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ABSTRACT
Public opinion polling is typically done by random sam-
pling from the entire population, treating the opinions of
individuals as independent. In the real world, individuals’
opinions are often correlated, especially among friends in a
social network, due to the effect of both homophily and so-
cial influence. In this paper, we propose a partitioned sam-
pling method, utilizing the correlations between individuals’
opinions to improve the sampling quality. In particular, we
propose an adaptation of an opinion evolution model in so-
cial networks, and formulate an optimization problem based
on this model as finding the optimal partition for the par-
titioned sampling method to minimize the expected sample
variance of the estimated result. For the opinion evolution
model, we develop an efficient and exact computation of
opinion correlations between every pair of nodes in the so-
cial network. For the optimization task, we show that when
the population size is large enough, the complete partition
which contains only one sample in each component is always
better, and utilize the correlation computation result ob-
tained earlier to reduce finding optimal complete partition to
a well-studied Max-r-Cut problem. We adopt the semidefi-
nite programming algorithm for Max-r-Cut to solve our op-
timization problem, and further develop a greedy heuristic
algorithm to improve the efficiency. We use both synthetic
and real-world datasets to demonstrate that our partitioned
sampling method results in significant improvement in sam-
pling quality.
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1. INTRODUCTION
Public opinion polling is a main tool for governments, or-

ganizations and companies to gather information about pub-
lic sentiments on the policies, strategies, products etc., which
are important in organizational decision making. Opinion
polling needs to be accurate and unbiased, and thus it is
usually done by randomly sampling a large enough num-
ber of individuals from the entire population, but this is a
costly effort. Therefore, saving the cost on unbiased ran-
dom sampling while keeping the same sampling quality is
an important task to pursue.

In this paper, we utilize individuals’ social interactions to
improve the random sampling method. Our motivation is
that people’s opinions are often correlated, especially among
friends in the social network, due to their social interactions
in terms of the homophily and influence effects [5, 11, 16]. In
the era of big data, these social interactions and correlations
are partially known. For example, many online social media
and social networking sites provide public available social
interaction data, and companies also have large amounts of
data about their customers’ preferences and their social in-
teractions. Our idea is to partition individuals into different
groups by utilizing such partial knowledge, such that people
within the same group are likely to hold similar opinions on a
topic of interest. We can then sample each group separately
and aggregate the samplings together to achieve the more
efficient sampling result. We call this partitioned sampling
method.

More specifically, we first propose an opinion evolution
model in social networks called Voter model with Innate
Opinions (VIO), adapted from the voter model often used to
characterize opinion evolution dynamics. We then precisely
state our problem as an optimization problem called Opti-
mal Partitioned Sampling (OPS): find the optimal partition
of nodes in a social network and the sample size allocation
to each component, with the goal of minimizing expected
sample variance based on the VIO model (Section 2).

1

http://arxiv.org/abs/1510.05217v1


We provide a precise analysis of the VIO model, includ-
ing an efficient and exact computation of the correlations
between the final opinions of every pair of nodes in steady
state of the VIO model (Section 3). We then study the OPS
problem, reaching two important conclusions (Section 4).
First, we show that when population size is large enough,
the best partition is always the complete partition, meaning
that each component only contains one sample. Second, we
use computed correlations to build a weighted graph and
reduce OPS problem to a weighted graph partitioning prob-
lem, which is a special case of the well-studied Max-r-Cut
problem. We then adopt the semidefinite programming al-
gorithm for Max-r-Cut to solve OPS, and further propose
an efficient greedy partitioning algorithm to work on larger
graphs.

Finally, we conduct experiments on both synthetic and
real-world datasets to demonstrate that our partitioned sam-
pling method indeed improves sampling quality over tradi-
tional naive sampling method, which translates into signif-
icant cost savings if we maintain sampling quality at the
same level (Section 5).

In summary, our contribution includes: (a) proposing the
partitioned sampling method and formulating it as an opti-
mization problem to improve sampling quality based on so-
cial interactions and correlations of opinions; (b) adapting
an opinion evolution model and providing exact solutions for
computing the key quantities of the model; and (c) precisely
connecting the optimal partitioned sampling problem to the
Max-r-Cut problem and providing efficient algorithms for
the partitioned sampling under the opinion evolution model.
We remark that our technical result on OPS problem is not
constrained to our VIO model, and has wider applicability
as explained after the main Theorem 3.

Related work. To the best of our knowledge, there is no
other technical work on partitioned sampling. Among stud-
ies on population sampling, Dasgupta et al. [7] also utilize
social network connections to facilitate sampling. However,
their method is to explicitly ask the subject being sam-
pled to return additional information about their friends’
opinions and the number of their friend’s friends, which re-
quires changing the polling practice. Our partitioned sam-
pling method, on the other hand, still follows the standard
polling practice and only uses implicit knowledge on opinion
correlations to improve sampling quality. These two ideas
are orthogonal and could be potentially combined together.
Das et al. [6] study the task of removing the correlations
among individual’s opinions due to their social interactions
to obtain the average original innate opinion. Their task is
to utilize the wisdom of the crowd for extracting the latent
independent opinions of individuals. Our task is exactly the
opposite — we want to utilize opinion interactions and cor-
relations for more efficient sampling of final expressed opin-
ions, which are what being counted for in opinion polling.

Various opinion evolution models have been proposed in
the literature (e.g. [6, 10, 14, 19]). Our VIO model and
its analysis are adapted from the voter model [2] and its
extension with stubborn agents [19]. The models in [6, 10]
also distinguish between innate opinions and expressed opin-
ions, however, their models are deterministic, and thus their
analyses do not apply to our stochastic analysis on the cor-
relations between final expressed opinions.

Graph partitioning has been well studied, and numerous
problem variants and algorithms exist. In this paper, we

Algorithm 2.1 Partitioned Sampling

Require: Partition P = {(V1, r1), (V2, r2), . . . , (VK , rK)}
1: for k ← 1 to K do

2: Do naive sampling in Vk, return f̂naive(Vk, rk).
3: end for

4: Output: f̂part (P) =
∑K

k=1
|Vk|
|V |
· f̂naive(Vk, rk).

reduce the OPS problem to the Max-r-Cut problem, which
is the problem of partitioning the graph in to r components
and maximizing the sum of edge weights on the cut, and
we adopt the semidefinite programming algorithm proposed
in [8].

2. OPINION EVOLUTION MODEL AND
PARTITIONED SAMPLING PROBLEM

We consider a weighted directed social graph G = (V,A)
where V = {v1, v2, . . . , vn} is the vertex set containing n
vertices (or nodes) and A is the weighted adjacency matrix.
An edge (vi, vj) exists if the entry Aij > 0. The nodes
represent the individuals in the social network, and edge
(vi, vj) represents the opinion influence relationship from vj
to vi.

Each individual in the social network has a binary opinion
on some topic of interest. Our task is to do efficient sampling
with sample size budget r for estimating the average opinion
of the entire population (all people in the social network).
The most intuitive method is called naive sampling, which
picks r people randomly without replacement from V to ask
their opinions and takes the average of sampled opinions as
the estimate, and we denote it as f̂naive(V, r).

In this paper, we propose a general sampling framework
called partitioned sampling (Algorithm 2.1). We then utilize
the partial knowledge about people’s social interactions and
opinion correlations to find the best partition for partitioned
sampling. To be more specific, we first partition the whole
graph into several components, and allocate the subsample
size in each component. We use notation P = {(V1, r1),
(V2, r2), . . . , (VK , rK)} to represent a partition, where V1,
V2, . . . , VK are disjoint sets with ∪K

i=1Vi = V and ri is the
subsample size allocated in Vi with

∑K

i=1 ri = r. Next we do
naive sampling inside each component Vi with sample size
ri. Finally, we estimate the average opinion of the entire
population by taking the weighted average of all subsam-
pling results, where the weight is proportional to the size
of the component. We use f̂part (P) to represent the final
estimate of partitioned sampling using partition P . Notice
that naive sampling is a special case of partitioned sampling,
when all vertices in V are partitioned into the unique com-
ponent P = {(V, r)}. It is easy to verify that partitioned
sampling is unbiased.

Proposition 1. Partitioned sampling given in Algo-
rithm 2.1 is unbiased.

Intuitively, the advantage of using partitioned sampling is
that, if we can partition individuals such that people likely
holding the same opinions are partitioned into the same com-
ponent, then we can sample very few people in each com-
ponent to get an accurate estimate of the average opinion
of the component and then aggregate them to get a good
estimate of the average opinion of the entire population.
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We make the above idea precise in our paper by (a) explic-
itly modeling the public opinion evolution dynamics among
individuals in a social network based on their opinion influ-
ence relationship in the network, and (b) formulating the
partitioned sampling as an optimization problem to mini-
mize the expected sample variance based on the evolution
model.

In the social network, one’s opinion is often affected by her
friends, leading to opinion clustering in the network. Voter
model [2] is a popular one used to describe such opinion dy-
namics, and various extensions exist, such as the model in
[19] that allows stubborn agents who do not change their
own opinions. In this paper, we further extend the model
in [19] to allow a person to either keep her own innate opin-
ion or adopt a friend’s opinion (similar in concepts as the
model in [6, 10]), and also allow different individuals to up-
date their opinions with distinct rates.

More specifically, each node in the social graph is associ-
ated with both an innate opinion and an expressed opinion
for any given topic. The innate opinion remains unchanged
from external influences, while the expressed opinion could
be shaped by the opinions of one’s neighbors, and is the one
observed by sampling. We call this adapted model Voter
model with Innate Opinions (VIO), and describe its techni-
cal detail below.

For each node vi in the graph, let fi(t) ∈ {0, 1} denote
its expressed opinion at time t, for t ≥ 0. At initial time
t = 0, each node vi generates its innate opinion fi(0) from
an i.i.d. distribution with mean µ. The use of i.i.d. dis-
tribution for the initial opinion is due to the lack of prior
knowledge when the initial opinion for a brand-new topic is
formed, and has been used in other models before (e.g. [7]).
Each node vi updates its expressed opinion according to the
Poisson process with rate λi independently. In particular,
node vi, at each Poisson arrival time t, sets its expressed
opinion fi(t) to be its own innate opinion fi(0) with an
inward probability pi, or with probability 1 − pi, node vi
randomly selects one of its out-neighbors vj with probabil-
ity proportional to the weight of the edge (vi, vj) (i.e. with
probability (1 − pi)Aij/

∑n

s=1 Ais where A is the weighted
adjacency matrix) and sets its expressed opinion fi(t) to be
fj(t). Our model degenerates to the original voter model
when all the inward probabilities equals to zero and all the
Poisson rates are identical, and to the model with stubborn
agents [19] when all stubborn agents have pi = 1 and other
agents have pi = 0, meanwhile, all agents have λi = 1.
Thus the inward probability pi represents the inward ten-
dency (or stubbornness) of node vi. In summary, our VIO
model is parametrized by the weighted adjacency matrix
A, the inward probabilities p1, p2, . . . , pn, the Poisson rates
λ1, λ2, . . . , λn, and the mean of innate opinion µ.

The VIO model reaches a steady state if the joint opinion
distribution of f1(t), f2(t), . . . , fn(t) no longer change over
time. We use random variable fi to represent the steady-
state expressed opinion of node vi. We will show in Section 3
that when inward probability pi > 0 for all i, the steady
state is unique. We assume that opinion sampling is done
when the system reaches the steady state, with the target
of estimating the average expressed opinion of the entire
population f̄ =

∑n

i=1 fi/n. This means that people have
sufficiently communicated within the social network about
their opinions on the topic of interest before the sampling is
done, which is a reasonable assumption.

Given the VIO model, our goal is to find the best partition
of all nodes to achieve the most effective sampling result. By
convention, if the opinions of nodes f1, f2, . . . , fn are fixed,
the effectiveness of a random sampling method is measured
by the sample variance Var(f̂), where f̂ is the estimated
result based on the sampling method and the variance is
taken from the randomness of the sampling method. For
example, for naive sampling, the variance is taken from the
randomness of sample selection. Of course, we assume that
the estimate is unbiased, that is, E[f̂ ] = f̄ . The best sam-

pling method should minimize the sample variance Var(f̂).
Similarly, when the opinions f1, f2, . . . , fn are random vari-
ables due to the evolution of opinion, and we have the partial
knowledge about the evolution (such as the parameters of
the VIO model but not the actual randomness taken during
the evolution), the best sampling method should minimize

the expected sample variance E[Var(f̂)], where the expecta-
tion is taken over the randomness in the opinion evolution
model. To clarify the source of randomness, henceforth we
use subscript M to represent model randomness from the
evolution model, and subscript S to represent sample ran-
domness from the sampling method, and thus E[Var(f̂)] is

clarified as EM [VarS(f̂)].
With the objective function clearly defined as above, we

are now ready to formulate our optimization problem of find-
ing the best partition for the partitioned sampling:

Definition 1. (Optimal Partitioned Sampling) Suppose
that a social network G = (V,A) follows the VIO opin-
ion evolution model with inward probabilities p1, p2, . . . , pn
and Poisson rates λ1, λ2, . . . , λn. Given the sample size bud-
get r, the Optimal Partitioned Sampling problem is to find
the optimal partition P of V with the corresponding sample
size allocation, such that when we use partitioned sampling
method as given in Algorithm 2.1 with the above partition P
as input, the expected sample variance EM [VarS(f̂part (P))]
is minimized.

Note that in the OPS definition, we do not specify the
mean of innate opinion µ as an input. We will show below
that µ is not needed for the optimization task.

3. VIO MODEL ANALYSIS
In this section, we provide the analysis of the evolution

model VIO, in preparation for the optimization task in
the next section. For the reason to be made clear in the
next section, the key quantities we want to obtain from the
VIO model are the correlations between every two individ-
uals’ expressed opinions in steady state. We use notation
CorM (fi, fj) to represent the correlation between vi’s and
vj ’s expressed opinions in steady state. From now on, we
only study the VIO model with pi > 0 for all i ∈ [n], that is,
individuals always leave some chance for their innate opin-
ions.

3.1 Random-Walk Based Analysis
To facilitate the analysis, we construct an augmented

graph G (Figure 1) from the original social graph G as
follows (similar to the construction in [10]). Based on
the social graph G = (V,A), we add a new vertex set
V ′ = {v′i}

n
i=1, which is a copy of the vertex set V . Each

vertex vi ∈ V connects to its corresponding vertex v′i ∈ V ′

with a directed edge e′i = (vi, v
′
i). Thus the augmented
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Figure 1: The augmented graph G: The left gray circle rep-
resents the original social graph G = (V,A); The right gray
circle represents the added vertex set V ′, the copy of V . The
dashed lines represent the new directed edges connecting the
corresponding nodes between V and V ′.

graph G = (V ∪V ′, E∪{e′1, e
′
2, . . . , e

′
n}) is established where

E is the edge set of G.
The voter model and its variants are often analyzed

through the equivalent coalescing random walks (e.g. [4, 15,
19]). We now specify the coalescing random walks for the
VIO model on the augmented graph G. For each node vi,
let Ni = {vj : Aij > 0} be the set of its out-neighbors and
di =

∑

vj∈Ni
Aij be its (weighted) out-degree. We consider

random walkers walking on the graph G, but “back in time”.
To know the state of vi at time t, we start a random walker
on node vi at time t, who walks “back in time” until she
reaches a node in v′s ∈ V ′, and then the innate opinion of
vs, fs(0), is the opinion of vi at time t. The random walk
goes as follows. Let the last Poisson arrival of node vi before
t came at time τ < t. The random walker started on vi at
time t stays on vi “back in time” until time τ , at which time
she either walks to vi’s out-neighbor vj ∈ V with probabil-
ity (1 − pi)Aij/di, or walks to v′i ∈ V ′ with probability pi.
Notice that this random walk step is exactly like one step
of node vi when it decides which opinion to adopt at time
τ in the VIO model. If she reaches node vj ∈ V at time
τ , she continues the walk “back in time” in the same man-
ner, but this time she uses the previous Poisson arrival time
τ ′ < τ of node vj to determine when she starts her next
walk step from vj . At any time, if the walker reaches a node
v′s ∈ V ′, then the walk stops (is absorbed), and vi’s opinion
at time t is determined to be fs(0). If two random walk-
ers meet at the same node in V at any time, then they will
walk together from now on following the above rule (hence
the name coalescing). Finally, at time t = 0, if the walker is
still at some node vi ∈ V , she always walks to v′i ∈ V ′. It
is straightforward to verify that the coalescing random walk
model is equivalent to the VIO model, in that for every fixed
innate opinions f1(0), f2(0), . . . , fn(0), the joint distribution
of f1(t), f2(t), . . . , fn(t) of the VIO model is the same as
the joint distribution of n walkers’ final opinions when they
reach V ′, if they start the walks at nodes v1, v2, . . . , vn re-
spectively at time t.

Note that when we study the steady state of the VIO
model, the time t tends to infinity, and since pi > 0 for all i,
all random walkers reach V ′ before time 0 with probability
1, and thus the special random walk rule for t = 0 is not
essential. Thus, we also say that the steady state behavior
is when all random walkers start their random walks at time
t = ∞. With the coalescing random walk model, we can

show that there is a unique steady state for the VIO model:

Lemma 1. When pi > 0 for all i ∈ [n], the VIO model has
a unique joint distribution for the final expressed opinions in
steady state.

Since the steady state is unique and reachable, thus we
can analyze the stochastic quantities of the steady state.
First, we show that the expectation of any node vi’s final
expressed opinion is equal to the mean of innate opinion.

Lemma 2. The expected expressed opinion of each node
in steady state is equal to the mean of innate opinion, that
is EM [fi] = µ for all i ∈ [n].

We then focus on the study of the opinion correlations
between each pair of nodes. To do so, we provide some
key definitions related to the coalescing random walk model,
together with their analysis below.

Definition 2. Let Ilij denote the event that two random
walks starting from vi and vj at time t =∞ eventually meet
and the first node they meet at is vl ∈ V . Let Q be the
n×n matrix where Qij denotes the probability that a random
walker starting from node vi at time t =∞ ends at v′j ∈ V ′.

The following lemma provides the exact computation of
P
[

Ilij
]

and Q.

Lemma 3. P
[

Ilij
]

, i, j, l ∈ [n] is the unique solution of
the following linear equation system:

P

[

Ilij

]

=























0, i = j 6= l,

1, i = j = l,
∑n

a=1
λi(1−pi)Aia

(λi+λj)di
P[Ilaj ]

+
∑n

b=1

λj(1−pj)Ajb

(λi+λj)dj
P[Ilib], i 6= j.

Q is computed by

Q =
(

I − (I − P )D−1A
)−1

P,

where P = diag(p1, p2, . . . , pn) and D = diag(d1, d2, . . . , dn)
are two diagonal matrices, and matrix I − (I − P )D−1A is
invertible when pi > 0 for all i ∈ [n].

With P
[

Ilij
]

and Q computed, we can obtain the corre-
lation between any two expressed opinions. The following
theorem provides our main analytical result concerning the
VIO model.

Theorem 1. For any i, j ∈ [n], correlation CorM (fi, fj)
is equal to the probability that two coalescing random walks
starting from vi and vj at time t = ∞ end at the same ab-
sorbing node in V ′. Moreover, CorM (fi, fj) can be computed
by

CorM (fi, fj) =
n
∑

l=1

P

[

Ilij
]

(

1−
n
∑

k=1

Q2
lk

)

+
n
∑

k=1

QikQjk,

where Ilij and Q are defined in Definition 2, and P
[

Ilij
]

and
Q are computed by Lemma 3.

Note that the correlation between two expressed opinions
in steady state only depends on the social network structure
and individual’s inward tendency, but it does not depend on
the mean of the innate opinion µ. This matches our intuition
that people’s opinion similarity (correlation) is generated
due to their social interactions, and it also facilitates our
optimization in Section 4.
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3.2 Efficient Correlation Computation
Naive computation directly using Theorem 1 and

Lemma 3 by solving the linear equation system for {P
[

Ilij
]

}

would have a running time of O(n7) (See in proof of
Lemma 3). Instead, we can do iterative computation on
{P
[

Ilij
]

} to reduce the running time to O(n4R), where R is
the number of iterations. We now further improve the run-
ning time to O(n3R) by a more carefully designed iterative
computation method.

We use notation C to denote the correlation matrix whose
(i, j) entry is CorM (fi, fj), notation C′ to denote the matrix
whose (i, j) entry is

∑n

l=1 P
[

Ilij
] (

1−
∑n

k=1 Q
2
lk

)

. Thus, we
can use the matrix form to represent the correlation com-
puting equations as

C = C′ +QQT. (1)

When i 6= j,

C′
ij =

n
∑

l=1

P

[

Ilij

]

(

1−
n
∑

k=1

Q2
lk

)

=
n
∑

a=1

λi(1− pi)Aia

(λi + λj)di

n
∑

l=1

P[Ilaj ]

(

1−
n
∑

k=1

Q2
lk

)

+

n
∑

b=1

λj(1− pj)Ajb

(λi + λj)dj

n
∑

l=1

P[Ilib]

(

1−
n
∑

k=1

Q2
lk

)

=

n
∑

a=1

λi(1− pi)Aia

(λi + λj)di
C′

aj +

n
∑

b=1

λj(1− pj)Ajb

(λi + λj)dj
C′

ib.

We use notation B to denote the matrix whose (i, j) entry

is λi(1−pi)
(λi+λj)di

. Notice that C′ is symmetric, thus we can write

C′
ij in matrix form as

C′ = B . *AC′ + (B . *AC′)T. (2)

where . * is the operator for element-wise multiplication
which is used in MATLAB. The above equation holds except
for the diagonal entries of C′, and the i-th diagonal entry
C′

ii equals to 1− (QQT)ii for all i ∈ [n]. Therefore, we can
use the iterative procedure to compute the matrix C′ (i.e.,
in each iterative step, compute the new C′ by Equation (2)
and set new C′’s diagonal entries to be diag(I−QQT)), and
finally obtain the correlation matrix C by Equation (1).

The running time of the above method with one itera-
tion is O(n3), which depends on the running time of matrix
multiplication. Simulation results show that C′ can be ac-
curately computed through a small number of iterations.

4. SOLVING OPS PROBLEM
In this section, we turn to address the OPS problem based

on the VIO model. A partition is called complete if there
is only one sample in each partition component. Our first
observation is that we should always seek the complete par-
tition in order to achieve better performance (when popula-
tion size n is large enough). A partition is called balanced if
the size difference of any two components is no more than
one.

Lemma 4. Given a graph with n ≥ 2 vertices, partitioned
sampling using any balanced complete partition P of the
graph, is better than naive sampling from the graph (after

ignoring an o(1) term). Specifically,

VarS(f̂part (P)) < VarS(f̂naive) +
3

2n
.

We call a partition the refined partition of P , if its each
component is the subset of some component of P . Suppose
we have a partition P such that there exists a component
containing at least two samples. If we further partition that
component by a complete partition, we can obtain a refined
partition of P , and according to the above lemma, the re-
fined partition would be better than the original partition
P . This leads us to seek the complete partition for achieving
better performance.

Theorem 2. Given a graph G and the VIO model on G,
for any partition P, partitioned sampling using the refined
complete partition P ′ of P is better than partitioned sam-
pling using the original partition P (after ignoring an o(1)
term). Specifically,

EM [VarS(f̂part(P
′))] < EM [VarS(f̂part (P))] +

3

2n
.

In the above theorem, we show that partitioned sampling
using the refined complete partition of any incomplete par-
tition is better than partitioned sampling using the original
incomplete partition when n is large enough. Henceforth,
we focus on finding the best complete partition. For con-
venience, we also use P = {V1, V2, . . . , Vr} to denote the
complete partition P = {(V1, 1), (V2, 1), . . . , (Vr, 1)} in the
following contents.

We construct an assistant graph Ga whose vertex set is V
and weight wij between vi and vj is 1−CorM (fi, fj). Given
a partition P = {V1, V2, . . . , Vr} of V , we denote the vol-
ume of component Vk on Ga as VolGa(Vk) =

∑

vi,vj∈Vk
wij .

The cost function gr(P) is defined to be the sum of all com-
ponents’ volumes on Ga, namely, gr(P) =

∑r

k=1 VolGa(Vk).
Our major technical contribution is to show that minimizing
the expected sample variance of complete partitioned sam-
pling is equivalent to minimizing the sum of all components’
volumes on Ga, as summarized in the following theorem:

Theorem 3. For any complete partition P,

EM [VarS(f̂part (P))] =
µ(1− µ)

n2
gr(P),

where µ is the mean of innate opinion. Thus, the best com-
plete partition minimizes the cost function.

The above theorem is the key to bridge between our ob-
jection function on expected sample variance and the graph
partition method.

Intuitively, small cost function indicates small volumes of
all the components, and thus the edge weight between each
pair of nodes in the same component is small, which means
their correlations are high. This means that for partitions
with small cost functions, the nodes in the same component
tend to be strongly correlated and thus the nodes we sam-
ple can effectively represent the opinions of their respective
components. Therefore, Theorem 3 makes precise our intu-
ition that grouping people with similar opinion tendencies
together and sample each group separately would make sam-
pling more efficient. We further remark that Theorem 3 ac-
tually holds for any joint distribution of f1, f2, . . . , fn when
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Algorithm 4.1 SDP Partitioning Algorithm

Require: Graph Ga with n nodes, partition size r.
1: Solve the following SDP problem and compute the

Cholesky decomposition of Y . Let y1, y2, . . . , yn be
the resulting vectors.

Maximize
∑

i,j

[1− Cor(fi, fj)] (1− Yij) (SDP)

Subject to (a) Yii = 1, ∀i, (b) Yij ≥ −
1

r − 1
, ∀i 6= j,

(c) Y � 0, (d) Y is symmetric.

2: Choose r random vectors z1, z2, . . . , zr from R
n.

3: Partition V into r components V1, . . . , Vr according to
which of z1, z2, . . . , zr is closest to each yk.

1

4: Output: P = {(V1, 1), . . . , (Vr, 1)}.

E[f1], E[f2], . . . , E[fn] are identical, not limiting to distri-
butions generated by the VIO model. Therefore, it can be
potentially applied to a wider range of the partitioned sam-
pling situations.

Theorem 3 suggests that we can reduce the OPS prob-
lem to the following Min-r-Volume problem: given an undi-
rected graph with edge weights, partition the graph into r
components such that the sum of all components’ volumes
is minimized. However, the Min-r-Volume problem contains
r-Coloring problem as a special case, which has minimum
volume of zero if any only if the graph is r-colorable. This
leads to the following strong inapproximability result:

Lemma 5. The Min-r-Volume problem is NP-hard to be
approximated within any finite factor.

Note that the above hardness does not directly imply the
hardness of OPS, since the assistant graph Ga generated
by the VIO model is of particular form with edge weights
1−CorM (fi, fj). We leave the hardness of OPS as an open
question, and next we use the dual problem of Min-r-Volume
to help solving the OPS problem.

The dual problem of Min-r-Volume is the following Max-r-
Cut problem: given an undirected weighted graph, partition
the graph into r components such that the total edge weight
of the cut (set of edges crossing different components) is
maximized. It is clear that the two problems are equivalent
in terms of exact solutions, but they are different in terms of
approximability. In particular, Frieze and Jerrum [8] show
that for the Max-r-Cut problem, a semi-definite program-
ming (SDP) based partition achieves 1− 1/r+ 2 ln r/r2 ap-
proximation ratio.

We adopt the SDP algorithm to solve the OPS problem.
The SDP algorithm including the SDP relaxation program is
given in Algorithm 4.1 (the original IP formulation is given
in Appendix B).

The drawback of the SDP partitioning algorithm is that
it is rather slow. Thus we further propose a heuristic
greedy algorithm to solve the Min-r-Volume problem, which
can be applied to large graphs. Given disjoint node sets
V1, . . . , Vr and an external node vi not in any of these sets,
we define δgr(vi, Vk) to be gr(V1, . . . , Vk ∪ {vi}, . . . , Vr) −

1If the partitioning result is less than r components, just
reselect r new random vectors from R

n and repeat the step
again.

Algorithm 4.2 Greedy Partitioning Algorithm

Require: Graph Ga with n nodes, partition size r.
1: Generate a random permutation of the integers from 1

to n inclusive: s1, s2, . . . , sn.
2: Let V1 = . . . = Vr = ∅.
3: repeat

4: for i← 1 to n do

5: if vsi ∈ Vj for some j ∈ [r] then Vj = Vj \ {vsi}.
6: end if

7: Compute k = argminl∈[r] δgr(vsi , Vl).
8: Let Vk = Vk ∪ {vsi}.
9: end for

10: Let P = {(V1, 1), . . . , (Vr, 1)}.
11: until a predetermined stopping condition holds
12: Output: P .

gr(V1, . . . , Vk, . . . , Vr), which is the increase of the cost func-
tion when the external node vi is added to the component
Vk. The basic idea of our greedy algorithm (Algorithm 4.2)
is to assign each node to the component such that the ob-
jective function gr(P) is increased the least. After the first
round of greedy assignment, we repeat the greedy assign-
ment procedure to further decrease the cost function, until
some stopping condition holds, such as the relative decrease
is smaller than a predetermined threshold.

Even though the greedy algorithm is a heuristic, the fol-
lowing lemma shows that it always performs better than the
naive sampling algorithm (when ignoring an o(1) term for
large graphs), even using the partition after the first round
of greedy assignment.

Lemma 6. Let P be the partition produced by greedy par-
titioning algorithm (Algorithm 4.2) after the first iteration
of all nodes. Then

EM [VarS(f̂part (P))] < EM [VarS(f̂naive)] +
1

4n
.

The running time of one-round greedy partitioning is
O(n + |EGa |) where n is |V | and EGa is the edge set of
Ga. If Ga is strongly connected, then |EGa | = n(n − 1)/2,
thus the complexity of greedy partitioning is O(n2). In our
experiment, we will show that greedy partitioning with a
reasonable stopping condition performs close to SDP parti-
tioning but could run on much larger graphs.

5. EXPERIMENTAL EVALUATION
In this section, we present results of our experimental

evaluations of the sampling quality of our partitioning algo-
rithms proposed in Section 4 compared against naive sam-
pling, using both synthetic and real-world datasets. To be
specific, we first describe the generation of our synthetic
graphs, and show the comparison of various sampling meth-
ods and how graph structure and inward tendency affect
the performance of the sampling methods in Section 5.1.
We then move on to the real-world dataset in Section 5.2 to
show a method of learning the distribution of inward proba-
bilities from online social networks, and the performance of
partitioned sampling on the real-world graph based on the
learned inward probabilities.

In our experiment, when the parameters of VIO model
(i.e. weighted adjacency matrix A, people’s inward proba-
bilities p1, p2, . . . , pn, updating rates of people’s opinions
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Figure 2: Experimental results of synthetic graphs.
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Figure 3: Performance of various algorithms.

λ1, λ2, . . . , λn, and the mean of innate opinion µ) are given,
the experiment are done by (a) calculating the correlations
of every pair of nodes by Theorem 1, (b) running the par-
titioning algorithms2 to obtain the partition candidate, and
(c) computing the expected variance EM [VarS(f̂)]

3 by The-
orem 3. In both synthetic and real-world datasets, we set
µ to 0.5. Notice that the value of µ has no effect on the
results.

5.1 Synthetic Dataset
In our synthetic experiments, we use the hidden partition

model [3] to generate the undirected graphs, which aims
at resembling the community structure in real-world social
networks. It is specified by four parameters: the number
of vertices n, the number of hidden partitions k, the inter-
partition and intra-partition edge probabilities pH and pL,
respectively. First, we assign each node to one of the k hid-
den partitions uniformly at random. Next, we independently
connect each pair of nodes in the same hidden partition with

2To solve the SDP programming in SDP partitioning algo-
rithm, we used CVX which is a package for specifying and
solving convex programs [12, 13].
3Each randomized partitioning algorithm was run 10 times,
and we took the average of the expected variance as the
result.

probability pH , and two nodes in different partitions with
probability pL < pH . We generate two different sizes of hid-
den partition graphs. The small one is used to compare the
sampling quality among the following three different sam-
pling methods: naive sampling (Naive), partitioned sampling
using greedy partitioning (Greedy), and partitioned sampling
using SDP partitioning (SDP). We use a small graph because
SDP is infeasible to run in large graphs. We then move on to
the large hidden partition graphs and only run Greedy and
Naive for these graphs. We study the impact of inward prob-
abilities and graph structure on the performance of Greedy

on those graphs, respectively. For the synthetic graphs, we
set opinion updating rates λi to 1 for all i ∈ [n].

Small synthetic graph. The small hidden partition
graphs we generate includes 100 nodes and 20 hidden par-
titions. Probability pH and pL are set to 0.9 and 0.01, re-
spectively. The inward probability of each node is randomly
chosen from [0, 0.01]. We range the sample size r from 2
to 14, and the expected sample variance is shown in Fig-
ure 2(a). We put sample size on y-axis to make it easier to
see the savings on the sample size under the same expected
sample variance.

When the sample size r is small (i.e. less than 6), the per-
formance of SDP and Greedy are similar to each other, and
both better than Naive. When the sample size r increases,

7



the performance of Greedy becomes much better than Naive,
and the performance of SDP starts getting worse but it is
still better than Naive. Specifically, if we fix EM [VarS(f̂)] to
be 0.008, Greedy needs 9 samples, and SDP needs 11 sam-
ples, while Naive needs 13 samples. This suggests that by
using our partitioned sampling method, we can save 31% of
samples while achieving the same sampling quality.

Large synthetic graphs. For the large synthetic graph
with 10k nodes and 500 hidden partitions, SDP is no longer
feasible, thus we compare the improvement of Greedy against
Naive. We ran Greedy and Naive using different sample sizes
(r = 250 and r = 500), varying the inward probabilities and
pH/pL, to observe the improvement of expected sample vari-
ance under different graph clustering and inward tendency
settings.

In Figure 2(b), we set all nodes’ inward probabilities to
0.05 and pH to 1, and range pL from 10−1 to 10−6. The
improvement on y-axis means the improvement of expected
sample variance from Naive to Greedy. The result shows
that the larger pH/pL (more apparent clustering) indicates
the better performance of our partitioned sampling. When
pH/pL increases from 102 to 105, the improvement of ex-
pected sample variance enhances rapidly. When pH/pL is
too large (i.e. larger than 105), the improvement of ex-
pected sample variance becomes saturated. This is because
the number of edges which cross different hidden partitions
are very few so that it decreases rather slowly and the graph
structure is almost unchanged when pH/pL increases fur-
ther.

In Figure 2(c), we set pH to 1 and pL to be 10−5 to gen-
erate the hidden partition graph. For this graph, we set all
nodes’ inward probabilities to be identical, varying from 0.02
to 0.8. The result shows that the lower inward probability in-
dicates the better performance of our partitioned sampling.
When the inward probability is small, the improvement of
expected sample variance increases rapidly. This is because
a lower inward probability means people interact more with
their friends and thus their opinions are correlated more sig-
nificantly.

According to the above two experiments, we conclude that
the larger pH/pL and the lower inward probability make
people’s opinions clustered and strongly correlated inside the
clusters, and our partitioned sampling method works better
for these cases.

5.2 Real-World Dataset
The real-network dataset we use is the online social net-

work data from Sina Weibo4 [20], which contains 100, 102
users and 30, 518, 600 tweets within a one-year timeline from
1/1/2013 to 1/1/2014. We treat the user following relation-
ship between two users as a directed edge (with weight 1).
For this dataset, we first need to learn the distribution of
people’s inward probabilities.

5.2.1 Distribution of Inward Probabilities
In order to observe the evolution of opinions for a spe-

cific topic of interest, We manually choose 12 specific topics
(e.g. Microsoft, iPhone, etc.), and extract all tweets from
the Weibo dataset related to these topics (simply using key-
word based classifier). We then run each tweet through a
sentiment analyzer [18] to obtain binary opinion values (pos-
itive/negative). Thus we get a series of opinions for each user

4http://weibo.com

at discrete time corresponding to each topic. For each topic,
we select those users who published opinions at least 4 times,
and regard their first opinions as their innate opinions f1(0),
f2(0), . . . , fn(0) and treat the average of the rest opinions
as their expected opinions EM [f1], EM [f2], . . . , EM [fn] in
the in steady state state. We then collect their relationships
and form a subgraph for the corresponding topic.

Recall the definition of matrix Q (Definition 2), and it is
easy to see that









EM [f1]
EM [f2]
. . .

EM [fn]









= Q









f1(0)
f2(0)
. . .

fn(0)









(or EM [~f ] = Q~f(0)).

Thus we can estimate the inward probabilities by solving
the following programming

Minimize
∥

∥

∥EM [~f ]−Q~f(0)
∥

∥

∥ ,

Subject to 0 ≤ pi ≤ 1,∀i ∈ [n],

and we use gradient descent method to handle above pro-
gramming.

We estimate the inward probabilities under the 12 topics
respectively, and Figure 3(a) shows the distribution of in-
ward probabilities for three topics, namely Spring Festival
Gala (68 users), Microsoft (66 users) and iPhone (59 users),
and the results for other topics are similar. The distribution
for these three different topics are quite similar: (a) Over
45% inward probabilities locate in [0, 0.2]; (b) The probabil-
ity that pi locates in [0.8, 1] is the second highest; (c) Others
almost uniformly locate in [0.2, 0.8]. This indicates that in
the real world, most people tend to adopt others’ opinions,
which matches the intuition that many people are affected
by other people’s opinions. We manually look up those users
who locate in [0.8, 1], and find that a large number of them
are media accounts and verified users. This matches our in-
tuition that those users alway take effort to spread their own
opinions on the web but less likely to adopt other people’s
opinions, hence they should have large inward probabilities.

5.2.2 Performance of Partitioned Sampling
In this section, we show the performance of Greedy com-

pared to Naive on the real-world graph. We randomly select
22, 000 users from the Weibo dataset, and remove the users
who do not follow anyone, iteratively. Then we get our large
Weibo graph including 10, 975 nodes and 25, 236 directed
edges. We use two different settings for opinion updating
rates: One is to set λi = 1 for all i ∈ [n]; The other is to set
λi to the number of vi’s tweets from 1/1/2013 to 1/1/2014
in the Weibo dataset. The users’ inward probabilities are
set in the following way so that it follows the distribution
we learned in the previous section. We sort all the inward
probabilities learned in Section 5.2.1 among 12 topics, de-
noted as p̂1 < p̂2 < · · · < p̂k. For each user in the large
Weibo graph, we select an integer i from {1, 2, . . . , k + 1}
uniformly at random, and set her inward probability to a
random real number in the following interval











[0, p̂1], if i = 1,

[p̂k, 1], if i = k + 1,

[p̂i−1, p̂i], others.

Since there are some p̂i values that are zeros, we will have
users with zero inward probability. For these users, we use
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a very small value 10−10 in our simulation since our compu-
tation of the VIO model requires inward probability to be
greater than zero.

Figure 3(b) and 3(c) show the experimental result on the
Weibo graph with all λi = 1 and λi set to the number of
vi’s tweets, respectively. The improvement of Greedy against
Naive with two different updating rate settings are similar.
In particular, if we fix EM [VarS(f̂)] to be 2.1×10−4 , Greedy
needs 920 samples while Naive needs 1074 samples (saving
14.3%) in Figure 3(b), and Greedy needs 923 samples while
Naive needs 1074 samples (saving 14.1%) in Figure 3(c).

The results indicate that the sample size saving is more ap-
parent when the expected sample variance is getting smaller
(i.e. sampling quality requirement is higher). The figures
also indicate that our partitioned sampling method is ro-
bustly better than naive sampling method regardless of the
updating rate settings. The results are consistent with the
results from synthetic graphs in demonstrating the better
performance of partitioned sampling method.

In summary, our results on the real-world data show
that real-world social networks do exhibit opinion correla-
tions and clusterings that can enable more efficient sampling
through the partitioned sampling method. Our results on
the synthetic data further show that when graph clustering
and social interaction are stronger, the benefit of partitioned
sampling could be higher.

6. DISCUSSION
We now provide further discussions on several aspect of

our partitioned sampling approach.
Correlation learning and balanced greedy algo-

rithm. As discussed in Section 4, our partitioned sam-
pling method (in particular Theorem 3) can be applied with
any method of learning opinion correlations between pairs
of users. Thus, besides using VIO, one can potentially ap-
ply other models to model and learn opinion correlations.
Alternatively, if enough data is available, one may learning
correlations directly from historical opinion data of all users.

If the learned correlations are not accurate, our parti-
tioned sampling method using either SDP or greedy ap-
proach may lose its effectiveness. However, if we make a
small modification of SDP partitioning algorithm to force
the output partition to be a balanced partition, then by
Lemma 4, the balanced greedy algorithm always achieves
a better sampling quality than Naive, when the population
size n is large enough, no matter whether our correlation
estimation is accurate or not.

Objective function of the OPS problem. In the def-
inition of OPS problem (Section 2), we use EM [VarS(f̂)]
as our objective function where M represents the random-
ness from the evolution model and S represents the ran-
domness from sampling. Since our partitioning algorithms
(i.e. Algorithm 4.1 and 4.2) are randomized algorithms,
the randomness S can further be divided into two parts:
the randomness from partitioning algorithms (denoted as
P ) and the randomness from sample selecting in each com-
ponent (denoted as C). Thus the objective function of our

OPS problem can be specifically written as EM [VarP,C(f̂)].
However, in our experimental evaluation (Section 5), we

compute EM [VarC(f̂)] for each partition and take average

of them to be the “EM [VarS(f̂)]”, which is strictly to be

EP EM [VarC(f̂)]. In fact, they are the same as we show be-

low. Notice that the randomness M and P are independent,
thus EM and EP are commutative. Thus

EP EM [VarC(f̂)]− EM [VarS(f̂)]

= EP EM

[

EC [f̂
2]− EC [f̂ ]

2
]

− EM

[

EP EC [f̂
2]−

[

EP EC [f̂ ]
]2
]

= EM EP EC [f̂
2]− EM EP

[

EC [f̂ ]
]2

− EM EP EC [f̂
2] + EM

[

EP EC [f̂ ]
]2

= EM

[

(

EP EC [f̂ ]
)2

− EP

[

EC [f̂ ]
]2
]

= EM VarP
(

EC [f̂ ]
)

= EM VarP (f̄) (3)

= 0.

Equation (3) holds because f̂ is an unbiased estimate for

any partition P . Thus EP EM [VarC(f̂)] and EM [VarS(f̂)]
are the same, and we do not distinguish them in the paper.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose the partitioned sampling

method based on the VIO model to achieve the better sam-
pling quality, by proposing the SDP and greedy partitioning
algorithms. We also apply the partitioned sampling method
on both synthetic and real-world graphs, and show that par-
titioned sampling achieves effective improvement on sample
quality (or equivalently savings on sample size).

There are a number of open problems and future direc-
tions one may pursue. For example, one may further en-
rich the VIO model to allow (a) non-identical innate opinion
distributions if partial knowledge about individuals’ innate
opinion tendency is available, or (b) negative relationships
as modeled in [14] so as to include negative correlations, and
study the OPS problem under these models. Another direc-
tion is to improve learning the parameters of VIO model, or
in general to extract opinion correlations in social networks
from real-world data. Finally, the current approach is based
on learning all pairs of node correlations, which is infeasible
for very large graphs with tens or hundreds of millions of
nodes. Thus how to bypass all-pair-correlation computation
and achieve highly scalable partitioned sampling algorithm
is an important task we plan to pursue in the future.
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APPENDIX

A. MATHEMATICAL PROOFS

Proposition 1. Partitioned sampling given in Algo-
rithm 2.1 is unbiased.

Proof. For any partition P = {(V1, r1), . . . , (VK , rK)},

ES

[

f̂part (P)
]

=
1

|V |

K
∑

k=1

|Vk|ES

[

f̂naive(Vk, rk)
]

=
1

|V |

K
∑

k=1

|Vk|
∑

vi∈Vk

fi
|Vk|

=

∑n

i=1 fi

|V |

= f̄ .

Notice that naive sampling in Vk with no replacement is
unbiased, thus ES[f̂naive(Vk, rk)] is equal to the mean of fi
in Vk. Thus partitioned sampling is unbiased.

Lemma 1. When pi > 0 for all i ∈ [n], the VIO model has
a unique joint distribution for the final expressed opinions in
steady state.

Proof. The opinion evolution can be viewed as a Markov
chain. Each possible assignment of v1, v2, . . . , vn’s expressed
opinions forms one state and the initial state of the Markov
chain is (f1(0), f2(0), . . . , fn(0)). At each Poisson arrival
time, the transition from one state to another represents
the change of the opinion assignment. Thus the state space
consists of all the states reachable from the initial state. The
VIO model has a unique steady state distribution for the fi-
nal expressed opinions if and only if the Markov chain has
a unique stationary distribution. In order to prove the ex-
istence of the unique stationary distribution of the Markov
chain, we only need to prove that the Markov chain is ir-
reducible and aperiodic [17]. Notice that each state in the
state space can be reached from the initial state. Meanwhile,
each state in the state space can return to the initial state by
each node updating its expressed opinion to the innate opin-
ion which happens with a positive probability. This means
that any two states in the state space are connected, indicat-
ing the irreducibility of the Markov chain. In addition, the
initial state is aperiodic since it has a self-loop in the state
transition graph (with probability at least

∑n

i pi/n > 0).
An irreducible Markov chain is aperiodic if there exists one
aperiodic state. Therefore, the Markov chain is irreducible
and aperiodic, with the unique stationary distribution being
reached after long enough time.

Lemma 2. The expected expressed opinion of each node
in steady state is equal to the mean of innate opinion, that
is EM [fi] = µ for all i ∈ [n].

Proof. We prove this lemma by proving a stronger state-
ment: given any t ≥ 0, EM [fi(t)] = µ for all i ∈ [n]. Namely,
we want to prove that at any time t, each node’s expected
expressed opinion is equal to the mean of innate opinion.

The proof is by induction on time t.
In the initial state, each node’s expressed opinion(also in-

nate opinion) is generated from an i.i.d. distribution and the
above statement holds.

Now suppose the statement holds before time t. It still
holds before the next Poisson arrival among all nodes. Sup-
pose the next Poisson arrival comes at time τ and its corre-
sponding updating node is vi. At this Poisson arrival time
τ > t, vi updates its expressed opinion based on its innate
opinion and one of its neighbors’ expressed opinions. No-
tice that the expectations of both its innate opinion fi(0)
and all its neighbors’ expressed opinions fj(τ ) are equal to
µ by the inductive assumption, namely, EM [fi(0)] = µ and
EM [fj(τ )] = µ for all vj ∈ Ni where Ni is the set of vi’s
neighbors. Thus the expectation of vi’s updated expressed
opinion EM [fi(τ )] is still equal to µ. Moreover, other nodes’
expected expressed opinions remain equal to µ upon time τ .

Thus by induction, at any time t, each node’s expected
expressed opinion is always equal to µ.

Lemma 3. P
[

Ilij
]

, i, j, l ∈ [n] is the unique solution of
the following linear equation system:

P

[

Ilij

]

=























0, i = j 6= l,

1, i = j = l,
∑n

a=1
λi(1−pi)Aia

(λi+λj)di
P[Ilaj ]

+
∑n

b=1

λj(1−pj)Ajb

(λi+λj)dj
P[Ilib], i 6= j.

Q is computed by

Q =
(

I − (I − P )D−1A
)−1

P,

where P = diag(p1, p2, . . . , pn) and D = diag(d1, d2, . . . , dn)
are two diagonal matrices, and matrix I − (I − P )D−1A is
invertible when pi > 0 for all i ∈ [n].

Proof. (a) Recall from Definition 2 that Ilij denotes the
event that two random walks starting from vi and vj at time
t = ∞ eventually meet and the first node they meet at is
vl ∈ V . This event consists of two steps: 1) The walker at vi
(or vj) moves to one of its neighbor va (or vb); 2) two random
walks starting from va (or vb) and vj (or vi) eventually meet
and the first node they meet at is vl. The probability that
the walker at vi (resp. vj) make a movement is proportional
to vi’s (resp. vj ’s) Poisson rate, that is λi/(λi + λj) (resp.
λj/(λi + λj)). Thus when i 6= j, P

[

Ilij
]

can be calculated
by the following recursion:

P

[

Ilij

]

=
n
∑

a=1

λi

λi + λj

(1− pi)Aia

di
P

[

Ilaj

]

+
n
∑

b=1

λj

λi + λj

(1− pj)Ajb

dj
P

[

Ilib

]

.

When i = j, P
[

Ilij
]

can be determined by the following
boundary conditions:

P

[

Ilij

]

=

{

0, i = j 6= l,

1, i = j = l.

By combining the recursive equations and the boundary con-
ditions, we have the following linear equations:

P

[

Ilij

]

=























0, i = j 6= l,

1, i = j = l,
∑n

a=1
λi(1−pi)Aia

(λi+λj)di
P[Ilaj ]

+
∑n

b=1

λj(1−pj )Ajb

(λi+λj)dj
P[Ilib], i 6= j.

(4)

(The above proof follows the idea in [19].)
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Now we show that the linear equations has a unique solu-
tion.

For a fixed l, the equations for all terms P
[

Ilij
]

such that

i 6= j form a linear sub-system of
(

n

2

)

variables and
(

n

2

)

equa-
tions. Therefore, we can solve the whole linear system (4)
by solving n separated linear sub-systems. Each linear sub-
system corresponds to a value of l, and it can be solved in

O
(

(

n

2

)3
)

= O
(

n6
)

5 , thus the original linear system (4)

can be solved in time n · O
(

n6
)

= O
(

n7
)

, as mentioned in
Section 3.2.

Now, we show that there exists the unique solution for
each linear sub-system.

Each equation in the linear sub-system can be written as

P

[

Ilij

]

=
∑

a 6=j

λi(1− pi)Aia

(λi + λj)di
P

[

Ilaj

]

+
∑

b6=i

λj(1− pj)Ajb

(λi + λj)dj
P

[

Ilib

]

+
λi(1− pi)Aij

(λi + λj)di
· 1j=l +

λj(1− pj)Aji

(λi + λj)dj
· 1i=l.

Let k = h(i, j) = (i − 1)n + j, then we have a bijection h
of subscript between integer k and ordered pair (i, j) where
i < j. We can write these equations in matrix form:

I~x = M1~x+M2~x+~b

where ~x is the
(

n

2

)

× 1 vector whose k-th element is P
[

Ilij
]

;

M1 is the
(

n

2

)

×
(

n

2

)

matrix whose (k, h(a, j)) entry is
λi(1−pi)Aia

(λi+λj)di
; M2 is the

(

n

2

)

×
(

n

2

)

matrix whose (k, h(i, b))

entry is
λj(1−pj )Ajb

(λi+λj)dj
; ~b is the

(

n

2

)

× 1 vector whose k-th ele-

ment is
λi(1−pi)Aij

(λi+λj)di
· 1j=l +

λj(1−pj)Aji

(λi+λj)dj
· 1i=l.

If I−M1−M2 is non-singular, each linear sub-system has

a unique solution (I −M1 −M2)
−1~b. In fact, for any row s

of I −M1 −M2, let (i, j) = h−1(s), and

∑

t 6=s

|I −M1 −M2|st =
∑

a 6=j

λi(1− pi)Aia

(λi + λj)di
+
∑

b6=i

λj(1− pj)Ajb

(λi + λj)dj

=
λi(1− pi)

(λi + λj)

∑

a 6=j

Aia

di
+

λj(1− pj)

(λi + λj)

∑

b6=i

Ajb

dj

≤
λi(1− pi)

(λi + λj)
+

λj(1− pj)

(λi + λj)

<
λi

(λi + λj)
+

λj

(λi + λj)

= |I −M1 −M2|ss.

Thus, I −M1 −M2 is strictly diagonally dominant, and it
is non-singular [1]. Since each linear sub-system has one
unique solution, the whole linear system (4) also does.

(b) The probability of a walker from vi walking to vj is

p
(1)
ij = (1−pi)Aij/di. Note here the statement is conditioned

on the current Poisson arrival is vi. So we have a matrix
form PV V = (I − P )D−1A whose (i, j) is p

(1)
ij . Therefore,

the probability of walking from vi to vj in exactly l steps is
the (i, j) entry of (PV V )l.

By definition of our model, the probability of vj walking
to v′j (being absorbed) is pj . Thus the matrix Q whose (i, j)

5n-variable linear system can be solved in time O
(

n3
)

.

entry is the probability of transition from vi to v′j can be
calculated by

Q =
∞
∑

l=0

(PV V )lP = (I−PV V )−1P =
(

I − (I − P )D−1A
)−1

P.

Now we show that I − PV V is invertible. The (i, j) entry of
I − PV V is

{

1, if i = j,

− 1−pi
di

Aij , if i 6= j.

For any row i of I − PV V , the sum of absolute values of its
non diagonal elements can be written as

∑

j 6=i
1−pi
di

Aij =

(1−pi)(1−
Aii

di
), and it is strictly less than the absolute value

of i-th diagonal elements |I − PV V |ii = 1. Thus I − PV V is
strictly diagonally dominant, and it is non-singular [1].

Theorem 1. For any i, j ∈ [n], correlation CorM (fi, fj)
is equal to the probability that two coalescing random walks
starting from vi and vj at time t = ∞ end at the same ab-
sorbing node in V ′. Moreover, CorM (fi, fj) can be computed
by

CorM (fi, fj) =
n
∑

l=1

P

[

Ilij

]

(

1−
n
∑

k=1

Q2
lk

)

+
n
∑

k=1

QikQjk,

where Ilij and Q are defined in Definition 2, and P
[

Ilij
]

and
Q are computed by Lemma 3.

Proof. (a) In this part, we show that CorM (fi, fj) is
equal to the probability that two coalescing random walks
starting from vi and vj at time t = ∞ end at the same
absorbing node in V ′. In the proof, we split the randomness
M into two parts: We use O to denote the randomness of
innate opinions which are generated by an i.i.d. distribution,
and we use E to denote the randomness from the opinion
evolution.

When i = j, obviously we have CorM (fi, fj) = 1. In this
case, the two random walks’ paths coincide, thus they are
absorbed by the same node in V ′ with probability 1.

When i 6= j, according to the definition of correlation,

CorM (fi, fj) =
EM [fifj ]− EM [fi]EM [fj ]
√

VarM [fi] VarM [fj ]

=
EM [fifj ]− µ2

µ− µ2
.

The second equality holds because for any i ∈ [n],

VarM [fi] = EM [f2
i ]−EM [fi]

2 = EM [fi]−EM [fi]
2 = µ−µ2.

Next, we need to calculate EM [fifj ], which is the proba-
bility that two random walkers starting from vi and vj walk
to the nodes in V ′ whose original opinions are 1. This event
consists of two cases: Two random walkers move to the same
absorbing node, or two distinct absorbing nodes. Thus we
can calculate EM [fifj ] by adding them together.

LetMp,q
i,j be the event that in the coalescing random walk

on G, a random walker starting from vi is absorbed by v′p,
while another random walker starting from vj is absorbed
by v′q . Note thatMp,q

i,j is measurable under randomness E.

It only depends on the structure of G and is independent of
the initial value in V ′:

PE

[

Mp,q
i,j |

~f(0)
]

= PE

[

Mp,q
i,j

]

.
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Thus EM [fifj ] can be written as:

EM [fifj ]

= EO,E[fifj ]

=
∑

p 6=q

PO,E

[

Mp,q
i,j | fp(0)fq(0) = 1

]

PO,E [fp(0)fq(0) = 1]

+

n
∑

p=1

PO,E

[

Mp,p
i,j | fp(0) = 1

]

PO,E [fp(0) = 1]

=
∑

p 6=q

PE

[

Mp,q
i,j

]

PO [fp(0)fq(0) = 1]

+
n
∑

p=1

PE

[

Mp,p
i,j

]

PO [fp(0) = 1]

= µ2
∑

p 6=q

PE

[

Mp,q
i,j

]

+ µ

n
∑

p=1

PE

[

Mp,p
i,j

]

= µ

n
∑

p=1

PE

[

Mp,p
i,j

]

+ µ2

(

1−
n
∑

p=1

PE

[

Mp,p
i,j

]

)

=: µpsame(i, j) + µ2(1− psame(i, j)).

In the last equation, we use psame(i, j) to denote the prob-
ability that two coalescing random walks starting from vi
and vj end at the same node in V ′. Thus

CorM (fi, fj) =
EM [fifj ]− µ2

µ− µ2

=

[

µpsame(i, j) + µ2(1− psame(i, j))
]

− µ2

µ− µ2

= psame(i, j).

This means that CorM (fi, fj) is equal to the probability that
two coalescing random walks starting from vi and vj end at
the same absorbing node in V ′.

(b) We now calculate psame in this part. Let Hk
ij be the

event that two coalescing random walks starting from vi and
vj are both absorbed by node v′k without meeting each other
at a node in V . According to the definitions of eventsMp,q

i,j ,

Ilij and Hk
ij , we have

PE

[

Mk,k
i,j

]

=
n
∑

l=1

P

[

Ilij

]

Qlk + P

[

Hk
ij

]

(5)

where Qlk is the probability that a random walker starting
from node vl at time ends at v′k ∈ V ′.

Notice that QikQjk represents the probability that two
non-coalescing random walks starting from vi and vj end at
node v′k, thus it can be written as:

QikQjk =

n
∑

l=1

P

[

Ilij

]

Q2
lk + P

[

Hk
ij

]

. (6)

Combining Equation (5) and (6),

PE

[

Mk,k
i,j

]

=
n
∑

l=1

P

[

Ilij

]

(

Qlk −Q2
lk

)

+QikQjk.

Therefore,

CorM (fi, fj) =
n
∑

k=1

PE

[

Mk,k
i,j

]

=
n
∑

k=1

(

n
∑

l=1

P

[

Ilij

]

(

Qlk −Q2
lk

)

+QikQjk

)

=
n
∑

l=1

P

[

Ilij

]

(

1−
n
∑

k=1

Q2
lk

)

+
n
∑

k=1

QikQjk.

This finishes the proof.

Lemma 4. Given a graph with n ≥ 2 vertices, partitioned
sampling using any balanced complete partition P of the
graph, is better than naive sampling from the graph (after
ignoring an o(1) term). Specifically,

VarS(f̂part (P)) < VarS(f̂naive) +
3

2n
.

Proof. For the social graph to be sampled, let f̄ be the
average opinion of the whole graph f̄ =

∑n

i=1 fi/n. The

estimate of naive sampling is f̂naive =
∑r

k=1 fsk/r where r is
the sample size and vsk (k ∈ [r]) are the sampled nodes, and
the estimate of complete partitioned sampling is denoted by
f̂part (P) =

∑r

k=1 nkfsk/n where nk is the size of component
Vk and

∑r

k=1 nk = n.
The variance of naive sampling without replacement is:

VarS
(

f̂naive
)

= ES [f̂
2
naive ]− ES[f̂naive ]

2

=
1

r2
ES

[(

r
∑

k=1

fsk

)2]

− f̄2

=
1

r2

r
∑

k=1

ES

[

f2
sk

]

+
1

r2

∑

k 6=l

ES[fskfsl ]− f̄2.

Notice that fsk ∈ {0, 1},

ES

[

f2
sk

]

= ES [fsk ] = f̄ ,

and

ES[fskfsl ] = PS[fsk = 1]PS [fsl = 1|fsk = 1] = f̄ ·
nf̄ − 1

n− 1
.

Thus

VarS
(

f̂naive
)

=
1

r2

r
∑

k=1

ES

[

f2
sk

]

+
1

r2

∑

k 6=l

ES[fskfsl ]− f̄2

=
1

r2
rf̄ +

1

r2
r(r − 1)f̄ ·

nf̄ − 1

n− 1
− f̄2

=
f̄(1− f̄)

r

n− r

n− 1
. (7)

The variance of partitioned sampling using complete par-
tition P can be written as

VarS
(

f̂part (P)
)

= ES

[

f̂part (P)
2
]

− ES

[

f̂part (P)
]2

= ES





r
∑

k=1

n2
k

n2
f2
sk

+
∑

k 6=l

nknl

n2
fskfsl





−

(

r
∑

k=1

nk

n
ES [fsk ]

)2

=
r
∑

k=1

n2
k

n2

(

ES

[

f2
sk

]

− ES [fsk ]
2)
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=
r
∑

k=1

(nk

n

)2

VarS (fsk )

=
r
∑

k=1

f̄k
(

1− f̄k
)

(nk

n

)2

.

where f̄k is the average opinion of the k-th component. We
define δk to be nk

n
− 1

r
such that

∑r

k=1 δk = 0. Thus

VarS
(

f̂part (P)
)

− VarS
(

f̂naive
)

=

r
∑

k=1

f̄k(1− f̄k)
(nk

n

)2

−
n− r

r(n− 1)
f̄
(

1− f̄
)

=
r
∑

k=1

f̄k
(nk

n

)2

−
r
∑

k=1

(

nk f̄k
n

)2

−
n− r

r(n− 1)

[

r
∑

k=1

nkf̄k
n
−

(

r
∑

k=1

nk f̄k
n

)2]

=
r
∑

k=1

nk f̄k
n

(

1

r
+ δk

)

−
n− r

r(n− 1)

r
∑

k=1

nkf̄k
n

−
r
∑

k=1

(

nkf̄k
n

)2

+
n− r

r(n− 1)

(

r
∑

k=1

nkf̄k
n

)2

=
r
∑

k=1

nk f̄k
n

(

1− 1
r

n− 1
+ δk

)

−
r
∑

k=1

(

nkf̄k
n

)2

+
1

r

(

r
∑

k=1

nk f̄k
n

)2

−
1− 1

r

n− 1

(

r
∑

k=1

nk f̄k
n

)2

=
1− 1

r

n− 1

(

r
∑

k=1

nkf̄k
n

)(

1−
r
∑

k=1

nkf̄k
n

)

+
r
∑

k=1

nk f̄k
n

δk +
1

r

(

r
∑

k=1

nkf̄k
n

)2

−
r
∑

k=1

(

nk f̄k
n

)2

=
1− 1

r

n− 1
f̄(1− f̄) +

r
∑

k=1

nkf̄k
n

δk

+

[

1

r

(

r
∑

k=1

nkf̄k
n

)2

−
r
∑

k=1

(

nk f̄k
n

)2
]

.

According to Cauchy-Schwarz inequality,

1

r

(

r
∑

k=1

nkf̄k
n

)2

≤
r
∑

k=1

(

nkf̄k
n

)2

.

Thus we have

VarS
(

f̂part (P)
)

−VarS
(

f̂naive
)

≤
1− 1

r

n− 1
f̄(1−f̄)+

r
∑

k=1

nkf̄k
n

δk.

Notice that for any balanced complete partition P , we
have 0 ≤ δk < 1

n
. Thus

VarS
(

f̂part (P)
)

− VarS
(

f̂naive
)

≤
1− 1

r

n− 1
f̄(1− f̄) +

r
∑

k=1

nk f̄k
n

δk

<
1

n− 1
f̄(1− f̄) + f̄ · sup δk

≤
1

(n− 1)
·
1

4
+

1

n

≤
3

2n
.

Thus we finish the proof.

Theorem 2. Given a graph G and the VIO model on G,
for any partition P, partitioned sampling using the refined
complete partition P ′ of P is better than partitioned sam-
pling using the original partition P (after ignoring an o(1)
term). Specifically,

EM [VarS(f̂part(P
′))] < EM [VarS(f̂part (P))] +

3

2n
.

Proof. From Lemma 4, if we take the expectation of
randomness M , we have

EM

[

VarS
(

f̂part (P)
)]

< EM

[

VarS
(

f̂naive
)]

+
3

2n
.

For any partition strategy P with m components, we can
find the balanced complete partition P∗

k for each component
Vk such that

EM

[

VarS(f̂part (P
∗
k ))
]

< EM

[

VarS(f̂naive(Vk, rk))
]

+
3

2nk

.

Thus the refined complete partition P ′ of P satisfies that

EM

[

VarS(f̂part(P
′))
]

=

m
∑

k=1

(nk

n

)2

EM

[

VarS(f̂part(P
∗
k ))
]

<

m
∑

k=1

(nk

n

)2

EM

[

VarS(f̂naive(Vk, rk))
]

+

m
∑

k=1

n2
k

n2

3

2nk

= EM

[

VarS(f̂part (P))
]

+
3

2n
.

This finishes the proof.

Theorem 3. For any complete partition P,

EM [VarS(f̂part (P))] =
µ(1− µ)

n2
gr(P),

where µ is the mean of innate opinion. Thus, the best com-
plete partition minimizes the cost function.

Proof. We use sk to represent the sample point selected
in the k-th component Vk of partition P by complete parti-
tioned sampling.

We define Cut(Vk, Vl) :=
∑

vi∈Vk

∑

vj∈Vl
CorM (fi, fj)

and Cor(Vk) :=
∑

i<j:vi,vj∈Vk
CorM (fi, fj).

The estimate of complete partitioned sampling using par-
tition P can be written as:

f̂part (P) =

∑r

k=1 nkfsk
n

,

where nk is the size of Vk. Thus the sample variance of
f̂part (P) is:

VarS
[

f̂part (P)
]

= ES

[

f̂2
part (P)

]

− ES

[

f̂part (P)
]2

= ES

[

(∑r

k=1 nkfsk
n

)2
]

− f̄2

= ES

[

1

n2

r
∑

k=1

n2
kf

2
sk

+
2

n2

∑

k<l

nknlfskfsl

]

− f̄2
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=
1

n2

r
∑

k=1

n2
kf̄k +

2

n2

∑

k<l

nknlf̄kf̄l − f̄2.

where f̄ is the average opinion of the entire population and
f̄k is the average opinion of the k-th component.

Then we take the expectation of each above item under
the randomness M . Notice that EM [fi] = µ for all i ∈ [n].
Thus we have

EM

[

f̄k
]

= EM

[
∑

vi∈Vk
fi

nk

]

=

∑

vi∈Vk
µ

nk

= µ,

and

EM

[

nknlf̄kf̄l
]

= EM









∑

vi∈Vk

fi









∑

vj∈Vl

fj









=
∑

vi∈Vk

∑

vj∈Vl

EM [fifj ]

=
∑

vi∈Vk

∑

vj∈Vl

[

µ2 + µ (1− µ) CorM (fi, fj)
]

(8)

= nknlµ
2 + µ (1− µ) Cut(Vk, Vl),

where Equation (8) holds because the definition of correla-
tion

CorM (fi, fj) =
EM [fifj ]− EM [fi]EM [fj ]
√

VarM [fi] VarM [fj ]
=

EM [fifj ]− µ2

µ− µ2
.

We also have

EM

[

f̄2
]

=
1

n2
EM

[

n
∑

i=1

n
∑

j=1

fifj

]

= µ2 +
µ (1− µ)

n2

n
∑

i=1

n
∑

j=1

Cor(fi, fj)

= µ2 +
µ (1− µ)

n2

(

n
∑

i=1

Cor(fi, fi)

+ 2
∑

k<l

Cut(Vk, Vl) + 2

r
∑

k=1

Cor(Vk)

)

= µ2 +
µ(1− µ)

n
+

2µ (1− µ)

n2

∑

k<l

Cut(Vk, Vl)

+
2µ (1− µ)

n2

r
∑

k=1

Cor(Vk). (9)

Therefore the expected variance of partitioned sampling can
be calculated by

EM

[

VarS(f̂part )
]

=
1

n2

r
∑

k=1

n2
kµ+

2

n2

∑

k<l

[

nknlµ
2 + µ (1− µ) Cut(Vk, Vl)

]

−
2µ (1− µ)

n2

(

∑

k<l

Cut(Vk, Vl) +
r
∑

k=1

Cor(Vk)

)

− µ2 −
µ(1− µ)

n

=
µ

n2

r
∑

k=1

n2
k +

2

n2

∑

k<l

nknlµ
2 − µ2

−
µ(1− µ)

n
−

2µ (1− µ)

n2

r
∑

k=1

Cor(Vk)

=
µ

n2

r
∑

k=1

n2
k −

µ2

n2

(

n2 − 2
∑

k<l

nknl

)

−
µ(1− µ)

n

−
2µ (1− µ)

n2

r
∑

k=1

Cor(Vk)

=
µ

n2

r
∑

k=1

n2
k −

µ2

n2

r
∑

k=1

n2
k −

µ(1− µ)

n2

r
∑

k=1

nk

−
2µ (1− µ)

n2

r
∑

k=1

Cor(Vk)

=
2µ(1− µ)

n2

r
∑

k=1

((

nk

2

)

− Cor(Vk)

)

=
µ(1− µ)

n2

r
∑

k=1

VolGa(Vk)

=
µ(1− µ)

n2
gr(P).

Ignoring constant items, we need to minimize the cost func-
tion gr(P).

Lemma 5. The Min-r-Volume problem is NP-hard to be
approximated within any finite factor.

Proof. We establish a reduction from the r-coloring
problem to the Min-r-Volume problem as follows.

Given a graph G for r-coloring. A proper coloring of the
graph is a r-labelling to all the vertices such that the end-
points of every edge are colored differently. The r-coloring
problem is to decide if there exists a proper coloring for a
given graph using at most r labels. For r ≥ 3, this problem
is NP-complete [9].

Suppose that we have an approximation algorithm for
Min-r-Volume on the graph G with finite approximation
factor. We can use this algorithm to solve an instance of
r-coloring of the graph G in polynomial time, in the follow-
ing manner.

If the optimal solution of Min-r-Volume is zero, there
should be no edges inside any partition. Then we color the
vertices in the same partition with the same color, thus there
will be no two adjacent vertices sharing the same color. This
is a r-coloring of the graph G. Otherwise, if there exists a
r-coloring of the graph G, we put the same colored vertices
in the same partition, leading to the sum of r Volumes equal
to zero. If we apply the approximation algorithm of Min-
r-Volume with finite approximation factor to the graph G,
we are able to distinguish whether the optimal solution of
Min-r-Volume is zero or not, which indicates whether the
r-coloring of the graph G exists or not.

Hence, we establish the polynomial-time reduction.

Lemma 6. Let P be the partition produced by greedy par-
titioning algorithm (Algorithm 4.2) after the first iteration
of all nodes. Then

EM [VarS(f̂part (P))] < EM [VarS(f̂naive)] +
1

4n
.

Proof. The variance of naive sampling is (see Equa-
tion (7))

VarS(f̂naive) =
n− r

r(n− 1)
(f̄ − f̄2).

14



Notice that EM [f̄ ] = µ and

EM [f̄2] = µ2 +
µ(1− µ)

n
+

2µ (1− µ)

n2

∑

k<l

Cut(Vk, Vl)

+
2µ (1− µ)

n2

r
∑

k=1

Cor(Vk).

which is obtained in Equation (9). Thus the expected vari-
ance of naive sampling is

EM [VarS(f̂naive)]

=
(n− r)µ(1− µ)

r(n− 1)



1−
1

n
−

2

n2

∑

i6=j

Cor(fi, fj)





=
(n− r)µ(1− µ)

r(n− 1)n2

∑

i6=j

[1− Cor(fi, fj)]

where
∑

i6=j [1− Cor(fi, fj)] is the volume of graph Ga.
In the first iteration of greedy partitioning algorithm, the

nodes are assigned to one of the components in the sequence
vs1 , vs2 , . . . , vsn , and the cost function is increasing during
each assignment. In the k-th assignment, the increase of
cost function is no more than

∑k−1
l=1 wsksl/r where wsksl is

1− Cor(fsk , fsl ).
Thus after the first iteration, the cost function

gr(P) ≤
r
∑

k=2

k−1
∑

l=1

wsksl/r <
1

r

∑

i6=j

[1− Cor(fi, fj)].

Therefore

EM [VarS(f̂part (P))]− EM [VarS(f̂naive)]

=
µ(1− µ)

n2



gr(P)−
n− r

r(n− 1)

∑

i6=j

[1− Cor(fi, fj)]





<
µ(1− µ)

rn2

(

1−
n− r

n− 1

)

∑

i6=j

[1− Cor(fi, fj)]

≤
µ(1− µ)

rn2

r − 1

n− 1
n(n− 1)

=
µ(1− µ)(1− 1/r)

n

<
1

4n
.

This finishes the proof.

B. SDP PARTITIONING ALGORITHM
In this part, we present the formulation of our SDP

partitioning algorithm. The task is to find r components
P = {V1, V2, . . . , Vr} in order to maximize the following
function:

g′(P) =
r−1
∑

k=1

r
∑

l=k+1

CutGa(Vk, Vl)

where CutGa(Vk, Vl) is defined by
∑

i,j:vi∈Vk,vj∈Vl
wij .

Frieze and Jerrum [8] propose an approximation algorithm
for Max-r-Cut using Semi-Definite Programing (SDP) as a
relaxation. We adopt their algorithm for solving our prob-
lem.

Take an equilateral simplex in R
r−1 with vertices ~b1, ~b2,

. . . , ~br. Let ~c = (~b1 +~b2 + · · ·+~br)/r, and let ~ak =
~bk−~c

‖~bk−~c‖
for 1 ≤ k ≤ r. There is a simple property for ~a1, ~a2, . . . , ~ar

that

~ak · ~al =

{

1, if ~ak = ~al;

− 1
r−1

, if ~ak 6= ~al.

We use ~yi ∈ {~a1, ~a2, . . . , ~ar} to present which component
node vi is located in. If node vi is in k-th component, then
~yi = ~ak. In this way, the maximization problem can be
written as

Maximize
r − 1

2r

∑

i6=j

[1−Cor(fi, fj)] (1− ~yi · ~yj) (IP)

Subject to ~yi ∈ {~a1,~a2, . . . ,~ar}, i ∈ {1, 2, . . . , n}.

To obtain the SDP relaxation, we replace ~yi·~yj by (i, j)-entry
of the positive semi-definite symmetric matrix Y whose di-
agonal elements are equal to 1, and relax ~yi · ~yj to be not
less than − 1

r−1
.

Maximize
r − 1

2r

∑

i6=j

[1− Cor(fi, fj)] (1− Yij) (SDP)

Subject to Yii = 1, ∀i,

Y � 0,

Yij ≥ −
1

r − 1
,∀i 6= j,

Y is symmetric.

Our SDP partitioning algorithm is performed by solving the
above SDP problem and rounding the SDP-relaxed solution
to IP-flexible solution, which is shown in Algorithm 4.1.
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