n extensions of all sensors by the x-coordinate, and move each
sensor si ∈ S to x′

i to produce the initial configuration C0. During the algorithm,
we sweep along the x-axis and maintain Si1 and Si2, respectively. During the
sweeping, we need to perform the sensor insertions and deletions on the two sets.
In addition, we need a search operation on Si1 for finding the sensor in Si1 with
the largest right extension, and a search operation on Si2 for finding the sensor
in Si2 with the smallest right extension. There are O(n) insertion, deletion, and
search operations in the entire algorithm.

If we use a balanced binary search tree to store each of these two sets in
which the right extensions of the sensors are used as keys, then the algorithm
takes O(n log n) time. Another way is to use an integer data structure (e.g., van
Emde Boas tree [9]), as follows. In the preprocessing, we also sort the sensors
by their right extensions, and for each sensor, assign the integer k to it as its
key if the sensor is the k-th one in the above sorted order. Thus, all such keys
form an integer set {1, 2, . . . , n}. By using the van Emde Boas tree [9], each
operation takes only O(log logn) time. Thus, after O(n log n) time preprocessing,
the algorithm takes O(n log logn) time for each value λ. Although using the
integer data structure does not change the overall running time of our decision
algorithm, it helps our optimization algorithm in Section 4 to run faster.

Theorem 1. After O(n logn) time preprocessing, for any λ, we can determine
whether λ∗ ≤ λ in O(n log logn) time; further, if λ∗ ≤ λ, we can compute a
feasible solution in O(n log logn) time.

Our optimization algorithm in Section 4 also needs to determine whether λ∗ is
strictly less than λ (i.e., λ∗ < λ) for any λ. By modifying our algorithm for
Theorem 1, we have the following Theorem 2 whose proof is omitted.

Theorem 2. After O(n log n) time preprocessing, for any value λ, we can de-
termine whether λ∗ < λ in O(n log logn) time.

Theorems 1 and 2 together lead to the following corollary.

Corollary 1. After O(n logn) time preprocessing, for any value λ, we can de-
termine whether λ∗ = λ in O(n log logn) time.

4 The Optimization Version of the General BCLS

In this section, we discuss the optimization version of the general BCLS problem.
We first give an algorithm overview. In the following discussion, the “decision
algorithm” refers to our algorithm for Theorem 1, unless otherwise stated.

Recall that given any value λ, step i of our decision algorithm determines the
sensor sg(i) and obtains the set Si = {sg(1), sg(2), . . . , sg(i)}, in this order, which

Algorithms on Minimizing the Maximum Sensor Movement 185

we also call the cover order of the sensors in Si. In our optimization algorithm, we
often use λ as a variable. Thus, Si(λ) (resp., Ri(λ), sg(i)(λ), and Ci(λ)) refers to
the corresponding Si (resp., Ri, sg(i), and Ci) obtained by running our decision
algorithm on the specific value λ. Denote by CI the configuration of the input.

Our optimization algorithm takes at most n steps. Step i receives an interval
(λ1

i−1, λ
2
i−1) and a sensor set Si−1(λ

∗), with the algorithm invariants that λ∗ ∈
(λ1

i−1, λ
2
i−1) (although we do not know the value λ∗) and for any value λ ∈

(λ1
i−1, λ

2
i−1), we have Si−1(λ) = Si−1(λ

∗) and their cover orders are the same.
Step i either finds the value λ∗ or determines a sensor sg(i)(λ

∗). The interval
(λ1

i−1, λ
2
i−1) will shrink to a new interval (λ1

i , λ
2
i) ⊆ (λ1

i−1, λ
2
i−1) and we also

obtain the set Si(λ
∗) = Si−1(λ

∗) ∪ {sg(i)(λ∗)}. Each step can be performed in
O(n log n log logn) time. The details of the algorithm are given below.

Initially, let S0(λ
∗) = ∅, R0(λ

∗) = 0, λ1
0 = 0, and λ2

0 = +∞.
Consider a general step i for i ≥ 1 and we have the interval (λ1

i−1, λ
2
i−1) and

the set Si−1(λ
∗). While discussing the algorithm, we will also prove inductively

the following lemma about the function Ri(λ) with variable λ ∈ (λ1
i , λ

2
i).

Lemma 3. (a) The function Ri(λ) for λ ∈ (λ1
i , λ

2
i) is a line segment of slope 1

or 0. (b) We can compute the function Ri(λ) for λ ∈ (λ1
i , λ

2
i) explicitly in O(n)

time. (c) Ri(λ) < L for any λ ∈ (λ1
i , λ

2
i).

In the base case for i = 0, the statement of Lemma 3 obviously holds. We assume
the lemma statement holds for i− 1. We will show that after step i with i ≥ 1,
the lemma statement holds for i, and thus the lemma will be proved.

Again, in step i, we need to determine the sensor sg(i)(λ
∗) and let Si(λ

∗) =
Si−1(λ

∗) ∪ {sg(i)(λ∗)}. We will also obtain an interval (λ1
i , λ

2
i) such that λ∗ ∈

(λ1
i , λ

2
i) ⊆ (λ1

i−1, λ
2
i−1) and for any λ ∈ (λ1

i , λ
2
i), Si(λ) = Si(λ

∗) holds (with
the same cover order). The details are given below. We assume that we already
compute explicitly the function Ri−1(λ) for λ ∈ (λ1

i−1, λ
2
i−1), which takes O(n)

time by our assumption that the statement of Lemma 3 holds for i− 1.
To find the sensor sg(i)(λ

∗), we first determine the set Si1(λ
∗). Recall that

Si1(λ
∗) consists of all sensors covering the point p+(Ri−1(λ

∗)) in the configura-
tion Ci−1(λ

∗). For each sensor in S \ Si−1(λ
∗), its position in the configuration

Ci−1(λ) with respect to λ ∈ (λ1
i−1, λ

2
i−1) is a function of slope 1. As λ increases

in (λ1
i−1, λ

2
i−1), by our assumption that Lemma 3(a) holds for i− 1, the function

Ri−1(λ) is a line segment of slope 1 or 0. If Ri−1(λ) is of slope 1, then the relative
position of Ri−1(λ) in Ci−1(λ) does not change and thus the set Si1(λ) does not
change; if the function Ri−1(λ) is of slope 0, then the relative position of Ri−1(λ)
in Ci−1(λ) is monotonically moving to the left. Hence, there are O(n) values for λ
in (λ1

i−1, λ
2
i−1) that can incur some changes to the set Si1(λ) and each such value

corresponds to a sensor extension; further, these values can be easily determined
in O(n logn) time by a simple sweeping process (we omit the discussion of it).
Let Λi1 be the set of all these λ values. Let Λi1 also contain both λ1

i−1 and λ2
i−1,

and thus, λ1
i−1 and λ2

i−1 are the smallest and largest values in Λi1, respectively.
We sort the values in Λi1. For any two consecutive values λ1 < λ2 in the sorted
Λi1, the set Si1(λ) for any λ ∈ (λ1, λ2) is the same. By using binary search on
the sorted Λi1 and our decision algorithm, we determine (in O(n log n log logn)

186 D.Z. Chen et al.

time) the two consecutive values λ1 and λ2 in Λi1 such that λ1 < λ∗ ≤ λ2.
Further, by Corollary 1, we determine whether λ∗ = λ2. If λ

∗ = λ2, then we
are done. Otherwise, based on our discussion above, Si1(λ

∗) = Si1(λ) for any
λ ∈ (λ1, λ2). Thus, to compute Si1(λ

∗), we can pick an arbitrary λ in (λ1, λ2)
and find Si1(λ) in the same way as in our decision algorithm. Hence, Si1(λ

∗) can
be easily found in O(n log n) time. Note that λ∗ ∈ (λ1, λ2) ⊆ (λ1

i−1, λ
2
i−1).

If Si1(λ
∗) �= ∅, then sg(i)(λ

∗) is the sensor in Si1(λ
∗) with the largest right

extension. An obvious observation is that for any λ ∈ (λ1, λ2), the sensor in
Si1(λ

∗) with the largest right extension is the same, which can be easily found.
We let λ1

i = λ1 and λ2
i = λ2. Let Si(λ

∗) = Si−1(λ
∗)∪{sg(i)(λ∗)}. The algorithm

invariants hold. Further, as λ increases in (λ1, λ2), the right extension of sg(i)(λ),
which is Ri(λ), increases by the same amount. That is, the function Ri(λ) on
(λ1, λ2) is a line segment of slope 1. Therefore, we can compute Ri(λ) on (λ1, λ2)
explicitly in constant time. This also shows Lemma 3(a) and (b) hold for i.

Because the function Ri(λ) on (λ1, λ2) is a line segment of slope 1, there
are three cases depending on the values Ri(λ) and L: (1) Ri(λ) < L for any
λ ∈ (λ1, λ2), (2) Ri(λ) > L for any λ ∈ (λ1, λ2), and (3) there exists a unique
value λ′ ∈ (λ1, λ2) such that Ri(λ

′) = L. For Case (1), we proceed to the next
step, along with the interval (λ1

i , λ
2
i). Clearly, the algorithm invariants hold and

Lemma 3(c) holds for i. For Case (2), the next lemma shows that it actually
cannot happen due to λ∗ ∈ (λ1, λ2).

Lemma 4. It is not possible that Ri(λ) > L for any λ ∈ (λ1, λ2).

Proof. Assume to the contrary that Ri(λ) > L for any λ ∈ (λ1, λ2). Since
λ∗ ∈ (λ1, λ2), let λ′′ be any value in (λ1, λ

∗). Due to λ′′ ∈ (λ1, λ2), we have
Ri(λ

′′) > L. But this would implies that we have found a feasible solution where
the displacement of each sensor is at most λ′′ ≤ λ∗, incurring contradiction.

For the Case (3), since Ri(λ) on (λ1, λ2) is a line segment of slope 1, we can
determine in constant time the unique value λ′ ∈ (λ1, λ2) such that Ri(λ

′) = L.
Clearly, λ∗ ≤ λ′. By Corollary 1, we determine whether λ∗ = λ′. If λ∗ = λ′, then
we are done; otherwise, we have λ∗ ∈ (λ1, λ

′) and update λ2
i to λ′. We proceed

to the next step, along with the interval (λ1
i , λ

2
i). Again, the algorithm invariants

hold and Lemma 3(c) holds for i.
If Si1(λ

∗) = ∅, then we need to compute Si2(λ
∗). For any λ ∈ (λ1, λ2), the set

Si2(λ) consists of all sensors whose left extensions are larger than Ri−1(λ) and at
most Ri−1(λ)+2λ in the configuration Ci−1(λ). Recall that the function Ri−1(λ)
on (λ1

i−1, λ
2
i−1) is linear with slope 1 or 0. Due to (λ1, λ2) ⊆ (λ1

i−1, λ
2
i−1), the

linear function Ri−1(λ) + 2λ on (λ1, λ2) is of slope 3 or 2. Again, as λ increases,
the position of each sensor in S \ Si−1(λ

∗) in Ci−1(λ) is a linear function of
slope 1. Therefore, there are O(n) λ values in (λ1, λ2) each of which incurs some
change to the set Si2(λ) and each such λ value corresponds to a sensor extension.
Further, these values can be easily determined in O(n log n) time by a sweeping
process (we omit the discussion for this). (Actually, as λ increases, the size of
the set Si2(λ) is monotonically increasing.) Let Λi2 denote the set of these λ
values, and let Λi2 contain both λ1 and λ2. Again, |Λi2| = O(n). We sort the

Algorithms on Minimizing the Maximum Sensor Movement 187

values in Λi2. Using binary search on the sorted Λi2 and our decision algorithm,
we determine (in O(n logn log logn) time) the two consecutive values λ′

1 and λ′
2

in Λi2 such that λ′
1 < λ∗ ≤ λ′

2. Further, by Corollary 1, we determine whether
λ∗ = λ′

2. If λ
∗ = λ′

2, then we are done. Otherwise, Si2(λ
∗) = Si2(λ) for any

λ ∈ (λ′
1, λ

′
2), which can be easily found. Note that λ∗ ∈ (λ′

1, λ
′
2) ⊆ (λ1, λ2).

After obtaining Si2(λ
∗), sg(i)(λ∗) is the sensor in Si2(λ

∗) with the smallest
right extension. As before, the sensor in Si2(λ) with the smallest right extension
is the same for any λ ∈ (λ′

1, λ
′
2). Thus, sg(i)(λ

∗) can be easily determined. We
let λ1

i = λ′
1 and λ2

i = λ′
2. Let Si(λ

∗) = Si−1(λ
∗) ∪ {sg(i)(λ∗)}. The algorithm

invariants hold. Further, we examine the function Ri(λ), i.e., the right extension
of sg(i)(λ) in the configuration Ci(λ), as λ increases in (λ′

1, λ
′
2). Since sg(i−1)(λ

∗)
and sg(i)(λ

∗) are always in attached positions in this case, for any λ ∈ (λ′
1, λ

′
2),

we have Ri(λ) = Ri−1(λ) + 2rg(i). Thus, the function Ri(λ) is a vertical shift of
Ri−1(λ) by the distance 2rg(i). Because we already know explicitly the function
Ri−1(λ) for λ ∈ (λ′

1, λ
′
2), which is a line segment of slope 1 or 0, the function

Ri(λ) can be computed in constant time, which is also a line segment of slope 1
or 0. Note that this shows that Lemma 3(a) and (b) hold for i.

Similarly to the case when Si1(λ
∗) �= ∅, since the function Ri(λ) in (λ′

1, λ
′
2) is

a line segment of slope 1 or 0, there are three cases depending on the values Ri(λ)
and L: (1) Ri(λ) < L for any λ ∈ (λ′

1, λ
′
2), (2) Ri(λ) > L for any λ ∈ (λ′

1, λ
′
2),

and (3) there exists a unique value λ′′ ∈ (λ′
1, λ

′
2) such that Ri(λ

′′) = L. For Case
(1), we proceed to the next step, along with the interval (λ1

i , λ
2
i). Clearly, the

algorithm invariants hold and Lemma 3(c) holds for i. Similarly to Lemma 4,
Case (2) cannot happen due to λ∗ ∈ (λ′

1, λ
′
2). For the Case (3), since Ri(λ) in

(λ′
1, λ

′
2) is a line segment of slope 1 or 0, we can compute in constant time the

unique value λ′′ ∈ (λ′
1, λ

′
2) such that Ri(λ

′′) = L. Clearly, λ∗ ≤ λ′′. By Corollary
1, we determine whether λ∗ = λ′′. If λ∗ = λ′′, we are done; otherwise, we have
λ∗ ∈ (λ′

1, λ
′′) and update λ2

i to λ′′. We proceed to the next step, along with the
interval (λ1

i , λ
2
i). Again, the algorithm invariants and Lemma 3(c) hold for i.

This finishes the discussion of step i of our algorithm. Note that in each case
where we proceed to the next step, Lemma 3 holds for i, and thus Lemma 3 has
been proved. The running time of step i is clearly bounded by O(n log n log logn).

In at most n steps, the algorithm will stop and find the value λ∗. Then by ap-
plying our decision algorithm on λ = λ∗, we finally produce an optimal solution
in which the displacement of every sensor is at most λ∗. Since each step takes
O(n log n log logn) time, the total time of the algorithm is O(n2 logn log logn).

Theorem 3. The general BCLS problem is solvable in O(n2 logn log logn) time.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38(4), 393–422 (2002)

2. Bhattacharya, B., Burmester, B., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal
movement of mobile sensors for barrier coverage of a planar region. Theoretical
Computer Science 410(52), 5515–5528 (2009)

188 D.Z. Chen et al.

3. Chen, A., Kumar, S., Lai, T.: Designing localized algorithms for barrier coverage.
In: Proc. of the 13th Annual ACM International Conference on Mobile Computing
and Networking, pp. 63–73 (2007)

4. Chen, D., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering circular
regions. arXiv:1107.1012v1 (2011)

5. Chen, D., Wang, C., Wang, H.: Representing a functional curve by curves with
fewer peaks. Discrete and Computational Geometry (DCG) 46(2), 334–360 (2011)

6. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM 34(1), 200–208 (1987)

7. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opa-
trny, J., Stacho, L., Urrutia, J., Yazdani, M.: On Minimizing the Maximum Sensor
Movement for Barrier Coverage of a Line Segment. In: Ruiz, P.M., Garcia-Luna-
Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer,
Heidelberg (2009)

8. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny,
J., Stacho, L., Urrutia, J., Yazdani, M.: On Minimizing the Sum of Sensor Move-
ments for Barrier Coverage of a Line Segment. In: Nikolaidis, I., Wu, K. (eds.)
ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

9. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Theory of Computing Systems 10(1), 99–127 (1977)

10. Hu, S.: ‘Virtual Fence’ along border to be delayed. Washington Post (February 28,
2008)

11. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wireless
Networks 13(6), 817–834 (2007)

12. Li, M., Sun, X., Zhao, Y.: Minimum-Cost Linear Coverage by Sensors with Ad-
justable Ranges. In: Cheng, Y., Eun, D.Y., Qin, Z., Song, M., Xing, K. (eds.)
WASA 2011. LNCS, vol. 6843, pp. 25–35. Springer, Heidelberg (2011)

13. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with
coverage guarantee. ACM SIGMOBILE Mobile Computing and Communications
Review 12(2), 50–52 (2008)

14. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-
gorithms. Journal of the ACM 30(4), 852–865 (1983)

15. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: Proc. of IEEE Wireless Communications and Network-
ing Conference (WCNC), pp. 653–658 (2011)

16. Tan, X., Wu, G.: New Algorithms for Barrier Coverage with Mobile Sensors. In:
Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 327–338.
Springer, Heidelberg (2010)

17. Yang, S., Li, M., Wu, J.: Scan-based movement-assisted sensor deployment methods
in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 18(8), 1108–1121
(2007)

18. Zou, Y., Chakrabarty, K.: A distributed coverage and connectivity-centric tech-
nique for selecting active nodes in wireless sensor networks. IEEE Trans. Com-
put. 54(8), 978–991 (2005)

	Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain
	Introduction
	Problem Definitions, Previous Work, and Our Results
	Related Work

	An Overview of Our Approaches
	The Decision Version of the General BCLS
	The Algorithm Description
	The Algorithm Correctness and Implementation

	The Optimization Version of the General BCLS

