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Abstract—We study the data cleaning problem of detecting and
repairing wrong relational data, as well as marking correct data,
using well curated knowledge bases (KBs). We propose detective
rules (DRs), a new type of data cleaning rules that can make
actionable decisions on relational data, by building connections
between a relation and a KB. The main invention is that, a
DR simultaneously models two opposite semantics of a relation
using types and relationships in a KB: the positive semantics
that explains how attribute values are linked to each other in
correct tuples, and the negative semantics that indicates how
wrong attribute values are connected to other correct attribute
values within the same tuples. Naturally, a DR can mark correct
values in a tuple if it matches the positive semantics. Meanwhile, a
DR can detect/repair an error if it matches the negative semantics.
We study fundamental problems associated with DRs, e.g., rule
generation and rule consistency. We present efficient algorithms to
apply DRs to clean a relation, based on rule order selection and
inverted indexes. Extensive experiments, using both real-world
and synthetic datasets, verify the effectiveness and efficiency of
applying DRs in practice.

I. INTRODUCTION

In industries, all data analysts report that they spend more
than 80% of time doing the “grunt work” of data cleaning
before data analytics. There are many studies in cleaning data
using integrity constraints (ICs) [4]–[6], [25], [27]. ICs are
good at capturing errors. However, the serious drawback of ICs
is that they cannot precisely tell which value is wrong. Take
functional dependencies (FDs) for example. Consider an FD
country Ñ capital over the relation Rpcountry, capitalq, and
two tuples t1(China, Beijing) and t2(China, Shanghai). The
FD can identify the existence of errors in t1 and t2, but cannot
tell which value is wrong. All FD-based repairing algorithms
use some heuristics to guess the wrong value, t1rcountrys,
t1rcapitals, t2rcountrys, or t2rcapitals, and then repair it.

In contrast, rule-based data repairing explicitly tells how
to repair an error. For instance, fixing rules [28] can specify
that for each tuple, if its country is China and its capital is
Shanghai, then Shanghai is wrong and should be changed to
Beijing. Other rule-based approaches such as editing rules [16]
and Sherlock rules [20] use tabular master data, to collect
evidence from external reliable data sources.

Arguably, both IC- and rule-based methods can make mis-
takes when repairing data. However, IC-based tools are more
like black-boxes while rule-based methods are white-boxes.
When some mistakes made by the tools are identified, the latter
is more interpretable about what happened. Not surprisedly, in
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industries, rule-based repairing methods are widely adopted,
e.g., ETL rules, but IC-based tools are rarely employed.

Nowadays, we are witnessing an increased availability of
well curated KBs such as Yago [19] and DBpedia [23]. Also,
large companies maintain their own KBs e.g., Warlmart [11],
Google and Microsoft. In order to take advantage of these KBs,
we extend prior rule-based cleaning methodologies [16], [20]
to clean relations by collecting evidence from KBs. The core
of our proposal is a new type of data cleaning rules that build
the connections between relations and KBs. They are rule-
based, such that the actions of how to clean the data are baked
in the rules, which rely on neither other heuristic solutions as
those for ICs [4]–[6], nor the domain experts [7], [24].

Motivating Examples. Perhaps the best way of understanding
our proposal is by examples.

Example 1: [Relation.] Consider a database D of Nobel
laureate records, specified by the following schema:

Nobel pName,DOB,Country,Prize, Institution,Cityq,
where a Nobel tuple specifies a Nobel laureate in Chemistry,
identified by Name, together with its DOB, Country, Prize,
Institution and City of the institute. Table I shows four
tuples. All errors are highlighted and their correct values
are given between brackets. For instance, consider r1 about
Avram Hershko, a Hungarian-born Israeli biochemist. The
value r1rCitys “ Karcag is an error, which is the city he was
born in, whose correct value is Haifa where he works in. l

Next we discuss, based on the available evidence from KBs,
how to make judgement on the correctness of a relation.

Example 2: [Knowledge Base.] Consider an excerpt of a KB
Yago [19], as depicted in Figure 1. Here, a solid rectangle
represents an entity, e.g., u1 to u7 , a dotted rectangle indicates
a class e.g., country and city, a shaded rectangle is a literal
e.g., u8, a labeled and directed edge shows the relationship
between entities or the property from an entity to a literal, and
a dotted edge associates an entity with a class.

Consider tuple r1 in Table I and the sample KB in Figure 1,
both about Avram Hershko. It is easy to see that most values
of r1 appear in Figure 1. Based on different bindings of
relationships, we can have the following three actions for r1.
piq Proof Positive. Based on the evidence in Figure 1, we may
judge that r1rName,DOB,Country, Institutions are correct.
piiq Proof Negative. If we know that, r1rCitys should be the
city that he works in, and we find from Figure 1 that (a) Karcag
is the city he was born in; (b) Haifa is the city he works in, via
the links Avram Hershko worksAt Israel Institute of Technology
that in turn locatedIn Haifa; and (c) Karcag is different from
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Name DOB Country Prize Institution City
r1 Avram Hershko 1937-12-31 Israel Albert Lasker Award for Medicine Israel Institute of Technology Karcag

(Nobel Prize in Chemistry) (Haifa)
r2 Marie Curie 1867-11-07 France Nobel Prize in Chemistry Paster Institute Paris

Pasteur Institute
r3 Roald Hoffmann 1937-07-18 Ukraine National Medal of Science Cornell University Ithaca

(United States) (Nobel Prize in Chemistry)
r4 Melvin Calvin 1911-04-08 United States Nobel Prize in Chemistry University of Minnesota St. Paul

(UC Berkeley) (Berkeley)
TABLE I. DATABASE D: NOBEL LAUREATES IN CHEMISTRY

countryu6: Israel

u5: Karcag

u1: Avram Hershko

u3: Nobel Prize  
in Chemistry

Chemistry 
awards

Nobel laureates  
in Chemistry

u2: Israel Institute 
of Technology

American 
awards

u4: Albert Lasker 
Award for Medicine

organization

u8:1937-12-31

isCitizenOf

wasBornIn

wonPrize
won

Priz
e

bornOnDate

u7: Haifa

city

worksAt

locatedInlocatedIn

Fig. 1. Excerpt of laureates knowledge bases

Haifa, we can judge that r1rCitys is wrong. The way to identity
the error in r1rPrizes is similar, if we know this column should
be Chemistry awards rather than American awards.

piiiq Correction. Following (ii), we can draw the value Haifa
from the KB to update r1rCitys from Karcag to Haifa. l

Challenges. Example 2 shows that we can make different
judgements, based on various evidence from KB. Nevertheless,
effectively employing reliable KBs faces several challenges.
(i) Semantic Connections between Relations and KBs. In order
to collect evidence from KBs and judge on the relations at
hand, it requires to build graphical (semantic) connections
between tables and KBs.
(ii) Ambiguity of Repairing. A typical ambiguity raised by
IC-based approaches is that they cannot tell precisely which
attribute value is to be repaired. Hence, we need to explicitly
specify which attribute is wrong and how to repair, a departure
from traditional ICs that only detect errors.

(iii) Efficiency and Scalability. Repairing a relation using
multiple rules by collecting evidence from a large KB (a graph)
is a costly task, which requires efficient and scalable solutions.

Contributions. Our main contribution is to propose a new type
of rules to deterministically tell how to repair relations using
KBs. We summarize our contributions below.

(1) We formally define detective rule (DR), to address chal-
lenges (i) and (ii). A DR simultaneously models two opposite
semantics of a relation using types and relationships in a KB
(Section II): the positive semantics that explains how attribute
values should be linked to each other in correct tuples, and the
negative semantics that indicates how wrong attribute values
are connected to other correct attribute values within the same
tuples. Naturally, a DR can mark correct values in a tuple
if it matches the positive semantics. Meanwhile, a DR can
detect/repair an error if it matches the negative semantics.
(2) We study several fundamental problems of using DRs

(Section III). Specifically, we describe the generation of DRs.
We discuss the semantics of applying a set of DRs. Also, we
study some theoretical problems such as consistency analysis
associated with DRs.
(3) We devise efficient algorithms for cleaning a relation, given
a set of consistent DRs, by smartly selecting the right order to
apply DRs and by using various indexes such as rule indexes
and signature-based indexes (Section IV). This is to cope with
challenge (iii).
(4) We experimentally verify the effectiveness and efficiency of
the proposed algorithms (Section V). We find that algorithms
with DRs can repair and mark data with high accuracy. In
addition, they scale well with the number of DRs.

Related Work. We categorize related work as follows.
Contraint-based Data Cleaning. IC-based heuristic data clean-
ing methods have been widely studied [4], [8], [9], [12] for
the problem introduced in [2]: repairing is to find another
database that is consistent and minimally differs from the
original database. However, the consistency may not be an
ideal objective, since the ground truth database is consistent,
but not vice versa. In contrast, rule-based data cleaning is
typically more conservative and reliable, since it does not use
heuristics. DRs only mark data as correct or wrong, and repair
errors when the evidence is sufficient.
Rule-based Data Cleaning. Different methods exist in the lit-
erature regarding rule-based data cleaning: editing rules [16],
fixing rules [28], and Sherlock rules [20]. Editing rules [16]
use relational master data and interact with users for trusted
repairing. Fixing rules [28] encode constant values in the
rules for automated cleaning. Closer to this work is Sherlock
rules [20] that automatically annotate and repair data. Along
the same line with them, DRs are the research effort to leverage
KBs for data cleaning. The new challenges of using KBs are
remarked earlier in this section.
Table Understanding using KBs. Table understanding, includ-
ing identifying column types and the relationship between
columns using KBs, has been addressed by several techniques
such as those in [10], [22], [26]. In fact, these techniques are
friends, instead competitors, of DRs. We will show how they
can help to discover DRs (Section III-A).
KB Powered Data Cleaning. KATARA [7] is a KB and crowd
powered data cleaning system that identifies correct and incor-
rect data. The table patterns [7] introduced by KATARA are a
way of explaining table semantics in a holistic way. However,
(1) KATARA cannot detect errors automatically: Whenever a
mismatch happens between a tuple and a KB w.r.t. a table
pattern, KATARA will ask the crowd workers to identify that
such a mismatch is caused by an error in the tuple, or an
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col: DOB  
type: literal  
sim: =

v2
col: Prize  
type: Chemistry awards  
sim: =

v4

col: Name  
type: Nobel laureates in Chemistry 
sim: =

v1
rel: bornOnDate rel: wonPrize

rel: worksAt rel: isCitizenOf

rel: locatedIncol: Institution  
type: organization  
sim: ED, 2

v5
col: Country  
type: country  
sim: =

v3
col: City  
type: city  
sim: =

v6

rel: locatedIn

Fig. 2. A sample schema-level matching graph

incompleteness of the KB; and (2) KATARA cannot repair
errors automatically: When an error, such as (China, Shanghai)
for relation pcountry, capitalq, is identified by users, KATARA
cannot tell which value is wrong. One main difference between
DRs and KATARA is that DRs can precisely tell which attribute
of a tuple is wrong.
User Guided Data Cleaning. Several approaches [16], [18],
[24], [29] have been proposed to involve experts as first-class
citizen. Involving users is certainly valid and useful for specific
applications. DRs are our attempt to relieve users from the
tedious and iterative data cleaning process.

II. DETECTIVE RULES

We first introduce notations for knowledge bases (KBs)
(Section II-A). We then present the basic concepts of building
connections between relations and KBs (Section II-B). We
close this section by defining detective rules (Section II-C).

A. Knowledge Bases
We consider KBs as RDF-based data, defined using Re-

source Description Framework Schema (RDFS).

Classes, Instances, Literals, Relationships, and Properties.
A class represents the concept of a set of entities, e.g., country.
An instance represents an entity, e.g., Israel, which belongs to
a class, e.g., type (Israel) = country. A literal is a string, a date,
or a number. For example, the birth date of Avram Hershko
is 1937-12-31, which is a literal. A relationship is a binary
predicate that represents a connection between two instances.
For instance, isCitizenOfpAvram Hershko, Israel) indicates that
Avram Hershko is a citizen of Israel, where isCitizenOf is
a relationship defined in a KB. An instance can have some
properties, e.g., bornOnDate. A property is a binary predicate
that connects an instance and a literal.

Let I be a set of instances, L a set of literals, C a set of
classes, R a set of relationships, and P a set of properties.

RDF Graphs. An RDF dataset is a set of triples tps, p, oqu,
where s is an instance in I, p is a relationship in R or a
property in P, o is an object in IYL (i.e., either an instance or
a literal). We model the set of triples tps, p, oqu as a directed
graph. Each vertex v is either an s or an o from the given
triples. Each directed edge e : ps, oq corresponds to a triple
ps, p, oq, with p as the edge label denoted by relpeq “ p.

Please refer to Figure 1 as a sample RDF graph, which
describes an excerpt of Yago describing Avram Hershko.

v2 (t1[DOB],u9)

v1 (t1[Name],u1)
rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5 (t1[Institution],u2)

v3 (t1[Country],u7)

v2

v1

rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5

v3

(a) schema-level (b) instance-level (a) schema-level

v2 (t1[DOB],u8)

v1 (t1[Name],u1)
rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5 (t1[Institution],u2)

v3 (t1[Country],u6)

v2

v1

rel: bornOnDate

rel: worksAt

rel: isCitizenOf

v5

v3

(a) schema-level (b) instance-level (b) instance-level

Fig. 3. A sample schema/instance-level matching graph

B. Schema- and Instance-Level Matching Graphs
Given a table D of schema R, and a KB K, next we discuss

how to build connections between them, a necessary step to
collect evidence from K for D. Generally speaking, we need
schema-level matching graphs to explain the schema of D
using K, and instance-level matching graphs to find values
in K that correspond to tuples in D.

Schema-Level Matching Graphs. A schema-level matching
graph is a graph GSpVS,ESq, where:

1) each vertex u P VS specifies a match between a column
in D and a type in K. It contains three labels:

a) colpuq : the corresponding column in D;
b) typepuq : a type in K - either a class or a literal;
c) simpuq : a similarity based matching operation.

2) for two different nodes u, v P VS, colpuq ‰ colpvq.
3) each directed edge e : pu, vq P ES has one label relpeq,

which is a relationship or property in K, indicating how
colpuq and colpvq are semantically linked.

An important issue is to define the matching operation
simpuq (the above 1(c)) between a column in a relation and a
class in a KB, which will be used later to decide whether two
values match. We can utilize similarity functions, e.g., Jaccard,
Cosine or edit distance. For example, if string equality ““” is
used, a cell value in column colpuq and an instance in K with
class typepuq refer to the same entity if they have identical
value. If “ED, 2” is used, a cell value in column colpuq and
an instance in K with class typepuq refer to the same entity
if their edit distance1 is within 2. Without loss of generality,
we take string equality and edit distance as examples.

Example 3: [Schema-level matching graph.] A sample
schema-level matching graph for the Nobel table in Table I
is given in Figure 2. Node v1 shows that column Name
corresponds to the class Nobel laureates in Chemistry in the
KB. To match a value in column Name and a value in the
KB with type Nobel laureates in Chemistry, string equality
““” is used. “ED, 2” is used in node v5 to tolerate the errors
between rrInstitutions and an instance of organization in KB.
The directed edge pv1, v2q labelled bornOnDate explains the
relationship between columns Name and DOB. l

Be default, we assume that a schema-level matching graph
is connected. Naturally, any induced subgraph of a schema-
level matching graph is also a schema-level matching graph. In

1Edit distance of two instances is the minimum number of edit transfor-
mations from one to the other, where the edit operations include insertion,
deletion and substitution. For example EDpChemistry,Chamstryq “ 2.
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other words, a schema-level matching graph is not necessarily
a global understanding of the table (see Figure 2). In contrast,
it is a local interpretation about how partial attributes of a
table are semantically linked, e.g., Figure 3(a). Please refer to
Figure 2 for the corresponding node labels.
Construction. The schema-level matching graph is essentially
the table semantics interpreted by a KB, which has been
widely studied. A basic idea is to connect a column to a type
by matching the cell-value set of the column to the entity set
of the type and we can use existing tools [7], [10], [22] to
build the schema-level matching graph.
Instance-Level Matching Graph. An instance-level matching
graph, denoted by GIpVI,EIq, is an instantiation of a schema-
level matching graph w.r.t. one tuple t in the relational table
and some instances from the KB. More formally speaking:

1) For each node ui P VI, there is an instance xi from the
KB such that the types match i.e., typepuiq “ typepxiq;
and the values match i.e., trcolpuiqs and xi are similar
based on the similarity function simpuiq.

2) For each edge pui, ujq P E
I, the correspondingly matched

KB instances xi, xj satisfy relpui, ujq “ relpxi, xjq, i.e.,
the two instance xi and xj in the KB have the relationship
required by the schema-level matching graph.

Example 4: [Instance-level matching graph.] Consider the
small schema-level matching graph shown in Figure 3(a). One
instance-level matching graph for tuple r1 in Table I is given
in Figure 3(b), where the types and relationships of the nodes
u1, u2, u6, u8 can be verified from the KB in Figure 1. l

Limitations. Indeed, matching operation is the core of data
cleaning, since one always needs to link different real-world
entities. Historically, many matching operators have been
studied, e.g., matching dependencies [15] for two tables, keys
for graphs [13] defined on one graph, and Swoosh [3] for
matching two generic objects for entity resolution. When there
is a match, one common usage is to say something is correct.
The main limitation for detecting errors is that, when there is
a mismatch, it cannot tell that something is wrong.
Opportunities. If we define some matching operations to cap-
ture negative semantics, intuitively, the errors can be detected.
This observation reveals the opportunity to define new methods
to match (i.e., detect) data errors. For instance, in Section I
Example 2 Case (ii), if we know that (1) the column City in
the table is where he works in; (2) the current value t1rCitys is
Karcag; (3) he works in Haifa, derived from the KB; and (4)
the two values Karcag and Haifa are different, we may decide
that Karcag is an error.

C. Detective Rules

The broad intuition of our proposal is that, for a column,
if we can simultaneously capture both the positive semantics
of what correct values should look like, and the negative
semantics of what wrong values commonly behave, we can
detect and repair errors.

Consider column City in Table I. We can discover one
schema-level matching graph to capture the semantics lives

at. Similarly, we can find another one to capture the semantics
born in. If the user enforces City to have the lives at semantics,
and we find that the value in the table maps to the born in
semantics, we know how to repair. Note that some semantics
can be captured by a directed edge e.g., wasBornIn in Figure 1
for the born in semantics, while some other semantics needs
to be captured by more than one edge e.g., putting worksAt
and locatedIn in Figure 1 together for the lives at semantics.

Let GS
1pV

S
1 ,E

S
1q and GS

2pV
S
2 ,E

S
2q be two schema-level

matching graphs that exist a node p P VS
1 and a node n P VS

2
such that piq colppq “ colpnq and piiq the subgraphs GS

1ztpu
and GS

2ztnu are isomorphic, where GS
1ztpu (resp. GS

2ztnu)
is a subgraph of GS

1 (resp. GS
2) by removing node p (resp.

n) and associated edges. Obviously, both graphs are defined
over the same set of columns in the relation: GS

1 is to capture
their positive semantics and GS

2 is for the negative semantics
of values in column colpnq.

Detective Rules. A detective rule is a graph GpV,Eq that
merges the above two graphs GS

1 and GS
2 . Let Ve “

GS
1ztpu “ GS

2ztnu. The node set in DR is V “ VeYtp, nu.
The edges E are all the edges carried over from the above two
graphs. Note that colppq “ colpnq. We call p the positive node,
n the negative node, and Ve the evidence nodes.

Semantics. Let colpVeq be the columns corresponding to the
evidence nodes Ve of a DR, and colppq “ colpnq. Let |Ve| be
the cardinality of the set Ve. Consider a tuple t over relation
R and a KB K:
(1) Proof Positive. If there is an instance-level matching graph
between t and |Ve|`1 instances in K w.r.t. the nodes VeYtpu,
i.e., the positive semantics is captured, we say that the attribute
values of trcolpVeq Y colppqs are correct.
(2) Proof Negative. If there is an instance-level matching graph
between t and |Ve|`1 instances in K w.r.t. the nodes VeYtnu,
we say that the attribute values of trcolpVeqs are correct,
but the value trcolpnqs is potentially wrong, i.e., the negative
semantics is captured. In addition, if we can find another
instance x in K such that if we replace trcolpnqs by x, we
can find the case of proof positive as in (1). At this point, we
confirm that trcolpnqs is wrong.
(3) Correction. Following the above case (2), we know the
correct value for trcolpnqs is the new instance x from K.

Intuitively, a DR specifies how to judge a set of attribute
values of a tuple is correct (the above (1)), how to find one
wrong attribute value of the tuple (the above (2)), and how to
repair the identified error (the above (3)).

Example 5: [Detective rules.] Figure 4 shows four DRs. We
discuss their semantics w.r.t. r1 in Table I and KB in Figure 1.
(1) Proof Positive. Consider rule ϕ1. We can find that u1 in
Figure 1 matches r1rNames w.r.t. node x1 in ϕ1; u8 in Figure 1
matches r1rDOBs w.r.t. node x2 in ϕ1; and u2 in Figure 1
matches r1rInstitutions w.r.t. node p1 in ϕ1. Moreover, the
relationship from u1 to u8 is bornOnDate and from u1 to
p1 is worksAt. That is, both value constraints and structural
constraints enforced by ϕ1 are satisfied. Consequently, we can
conclude that r1rName,DOB, Institutions are correct.
(2) Proof Negative. Consider rule ϕ2. We can find that u1 in
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col: DOB  
type: literal  
sim: =

x2

col: Name  
type: Nobel laureates in Chemistry 
sim: =

x1

rel: bornOnDate

rel: worksAt

col: Institution  
type: organization  
sim: ED, 2

p1
col: Institution  
type: organization  
sim: ED, 2

n1
rel: graduatedFrom

(a) Rule ϕ1

col: Name  
type: Nobel laureates in Chemistry 
sim: =

w1
rel: worksAt

rel: locatedIn

col: City  
type: city 
sim: =

p2

col: City 
type: city 
sim: =

n2
rel: wasBornIn

col: Institution  
type: organization  
sim: ED, 2

w2

(b) Rule ϕ2

col: Country  
type: country  
sim: =

n3

col: Name  
type: Nobel laureates in Chemistry 
sim: =

z1
rel: bornAt

rel: worksAt

col: Institution  
type: organization  
sim: ED, 2

z2

rel: locatedIn col: City 
type: city 
sim: =

z3

col: Country  
type: country  
sim: =

p3

rel: locatedIn

rel: isCitizenOf

(c) Rule ϕ3

col: Name  
type: Nobel laureates in Chemistry 
sim: =

v1
rel: wonPrize

rel: wonPrize

col: Prize  
type: Chemistry awards  
sim: =

p4

col: Prize  
type: American awards  
sim: =

n4

(d) Rule ϕ4

Fig. 4. Sample detective rules

Figure 1 matches r1rNames w.r.t. node w1 in ϕ2; u2 in Figure 1
matches r1rInstitutions w.r.t. node w2 in ϕ2; u5 in Figure 1
matches r1rCitys w.r.t. node n2 in ϕ2. Moreover, it can find
a node u7, with value Haifa, in Figure 1 that satisfies the
constraints imposed on p2 in ϕ2. Combined with the other
edge relationships from u1 to u2, and u1 to u5, we can confirm
that r1rCitys “ Karcag is an error.
(3) Correction. Following case (2), we know r1rCitys should
be repaired to Haifa.

Other rules will be discussed later in this paper. l

Remark. There might exist multiple repairs (i.e., multi-version
ground truth) for one error, and each makes sense, e.g., one
country may have multiple capitals and one person may have
different nationalities. For the simplicity of the discussion, we
assume that there is only one repair for this moment, i.e., the
corresponding relationship in the KB is functional. We will
present algorithms to handle multiple repairs in latter sections.
Also, we allow only one negative node n in the rule, which is
also to simplify our discussion. It is straightforward to extend
from one negative node (i.e., one relationship) to a negative
path (i.e., a sequence of nodes) in order to identify an error.

III. RULE GENERATION AND APPLICATIONS

We first discuss how to generate DRs (Section III-A).
We then describe the semantics of applying multiple DRs
(Section III-B). We will also study the consistency problem
of a set of DRs (Section III-C).

A. Generating Detective Rules by Positive/Negative Examples
Generating DRs is not easy. Obviously, the user has to be

involved to identify the validity of DRs before they could
be applied. Our aim is to make the user’s life easier, by
automatically computing a set of DRs to be verified.

We propose to generate rules by examples. Let D be a table
of relation R and K a KB. We only discuss how to generate
rules for one attribute A P R, and the rules for the other
attributes can be generated similarly. Let P be a set of positive
tuple examples, i.e., all values are correct. Let N be a set of
negative examples, where only A-attribute values are wrong.

Algorithm DR Generation. We describe our algorithm below.

S1. [Schema-level matching graphs for P .] We use existing
solutions [7] to compute a set G` of schema-level matching

graphs using the KB K, for the positive examples P . These
correspond to the positive semantics of the table.

In a nutshell, given a set of correct tuples, the algorithm
will map tuple values to KB instances to find their types
and relationships. For instance, if we give two tuples with
correct values as t1(China, Beijing) and t2(Japan, Tokyo). The
algorithm can find out that the first (resp. second) column
has type country (resp. city) and their relationship is country
hasCaptial city.

S2. [Schema-level matching graphs for N .] Similarly, we
compute a set G´ of schema-level matching graphs, for the
negative examples N . These correspond to negative semantics
that errors in attribute A might have.

For instance, if we give two tuples with wrong values as
t1(China, Shanghai ) and t2 (Japan, Kyoto ). The algorithm
can find out the first (resp. second) column has type country
(resp. city) and their relationship is city locatedIn country.

S3. [Candidate DR Generation.] For each graph Gi P G` and
each graph Gj P G´, if Gi and Gj have only one different
node, that is, ui P Gi and uj P Gj are different and the two
graphs Giztuiu and Gjztuju are isomorphic. We merge Gi

and Gj as one DR, where ui (resp. uj) becomes the positive
(resp. negative) node of the generated DR.

One can merge the outputs from S1 and S2, the positive
semantics country hasCaptial city and the negative semantics
city locatedIn country, to generate one DR.

The above process will generate a set of candidate DRs.
Indeed, the number is not large so the user can manually pick.
Our claim is that, compared with asking the user to do the
eyeballing exercise to write DRs manually, the above algorithm
is simple but useful in practice.

B. Applying Multiple Detective Rules
We will start by discussing how to apply one DR, followed

by using multiples DRs. For simplicity, at the moment, we
assume that each DR will return a single repair.

Applying One Rule. Consider one DR ϕ : GpV,Eq, a tuple
t, and a KB K. Applying ϕ to t has only two cases: (1) Proof
positive: the attribute values trcolpVe Y tpuqs are correct; (2)
Proof negative and correction: the attribute values trcolpVeqs

are correct, the attribute value trcolpnqs is wrong, we will
update trcolpnqs using an instance x drawn from the KB K.
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We use the symbol “`” to mark a value as positive, which is
confirmed either from the above (1), the evidence attributes Ve

from the above (2), or a wrong value trcolpnqs as in the above
p2q but has been corrected and thus is marked as positive. The
other attributes that are not marked as positive are those whose
correctness is unknown.
Marked Tuples. A tuple is a marked tuple if at least one of its
attribute values has been marked as positive.

Example 6: [Apply one rule.] We discuss how to apply rule ϕ2

to tuple r1 by following Example 5 cases (2) & (3). r1rNames
and r1rInstitutions are identified to be correct and r1rCitys is
wrong. After changing r1rCitys to Haifa, it will mark r1 as
r11(Avram Hershko`, 1937-12-31, Israel, Albert Lasher Award
for Medicine, Israel Institute of Technology`, Haifa`). l

Applying Multiple Rules. When applying multiple DRs, we
need to make sure that the values that have been marked as
positive cannot be changed any more by other DRs. Consider
a marked tuple t of relation R that the attributes X have been
marked as positive. We say that a DR ϕ is applicable to t, if
(i) it will not change trXs; and (ii) it can mark some values in
trRzXs as positive, with (i.e., proof negative and correction)
or without (i.e., proof positive) value updates.
Fixpoint. A fixpoint of applying a set of DRs on a tuple t is
the state that no more rules are further applicable.

Example 7: After applying rule ϕ2 to tuple r1 as in Example 6,
rule ϕ3 is applicable. Applying rule ϕ3 will not change any
value, but will mark the tuple as r21(Avram Hershko`, 1937-12-
31, Israel`, Albert Lasher Award for Medicine, Israel Institute
of Technology`, Haifa`). Rule ϕ4 will repair r21rPrizes and
rule ϕ1 marks r21rDOBs as positive. At the end, tuple r1 is
modified to r31 (Avram Hershko`, 1937-12-31`, Israel`, Nobel
Prize in Chemistry`, Israel Institute of Technology`, Haifa`).
It is a fixpoint, since no more rule can be further applied. l

Termination Problem. It asks whether applying a set of DRs
for any tuple t, whether a fixpoint can be achieved. Note that
when applying any rule to t, we have that the set of marked
positive attributes will strictly increase. That is, up to |R| DRs
can be applied to any tuple and the termination is naturally
assured.

Multiple-version Repairs. Although not desired, the case that
there are multiple-version repairs for one error by using one
DR does happen. Note that this is different from IC-based
repair to guess which value is wrong in e.g., (Netherlands, Rot-
terdam) for tcountry, capitalu. Instead, in our case, we know
that Rotterdam is not the capital of Netherlands, and we find
two repairs, Amsterdam and Den Hagg, and both are correct.
In reality, when the user picks DRs (Section III-A), they will
pick the ones that semantically, the repair is approximately
functional, e.g., the capital of a country or a nationality of a
person, not a city of a country or a hobby of a person.

When multiple-version repairs happen for applying one DR
to a tuple t, instead of having one marked tuple t1, we generate
multiple marked tuples T . These tuples T mark exactly the
same set of attributes as positive, and these tuples are different
only on one attribute w.r.t. the negative node in the given DR.

This can be easily propagated to apply multiple DRs. Naturally,
the termination analysis holds also for multiple-version repairs.

C. Consistency Analysis
An important problem of applying any data cleaning rules

is to make sure that it makes sense to put these rules together.

Consistency Problem. Let Σ be a set of DRs and K a KB.
Σ is said to be consistent w.r.t. K, if given any tuple t, all the
possible repairs via Σ and K terminate in the same fixpoint(s),
i.e., the repair is unique.

Theorem 1: The consistency problem for detective rules is
coNP-complete, even when the knowledge base K is given. l

We assume the values of a subset of attributes are initially
given. Hence, the question is to ask whether there exists a tuple
which has the same values in the subset of attributes and have
more than one fixpoint.

Proof sketch: One can adapt the proof of Theorem 2 in [20]
for our problem. The coNP upper bound can be proved by
building a procedure to decide whether two rules are not
satisfiable (i.e., a “no” instance) – and therefore detecting
consistency is coNP. The coNP-hard lower bound can be
proved by reducing its complement problem to the 3SAT
problem which is known to be NP-complete. l

The above consistency problem is hard, since one has to
guess all the tuples that the given rules are applicable in an
arbitrary order. Oftentimes, in practice, we only care about
whether the rules are consistent w.r.t. a specific dataset D.
Fortunately, the problem of checking the consistency when D
is present becomes PTIME.

Corollary 2: Given a relation D and a KB K, i.e., |R| is a
constant, the consistency problem is PTIME. l

Given each tuple t over relation R, a set Σ of DRs, and a
KB K, it has up to |Σ||R| orders of applying the rules, where
|R| is a constant. Also, the number of tuples is |D|. Naturally,
we can check whether Σ is consistent for D in PTIME.

The above result brings us to the bright side that practically
it is feasible to make sure that a set of DRs is consistent for
the dataset at hand. In our experiments, when a set of rules
is selected, we run them on random sample tuples to check
whether they always compute the same results. If not, we will
ask users to double check the selected rules. In the following
of the paper, we build our discussion using consistent DRs.

IV. DETECTIVE IN ACTION

Given a set of consistent DRs, we first present a basic repair
algorithm (Section IV-A), followed by an optimized algorithm
to speed-up the repairing process (Section IV-B). Finally, we
extend our methods to support multiple repairs (Section IV-C).

A. Basic Repairing
When a set Σ of DRs is consistent, for any tuple t, applying

Σ to t will get a unique final result, which is also known as
the Church-Rosser property [1]. Hence, the basic solution is
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Algorithm 1: Basic Repair Algorithm
Input: a tuple t, a set Σ of consistent DRs.
Output: a repaired tuple t.
1. POS ÐH;
2. while Dϕ : GpVe Y tp, nu,Eq P Σ that is applicable to t do
3. if DKB instances match VeYtpu with trcolpVeYtpuqs then
4. POS Ð POS Y colpVe Y tpuq; // Proof positive
5. else if DKB instances I Y txnu that match Ve Y tnu with

trcolpVe Y tnuqs and D a KB instance xp such that
I Y txpu match Ve Y tpu and xp ‰ xn then

6. trcolpnqs Ð xp; // Proof negative and correction
7. POS Ð POS Y colpVe Y tpuq ;
8. Σ Ð Σztϕu;
9. return t;

a chase-based process to iteratively pick a rule that can be
applied until a fixpoint is reached, i.e., no rule can be applied.

Algorithm 1. It uses a set to keep track of the attributes marked
to be positive in t, initialized as empty (line 1). It picks one
rule that is applicable to t in each iteration until no DR can
be applied (lines 2-7). In each iteration, if there exist KB
instances that match the nodes VeYtpu with trcolpVeYtpuqs,
the attributes colpVeYtpuq are marked as positive (line 3-4).
Otherwise, (i) if there exist KB instances I Y txnu, such that
they match nodes Ve Y tnu with trcolpVe Y tnuqs; and (ii)
if there also exist KB instances I Y txpu that if we update
trcolpnqs to xp as t1, I Y txpu match nodes Ve Y tpu with
t1rcolpVeYtpuqs, and (iii) if xp ‰ xn, it will repair this error
by the value xp and mark it as positive (lines 5-7). Afterwards,
the rule will be removed from Σ since each rule can be applied
only once (line 8). Finally, a repaired tuple is returned (line 9).

Complexity. The loop (lines 2-8) iterates at most |Σ| times.
In each iteration, it at most checks |Σ| unused rules to find an
applicable one. Within each loop, the worse case of checking
each rule node u P V is Op|C||X|q where |C| is the number of
instances belonging to typepuq and Op|X|q is the complexity
of calculating the similarity between trcolpuqs and a KB
instance. When checking whether trcolpuqs and trcolpvqs have
the relationship relpeq for each edge e : pu, vq P E or drawing
the correct value from KB needs Op1q by utilizing a hash table.
Thus, the algorithm runs in Op|Σ|2ˆp|C||X||V|`|E|qq time,
where |V| is the number of nodes and |E| is the number of
edges in the rule.

B. Fast Repairing
We improve the above algorithm from three aspects.

(1) Rule Order Selection. Note that in Algorithm 1, when
picking a rule to apply after the tuple has been changed, in the
worst case, we need to scan all rules, even if some rules have
been checked before. Naturally, we want to avoid checking
rules repeatedly in each iteration.

The observation is that, applying a rule ϕ will affect another
rule ϕ1 only if ϕ changes some tuple value that ϕ1 needs to
check. More concretely, consider two DRs ϕ : GpV,Eq where
V “ Ve Y tp, nu, and ϕ1 : G1pV1,E1q where V1 “ V1e Y
tp1, n1u. If colpnq P colpV1e), i.e., the first rule will change
some value of the tuple that can be used as the evidence for
the second rule, then ϕ should be applied before ϕ1.

Rule Graph. Based on the above observation, we build a rule
graph GrpVr,Erq for a set Σ of DRs. Each vertex vr P Vr

corresponds to a rule in Σ. There is an edge from rule ϕ to
ϕ1 if colppq P colpV1eq. Note that a circle may exist, i.e., there
might also have an edge from ϕ1 to ϕ if colpp1q P colpVeq.

When repairing a tuple, we follow the topological ordering
of the rule graph to check the availability of rules. Note that,
if a circle exists in the rule graph, it is hard to ensure that the
rules in the circle can be checked only once. We first treat the
circle as a single node rv to get the global order of Σ. When
checking node rv, we first find a rule ϕ in this circle that can
be applied. Then the edges pointing to ϕ can be removed.

Example 8: Consider rules in Figure 4. There are two con-
nected components tϕ1, ϕ2, ϕ3u and tϕ4u. The first three rules
should be checked in the order xϕ1, ϕ2, ϕ3y, since ϕ1 may
change attribute Institution that belongs to the evidence nodes
of ϕ2, and in turn ϕ2 may change attribute City that is in the
evidence nodes of ϕ3. Checking ϕ4 is irrelevant of the other
rules, and thus it only needs to be checked once. l

(2) Efficient Instance Matching. The node in DR provides
a similarity function to map values between schema R and
KB K. If it is ““” (the cell trcolpuqs must be equal to an
instance with typepuq in KB), we can just find all instances
with typepuq and use a hash table to check whether trcolpuqs
matches one of them. Otherwise, it is time-consuming to
calculate the similarity between trcolpuqs and each instance.
To improve the similarity-based matching, we use a signature-
based framework [21]. For each typepuq, we generate sig-
natures for each instance in KB belonging to typepuq. If a
cell value in a column colpuq can match an instance (the
similarity is larger than a threshold), they must share a common
signature. In other words, for each cell value, we only need to
find the instances that share common signatures with the cell.
To this end, we build a signature-based inverted index. For
each signature, we maintain an inverted list of instances that
contain the signature. Given a cell value, the instances on the
inverted list of signatures which also belong to the cell value
are similarity-based matching candidates. In this way, we do
not need to enumerate every instance.

(3) Sharing Computations on Common Nodes Between
Different Rules. Note that a node can be used in multiple rules
and it is expensive to check the node for every rule. To address
this issue, we want to check each node only once. Furthermore,
we want to build indexes to quickly check that, after a tuple has
been updated, which rules are possibly affected. After a rule
ϕ is applied, it marks attributes colpVeYtpuq as positive. The
attributes that are marked as positive cannot be changed by any
other rules. Hence, after a tuple is updated by ϕ, all the rules
ϕ1 satisfying colpp1q P colpVe Y tpuq can be safely removed.
We utilize inverted lists to track these useless rules and in
the meantime, to avoid repeated calculations that are shared
between different rules. Similarly we can avoid checking the
same relationship in different rules multiple times.

To achieve this, we propose a novel inverted list that can be
used interchangeably for both nodes and relationships.
Inverted Lists. Each inverted list is a mapping from a key to
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Algorithm 2: Fast Repair Algorithm
Input: a tuple t, a set Σ of consistent DRs, inverted lists I.
Output: a repaired tuple t.
1. sort Σ in topological ordering;
2. for each ϕ P Σ do
3. for each vertex or edge o P ϕ : GpV,Eq do
4. if t matches o then
5. for each pϕ1, o1q in Ipoq do
6. mark the vertex or edge o1 P ϕ1 as already checked;
7. else
8. for each pϕ1, o1q in Ipoq do
9. Σ Ð Σztϕ1u;
10. if ϕ is applicable to t then
11. update or mark t by ϕ;
12. if trcolppqs is marked as positive then
13. delete rules in Σ that also update colppq;
14. for each o P tpu Y te|edge e connected pu do
15. for each pϕ1, o1q in Ipoq do
16. mark the vertex or edge o1 P ϕ1 as checked;
17. else Σ Ð Σztϕu;
18. return t;

a set Ψ of values. Each key is (i) a match between a column
in R and a class in KB with similarity function «u or (ii)
a relationship/property in KB that describes the relationship
between two columns. Each value in Ψ is a pair pϕ, oq where
ϕ P Σ and o is either a vertex or an edge in Gztnu. Each
pair in Ψ satisfies that the vertex (or edge) o must contain the
node (or relationship) in the key. The inverted lists w.r.t. rules
in Figure 4 are shown in Figure 5.

We are now ready to present the fast repair algorithm.

Algorithm 2. It first sorts the rules in Σ in topological ordering
(line 1) and then checks the rules in turn (lines 2-17). For
each rule, every vertex and edge in a DR ϕ : GpV,Eq will be
visited. If it has not been checked, we detect whether trcolpuqs
belongs to typepuq for vertex u or whether trcolpuqs, trcolpvqs
have relationship relpeq for edge e (lines 3-9). If so, we mark
this vertex or edge in other rule ϕ1 as already being checked
using I (lines 4-6). Otherwise, we delete ϕ1 from Σ (lines 8-
9). We apply rule ϕ to tuple t if it is applicable (lines 10-16).
Otherwise, rule ϕ is deleted (line 17). If trcolppqs is marked
as positive, we delete all rules which also update colppq from
Σ (line 13). Meanwhile, for each rule ϕ1 that also contains p
(as evidence node) or the edge connected to p, it also should
be marked as already being checked (lines 14-16).

Complexity. The complexity of sorting rules is Op|Σ| ` |Er|q

where Er is the number of edges in the rule graph. Note that
we only need to sort once and apply to all tuples. It is obvious
that the outer loop (lines 2-17) runs at most |Σ| times. For each
DR ϕ : GpV,Eq, the worst case of checking each vertex and
edge needs Op|C||X||V| ` |E|q as stated above even utilizing
the similarity indexes. Thus, the algorithm requires Op|Σ| ˆ
p|C||X||V| ` |E|qq.

Example 9: Consider tuple r3 in Table I, four DRs in Figure 4
and the invert lists in Figure 5. The rules will be checked
in the order xϕ4, ϕ1, ϕ2, ϕ3y. Let checkedϕ denotes the set
storing the vertexes and edges in ϕ that have been checked to
be matched with tuple t.

Name, Nobel laureates in Chemistry, =

Name, worksAt, Institution ('1'1,(x1x1,p1p1)), ('2'2,(w1w1,w2w2)), ('3'3,(z1z1,z2z2))

DOB, literal, =

Prize, Chemistry awards, =

Institution, organization, ED, 2

City, city, =

Country, country, =

Name, wonPrize, Prize

Name, bornOnDate, DOB

Institution, locatedIn, City

Name, isCitizenOf, Country

City, locatedIn,Country

('1'1,x1x1), ('2'2,w1w1), ('3'3,z1z1), ('4'4,v1v1)

('1'1,x2x2)

('4'4,p4p4)

('1'1,p1p1), ('2'2,w2w2), ('3'3,z2z2)

('2'2,p2p2) '3'3 z3z3

('3'3,p3p3)

('4'4,(v1v1,p4p4))

('1'1,(x1x1,x2x2))

('2'2,(w2w2,p2p2)), ('3'3,(z2z2,z3z3))

('3'3,(z1z1,p3p3))

('3'3,(z3z3,p3p3))

Fig. 5. Rule Indexes

For rule ϕ4, r3rNames can match node v1. We maintain
checkedϕ4 “ tv1u. Besides, by utilizing the inverted lists, we
have checkedϕ1 “ tx1u, checkedϕ2 “ tw1u and checkedϕ3 “

tz1u. The negative node n4 can also be matched, thus r3rPrizes
will be updated to Nobel Prize in Chemistry. Tuple r3 becomes
r13(Roald Hoffmann`, 1937-07-18, Ukraine, Nobel Prize in
Chemistry`, Cornell University, Ithaca).

Then for rule ϕ1, since r13 can match nodes x1, x2, p1
and edges px1, x2q,px1, p1q, we have r23(Roald Hoffmann`,
1937-07-18`, Ukraine, Nobel Prize in Chemistry`, Cor-
nell University`, Ithaca). We can expand checkedϕ2 “

tw1, w2, pw1, w2qu and checkedϕ3 “ tz1, z2, pz1, z2qu by uti-
lizing the inverted lists.

When considering rule ϕ2, we only need to check
the negative and positive nodes based on checkedϕ2 . As
r23rInstitutions is actually located in r23rCitys. We have
r33 (Roald Hoffmann`, 1937-07-18`, Ukraine, Nobel Prize
in Chemistry`, Cornell University`, Ithaca`). Meanwhile,
checkedϕ3 “ tz1, z2, z3, pz1, z2q, pz2, z3qu

Based on checkedϕ3 , we only need to examine the negative
and positive nodes. Since tuple r33 matches node n3 and the
relationship pz1, n3q, r33 rCountrys will be updated to United
States by applying ϕ3. Tuple r43 (Roald Hoffmann`, 1937-
07-18`, United States`, Nobel Prize in Chemistry`, Cornell
University`, Ithaca`) is a fixpoint. l

C. Multiple-version Repairs
We can extend our methods to support multiple-version

repairs. The basic idea is, when multiple versions are identified
to repair one tuple, instead of having only one updated tuple,
we have multiple updated tuples. The workflow is the same as
the fast repair algorithm. Below we illustrate by an example.

Example 10: Consider tuple r4 in Table I, four DRs in Fig-
ure 4. The rules will be checked in the order xϕ4, ϕ1, ϕ2, ϕ3y.
We maintain a set T to keep track of the intermediate repairs.
At first, T “ tr4u.

Rule ϕ4 will not repair any value but mark r4rNames and
r4rPrizes as positive. As for rule ϕ1, tuple r4 matches nodes
x1, x2, n1 and edges px1, x2q, px1, n1q, so ϕ1 can be applied.
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From the KB, we know that Melvin Calvin worked in two
institutions {University of Manchester, UC Berkeley}. Thus,
r4 can be repaired in two ways: r14(Melvin Calvin`, 1911-04-
08`, United States, Nobel Prize in Chemistry`, University of
Manchester`, St. Paul) and r24(Melvin Calvin`, 1911-04-08`,
United States, Nobel Prize in Chemistry`, UC Berkeley`, St.
Paul). r14 is added into T temporarily and r24 continues to be
repaired.

Rule ϕ2 will update r24rCitys to Berkeley from St. Paul
and ϕ3 marks r24rCountrys as positive. r34 (Melvin Calvin`,
1911-04-08`, United States`, Nobel Prize in Chemistry`, UC
Berkeley`, Berkeley`) is a fixpoint. At this moment, we get
one result r34 and T “ tr14u.

Then r14 will be taken out from T for further repair
and rule ϕ2, ϕ3 are left to be checked. Rule ϕ2 will up-
date r14rCitys to Manchester from St. Paul and ϕ3 marks
r14rCountrys as positive. r44 (Melvin Calvin`, 1911-04-08`,
United States`, Nobel Prize in Chemistry`, University of
Manchester`, Manchester`) is another fixpoint. Now we have
two valid repair r34 and r44 , and T “ H. l

V. EXPERIMENTAL STUDY

A. Experimental Setup

Datasets. We used a set of small Web tables, a real-world
dataset and a synthetic dataset. Note that we used the datasets
that are covered by general purpose KBs.
(1) WebTables. This dataset contains 37 tables2, with the
average number of tuples 44. We chose it since they are
representative to cover a wide range of other general purpose
Web tables.
(2) Nobel. It contains 1069 tuples about Nobel laureates,
obtained by joining two tables from Wikipedia: List of Nobel
laureates by country3 and List of countries by Nobel laureates
per capita4. We tested this case to see how our approach per-
forms for personal information, an important topic considered
in many applications.
(3) UIS. It is a synthetic dataset generated by the UIS Database
Generator5. We generated 100K tuples.
Knowledge Bases. We used Yago [19] and DBpedia [23] for
our experiments. It is known that both Yago and DBpedia
share general information of generating a structured ontology.
However, the difference is that Yago focuses more on the
taxonomic structure, e.g., richer type/relationship hierarchies.
This indeed makes the experiment more interesting to see how
taxonomic structure plays the role for mapping the information
between relations and KBs. The number of aligned classes and
relations of testing datasets are given in Table II.
Noise. We did not inject noise to WebTables because they are
dirty originally. Noises injected to Nobel and UIS have two
types: (i) typos; (ii) semantic errors: the value is replaced with
a different one from a semantically related attribute. Errors

2https://www.cse.iitb.ac.in/„sunita/wwt/
3https://en.wikipedia.org/wiki/List of Nobel laureates by country
4https://en.wikipedia.org/wiki/List of countries by Nobel laureates per

capita
5http://sherlock.ics.uci.edu/data.html

Yago DBPedia
#-class #-relationship #-class #-relationship

WebTables 42 30 51 30
Nobel 5 4 5 4
UIS 5 5 5 4

TABLE II. DATASETS (ALIGNED CLASSES AND RELATIONS)

WebTables Precision Recall F-measure #-POS

DRs
Yago 1 0.38 0.55 1469

DBpedia 1 0.43 0.60 1326

KATARA
Yago 0.73 0.40 0.52 864

DBpedia 0.78 0.46 0.58 752
Nobel Precision Recall F-measure #-POS

DRs
Yago 1 0.70 0.82 1543

DBpedia 1 0.54 0.70 715

KATARA
Yago 0.74 0.68 0.71 396

DBpedia 0.64 0.49 0.56 189
UIS Precision Recall F-measure #-POS

DRs
Yago 1 0.73 0.84 77001

DBpedia 1 0.63 0.77 57703

KATARA
Yago 0.67 0.77 0.72 35084

DBpedia 0.63 0.57 0.60 25152

TABLE III. DATA ANNOTATION AND REPAIR ACCURACY

were produced by adding noises with a certain rate e%, i.e.,
the percentage of dirty cells over all data cells.
Detective Rules. The DRs were generated as described in
Section III-A, verified by experts. For WebTables, we totally
generated 50 DRs, and for Nobel and UIS, we generated 5 DRs
for each table. There are few cases that multi-version repairs
appear in our experiments. In this case, if one of the repairs
matches the ground truth value, we treat it as a correct repair.
Algorithms. We implemented the following algorithms: (i)
bRepair: the basic repair algorithm (Section IV-A); and (ii)
fRepair: the fast repair algorithm (Section IV-B). For com-
parison, we have implemented KATARA [7], which is also
a KB-based data cleaning system. We also compared with
two IC-based repairing algorithms: Llunatic [17] and constant
CFDs [14].
Measuring Quality. We used precision, recall and F-measure
to evaluate the repairing quality: precision is the ratio of
correctly repaired attribute values to the number of all the
repaired attributes; and recall is the ratio of correctly repaired
attribute values to the number of all erroneous values; and
F-measure is the harmonic mean of precision and recall. We
manually repaired WebTables and regarded them as ground
truth. Besides, knowledge bases cannot cover the whole tables.
For the other tables, we mainly evaluated the tuples whose
value in key attribute (e.g., Name w.r.t. Nobel or State w.r.t.
UIS) have corresponding entities in KBs.
Experimental Environment. All methods were written in Java
and all tests were conducted on a PC with a 2.40GHz Intel
CPU and 64GB RAM. For efficiency, each experiment was
run six times, and the average results were reported.

B. Experimental Results

We tested DRs from three aspects. Exp-1: The comparison
with other KB-based data cleaning methods. Exp-2: The com-
parison with IC-based cleaning on tables. Exp-3: Efficiency
and scalability of our solutions.
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Exp-1: Comparison with KB Powered Data Cleaning. We
compared with KATARA [7], the most recent data cleaning
system that is powered by KBs and experts in crowdsourcing.
Although KATARA can mark data as correct, it cannot auto-
matically detect or repair errors. In fact, KATARA relies on
experts to manually detect and repair errors.

In order to have a fair comparison by removing the expert
sourcing factor, we revised KATARA by simulating expert
behavior as follows. When there was a full match of a tuple
and the KB under the table pattern defined by KATARA,
the whole tuple was marked as correct. When there was a
partial match, we revised KATARA by marking the minimally
unmatched attributes as wrong. For repairing, since KATARA
also computes candidate repairs, as presented in [7], we picked
the one from all candidates that minimizes the repair cost.

(A) Data Repair. We first compared with KATARA about data
repairing accuracy, using the datasets reported in Table II. For
Nobel and UIS, the error rate was 10%.

Precision. Table III shows the results of applying DRs and us-
ing KATARA for data repairing. DRs were carefully designed
to ensure trusted repair. Hence, not surprisedly, the precision
was always 1. This is always true if the DRs are correct, when
being carefully selected by the users. KATARA, on the other
hand, relies on experts to make decisions. Once experts are
absent, KATARA itself cannot decide how to repair, which
result in relatively low precision as reported in the table.

Recall. As shown in Table III, for WebTables, DRs had lower
recall than KATARA. It is because some of WebTables have
few number of attributes. This is not enough to support the
modifications of DRs. For example, considering the schema is
pAuthor,Bookq, when trAuthors and trBooks do not satisfy
the relationship wrote, it is hard to ensure that which attribute
is wrong. So our methods would not repair this kind of tables,
in a conservative way. For Nobel and UIS, the recall of our
algorithms were higher than KATARA. The reason is that
KATARA does not support fuzzy matching. In order to find
proper modifications, at least one attribute must be correct.

F-measure. Our method had higher F-measure than KATARA,
because our method had higher precision and similar recall.
Taken the explanations above, it is easy to see that DRs had
comparable F-measure with KATARA for WebTables, and
better F-measure in Nobel and UIS, as shown in Table III.

(B) Data Annotation. KATARA can also mark correct data,
when a given tuple can find a full match in the given KB,
relative to the table pattern they used. Note that in their paper,
KATARA can mark wrong data. However, each wrong value
has to be manually verified by experts. For comparison, given
a tuple and a KB, if a partial match is found by KATARA, one
way is to heuristically mark the matched part as correct and the
unmatched part as wrong. This will cause both false positives
and false negatives. Hence, in order to have a relatively fair
comparison, we favor KATARA by only checking the full
matches that they mark as correct.

Table III gives the results of both DRs and KATARA in
marking data, listed in the last column #-POS. The results show
that, even by ignoring the ability of data repairing, DRs can

automatically mark much more positive data than KATARA.
These information is extremely important for both heuristic
and probabilistic methods, since the main reason they make
false positives and false negatives is that they cannot precisely
guess which data is correct or wrong.

Exp-2: Comparison with IC-based Repair. In this group
of experimental study, we compared with IC-based repairing
algorithms. Llunatic [17] involves different kinds of ICs and
different strategies to select preferred values. For Llunatic, we
used FDs and chose its frequency cost-manager. Metric 0.5 was
used to measure the repair quality (for each cell repaired to
a variable, it was counted as a partially correct change). For
constant CFDs, they were generated from ground truth. We
simulated the user behavior by repairing the right hand side
of a tuple t based on a constant CFD, if the left side values of
t were the same as the values in the given constant CFD. In
this case, constant CFDs will make mistakes if the tuple’s left
hand side values are wrong.

Also, since there is not much redundancy in the WebTables
that IC rely on to find errors (or violations), we tested using
only Nobel and UIS datasets. We first evaluated the accuracy
of repair algorithm over different error rates. We then varied
the percentage of error types in Nobel and UIS to get better
insight into the strong and weak points of DRs, compared with
other IC-based approaches.
(A) Varying Error Rate. For Nobel and UIS, we studied the
accuracy of our repair algorithm by varying the error rate from
4% to 20%, and reported the precision, recall and F-measure
in Figure 6. The rates of different error types, i.e., typos and
semantic errors were equal, i.e., 50-50.

We can see that our methods had stable performance when
error rates increased. However, the precision and recall of
Llunatic moderately decreased, since when more errors were
injected, it became harder to detect errors and link relevant
tuples for heuristic repair algorithm. The precision and recall of
constant CFDs also decreased because there were more chances
that errors happened on the left hand side of constant CFDs.

From Figure 6(d), we see that our algorithms did not
have higher recall. This is because: (i) KBs cannot cover all
attribute values in Nobel and UIS, e.g., some City can find
corresponding resource with property locatedIn to repair the
attribute State but some cannot. Thus, some errors cannot be
detected; (ii) to ensure the precision, we would not repair errors
when the evidence was not sufficient; and (iii) if semantic
errors were injected into the evidence nodes of DRs, we cannot
detect and repair them. On the contrary, the other two methods
would repair some potentially erroneous heuristically, which
may increase their recall.
(B) Varying Typo Rate. We fixed the error rate at 10% and
varied the percentages of typos from 0% to 100% (semantic
errors from 100% to 0% corresponding) to evaluate the ability
of capture typos and the semantic error. The experimental
results are shown in Figure 7.

Figure 7 shows that Llunatic and our methods behaved better
with typos than with semantic error. The reason is that they all
chose to repair an error to the most similar candidate, which
for typos is more likely to be correct value. On the contrary,
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Fig. 6. Effectiveness (varying error rate)

if the semantic errors were added to the evidence nodes of
DRs or left hand of FDs, none of us can detect that errors.
Meanwhile, more lluns (unknown defined in Llunatic) were
introduced to make the table consistent. Constant CFDs do not
support fuzzy matching. Thus, it is hard to say which type of
errors it can detect better. These errors can be detected only
when they are injected to the right hand of constraints.

Exp-3: Efficiency Study. We evaluated the efficiency of our
repair algorithms using WebTables, Nobel and UIS. We first
varied the number of DRs to measure the performance of
bRepair and fRepair. Then we studied the scalability of the
algorithms utilizing the UIS Database Generator.

(A) Varying #-Rule. We varied the number of rules from 10
to 50 by a step of 10 for WebTables, and varied from 1 to 5
by a step of 1 for Nobel and UIS. The execution time were
reported in Figure 8(a)-(c). The error rate of Nobel and UIS
was fixed at 10% and we generated 20K tuples for UIS. To
better represent the impact of indexes, we did not sum the time
of reading and handling KBs.

There is no doubt that with the growing size of ruleset,
fRepair was more efficient than bRepair. For example, when
there were 5 DRs to repair UIS utilizing DBpedia, bRepair ran
1323s, while fRepair only ran 217s. For WebTables, fRepair
was not so faster than bRepair. It is because the extra cost of
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Fig. 7. Effectiveness (varying typo rate)

sorting rules and keeping inverted lists became unnegligible
when only a few of DRs were used for repairing a few tuples.

(B) Varying #-Tuple. In this part of experiment, we evaluated
the scalability of our methods and compared with the other
three repair algorithms: KATARA, Llunatic and constant CFDs.
We utilized the UIS Database Generator and varied the number
of tuples from 20K to 100K by a step of 20K, fixing the
error rate at 10%. The experimental result was reported in
Figure 8(d). Note that the time of reading and handling KBs
was included in this part of experiments.

Figure 8(d) indicates that the impact of indexes became
more and more remarkable with the growing the data size. For
example, when there were 100K tuples to repair, the bRepair
algorithm utilizing Yago ran 1216s, while fRepair only ran
152s. The fRepair algorithm always ran faster than Llunatic ,
and the time cost of Llunatic increased faster along with the
number of tuples grew. The reason is that, Llunatic needed to
consider multiple tuples to detect violations and holistically
consider multiple violations to decide a repair strategy. Our
methods also ran faster than KATARA especially for DBpedia,
because KATARA needed to list all instance graphs and find
the most similar one for each tuple. Note that constant CFDs
use only instances, thus it can repair 100K tuples within 1s.
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Summary of Experimental Findings. (1) DRs are effective
in using KBs for cleaning relations. Without experts being
involved, DRs are more accurate than the state-of-the-art data
cleaning system KATARA that also uses KBs (Exp-1). (2) DRs
are more effective than IC-based data cleaning (Exp-2). Note
that we did not compared with other rule-based algorithms that
are also ensured correctness if the rules are correct. The only
reason is that existing rule-based methods do not rely on KBs
but on expert knowledge or master tables. (3) It is efficient
and scalable to apply DRs (Exp-3), since repairing one tuple
is irrelevant to any other tuple.

VI. CONCLUSION

In this paper, we have proposed detective rules. Given a
relation and a KB, DRs tell us that which tuple values are
correct, which tuple values are erroneous, and how to repair
them if there is enough evidence in the KB, in a deterministic
fashion. We have studied fundamental problems associated
with DRs, such as consistency analysis. We have also proposed
efficient data repairing algorithms using detective rules.
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